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Energy-Constrained Bi-Objective Data Muling in
Underwater Wireless Sensor Networks
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Abstract—For underwater wireless sensor networks (UWSNs), data muling is an effective approach to data gathering, where sensor
data are collected when a mobile data mule travels within the wireless communication range of the sensors. However, given the
constrained energy available on a data mule and the energy consumption of its motions and communications a data mule may be
prevented from visiting every deployed sensor in a tour. We formulate the tour planning of a data mule collecting sensor data in UWSNs
as an energy-constrained bi-objective optimization problem termed the Underwater Data Muling Problem (UDMP). UDMP has the two
conflicting objectives of maximizing the number of sensors contacted and minimizing the length of a tour, while satisfying the energy
constraint on the data mule at all times. We design two heuristic algorithms to solve one special case and one generalized case of this
NP-hard problem, respectively. Each algorithm computes a set of Pareto-efficient solutions addressing the tradeoff between the two
optimization objectives to facilitate tour planning. Simulation results validate the effectiveness of both algorithms.

Index Terms—Underwater wireless sensor networks, data muling, tour planning, heuristic algorithm.
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1 INTRODUCTION

Data muling[1] has been shown to be an effective approach
to data collection in underwater wireless sensor networks
(UWSNs) [2]. A data mule is a mobile robot equipped with
data storage, battery, and wireless communications capability.
A data mule starts off from a sink (or depot), traverses the
network to collect data (via direct wireless communications)
from individual sensors, and transports the collected databack
to the sink. Ideally, we would like to plan a tour to collect
data fromall the sensors, whereas the overall tour length is
minimized. However, thefinite battery energy available on a
mobile mule may not support the expedition of reaching all
the deployed sensors along a data collecting tour.

This paper investigates the tour planning for underwater
data muling as an energy-constrained bi-objective optimiza-
tion problem, termed theUnderwater Data Muling Problem
(UDMP), which is proved to be NP-hard. Given a constraint on
a data mule’s finite battery energy, two competing optimization
objectives are considered at the same time: the maximization
of the number of visited sensors (cover-objective) and the
minimization of the tour length (length-objective). In particu-
lar, to sustain the long-running data muling operations inside
deep ocean to cover large geographical volumes, underwater
“energy stations” that harvest ocean currents for renewable
energy would be deployed within the ocean where a data
mule maydock to be recharged. With the usage of energy (or
docking) stations, we design two heuristic algorithms to solve
one special case called UDMP-AD (all-docking, where all the
energy stations are to be visited) and one generalized case
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called UDMP-DoD (docking-on-demand, where some energy
stations are to be visited on a needed basis), respectively.Sim-
ulation results show that a computed heuristic UDMP-AD tour
that covers all the sensors is much closer to the corresponding
optimal single length-objective tour, and often outperforms the
optimal solution of another closely related NP-hard problem,
and the UDMP-DoD heuristic could further decrease the tour
length in comparison to UDMP-AD solutions.

The paper proceeds in Section 2 with a review of the related
tour planning problems and solutions. Section 3 introduces
the visit/cover concepts and the proposed energy consumption
model of the data mule. Section 4 formulates UDMP, together
with two problem cases. Section 5 describes heuristic tour
planning algorithms for the two UDMP cases, together with
analyses of their space and time complexity. Simulation results
are discussed in Section 6, and Section 7 concludes the paper.

2 RELATED WORK

2.1 Single Objective Tour Planning

Among existing tour planning problems, the Traveling Sales-
man Problem (TSP) has been studied extensively, which
computes a shortest tour of given cities starting from an origin
city, visiting each other city exactly once, and returning to the
city of origin. The problem is NP-hard even in the special
case of vertices on the2D Euclidean plane [3]. Fortunately,
the Euclidean TSP can be approximated in polynomial time
by ratio(1+ε) (∀ε > 0) [4]. Given expected data traffic in sta-
tionary sparse ad hoc networks, Zhao et al. [5], [6] formulated
the message ferry problem to minimize the average delivery
delay, which is TSP when the traffic matrix is symmetric. Tariq
et al. [7] futher designed ferry routes for mobile node casesby
adding a wait time at each stop so that every node is contacted
with certain probability and the total time of traveling and
waiting is minimized. Note that the message ferry problem
assumes unlimited energy for a ferry.



2

A number of NP-hard tour planning problems have been
proposed as generalizations of TSP. One direction suitable
for data muling with wireless communications is to remove
the assumption of TSP that all cities must be on the tour.
One effort of this kind is the Covering Salesman Problem
(CSP) [8], where a covering distanceD is introduced, with
the goal of finding a minimum cost tour through only a
subset of the given vertices such that every vertex is either
on the tour or within distanceD of some vertex on the
tour. Another similar effort is the Covering Tour Problem
(CTP) [9], where two vertex sets are specified—a setV of
candidate tour stops and a setW of targets with covering
distanceD, and the aim is to cover all vertices inW by a
subset ofV chosen as actual tour stops on a minimum cost
tour. Recently both problems have been applied to mobile
data gathering in wireless sensor networks (WSNs). Rao et
al. [10] modeled the trajectory computation problem for the
mobile data harvester as CSP. Ma and Yang [11] formulated a
single-hop data gathering problem as CTP. Zhao and Yang [12]
further proposed a bounded relay hop mobile data collection
problem as a variation of CSP, to balance between the tour
length and the relay hop count of local data aggregation. One
common heuristic used for solving CSP/CTP is to carefully
choose a subset of vertices, usually in a greedy fashion, as
tour stops to cover all the given vertices and then find a TSP
tour through these chosen covering vertices. Although these
algorithms often generate good results in practice, it is hard to
analyze their approximation ratios. Note that the formulation
of CSP/CTP does not take advantage of the fact that data
exchange with sensors could proceed while a mule is traveling
between tour stops, even when sensors are not covered by the
mule stationarily at any tour stop. In such cases, sensors within
the communication rangealong a tourcould be covered by
the data mule traveling between consecutive tour stops.

Arkin and Hassin [13] first studied TSP with neighborhoods
(TSPN) as a geometric version of CSP. Given a set of
connected regions (called neighborhoods), TSPN computes a
minimum cost tour that intersects all regions. Constant-ratio
approximation algorithms were proposed in [13] for several
special cases of neighborhoods,e.g., parallel unit segments
(ratio 3

√
2 + 1) and translate regions (ratio

√
112 + 32 + 1).

The basic idea of these algorithms is to select a represen-
tative point for each region and then apply a known TSP
algorithm on these points. Dumitrescu and Mitchell [14] gave
an11.15-approximation algorithm for neighborhoods of equal-
size disks, which relates to sensors’ wireless communication
regions in data muling. However, the resulting tours include
curves rather than simple straight lines, and visit same points
and lines multiple times, which is neither easily nor efficiently
applicable to the data muling problem. Recently, Elbassioni et
al. [15] presented constant-ratio approximation algorithms for
both disjoint (ratio9.1α + 1) and lightly intersecting (ratio
O(α3)) convex fat regions (α = 4 for disks). While neigh-
borhoods each containing exactly one vertex may overlap, the
algorithm does not allow the existence of any vertex in the
intersections. Nevertheless in data muling, it is not rare for
arbitrary overlapping of sensors’ neighborhoods,e.g., some
sensors within the communication range of multiple sensors.

For general case of continuous neighborhoods with arbitrary
overlapping, the best approximation ratio known so far is
O(log n) [15]. Yuan et al. [16] defined a robot routing problem
for data muling in WSNs as a special case of TSPN where the
neighborhoods are disjoint disks. Since other TSPN algorithms
only gave theoretical approximation ratios—often large and
loose bounds, [16] proposed an evolutionary algorithm (EA)
based solution that could often yield empirically better results.
However, such solution does not address the general case of
overlapping disks, and the performance of the solution depends
on the proper choice of an EA algorithm.

2.2 Multiple Objectives Tour Planning

Similar to TSP, most tour planning problems only optimize
the single objective of tour length minimization. However,
real world applications usually require multiple desirable and
competing objectives to be optimized at the same time. Current
and Schilling [8] presented a bi-objective formulation of CSP,
where a cost was associated with each tour stop, and both
the tour length and the stop-over cost were to be minimized.
In [17], they defined another two bi-objective problems, the
median tour problem (MTP) and the maximal covering tour
problem (MCTP), both with a pre-specified numberp out of
n vertices to be selected as tour stops. Both problems also
have one common objective of minimization of the tour length.
With respect to the second objective, MTP aims to minimize
the average distance from any node not on the tour to a nearest
node on the tour, and MCTP aims to maximize the number of
vertices covered at tour stops within a given covering distance.
Recently, [18] proposed a bi-objective version of CTP which
shared similar objectives as MTP, but with no specified number
of tour stopsp. Although formulating similar bi-objectives as
MCTP, UDMP does not need to specify an a priorip value.

2.3 Uniqueness of UDMP

To sum up, UDMP differs from existing problems in four
aspects. (1) Compared with CSP/CTP and bi-objective ex-
tensions, UDMP allows sensors to be covered by a data
mule moving between consecutive tour stops provided that the
trajectory cuts across sensors’ communication regions. This
is defined asline-cover in UDMP, which may shorten the
tour length as well as improving the tour coverage. Section 6
validates these benefits by comparing heuristic UDMP tours
against the optimal tours of CSP with and without line-cover.
(2) In comparison to TSPN with ‘continuous’ neighborhood,
UDMP adoptsstraight lines connecting a sequence of tour
stops to form a tour, rather than curves which are hard to
prescribe and difficult for a data mule to navigate in realistic
scenarios. Moreover, UDMP sets no limit on the relative rela-
tionship among disk regions that represent different sensors’
wireless communication ranges, which mayarbitrarily overlap
with one another. These two features make UDMP much more
practical and easily applicable to realistic situations. (3) In
terms of the optimization objectives, UDMP tries to optimize
both tour length and tour coverage simultaneously, which
differs from the majority of existing tour planning problems
that consider only the single length-objective. In comparison
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Figure 1. Wireless-visit or cover.

to MCTP with similar bi-objectives, UDMP does not need to
pre-designate a specific number of stops on the tour, which is
too restrictive and hard to determine in advance. (4) Unlikeall
existing work, UDMP specially addresses the limited energy
issue of a data mule in underwater scenarios by modeling and
tracking energy consumptions, trading off the full coverage
requirement, and enforcing energy constraint in tour planning.

3 MODEL AND ASSUMPTIONS

3.1 Types of Visit and Cover

UDMP defines two types of visit by a data mule. The first
type is termedwireless-visit (or cover). Rather than traveling
all the way to a sensor’s exact location, a data mule only
needs to move within a sensor’s wireless communication range
in order to collect the sensor’s data wirelessly. We assume
that a data mule’s communication range is no less than that
of the sensor, which is usually true in data muling applica-
tions. The transmission radius of a sensor thus represents the
distance threshold for the sensor itself to be covered by a
data mule. Wireless-visits could happen either stationarily at
tour stops—calledpoint-cover, or during movement between
two consecutive tour stops—calledline-cover, which may
effectively increase the coverage without increasing the tour
length. Figure 1(a) shows that sensorB is point-covered by a
data mule “at” positionA (as a tour stop) on (or inside) the
boundary ofB’s communication range. Figure 1(b) shows that
sensorE is line-covered by a data mule “with” line segment
(C,D) which cuts throughE’s communication region. The
second type of visit is termeddocking-visit, where a data mule
does need to visit the exact location of a node. For instance,
a data mule docking-visits an energy station to be recharged.

The above types of visit and cover by a data mule are
formally defined as follows. LetDi denote nodei’s distance
threshold to be covered by a data mule (e.g., node’s i’s
wireless communication range), andc denote the Euclidean
distance either between two points or between a point and
a line segment1 in the Euclidean space. A nodei is “point-
covered” by a data mule at positionj if the point-point distance
c(i, j) ≤ Di, and “line-covered” with line segment(j, k) if the
point-line-segment distancec(i, (j, k)) ≤ Di. The relation of
“point-cover” by a data mule between a node/position pair ofi

1. Note that the point-line segment distance is meaningful only if the point
can be orthogonally projected onto the line segment—otherwise the distance
is assigned to be∞.

andj is symmetric2 whenc(i, j) ≤ min(Di, Dj). In addition,
docking-visit may be regarded as a special case of point-cover,
where a node’s ‘distance threshold to be covered’ equals zero.

3.2 Energy Consumption Model

In UWSNs, a data mule consumes its battery energy in
movement and communications [19]. For example, propulsion
power consumption may range from2 watts (W ) for low
speed (0.2 m/s–0.4 m/s) electric-propelled gliders to more
than a hundred watts in high speed (up to2.9 m/s) REMUS-
class autonomous underwater vehicles. In addition, underwater
acoustic communications consume much more energy than
terrestrial radio communications, which makes the communi-
cation energy non-negligible even compared with propulsion.
For example, an acoustic modem may use about50W for
packet transmission, and0.2W to 2W for packet reception and
decoding depending on the data rates. As a result, we divide
the energy consumption of a data mule into two parts—Emove

for movement, andEcomm for communications.
(1) For underwater movement, letFp be a data mule’s

propulsion force,L be the moving distance, andv be the
settling speed which is a constant. Then the energy consumed
for moving distanceL is the ‘work’ done byFp, i.e.,

Emove = FpL. (1)

For simplicity, we ignore underwater current so that a data
mule’s speed relative to surrounding water remainsv. This
assumption is proper for the lakes or the deep ocean envi-
ronments. Although the speed of wind-driven ocean surface
current could reach2.5 m/s, e.g., the Gulf Stream, the
deep sea current, mainly caused by density gradient from
temperature and salinity, is relatively static, varying from
0.02 m/s to 0.10 m/s or less [20]. Assume the weight of
a data mule is adjusted (like a submarine in equilibrium state
vertically) so that its gravity can be counter-balanced by the
buoyancy from water, which meansFp only needs to counter-
act the water drag forceFd in the reverse direction so as to
reach the constant speedv. In addition, we assume a slow
moving speed for data mule, say, less than1 m/s, which is
appropriate for extended missions of weeks long. By Stoke’s
drag equation [21], whenv is small,Fd is linear with v but
opposite in direction.

Fd = −bv, (2)

where b is a constant dependent on properties of water and
dimensions of the data mule. Combining (1) and (2), we have

Emove = bvL = αL, (3)

whereα = bv is a constant coefficient for moving distanceL.
(2) For underwater communications, letPcomm be a data

mule’s average communication power for collecting data from

2. In short, ‘i andj point-cover each other’ means that nodei (at position
i) is point-covered by a data mule at positionj, and nodej (at positionj) is
point-covered by a data mule at positioni. For simplicity, in the remainder
of this paper we will no longer differentiate among node, point, vertex, and
its position, which may be used interchangeably within appropriate contexts.
Note that the data mule is thesole agent for all visits/covers.
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sensors, which is a weighted sum of both transmission and
receiving/decoding power of the data mule depending on
the data retrieving scheme. For example, a data mule could
sequentially poll each nearby sensor within the sensor’s com-
munication range by first sending a small request message
and then receiving data from the polled sensor. For simplicity,
we assume a uniform amount of data, denoted bya, to be
exchanged at every sensor3. Let N be the data transfer rate,
andC be the number of visited sensors including both point-
cover and line-cover (termedcoverage). We then have

Ecomm = Pcomm(
a

N
)C = βC, (4)

whereβ = Pcomm( a
N
) is a constant coefficient forC.

3.3 Energy Consumption within a Tour Segment

In UDMP, a data mule needs to visit a docking station to get
recharged before running out of battery energy. Specifically,
the data mule’s energy usage is tracked within eachtour
segment (or docking segment), which is the sub-tour between
two consecutive docking-visits. A tour segment starts at a
docking station, passes a set of non-docking tour stops, and
terminates at a next docking station. Note that the depot is
also regarded as a docking station. The straight line segment
traversed by a data mule between any two consecutive tour
stops is termed atour link. Therefore within each tour seg-
ment, the data mule operating on its finite battery energy both
moves along tour links and collects data from sensors before
recharging itself at the next docking station on the segment
border. Lete(S) denote a data mule’s energy consumption
in a tour segmentS, LS be the sum of tour link length
within segmentS, andCS be the coverage inside the segment
(excluding those sensors point-covered at the two bordering
docking stations). Based on (3) and (4), we have

e(S) = αLS + βCS , (5)

which is linear to the segment’s length and coverage.

4 PROBLEM FORMULATION

We formulate the energy-constrained bi-objective UDMP as
follows. LetG = (V,E) be a complete graph in an Euclidean
space (e.g., 3D), with the vertex setV = {d}∪Y ∪Z, where
d is the sink (or depot),Y is a set of docking stations thatmay
be docking-visited, with Y1 ⊆ Y as the subset thatmustbe
docking-visited (d ∈ Y1), andZ denotes a set of sensors that
may be wireless-visited within the wireless communication
rangeDi of each sensori ∈ Z, with Z1 ⊆ Z as the subset that
must be wireless-visited. Let the non-negative cost function
c(i, j) be the Euclidean distance between any two pointsi
and j in the same Euclidean space whereG resides. Lete0
be the battery capacity of a data mule which is fully supplied
at the depot and can later be recharged at a docking station.

3. Uniform or low-variance in the amount of collected data among sensors
could be achieved through low sampling rate or in-sensor historical data
fusion/compression.

F G

H

Figure 2. Tradeoff between length and and cover objec-
tives. The shorter route 〈F,G〉 covers fewer sensors, while
the longer route 〈F,H,G〉 covers more sensors.

4.1 UDMP

The goal of UDMP is to find a tourT = 〈t1, t2, · · · , t|T |〉,
which is an ordered list, for the data mule such that:

1) Each tour stopti ∈ T is different, with the depot as both
the start and the end of the tour,i.e., t1 = t(|T |+1) = d;

2) A tour stop could be at either the location of a docking-
visited station or any position to cover a wireless-visited
sensor,i.e., ∀ti ∈ T , eitherti ∈ Y or ∃zk ∈ Z such that
ti can point-coverzk within zk ’s communication range
Dk; Based on those stops at docking stations, tourT
could be further divided into a consecutive sequence of
tour segmentsS1, S2, · · · , whosebordersare marked by
docking-visited stations;

3) All vertices inY1 are docking-visited during the tourT ,
i.e., ∀yj ∈ Y1, yj ∈ T ;

4) All vertices in Z1 are wireless-visited during the tour
T , i.e., ∀zk ∈ Z1, ∃ti ∈ T such that eitherzk is point-
covered atti, or line-covered with(ti, ti+1)—the line
segment between the two adjacent tour stopsti andti+1;

5) The data mule’s energy usage in any tour segmentSi

satisfies the upper bounde0, i.e., e(Si) ≤ e0, based on
Equation (5)—energy constraint;

6) At the same time optimize the following two objectives:
(i) the maximization ofCT as the number of nodes
in set Z wireless-visited by the tour (cover-objective),
and (ii) the minimization of the tour lengthLT =
∑|T |

i=1 c(ti, ti+1) (length-objective).

In the above formulation, Item1 defines the concept of
a tour with distinct stops, which may be relaxed in the
generalized UDMP-DoD case later in this section. Item2
specifies the selection of tour stops as well as the division of a
tour into tour segments. Items3 and4 further qualify the tour
with the sets of nodes which must be docking- or wireless-
visited. Item5 enforces the data mule’s energy constraint for
all tour segments. Finally, Item6 states the cover-objective
and the length-objective for tour optimizations, which are
competing against each other as illustrated in Figure 2, and
have to be compromised.

Theorem 1:UDMP is NP-hard.
Proof: Since TSP is NP-complete, we will show that

UDMP is polynomial-time reducible from TSP. Given an
instance of TSP, which includes a complete graphG = (V,E)
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and a cost functionc mapping each edge inE to the Euclidean
distance between two endpoints. We construct an instance
of UDMP as follows. We define a complete graphG′ =
({d} ∪ Y ∪ Z,E), whered is a vertex randomly picked from
V as the depot,Y = V , andZ = V \ {d} with each vertex
in Z associated with a non-negative ‘distance threshold to be
covered’. Apparently,G′ shares the same vertex set and edge
set asG. In addition, letY1 = Y so that all vertices inY must
be docking-visited. Therefore every vertex inG′ must be on a
feasible tour of the UDMP instance, which means all vertices
in Z must be wireless-visited—the maximum coverage. We
also define the cost functionc′ to be the Euclidean distance
between any two points, and the segment energy constraint
e0 = ∞. Apparently, there exists a minimum length TSP
tour in G iff the same tour inG′ is the UDMP tour with
the minimum length for the maximum coverage and satisfied
energy constraint. This reduction can be done in polynomial
time. Hence UDMP is NP-hard.

4.2 UDMP-AD (All-Docking)

One special case of UDMP, termed UDMP-AD (All-Docking),
is defined when all docking stations must be visited (i.e.,Y1 =
Y ). UDMP-AD is also NP-hard as the above proof can be
straightforwardly applied.

We also define a non-energy-constrained single length-
objective version of UDMP-AD, which optimizes only the
length-objective while covering all sensors (i.e.,Z1 = Z) with
no energy constraint (i.e., e0 = ∞). We term this problem
the Covering Salesman Problem with Line-Cover(CSP-LC)
to differentiate it from CSP that does not utilize line-cover. In
Section 6, we will evaluate the goodness of heuristic UDMP-
AD tours by comparing with the optimal tours of CSP-LC and
CSP, respectively. NP-hard as CSP, CSP-LC is formulated as
an Integer Linear Programming(ILP) problem as follows.

Given a complete graphG = (V,E), with V = {d}∪Y ∪Z,
Y1 = Y , andZ1 = Z. Let cij be a non-negative cost associated
with each edge(i, j) ∈ E. The objective of CSP-LC is to

minimize
∑

i,j∈V,i6=j

cijxij , (6)

subject to

∑

j∈V

PijIj +
∑

(k,l)∈E

Li,(k,l)xkl ≥ 1, ∀i ∈ Z, (7)

Ik = 1, ∀k ∈ Y, (8)
∑

i∈V,i6=k

xik = Ik, ∀k ∈ V, (9)

∑

j∈V,j 6=k

xkj = Ik, ∀k ∈ V, (10)

yij ≤ (|V | − 1)xij , ∀i, j ∈ V, i 6= j, (11)
∑

k∈V,k 6=j

yjk −
∑

i∈V,i6=j

yij = Ij , ∀j ∈ V \ {d}, (12)

∑

i∈V,i6=d

yid −
∑

j∈V,j 6=d

ydj =
∑

k∈V \{d}

Ik, (13)

where

xij =

{

1 if (i, j) ∈ E is on the tour,
0 otherwise;

Ik =

{

1 if k ∈ V is a tour stop,
0 otherwise;

yij ≥ 0 : the integer flow fromi to j via (i, j) ∈ E;

cij ≥ 0 : the cost fromi to j via (i, j) ∈ E;

Pij =

{

1 if i ∈ V is point-covered byj ∈ V ,
0 otherwise;

Li,(j,k) =

{

1 if i ∈ V is line-covered by(j, k) ∈ E,
0 otherwise.

In the objective function (6), the sole optimization objective
is to minimize the total tour cost, where the binary variable
xij determines whether or not the tour passes through the edge
(or line segment)(i, j) ∈ E, and the coefficient parametercij
denotes the travel cost over(i, j) (e.g., the Euclidean distance
betweeni and j). Constraint set (7) enforces all sensors to
be covered by the tour (i.e., Z = Z1), where the binary
variable Ij determines whether nodej is on the tour, and
binary coefficientsPij andLi,(k,l) indicate whether sensori
is point-covered by a data mule at pointj and whether sensor
i is line-covered by a data mule with line segment(k, l),
respectively. Constraint set (8) mandates that all the docking
stations be on the tour (i.e., Y = Y1). Next, constraint sets (9)–
(13) ensure the validity of the tour based on characteristics
of a Hamiltonian cycle. In particular, (9) and (10) enforce
the degree restriction for tour stops such that the tour should
only enter a stop via one single edge and leave the stop via
another single edge, which prohibits revisits of tour stops.
Constraint sets (11)–(13) further eliminate cases of sub-tours
(i.e., tours with disconnected components) by introducing the
integer decision variableyij denoting, say, the unit of collected
data flowing through edge(i, j). Let the data mule start out
at depotd with zero data, and collect only one unit of data
at each tour stop. Constraint set (11) enforces the upper limit
on data flows and confines them to only edges on the tour.
Constraint set (12) ensures that only one additional unit of
data is added to the flow at each tour stop except for the
depot. Finally, constraint (13) specifies that the net data flow
into depotd should be equal to the number of all the other
tour stops, signifyingd as both the start and the end of a tour
which passes through all stops, and thus prohibiting sub-tours.

4.3 UDMP-DoD (Docking-on-Demand)

In comparison to UDMP-AD whereall the docking stations
must be docking-visited, we study the general scenarios where
docking stations areselectivelydocking-visited based on the
actual charging need. In contrast to UDMP-AD that assumes
Y1 = Y , we term this general case (without the assumption
of Y1 = Y ) UDMP-DoD (Docking-on-Demand). In practice,
UDMP-DoD could further decrease tour length by avoiding
unnecessary docking-visits in UDMP-AD as illustrated in Fig-
ure 3. In general, UDMP-DoD tours are shorter than UDMP-
AD tours in scenarios which lack an optimal deployment of
docking stations, as will be verified in Section 6.2.
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Figure 3. Comparison between UDMP-AD and UDMP-
DoD tours to cover all sensors in a sample network, with
depot d and Y = {a, b, c, d}. (1) AD tour: 〈d, a, b, c, d〉
as Y = Y1; (2) DoD tours: 〈d, e, f, d〉 or 〈d, e, f, c, d〉—
depending on whether the data mule needs to be
recharged—both being shorter than the AD tour.
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(a) Re-docking (b) No re-docking

Figure 4. Comparison between UDMP tours (a) with and
(b) without re-docking: (a) covers all, while (b) does not.

Moreover, UDMP-DoD generalizes UDMP by relaxing the
tour requirement of “distinct stops” in Item 1 of the UDMP
formulation (Section 4.1). Note that UDMP-DoD allows only
re-visits of docking stations (termedre-docking), while still
maintaining the uniqueness of all the other tour stops at
the same time. In UDMP-DoD, each tour stopti ∈ T is
differentexcept forthose that are docking stations (i.e., ti ∈ Y ,
including the depotd). This extended feature of re-docking in
UDMP-DoD accommodates circumstances where insufficient
number of docking stations are deployed in some region(s)
of the network, such that the data mule has to re-visit some
docking station(s) for re-charging in order to collect datafrom
as many sensors as possible in a tour. For example, when no
docking station other than the depot exists (i.e., Y = {d}
as the central black node shown in Figure 4), the data mule
may re-visit the depot repetitively to renew battery energy.
Consequently, the data mule could cover all sensors in one
tour, as illustrated in Figure 4(a). However, without re-docking
the mule would have to complete the tour with only a subset
of the sensors visited (shown as gray nodes in Figure 4(b)).
UDMP-DoD is also NP-hard, as the proof for Theorem 1 can
be straightforwardly applied.

5 HEURISTIC TOUR PLANNING ALGORITHMS

In general, the solution to a multi-objective optimization
problem is not a single instance, but a set ofPareto-efficient
ones that represent the best compromise among all objectives
in different tradeoff situations,i.e., none of the objectives

can be further improved without the degradation of other
objective(s). All Pareto-efficient solutions to a multi-objective
optimization problem form thePareto frontier. Formally, a
solution T1 dominatesanother solutionT2 iff T1 is at least
as good asT2 with respect to all objectives, and there exists
at least one objective whereT1 is strictly better thanT2 with
respect to that objective. A solution is Pareto-efficient ifit is
not dominated by any other solution.

Given the NP-hardness of UDMP, we propose two greedy
heuristic algorithms to calculate the Pareto frontier for UDMP-
AD and UDMP-DoD, respectively. For simplicity, we assume
non-prioritized coverage requirement among sensors (i.e.,
Z1 = ∅)4. Both algorithms share the same basic framework
which iteratively (1) adds a tour stop to cover sensors, and
(2) applies a known Euclidean TSP algorithm on the tour
stops to compute a shortest tour, until all the sensors to be
covered are covered by the tour. We define theneighbor set
of a covering position as the set of sensors point-covered
at this position minus those point-covered at existent tour
stops other than this position. The selection of a covering
position as a newly added tour stop depends on the ‘weight’
of its neighbor set, to be detailed in the algorithms. Note that
both algorithms are applicable to3D and any dimensional
Euclidean space, because they (1) deal withlogical sets that
are not necessarily formed based on geometric relationshipin
any dimension, and (2) use the Euclidean distance which is
dimension-independent. The key differences between UDMP-
AD and UDMP-DoD heuristics are manipulation of docking
segments to enforce the energy constraint. The UDMP-AD
heuristic maintains a fixed number (equal to the size ofY )
of docking segments, and tries to adjust segment borders in
case of energy constraint violation. In contrast, the UDMP-
DoD heuristic keeps a variable number of docking segments
with the selection of docking-visits based on the actual energy
need. The two algorithms are described in detail as follows.

5.1 Heuristic Algorithm for UDMP-AD

Input: Docking station setY = Y1, sensor setZ, wireless
communication rangeDi for each sensori ∈ Z,
energy constrainte0 for each tour segment.

Output: The setΠ of Pareto-efficient tours that satisfy the
segment energy constraint with both tour length and
tour coverage objectives optimized.

Step 1: Initialize the tour stop setR = Y1, the candidate
tour stop setH = Z, and the candidate Pareto-
efficient solution setΠ = {TSP(R)}, whereTSP(R)
is the TSP tour overR calculated by a known TSP
heuristic algorithm. UpdateZ by removing those
point-covered at vertices inR. If Z is empty or each
vertex inZ can be line-covered with some edge in
TSP(R), returnΠ and terminate.

Step 2: For each vertexi ∈ H , calculate its neighbor set
nSet(i) = {j | c(j, i) ≤ Dj , ∀j ∈ Z}, and its weight
wi = |nSet(i)|. Remove fromH any vertex with zero
weight. Initialize the tabu setB = ∅.

4. It is trivial to solve cases withZ1 6= ∅ by prioritizing the covering order
of Z and applying our algorithms twice—first onZ1, and second onZ \Z1.
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 5. An example execution of UDMP-AD algorithm.

Step 3: IfH\B is empty, returnΠ and terminate. Otherwise
find the vertexk = argmaxi∈(H\B) wi—select the
one with the shortest average distance to all vertices
in R in case of a tie, and add vertexk into R.

Step 4: ConstructTSP(R) and compute its length and cover-
age, counting both point-coverage and line-coverage.
Check each segment’s energy consumption (based on
Equation (5)) against the energy constrainte0, and try
‘border adjustment’ to correct violations if any. If all
the segments are able to satisfye0, setH = H \{k}
andΠ = Π ∪ {TSP(R)}, check dominance between
the new tourTSP(R) and previous solutions inΠ so
as to remove whomever dominated, and go to Step5.
Otherwise, discardTSP(R), setR = R \ {k} and
B = B ∪ {k}, and go to Step3.

Step 5: UpdateZ by removing those point-covered at stop
k. If Z is empty or each vertex inZ can be line-
covered with some edge inTSP(R), return Π and
terminate. Otherwise, for those inH whose neighbor
sets overlapk’s neighbor set, update their neighbor
sets as well as weights, remove vertices with zero
weights fromH , resetB = ∅, and go to Step3.

The algorithm is illustrated via an example shown in Fig-
ure 5, whereY1 = Y includes depotd and docking stationa,
both of which must be docking-visited, andZ includes13 non-
prioritized sensors to be covered as many as possible with a
uniform ‘distance threshold to be covered’ shown by the equal-
radius dotted circles. For simplicity, energy constrainte0 is
assumed to be large enough so that the energy consumption of
each computed tour segment during the UDMP-AD algorithm
execution satisfies the energy constraint—we will demonstrate
‘border adjustment’ in case of energy constraint violationlater.
This example works in four iterations, each producing one
tour. Figure 5(a) shows that the initial tour〈d, a, d〉 consists
of only depotd and docking stationa, with the tour link(d, a)

S

(a)

(b)

i+1Si

Figure 6. Connectivity (a) before and (b) after successful
‘border adjustment’ between segment Si and its right
segment Si+1 in order to correct e0 violation in Si.

line-covering two sensorsg andh (Step1). Since no sensor
is point-covered by the initial tour yet,Z equals the candidate
stop setH which contains all13 sensors. Next, a weight for
every candidate stop is calculated to be the size of its neighbor
set, which includes sensors inZ point-covered at the candidate
stop, as shown inside the circle centered at a candidate stop
(Step2), e.g., wb = 5, we = wc = 4. Sensorb is chosen with
the largest weight of5 (Step3), and the second tour〈d, b, a, d〉
is produced (Step4) as depicted in Figure 5(b). Assume that
both segments〈d, b, a〉 and〈a, d〉 satisfy the energy constraint.
Then those sensors in the new tour stopb’s neighbor set,
which have beenpermanentlycovered at tour stopb (via point-
cover), are removed fromZ, as highlighted by the shadow
area. Notice that sensors line-covered in the current tour (such
as g andh) may not still be covered in the newly computed
tour due to the change of tour links. Therefore these sensors
are onlytemporarilycovered and should not be removed from
Z. The neighbor sets of the other candidate stops inH are also
updated so that the new neighbor sets contain only sensors
in Z, and the candidate stops with empty neighbor sets are
removed fromH (Step5). Notice that some sensors already
covered and deleted fromZ can still be candidate tour stops
in H , as long as their neighbor sets are not empty,e.g.,
sensore with a weight of2. In the third iteration, sensorc
is selected with the largest weight of4, to produce another
tour 〈d, b, a, c, d〉 shown in Figure 5(c), with both segments
〈d, b, a〉 and 〈a, c, d〉 satisfying the energy constraint. Now,
sensorsg and h are line-covered with tour links(c, d) and
(a, c), respectively, rather than with(d, a) which no longer
belongs to the current tour. After sensorc’s neighbor set is
removed fromZ, the neighbor sets of candidate stops inH
are updated as before. In the fourth iteration, there is a tiein
the largest weight of2 among the candidate tour stopse, f , and
i. Then the distances between each candidate and the current
tour stop set are compared, and sensore is selected as the
closet one into the tour stop set (Step3). Therefore the fourth
tour 〈d, b, e, a, c, d〉 is produced as shown in Figure 5(d), with
both segments〈d, b, e, a〉 and 〈a, c, d〉 satisfying the energy
constraint. Since the updated setZ only contains two sensors
g and h, which can be line-covered with current tour links
(c, d) and (a, c), respectively, the algorithm terminates and
returns these four tours as heuristic Pareto-efficient solutions.

When some segment in a computed TSP tour violates the
energy constraint, ‘border adjustment’ is used to correct such
violation (Step4), if possible, as illustrated in Figure 6, where
squares denote docking stations as segment boundaries, circles
represent tour stops within segments, and edges (direct solid
lines or curves) reflect only the connectivity relationshiprather
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than the real shape of tour links. LetSi be a segment with
a negative battery energy balance,i.e., e0 − e(Si) < 0. By
Equation (5), the segment energy consumption is proportional
to both the length and the coverage of the segment, both
of which decrease with fewer tour stops in the segment.
Therefore, in order to lowere(Si), ‘border adjustment’ tries to
shift out a minimum number of close-to-boundary tour stops
from segmentSi into an adjacent segment—eitherSi+1 in
the right orSi−1 in the left, whichever has a positive energy
balance, so that bothSi and the adjacent shift-in segment could
satisfy the energy constraint. Notice that the boundary tour
stops of the segments are always docking stations, which stay
unchanged during the adjustment. Sincee(Si) is decreased at
the cost of increasinge(Si+1) or e(Si−1), ‘border adjustment’
can not solve the energy violation problem of segmentSi when
Si’s two adjacent segments deplete their respective energy
before digesting enough shift-in tour stops to eliminateSi’s
energy deficiency. In such case, the tour fails the energy
constraint and is simply discarded. Another side-effect of
‘border adjustment’ is the increase of the total tour lengthdue
to the detour cross from edge exchange, as will be evidenced
in Figure 8(c) of Section 6.1. Therefore, ‘border adjustment’ is
only applied between adjacent segments without propagating
to farther segments.

We now analyze the worst-case computational complexity
of the algorithm. Suppose there aren sensors andm docking
stations (n ≫ m). Therefore,n = |Z| and m = |Y |. For
the space complexity, it takes

∑n

i=0(m + i) = O(nm + n2)
space to store all candidate Pareto-efficient solutions,O(n2)
for neighbor sets of all the sensors as well as the point-
point distances, and at mostO(n3) to buffer calculated line-
coverage results of tour links in Step4. Hence the overall
space complexity of the algorithm isO(n3).

For the time complexity, the algorithm takesO(nm) time
to calculate the point-coverage ofm docking stations as well
as the line-coverage ofm edges in Step1, andO(n2) time to
compute the neighbor sets and weights forn sensors in Step2.
For Step3 through Step5 which form two nesting loops,
we count each step’s overall running time by combining all
possible repetitions. In the worst case, each addition of a new
tour stop has to try every candidate stop due to repeated failure
to satisfy the energy constraint (i.e., from Step4 going back to
Step3 repeatedly for a maximal number of times before going
forward to Step5). Step3 takesO(n2 logn) time to find the
maximum weight for every trial by sorting all the candidate
stops at the start of each iteration, and at mostO(nm + n2)
time to select the candidate closest to the set of current tour
stops to break ties, in the worst case that all the candidate
stops share the same weight,e.g., all have the weight of one
with non-overlapping neighbor sets. Step4 takesO(n2) time
to incrementally compute the length of all the tour segments,
O(n2) time to add up the point-coverage of tour stops,O(n3)
time to calculate and add up the line-coverage of possible tour
links,O(n2m) time to check the segment energy constraint, at
mostO(n3) time to adjust segment borders in case of energy
constraint violations, andO(n2) time to check dominance
between the new solution and the existent solutions. Step5
takesO(n2) time to remove sensors point-covered at every

new tour stop from the set of uncovered sensors,O(n) to
check the line-coverage result of every new tour computed in
Step4 for termination condition test, andO(n3) to update the
neighbor sets that overlap with each new tour stop. Finally,let
T (k) be the running time of the heuristic TSP algorithm over
k vertices employed in the proposed UDMP algorithm. Then
the running time of TSP in Step1 is T (m), and the worst-case
running time in Step4 is at most

∑n

i=1(n− i+ 1)T (m+ i).
Therefore the overall time complexity of the algorithm in the
worst case isO(n3) + T (m) +

∑n

i=1(n− i+ 1)T (m+ i).

5.2 Heuristic Algorithm for UDMP-DoD

Input: Docking station setY ⊇ Y1, sensor setZ, wireless
communication rangeDi for each sensori ∈ Z,
energy constrainte0 for each tour segment.

Output: The setΠ of Pareto-efficient tours that satisfy the
segment energy constraint with both tour length and
tour coverage objectives optimized.

Step 1: Initialize the tour stop setR = Y1, the candidate tour
stop setH = Z, and the candidate Pareto-efficient
solution setΠ = {TSP(R)}. UpdateZ by removing
those point-covered at vertices inR. If Z is empty
or each vertex inZ can be line-covered with some
edge inTSP(R), returnΠ and terminate.

Step 2: For each vertexi ∈ H , calculate its neighbor set
nSet(i) = {j | c(j, i) ≤ Dj , ∀j ∈ Z}, and its weight
wi = |nSet(i)|. Remove fromH any vertex with zero
weight. Initialize the tabu setB = ∅.

Step 3: IfH\B is empty, returnΠ and terminate. Otherwise
find the vertexk = argmaxi∈(H\B) wi—select the
one with the shortest average distance to all vertices
in R in case of a tie, and addk into R.

Step 4: Construct the current tourπ = TSP(R), and com-
pute its length and coverage, counting both point-
coverage and line-coverage. Starting at the depot
with full battery energye0, track the remaining
energyEr along π, and use ‘docking on-demand’
to recharge at a selected docking station (added as a
tour stop) wheneverEr < 0. If the depot is finally
reached withEr ≥ 0 after passing all tour stops and
links in π, setH = H \{k} andΠ = Π∪{π}, check
dominance betweenπ and the previous solutions in
Π so as to remove whomever dominated, and go to
Step 5. Otherwise (i.e., without enough energy to
return to the depot), discardπ, setR = R \ {k} and
B = B ∪ {k}, and go to Step3.

Step 5: UpdateZ by removing those point-covered at tour
stop k. If Z is empty, or each vertex inZ can
be either point-covered at a newly inserted docking
station or line-covered with an edge in the current
tour π, returnΠ and terminate. Otherwise, for those
in H whose neighbor sets overlapk’s neighbor
set, update their neighbor sets as well as weights,
remove those vertices with zero weights fromH ,
resetB = ∅, and go to Step3.

In UDMP-DoD, the number of docking segments varies
and the selection of docking-visits depends on the actual
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i - j

y

(a) Mature docking (b) Pre-mature docking

Figure 7. Two cases of ‘docking on-demand’ with (i − 1)
as the on-demand stop and y as the selected on-demand
docking station. In (a), y is visited immediately after the
on-demand stop. In (b), backtrack to preceding tour stops
when no y is reachable from stop (i− 1), until finding y to
be visited between stops (i − j) and (i− j + 1).

energy (recharging) need. This is achieved by incrementally
building tours to cover sensors without considering the energy
constraint at first (Steps 1, 2, 3, and 5), similar to the example
in Figure 5. Meanwhile at each iteration, starting from the
depot the algorithm keeps track of mule’s the energy remainder
Er(i) at each tour stopi (indexed by its sequential order in a
segment) along the tour. Specifically, the data mule’s battery
starts with full capacitye0 at the beginning of a tour segment
(a docking station), and is consumed within the tour segment
over links (with communication energy from line-cover plus
movement energy) and at stops (with communication energy
from point-cover), based on Eq (5).

In case ofe0 violation (i.e., Er < 0), ‘docking on-demand’
is used to select a docking station for recharging (Step 4,
illustrated in Figure 7) in three steps. First, locate theon-
demand stopas thelast stop that a data mule may visit with
enough energy,e.g., stop(i−1) in Figure 7, withEr(i−1) ≥ 0
andEr(i) < 0—without recharging, the data mule couldnot
reach the next stopi. Second, try to find anon-demand docking
station y ∈ Y which is both reachable with the remaining
energy from on-demand stop(i − 1) and incurring minimal
increase in tour length, termedmature docking (Figure 7(a),
with the dotted circle surrounding the tour stop representing
the search scope based onEr at the stop). If mature docking
is not available from(i− 1), backtrackto the preceding stops
one by one in the same segment until finding an on-demand
docking stationy, termedpre-mature docking (Figure 7(b)).
Apparently, the search scope at each further backtracked stop
increases sinceEr increases while ‘moving backward.’ Mature
and pre-mature dockings also differ in terms ofEr at the stop
from which an on-demand docking stationy is selected—
mature only with the minimalEr > 0 corresponding to an
on-demand stop. Note that the segment length might increase
more with mature docking (immediately after on-demand stop
(i−1)) than with pre-mature docking (after some backtracked
stop (i − j)), as compared between Figures 7(a) and 7(b).
Notwithstanding the possibility of a locally larger increase
in tour length, this greedy heuristic always chooses mature
docking whenever possible, because by postponing recharging
as late as possible, the heuristic may reduce the total number
of recharging in the tour, which would potentially lower
the overall tour length. Third, the newly selected on-demand
docking stationy is inserted into the tour, and the original
tour segment splits into two with the new segment beforey
having already passed the energy constraint check and the new

segment aftery to be examined next. Notice that the candidate
pool for on-demand docking stations remains unchanged as
Y which permits re-docking. ‘Docking on-demand’, together
with re-docking, eliminates the need for ‘border adjustment’
(used in UDMP-AD algorithm) to enforce the energy con-
straint. Since on-demand docking stations are selected based
on the locations of on-demand stops in a specific tour, the
selected on-demand docking stations may vary with different
tours between iterations. Therefore, sensors point-covered by
the mule at the on-demand docking stations in one iteration
may not be covered any more in other iterations due to the
possible changes of on-demand docking stations. Therefore,
these sensors are treated astemporarily covered (like line-
coverage) in Step 5.

For the worst-case computational complexity, the UDMP-
DoD algorithm is comparable to the UDMP-AD algorithm.
The overall space complexity of UDMP-DoD isO(n3) due
to the same line-coverage buffer requirement as in UDMP-
AD. For the time complexity, we just examine the on-demand
docking in Step 4. There are at mostn iterations, with
each iteration adding at mostn on-demand docking stations
considering re-docking, each successful on-demand docking
taking at mostn backtracks of tour stops, and each tour stop
testing exactlym candidate docking stations. Therefore, the
on-demand docking takes at mostO(n3m) time.

6 PERFORMANCE EVALUATIONS

We have conducted extensive simulation to validate the effec-
tiveness of the proposed UDMP-AD and UDMP-DoD algo-
rithms. For the TSP subroutine employed in both algorithms,
we use Heldsgaun’s implementation of the Lin-Kernighan TSP
heuristic [22], [23], considered to be one of the best heuristics
for Euclidean TSP. In all simulation, we assume a uniform
communication ranger for each sensor. The network topolo-
gies are either adapted from the test instances in TSPLIB [24],
or generated with random distribution.

6.1 Results of UDMP-AD

We vary the communication range, the energy constraint, and
the network size5 in the simulation, and present tour snapshots
pictorially and tour statistics quantitatively.

Figure 8 shows the snapshots of four tours out of totally
six tours generated for a network topology adapted from the
TSPLIB instance “eil51.” The “eil51” instance consists of
51 vertices on a terrain of size70 × 70 m2. We add one
more vertex at(0, 0) (the lower left corner) as the depot,
and randomly pick two other vertices as docking stations.
The three vertices (shown in black) form the setY1 = Y
which must be docking-visited (as the initial tour stops in
Figure 8(a)), while all the remaining vertices compose the
sensor setZ. We setr = 15m as the uniform communication
range for all sensors, which is selected to fit the actual terrain
size in the “eil51” instance, and could certainly be scaled
(together with the terrain size and the nodes’ coordinates)to

5. In this paper, network size refers to the total number of nodes in the
network, which is not to be confused with the terrain size of the network.
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(a) Iteration 1 (b) Iteration 4
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(c) Iteration 5 (d) Iteration 6

Figure 8. Snapshots with coverage ratio C and tour
length L of selected iterative UDMP-AD tours for adapted
“eil51” with e0 = 20. (a) C = 31/49, L = 143.292m; (b)
C = 44/49, L = 193.487m; (c) C = 46/49, L = 225.062m,
with segment border adjustment to satisfy e0; (d) C =
49/49, L = 219.169m.

match the realistic underwater acoustic transmission range—
typical in the hundreds of meters up to kilometers. We also
enforce a smallere0 = 20 in order to demonstrate the impact
of energy constraint with the effect of ‘border adjustment.’
Figure 8(a) depicts the initial tour constructed with all three
docking stations inY , which become the boundaries of three
tour segments. The length of tour segments increases with
newly added tour stops in subsequently generated tours, while
the boundary docking stations remain unchanged. Notice that
the tour ‘direction’ denoted by the arrows is onlynominal,
as it makes no difference between two opposite directions
in a cycle with regard to both objectives as well as energy
constraint. After initialization, the initial tour extends by one
tour stop at each subsequent iteration to cover more sensors.
Figure 8(b) shows the tour at the fourth iteration, with three
more tour stops added and thirteen more sensors covered than
Iteration 1. So far the energy constraint is satisfied in all
three tour segments. Figure 8(c) depicts the tour at Iteration 5
after successfully adjusting the segment border to correctone
energy constraint violation. The tour stop at the top right is
shifted to the next tour segment so that both segments’ energy
consumption is less thane0. As a result, the tour length is
increased to225.062m due to the cross detour formed at the
top right portion of the tour. Figure 8(d) shows the tour at
Iteration6, which covers all49 sensors with a total length of
219.169m. Notice that although one more tour stop is added,
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Figure 9. Cover vs. length objectives in UDMP-AD solu-
tions for adapted “eil51” with e0 = 100.

the computed TSP tour satisfies the energy constraint without
a need for any ‘border adjustment.’ Moreover, we find that this
tour dominates the previous one with three more sensors added
in coverage and shorter length. The algorithm then terminates,
and returns five tours as Pareto-efficient solutions, exceptfor
the dominated one from Iteration5.

Figure 9 depicts the tradeoff between cover (y-axis) and
length (x-axis) objectives for the same network topology as
Figure 8, except that the energy constraint is relaxed (e0 =
100, with no need for ‘border adjustment’) and a larger com-
munication range is used (r = 25m). We represent the cover-
objective by the number ofuncovered(i.e., not yet covered)
nodes so that both objective values are to be minimized. Each
plotted data point represents a tour produced by one iteration
of the algorithm, with the top leftmost point denoting the initial
tour at Iteration1 with only the three members ofY1 that must
be docking-visited. Each next point toward the bottom right
signifies the addition of a new tour stop which increases the
tour length in order to, hopefully, cover more sensors. Notice
that the two tour points representing Iterations3 and4 are both
dominated by the tour from Iteration2, and thus are not Pareto-
efficient. We plot them in the curve just to show all iterations.
The Pareto frontier computed for this network should only
include tours from Iterations1, 2, and 5. In general, as the
length of the tour increases, the number of uncovered nodes
decreases until finally becoming zero when all sensors are
covered. We find that at Iteration2, there is only one sensor not
yet covered with a tour length of180m. However, it takes three
additional tour stops and about20% increase in tour length in
order to cover the last sensor at Iteration5. In practice, we may
decide to give up visiting the very last sensor by choosing the
tour generated at Iteration2 to trade coverage for tour length.
Therefore, the Pareto frontier computed by the algorithm could
help make better tour decisions that balance both objectives
in practical applications.

Next, we compare the heuristic UDMP-AD tours to the op-
timal solutions of CSP with and without line-cover, denotedas
CSP-LC and CSP, respectively. Both CSP-LC and CSP may be
regarded as special cases of UDMP-AD withY1 = Y , Z1 = Z,
and e0 = ∞, except that CSP uses only point-cover without
line-cover. With a sufficiently largee0 value in UDMP-AD,
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Point-cover Line-cover
Usage Optimality Usage Optimality

CSP-LC yes, explicit optimal yes,explicit optimal
UDMP yes, explicit sub-optimal yes, implicit sub-optimal
CSP yes, explicit optimal no

Table 1

we compare the tour length of the last iteration in UDMP-AD
(which should cover all sensors inZ) to the corresponding
optimal solutions of CSP-LC and CSP which optimize only
the single length-objective with full sensor coverage. Note
that under this comparison scenario, CSP-LC and UDMP-AD
addressesexactlythe same problem both allowing line-cover.
Table 1 summarizes the usage of point-cover and line-cover
for the length-objective under full coverage in the optimal
tours of CSP-LC and CSP, and in the heuristic tour of UDMP
(including both UDMP-AD and UDMP-DoD). Apparently,
point-cover has been explicitly used in all three solutions
to select tour stops, except that UDMP heuristics may not
achieve optimality. Notice that the usage level of line-cover
decreases in the order of CSP-LC, UDMP, and CSP. First,
CSP-LC explicitly specifies line-cover (together with point-
cover) as part of the coverage constraint (Equation (7)) in
its ILP problem formulation, based on both optimal tours
are constructed. Next, UDMPimplicitly uses line-cover by
incorporating line-coverage into the total coverage onlyafter a
TSP tour has been constructed with tour stops selected solely
based on point-cover (Steps 3 and 4 of both algorithms in
Section 5). Finally, CSP totally omits line-cover.

Due to the NP-hardness of CSP-LC and CSP, we could
only obtain optimal solutions for small networks within a
reasonable amount of execution time and memory usage.
By formulating CSP-LC and CSP in ILP models (as in
Section 4.2), we solve both problems optimally using the GNU
linear programming kit (GLPK) [25] for the network size of
15, 20, and25 nodes, and the communication radius ranging
from 120m to 200m. In each of these configurations, twenty
networks are generated with nodes randomly distributed over
a terrain of size500 × 500 m2. Each network includes one
depot and two docking stations that must be visited, with the
remaining nodes as sensors to be covered. Each data point in
the following figures is an average of simulation results from
these random networks.

Figures 10(a) and 10(b) depict the length ratios of the
UDMP-AD solution over the corresponding optimal solutions
of CSP-LC and CSP, respectively, with different communica-
tion ranges and network sizes. As observed in Figure 10(a), the
proposed UDMP-AD algorithm could produce tours of length
much close to that of the optimal solutions—no more than
4.2% longer in all simulated network sizes and communication
ranges, which validates the effectiveness of the UDMP-AD
algorithm. For each network size, the difference in length
between the UDMP-AD and the optimal CSP-LC solutions
generally increases (i.e., deviates from the ratio of1) as the
communication range decreases (corresponding to asparser
neighborhood for each node), due to the following reasons.
First, the relative benefits of line-cover versus point-cover for

the length-objective (under full coverage) increases in sparser
networks, as fewer nodes could be point-covered at the tour
stops. One extreme case is when every node is outside any
other node’s communication range,i.e., each node as a tour
stop could only point-cover itself, which will force all nodes to
become tour stops if only point-cover is used for full coverage.
In this case, line-cover could potentially lower tour length
by not selecting all the nodes as tour stops,i.e., with some
nodes being line-covered by tour links between adjacent tour
stops. Second, UDMP-AD does not explicitly use line-cover
for selecting tour stops to decrease tour length as CSP-LC
does, although the effect of line-cover is indeed counted in
UDMP-AD to increase coverage after each tour decision, as
compared in Table 1. Therefore, in sparser networks (e.g., with
shorter communication range)where line-cover could poten-
tially have a bigger impact, UDMP-AD performs relatively
poorer compared to CSP-LC optima due to theunder-usage
of line-cover.

Compared to CSP, UDMP-AD could produce tours with
length close to (less than0.6% worse) and mostly shorter
(up to 4.5% better) than the optimal solutions of CSP, as
seen in Figure 10(b). This is due to the usage (although
implicit) of line-cover in UDMP-AD compared to no usage
of line-cover in CSP, which helps improve the coverage
without sacrificing the tour length. In particular, UDMP-
AD tours are shorter than CSP optima in networks with
shorter communication range and/or fewer number of nodes
representing sparser neighborhoods, where the added benefit
of line-cover in UDMP-AD dominates the optimality of point-
cover in CSP (Table 1). Moreover, similar to Figure 10(a), the
difference in length between tours of heuristic UDMP-AD and
optimal CSP generally increases (i.e., deviates from the ratio
of 1) as the communication range decreases for all network
sizes, due to the increasing benefit of line-cover in sparser
networks, which is also evidenced in the sparser network
with 15 nodes (compared to the other two denser networks)
at the communication range of180m. UDMP-AD solutions
are slightly inferior to CSP optima though for networks with
more nodes (25) and longer communication ranges (160m
and180m) representing denser neighborhoods, because of the
relative bigger effect of point-cover over line-cover in dense
networks and the suboptimal usage of both point-cover and
line-cover in UDMP-AD.

Figures 11(a), 11(b), and 11(c) compare the absolute values
of tour length computed by the proposed UDMP-AD algorithm
and by the optimal CSP-LC and CSP for different commu-
nication ranges with network sizes of15, 20 and 25 nodes,
respectively. In all three figures, as the communication range
increases, the length of all corresponding tours decreases,
since a larger ‘distance threshold to be covered’ enables more
sensors to be covered without traveling longer distance. In
particular, Figures 11(a) and 11(b) show that the UDMP-AD
solutions are better than the CSP optima in sparse neighbor-
hood (i.e., smaller network size and/or shorter communication
range) due to the benefit of using line-cover, as has been
evidenced in Figure 10(b). Moreover, the length of the UDMP-
AD tour generally lies between that of CSP-LC (at below)
and CSP (at above), ordered by the usage level of line-cover
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Figure 10. Tour length ratio of heuristic UDMP-AD over optimal CSP-LC and CSP solutions with varying radii.
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Figure 11. Tour length values of heuristic UDMP-AD and optimal CSP and CSP-LC vs. radius and network size N .

as listed in Table 1. Notice that CSP does not always bound
UDMP-AD from above as the network becomes denser with
larger network size and longer communication range (shown
in Figure 11(c)), because the relative benefit of point-cover
versus line-cover is more significant in dense networks than
in sparse networks, which causes the optimality of point-cover
in CSP to dominate the sub-optimality of both line-cover and
point-cover in UDMP-AD.

6.2 Results of UDMP-DoD

We also evaluate the performance of UDMP-DoD algorithm
in comparison to UDMP-AD, in terms of the length of the tour
that covers all nodes in the sensor setZ, which is generated
in the last iteration in both algorithms. In the following sim-
ulation, theZ set consists of300 sensors randomly deployed
over a terrain of size1000 × 1000 m2, each with a fixed
communication radius of100m. The docking setY includes a
depot located at the center of the terrain and a varying number
of docking stations randomly deployed across the network. For
UDMP-DoD, only the depot must be docking-visited (i.e., Y1

includes the depot only), while all other randomly deployed
docking stations (which form the setY \Y1) may be selectively
docking-visited on-demand to satisfy the energy constraint.
For UDMP-AD, however, both the depot and all other docking
stations must be docking-visited sinceY1 = Y . In this study,
we vary the number of docking stations from2 to 16 with
an increment of2, and the energy constraint over400, 500,
600, 700, and800. Each measurement in the following figures

is the average of20 different randomly generated networks
for a given configuration, and is drawn with95% confidence
interval.

Figures 12(a) and 12(b) compare the tour lengths produced
by the algorithms of UDMP-DoD and UDMP-AD, in terms
of ratios and absolute values, respectively, when the number
of docking stations varies over{2, 4, 6, . . . , 16} with fixed
energy constraints of400 and800. As expected, UDMP-DoD
typically produces shorter tours than UDMP-AD when more
docking stations are randomly deployed in the network, due to
better chances forless deviateon-demand recharging (i.e., to
insert on-demand docking stations in tour with less increases
of tour length), and vice versa. Specifically, Figure 12(a) shows
that UDMP-DoD could decrease tour length (in comparison
to UDMP-AD) by 22% in scenarios of two or more docking
stations with a large battery capacity ofe0 = 800, and by
19% with a docking set of more than four and a small battery
capacity ofe0 = 400. However, for the cases ofe0 = 400
with four or fewer docking stations, the UDMP-DoD tours
are slightly worse than the UDMP-AD tours on average (by
no longer than1.8%), as fewer docking stations may cause
longer detour for on-demand docking statistically. In general,
the length ratio of UDMP-DoD over UDMP-AD decreases
with the increasing number of docking stations, except for a
slight ‘bump’ occurred at the case of four docking stations
with e0 = 400 to be elaborated by Figure 12(b) next. The
length ratio also decreases whene0 becomes larger, since a
battery with larger capacity has less need for recharging during
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Figure 12. Comparison between DoD and AD tours vs. number of docking stations with e0 = 400 and 800.

one complete tour to cover all sensors.
Figure 12(b) shows that the tour length of UDMP-AD in-

creases almost linearly with the increasing number of docking
stations, since all the docking stations in the network haveto
be docking-visited no matter it is necessary (for recharging)
or not. Moreover, the UDMP-AD tour lengths with different
energy constraints coincide for each docking set size except
for the small set of2, where the tour with a small battery
capacity ofe0 = 400 is about1.5% longer than the tour with
a large battery capacity ofe0 = 800 on average. This is due to
the fact that with only two docking stations, the small battery
case requires ‘border adjustment’ to correct energy constraint
violations while the large battery case does not, and with
more docking stations in the tour (thus more smaller segments)
both cases satisfy the constraint without any violation. Next,
for UDMP-DoD with e0 = 800, the tour length remains the
shortest (5841m) and constant across different docking set
sizes, since the large capacity battery does not require anyon-
demand charging during the complete tour. For UDMP-DoD
with e0 = 400, the tour shortens at first and then stabilizes
in length when more docking stations are added. Notice that
there is a small rise of2% in length when the docking set
size increases from2 to 4 with e0 = 400, because (a) mature
docking is available immediately after the on-demand stop
and thus selected by the greedy heuristic in the cases of four
docking stations, rather than in the cases of two which only
have pre-mature docking available from some backtracked
stop; and (b) mature docking happens to add more length to
tour (i.e., more deviate) than pre-mature docking in the above
cases (illustrated by Figure 7 in Section 5.2). The reasons also
explain the ‘bump’ in Figure 12(a).

Figures 13(a) and 13(b) depict the length ratios and values
of UDMP-DoD and UDMP-AD tours with varying energy
constraints over{400, 500, . . . , 800} for 2 and 16 docking
stations in the network. As observed in Figure 13(a), the length
ratio of UDMP-DoD over UDMP-AD generally decreases
slowly with increasing value ofe0 with two docking stations,
due to less recharging need with an enlarging battery capacity,
except for a slight rise ate0 = 500 to be elaborated by
Figure 13(b) next. With a larger docking set of16, the slope
of the length ratio becomes more or less flat under varying
energy constraints, since enough docking stations may lead

to convenientdocking near any on-demand stop with less
deviation from the tour. Thus the tour length remains short and
stable regardless of locations or total times of rechargingin
the tour. In particular, with sixteen docking stations randomly
deployed in the network, UDMP-DoD always achieves shorter
tours than UDMP-AD by about20% on average for alle0
values, as is also evidenced by Figure 12(a) before.

In Figure 13(b), the tour lengths of UDMP-AD remain
unchanged across varyinge0 values for each docking set
size, except for the small set of two docking stations with a
small capacity battery ofe0 = 400, which requires ‘border
adjustment’ in order to satisfy energy constraint and thus
increases the tour length, as is also seen in Figure 12(b).
Due to the almost constant UDMP-AD tour lengths across
differente0 values for each docking set size, the trend of either
UDMP-DoD length curve resembles the related ratio curve in
Figure 13(a). Notice that there is a1.3% increase in UDMP-
DoD tour length with the small docking set of two whene0
increases from400 to 500. This is due to the fact that a small
increase of battery capacity may just change the location(s)
of on-demand stop(s) without reducing the total number of
recharging in the tour, and the docking station(s) selected
in the greedy fashion (i.e., postponing recharging as late as
possible) may cause moredeviationwith e0 = 500 than with
e0 = 400 especially when the docking set is small. As a result,
the increase of UDMP-DoD tour length ate0 = 500 with two
docking stations, together with the decrease of UDMP-AD
tour length in the same scenario, leads to the corresponding
ratio increase in Figure 13(a). Finally, when provided with
the large capacity battery ofe0 = 800, UDMP-DoD tours
of both docking set sizes converge to the shortest length of
5841m, where no recharging is needed during a complete tour
of visiting all sensors, as is also evidenced in Figure 12(b).

7 CONCLUSION

In this paper, we formulate the tour planning of a data mule
to collect sensor data in UWSNs as an energy-constrained bi-
objective underwater data muling problem (UDMP). UDMP
defines two types of visit and two types of cover. In particu-
lar, the line-cover helps improve the cover-objective without
sacrificing the length-objective. We propose two heuristic
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Figure 13. Comparison between DoD and AD tours vs. energy constraint with 2 and 16 docking stations.

algorithms to solve one special case of all-docking (UDMP-
AD) and one generalized case of docking-on-demand (UDMP-
DoD). Each algorithm computes a set of Pareto-efficient
solutions addressing the tradeoff between the two optimization
objectives. Extensive simulation validates the effectiveness of
both algorithms. In particular, UDMP-AD performs better than
the corresponding optimal solutions of the Covering Sales-
man Problem (CSP) in sparse neighborhoods (e.g., smaller
network size and/or shorter communication range), and closer
to the optimal solutions of CSP with line-cover (CSP-LC)
in dense networks (e.g., larger network size and/or longer
communication range). This is because the relative benefit
of line-cover versus point-cover increases as the network
becomes sparser, and the usage level of line-cover increases
from CSP (no usage at all), UDMP (implicit usage with
sub-optimal solutions), and to CSP-LC (explicit usage with
optimal solutions). Moreover, UDMP-DoD often decreases the
tour length compared to UDMP-AD, by avoiding unnecessary
docking-visits in scenarios with enough number of randomly
deployed docking stations and/or large battery capacity.
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