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Abstract—For underwater wireless sensor networks (UWSNSs), data muling is an effective approach to data gathering, where sensor
data are collected when a mobile data mule travels within the wireless communication range of the sensors. However, given the
constrained energy available on a data mule and the energy consumption of its motions and communications a data mule may be
prevented from visiting every deployed sensor in a tour. We formulate the tour planning of a data mule collecting sensor data in UWSNs
as an energy-constrained bi-objective optimization problem termed the Underwater Data Muling Problem (UDMP). UDMP has the two
conflicting objectives of maximizing the number of sensors contacted and minimizing the length of a tour, while satisfying the energy
constraint on the data mule at all times. We design two heuristic algorithms to solve one special case and one generalized case of this
NP-hard problem, respectively. Each algorithm computes a set of Pareto-efficient solutions addressing the tradeoff between the two
optimization objectives to facilitate tour planning. Simulation results validate the effectiveness of both algorithms.

Index Terms—Underwater wireless sensor networks, data muling, tour planning, heuristic algorithm.
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1 INTRODUCTION called UDMP-DoD (docking-on-demand, where some energy

Data muling[1] has been shown to be an effective approadfations are to be visited on a needed basis), respeciiiety.
to data collection in underwater wireless sensor networkéation results show that a computed heuristic UDMP-AD tour
(UWSNS) [2]. A data mule is a mobile robot equipped witihat covers all the sensors is much closer to the correspgndi
data storage, battery, and wireless communications clityabi optimal single length-objective tour, and often outpeamisrithe
A data mule starts off from a sink (or depot), traverses tHptimal solution of another closely related NP-hard praoble
network to collect data (via direct wireless communicasjon and the UDMP-DoD heuristic could further decrease the tour
from individual sensors, and transports the collected Hatk 'ength in comparison to UDMP-AD solutions.
to the sink. Ideally, we would like to plan a tour to collect The paper proceeds in Section 2 with a review of the related
data fromall the sensors, whereas the overall tour length {@Ur planning problems and solutions. Section 3 introduces
minimized. However, thdinite battery energy available on athe Visit/cover concepts and the proposed energy consampti
mobile mule may not support the expedition of reaching dmnodel of the data mule. Section 4 formulates UDMP, together
the deployed sensors along a data collecting tour. with two problem cases. Section 5 describes heuristic tour
This paper investigates the tour planning for underwatgfanning algorithms for the two UDMP cases, together with
data muling as an energy-constrained bi-objective Opﬁmizanalyses of their space and time complexity. Simulationltes
tion problem, termed thé&/nderwater Data Muling Problem are discussed in Section 6, and Section 7 concludes the.paper
(UDMP), which is proved to be NP-hard. Given a constraint on
a data mule’s finite battery energy, two competing optimi@at 2 RELATED WORK
objectives are considered at the same time: the maximizat
of the number of visited sensorgadver-objectivg and the
minimization of the tour lengthigéngth-objectivp In particu- Among existing tour planning problems, the Traveling Sales
lar, to sustain the long-running data muling operationgdims Man Problem (TSP) has been studied extensively, which
deep ocean to cover large geographical volumes, underwdi@putes a shortest tour of given cities starting from aginri
“energy stations” that harvest ocean currents for renesvatflity, visiting each other city exactly once, and returninghe
energy would be deployed within the ocean where a datly of origin. The problem is NP-hard even in the special
mule maydockto be recharged. With the usage of energy (&@se of vertices on theD Euclidean plane [3]. Fortunately,
docking) stations, we design two heuristic algorithms tveso the Euclidean TSP can be approximated in polynomial time
one special case called UDMP-AD (all-docking, where all thigy ratio (1+¢) (ve > 0) [4]. Given expected data traffic in sta-

energy stations are to be visited) and one generalized c&88ary sparse ad hoc networks, Zhao et al. [3], [6] formedat
the message ferry problem to minimize the average delivery
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A number of NP-hard tour planning problems have bedfor general case of continuous neighborhoods with arlyitrar
proposed as generalizations of TSP. One direction suitaloleerlapping, the best approximation ratio known so far is
for data muling with wireless communications is to remov®(logn) [15]. Yuan et al. [16] defined a robot routing problem
the assumption of TSP that all cities must be on the todar data muling in WSNs as a special case of TSPN where the
One effort of this kind is the Covering Salesman Problemeighborhoods are disjoint disks. Since other TSPN algast
(CSP) [8], where a covering distande is introduced, with only gave theoretical approximation ratios—often largel an
the goal of finding a minimum cost tour through only doose bounds, [16] proposed an evolutionary algorithm (EA)
subset of the given vertices such that every vertex is eithessed solution that could often yield empirically bettesuiés.
on the tour or within distanceD of some vertex on the However, such solution does not address the general case of
tour. Another similar effort is the Covering Tour Problenoverlapping disks, and the performance of the solution ddge
(CTP) [9], where two vertex sets are specified—a Bebf on the proper choice of an EA algorithm.
candidate tour stops and a st of targets with covering
distanceD, and the aim is to cover all vertices i by a 22 Multiple Objectives Tour Planning
subset ofV chosen as actual tour stops on a minimum co
tour. Recently both problems have been applied to mobilg

data gathering in wireless sensor networks (WSNs). Rao of single objgctn{e of tour Iength. m|n|m|;at|on. !—lowever,
réal world applications usually require multiple desielind

al. [10] modeled the trajectory computation problem for the . S - ;
. ompeting objectives to be optimized at the same time. @trre
mobile data harvester as CSP. Ma and Yang [11] formulated ® e N .
single-hop data gathering problem as CTP. Zhao and Yang [ d Schilling [8] presenteq a bl-o_bjecnve formulation R
) where a cost was associated with each tour stop, and both

further proposed a bounded relay hop mobile data CO”eCti%]e tour length and the stop-over cost were to be minimized.

problem as a variation of CSP, to balance between the tqur ) L
length and the relay hop count of local data aggregation. qu?e[ﬂl’ they defined another two bi-objective problems, the

common heuristic used for solving CSP/CTP is to carefullmedlan tour problem (MTP) and the maximal covering tour

choose a subset of vertices, usually in a greedy fashion,'melem (MCTP), both with a pre-specified numbeout of
tour stops to cover all the given vertices and then find a T

iﬁmilar to TSP, most tour planning problems only optimize

Iertices to be selected as tour stops. Both problems also

ave one common objective of minimization of the tour length
. . Co With respect to the second objective, MTP aims to minimize
algorithms often generate good results in practice, it isl ha )
. o . . the average distance from any node not on the tour to a nearest
analyze their approximation ratios. Note that the forniatat . L
node on the tour, and MCTP aims to maximize the number of

of CSP/CTP does not take advantage of the fact that d.%%tices covered at tour stops within a given covering dista

exchange with sensors could proceed while a mule is trayeli ecently, [18] proposed a bi-objective version of CTP which
between tour stops, even when sensors are not covered by {he

. ) .2 shared similar objectives as MTP, but with no specified numbe
mule stationarily at any tour stop. In such cases, sensdingnwi ) o T
I of tour stopsp. Although formulating similar bi-objectives as
the communication rangelong a tourcould be covered by . o
. . MCTP, UDMP does not need to specify an a pripnalue.
the data mule traveling between consecutive tour stops.

Arkin and Hassin [13] first studied TSP with neighborhoods )
(TSPN) as a geometric version of CSP. Given a set &3 Uniqueness of UDMP
connected regions (called neighborhoods), TSPN compute$ca sum up, UDMP differs from existing problems in four
minimum cost tour that intersects all regions. Constatibra aspects. (1) Compared with CSP/CTP and bi-objective ex-
approximation algorithms were proposed in [13] for severéénsions, UDMP allows sensors to be covered by a data
special cases of neighborhoodsg, parallel unit segments mule moving between consecutive tour stops provided tleat th
(ratio 3v/2 + 1) and translate regions (ratig112 + 32 4 1). trajectory cuts across sensors’ communication regionss Th
The basic idea of these algorithms is to select a represém-defined asline-coverin UDMP, which may shorten the
tative point for each region and then apply a known TS®ur length as well as improving the tour coverage. Section 6
algorithm on these points. Dumitrescu and Mitchell [14] gawalidates these benefits by comparing heuristic UDMP tours
anl1.15-approximation algorithm for neighborhoods of equalagainst the optimal tours of CSP with and without line-cover
size disks, which relates to sensors’ wireless commuminati(2) In comparison to TSPN with ‘continuous’ neighborhood,
regions in data muling. However, the resulting tours ineludJDMP adoptsstraight lines connecting a sequence of tour
curves rather than simple straight lines, and visit sameatpoi stops to form a tour, rather than curves which are hard to
and lines multiple times, which is neither easily nor effitlg  prescribe and difficult for a data mule to navigate in remlist
applicable to the data muling problem. Recently, Elbagsion scenarios. Moreover, UDMP sets no limit on the relative-rela
al. [15] presented constant-ratio approximation algomghfor tionship among disk regions that represent different sexiso
both disjoint (ratio9.1« + 1) and lightly intersecting (ratio wireless communication ranges, which meapitrarily overlap
O(a?)) convex fat regionsd = 4 for disks). While neigh- with one another. These two features make UDMP much more
borhoods each containing exactly one vertex may overlap, tbractical and easily applicable to realistic situatior3) In
algorithm does not allow the existence of any vertex in thierms of the optimization objectives, UDMP tries to optimiz
intersections. Nevertheless in data muling, it is not rare fboth tour length and tour coverage simultaneously, which
arbitrary overlapping of sensors’ neighborhoodsy, some differs from the majority of existing tour planning problsm
sensors within the communication range of multiple sensothat consider only the single length-objective. In comgami



"""""""""""""""" andj is symmetrié whenc(i, j) < min(D;, D;). In addition,
Bg docking-visit may be regarded as a special case of poingrgcov
. e} where a node’s ‘distance threshold to be covered’ equats zer

3.2 Energy Consumption Model

) _ o In UWSNs, a data mule consumes its battery energy in
Figure 1. Wireless-visit or cover. movement and communications [19]. For example, propulsion
power consumption may range froth watts (V) for low
speed (.2 m/s—0.4 m/s) electric-propelled gliders to more
to MCTP with similar bi-objectives, UDMP does not need tehan a hundred watts in high speed (uRt6 m/s) REMUS-
pre-designate a specific number of stops on the tour, whichciass autonomous underwater vehicles. In addition, unaterw
too restrictive and hard to determine in advance. (4) Urdike acoustic communications consume much more energy than
existing work, UDMP specially addresses the limited energgrrestrial radio communications, which makes the communi
issue of a data mule in underwater scenarios by modeling agetion energy non-negligible even compared with propulsio
tracking energy consumptions, trading off the full coveragror example, an acoustic modem may use ald@¥ for
requirement, and enforcing energy constraint in tour plagn packet transmission, a2 to 2V for packet reception and
decoding depending on the data rates. As a result, we divide
the energy consumption of a data mule into two partSys,.
for movement, and®,.,,,,, for communications.
(1) For underwater movement, ldf, be a data mule’s
propulsion force,L. be the moving distance, and be the
settling speed which is a constant. Then the energy consumed

UDMP defines two types of visit by a data mule. The fird0r moving distancel. is the ‘work’ done byF, i.e.,

type is termedwvireless-visit (or cover). Rather than traveling Eove = F,L. 1)

all the way to a sensor’'s exact location, a data mule only

needs to move within a sensor’s wireless communicationeranigor simplicity, we ignore underwater current so that a data

in order to collect the sensor's data wirelessly. We assumwile’s speed relative to surrounding water remainsThis

that a data mule’s communication range is no less than tlasisumption is proper for the lakes or the deep ocean envi-

of the sensor, which is usually true in data muling applicaenments. Although the speed of wind-driven ocean surface

tions. The transmission radius of a sensor thus represeats ¢urrent could reach2.5 m/s, e.g, the Gulf Stream, the

distance threshold for the sensor itself to be covered bydeep sea current, mainly caused by density gradient from

data mule. Wireless-visits could happen either statibhati temperature and salinity, is relatively static, varyingnr

tour stops—calleghoint-cover, or during movement between0.02 m/s to 0.10 m/s or less [20]. Assume the weight of

two consecutive tour stops—calldihe-cover, which may a data mule is adjusted (like a submarine in equilibriumestat

effectively increase the coverage without increasing the t vertically) so that its gravity can be counter-balanced oy t

length. Figure 1(a) shows that send®iis point-covered by a buoyancy from water, which mear$, only needs to counter-

data mule “at” positiond (as a tour stop) on (or inside) theact the water drag forcé in the reverse direction so as to

boundary ofB’s communication range. Figure 1(b) shows thatach the constant speed In addition, we assume a slow

sensork is line-covered by a data mule “with” line segmentoving speed for data mule, say, less tHam/s, which is

(C, D) which cuts throughE’s communication region. The appropriate for extended missions of weeks long. By Stoke’s

second type of visit is termetbcking-visit, where a data mule drag equation [21], when is small, F; is linear with v but

does need to visit the exact location of a node. For instanegposite in direction.

a data mule docking-visits an energy station to be recharged

The above types of visit and cover by a data mule are

formally defined as follows. LeD; denote node’s distance whereb is a constant dependent on properties of water and

threshold to be covered by a data mule €.9, node’si’s dimensions of the data mule. Combining (1) and (2), we have

wireless communication range), amddenote the Euclidean

distance either between two points or between a point and Ermove = bvL = oL, ®3)

a line segmentin the Euclidean space. A nodeis “point-

covered” by a data mule at positigrnf the point-point distance

c(i,5) < Dy, and “line-covered” with line segmen, k) if the

point-line-segment distancdi, (4, k)) < D;. The relation of

“point-cover” by a data mule between a node/position pair of 2. in short, § andj point-cover each other’ means that nadgat position
1) is point-covered by a data mule at positipnand nodej (at positiony) is
point-covered by a data mule at positionFor simplicity, in the remainder

1. Note that the point-line segment distance is meaningiiy o the point  of this paper we will no longer differentiate among node,npovertex, and

can be orthogonally projected onto the line segment—otisenthe distance its position, which may be used interchangeably within apgate contexts.
is assigned to bec. Note that the data mule is themle agent for all visits/covers.

(a) Point-cover (b) Line-cover

3 MODEL AND ASSUMPTIONS

3.1 Types of Visit and Cover

Fy = —b, 2

wherea = bv is a constant coefficient for moving distante
(2) For underwater communications, |€t,,,,, be a data
mule’s average communication power for collecting datanfro



sensors, which is a weighted sum of both transmission and
receiving/decoding power of the data mule depending on
the data retrieving scheme. For example, a data mule could
sequentially poll each nearby sensor within the sensors-co
munication range by first sending a small request message
and then receiving data from the polled sensor. For sintglici
we assume a uniform amount of data, denotedabyo be
exchanged at every sendotet N be the data transfer rate,
and C be the number of visited sensors including both point-
cover and line-cover (termecbverage). We then have

a
Ecomm - comm(ﬁ)c - Bcv (4)

Figure 2. Tradeoff between length and and cover objec-
tives. The shorter route (F, G) covers fewer sensors, while

the longer route (F, H, G) covers more sensors.

where 8 = P.omm(f) is @ constant coefficient for'.

3.3 Energy Consumption within a Tour Segment 4.1

In UDMP, a data mule needs to visit a docking station to ggm
recharged before running out of battery energy. Speciﬁpalw
the data mule’s energy usage is tracked within esalr
segment (or docking segment), which is the sub-tour between
two consecutive docking-visits. A tour segment starts at a2)
docking station, passes a set of non-docking tour stops, and
terminates at a next docking station. Note that the depot is
also regarded as a docking station. The straight line segmen
traversed by a data mule between any two consecutive tour
stops is termed &our link. Therefore within each tour seg-
ment, the data mule operating on its finite battery energi bot
moves along tour links and collects data from sensors before
recharging itself at the next docking station on the segment3)
border. Lete(S) denote a data mule’s energy consumption

in a tour segmentS, Lg be the sum of tour link length 4)
within segmentS, andCs be the coverage inside the segment
(excluding those sensors point-covered at the two borderin
docking stations). Based on (3) and (4), we have

1)

5)

e(S) = alLs + BCs, (5)

which is linear to the segment’s length and coverage. 6)

4 PROBLEM FORMULATION

We formulate the energy-constrained bi-objective UDMP as

e goal of UDMP is to find a touf” = (1, s, -

UDMP
! 1t‘T‘>a

ich is an ordered list, for the data mule such that:

Each tour stop; € T is different, with the depot as both
the start and the end of the toue., t1 = t(|741) = d;

A tour stop could be at either the location of a docking-
visited station or any position to cover a wireless-visited
sensorj.e., Vt; € T, eithert; € Y or dz, € Z such that

t; can point-covery within z;'s communication range
Dy; Based on those stops at docking stations, tbur
could be further divided into a consecutive sequence of
tour segments’, .S, - - -, whosebordersare marked by
docking-visited stations;

All vertices inY; are docking-visited during the todr,

i.e., Vyj €Y, Yj € T,

All vertices in Z; are wireless-visited during the tour
T,i.e, Vzp € Z1, 3t; € T such that either;, is point-
covered att;, or line-covered with(¢;, t;11)—the line
segment between the two adjacent tour stoasdt; 1 ;
The data mule’s energy usage in any tour segntgnt
satisfies the upper bound, i.e., ¢(S;) < eg, based on
Equation (5)—energy constraint;

At the same time optimize the following two objectives:
() the maximization ofC7 as the number of nodes
in set Z wireless-visited by the tour (cover-objective),
and (ii) the minimization of the tour lengttl
ST e(ts, 1) (length-objective).

follows. Let = (V. E) be a complete graph in an Euclidean |, the apove formulation, Item defines the concept of
space €.9, 3D), with the vertex seV’ = {d} UY UZ, where 5 1o with distinct stops, which may be relaxed in the
dis the _S'”"@_r depof[)Y is & set of docking stations thatay generalized UDMP-DoD case later in this section. Itém
be docking-visited, with Y1 C Y as the subset thanustbe  ghqifies the selection of tour stops as well as the divisian o
docking-visited { € Y1), andZ denotes a set of sensors thajy, 1 intg tour segments. Itensand4 further qualify the tour
may be wireless-visited within the wireless communication it the sets of nodes which must be docking- or wireless-
rangeD); of each sensor € Z, with Z, C Z as the subset that isjteq. Item enforces the data mule’s energy constraint for
mustbe wireless-visited. Let the non-negative cost functiogy o, segments. Finally, Iters states the cover-objective
c(i,j) be the Euclidean distance between any two points;ng the |ength-objective for tour optimizations, which are

andj in the same Euclidean space wheveresides. Leto competing against each other as illustrated in Figure 2, and
be the battery capacity of a data mule which is fully supplieghe to pe compromised.

at the depot and can later be recharged at a docking station.-l-heorem 1:UDMP is NP-hard.

Proof: Since TSP is NP-complete, we will show that
UDMP is polynomial-time reducible from TSP. Given an
instance of TSP, which includes a complete gréps (V, E)

3. Uniform or low-variance in the amount of collected dataoagy sensors
could be achieved through low sampling rate or in-sensototiisl data
fusion/compression.



and a cost function mapping each edge ih to the Euclidean  where

distance between two endpoi_nts. We construct an instance 1 if (i,) € E is on the tour,

of UDMP as follows. We define a complete gragh = Tij = { 0 otherwise:

({d}uY U Z, E), whered is a vertex randomly picked from , ’

V as the depoty = V, andZ = V' \ {d} with each vertex I, = { 1 if k€ V'is a tour stop,

in Z associated with a non-negative ‘distance threshold to be 0 otherwise;

covered’. Apparently(’ shares the same vertex set and edge; > 0 : the integer flow fromi to j via (4, j) € E;
set agG. In addition, letY; =Y so that all vertices i must ¢;; >0 : the cost fromi to j via (i, j) € E;

be docking-visited. Therefore every vertexd@ must be on a 1 if i € V is point-covered byj € V,
feasible tour of the UDMP instance, which means all vertices Fij = { 0 otherwise:

in Z must be wireless-visited—the maximum coverage. We | if i €V is line-covered by(j, k) € E
also define the cost functiodf to be the Euclidean distance L; (; ;) = { 0 otherwise J; '

between any two points, and the segment energy constraint

eo = oo. Apparently, there exists a minimum length TSP |n the objective function (6), the sole optimization objeet

tour in G iff the same tour inG’ is the UDMP tour with s to minimize the total tour cost, where the binary variable

the minimum length for the maximum coverage and satisfied; determines whether or not the tour passes through the edge

energy constraint. This reduction can be done in polynomi@r line segment)i, j) € E, and the coefficient parameter;

time. Hence UDMP is NP-hard. [ denotes the travel cost ovér, j) (e.g, the Euclidean distance
betweeni and j). Constraint set (7) enforces all sensors to
be covered by the touri.é, Z = Z;), where the binary

4.2 UDMP-AD (All-Docking) variable I; determines whether nodg is on the tour, and

One special case of UDMP, termed UDMP-AD (AII-Docking):Omar.y tcoefﬂme(;stPij gntd Liv(klvl) |tnd|c_§\;e (\;vhehthtehr sensar
is defined when all docking stations must be visiteel (Y; = S point-covered by a data mule at polnand Whetner sensor

AR i i is line-covered by a data mule with line segmeht(),
Qéi:ﬁ;\gzv:r?jl;sazﬁ?e (;\l P-hard as the above proof can br%spectively. Constraint set (8) mandates that all the idgck

. . . tations be on the tour.¢.,, Y = Y7). Next, constraint sets (9)—
We also define a non-energy-constrained single leng ¢ ) 9)

L : . o '3) ensure the validity of the tour based on charactesistic
objective version of UDMP-AD, which optimizes only the S :
length-objective while covering all sensois(, Z, — Z) with of a Hamiltonian cycle. In particular, (9) and (10) enforce

. . the degree restriction for tour stops such that the tour lshou
no energy constrainti.e., eg = o0). We term this problem 9 P

. . ) only enter a stop via one single edge and leave the stop via
the Covering Salesman Problem with Line-Coy&SP-LC) : . o -
to differentiate it from CSP that does not utilize line-coJe another single edge, which prohibits revisits of tour stops

. . o onstraint sets (11)—(13) further eliminate cases of suipst
Section 6, we will evaluate the goodness of heuristic UDMFQ- o . .
AD tours by comparing with the optimal tours of CSP-LC an&l'e" tours with disconnected components) by introducing the

. : integer decision variablg;; denoting, say, the unit of collected
CSP, respectively. NP-hard as CSP, CSP-LC is formulated g5 flowing through edgé, j). Let the data mule start out
an Integer Linear ProgrammingILP) problem as follows.

_ ) at depotd with zero data, and collect only one unit of data
Given a complete grapi = (V. E), with V= {d}UY'UZ, a4 aach tour stop. Constraint set (11) enforces the uppér lim

Yl, =Y, andz, = Z Letc;; be ar?on-_negative cost a;sociategn data flows and confines them to only edges on the tour.
with each edgdi, j) € £. The objective of CSP-LC is to Constraint set (12) ensures that only one additional unit of

data is added to the flow at each tour stop except for the

minimize. Z CigTig (6)  depot. Finally, constraint (13) specifies that the net data fl
BIEV ] into depotd should be equal to the number of all the other
subiect to tour stops, signifyingl as both the start and the end of a tour
) which passes through all stops, and thus prohibiting substo
Zf)ij[j + Z Ly > 1,Vi € Z, (7)
jev (kD)EE 4.3 UDMP-DoD (Docking-on-Demand)
Iy =1L,Vk €Y, ®) In comparison to UDMP-AD wherall the docking stations
Z xi = Ik, Vk €V, (9) must be docking-visited, we study the general scenariosavhe
i€V,itk docking stations arselectivelydocking-visited based on the
Z o = In, Yk €V, (10) actual charging neeq. In contrast to UDMP-AD that assumes
SV Lk Y; =Y, we term this general case (without the assumption
’ o C fY: =Y) UDMP-DoD (Docking-on-Demand). In practice,
i < (V| = Daij, Vi, j € Vyi # 7, 11y o' n ICe
vig < (V] = D, Vi ] i (11) UDMP-DoD could further decrease tour length by avoiding
doum— Y vy =1,¥i€V\{d}, (12)  unnecessary docking-visits in UDMP-AD as illustrated ig-Fi
keV.k#j iEVyi] ure 3. In general, UDMP-DoD tours are shorter than UDMP-
Z Yid — Z Yaj = Z I, (13) AD tours in scenarios which lack an optimal deployment of

i€V id JEV,j#d keV\{d} docking stations, as will be verified in Section 6.2.



Figure 3. Comparison between UDMP-AD and UDMP-
DoD tours to cover all sensors in a sample network, with
depot d and Y = {a,b,c,d}. (1) AD tour: (d,a,b,c,d)
as Y = Yi; (2) DoD tours: (d,e, f,d) or (d,e, f,c,d)—
depending on whether the data mule needs to be
recharged—both being shorter than the AD tour.
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(a) Re-docking (b) No re-docking

Figure 4. Comparison between UDMP tours (a) with and
(b) without re-docking: (a) covers all, while (b) does not.

Moreover, UDMP-DoD generalizes UDMP by relaxing th
tour requirement of “distinct stops” in Item 1 of the UDMP
formulation (Section 4.1). Note that UDMP-DoD allows onl)f:

re-visits of docking stations (termem-docking, while still

maintaining the uniqueness of all the other tour stops il

the same time. In UDMP-DoD, each tour stop € T is
differentexcept fothose that are docking statiori(, t; € Y,

can be further improved without the degradation of other
objective(s). All Pareto-efficient solutions to a multijettive
optimization problem form thePareto frontier Formally, a
solution 77 dominatesanother solution?’ iff 7 is at least
as good ag; with respect to all objectives, and there exists
at least one objective whefg is strictly better tharily with
respect to that objective. A solution is Pareto-efficienit ifs
not dominated by any other solution.

Given the NP-hardness of UDMP, we propose two greedy
heuristic algorithms to calculate the Pareto frontier f@NJP-
AD and UDMP-DaoD, respectively. For simplicity, we assume
non-prioritized coverage requirement among sensaoss., (
Z, = ()% Both algorithms share the same basic framework
which iteratively (1) adds a tour stop to cover sensors, and
(2) applies a known Euclidean TSP algorithm on the tour
stops to compute a shortest tour, until all the sensors to be
covered are covered by the tour. We define tigéghbor set
of a covering position as the set of sensors point-covered
at this position minus those point-covered at existent tour
stops other than this position. The selection of a covering
position as a newly added tour stop depends on the ‘weight’
of its neighbor set, to be detailed in the algorithms. Not th
both algorithms are applicable ®D and any dimensional
Euclidean space, because they (1) deal Watfical sets that
are not necessarily formed based on geometric relatioriship
any dimension, and (2) use the Euclidean distance which is
dimension-independent. The key differences between UDMP-
AD and UDMP-DoD heuristics are manipulation of docking
segments to enforce the energy constraint. The UDMP-AD

geuristic maintains a fixed number (equal to the sizeY)f

of docking segments, and tries to adjust segment borders in
ase of energy constraint violation. In contrast, the UDMP-
DoD heuristic keeps a variable nhumber of docking segments
ith the selection of docking-visits based on the actuatgne
need. The two algorithms are described in detail as follows.

including the depotl). This extended feature of re-docking in5.1 Heuristic Algorithm for UDMP-AD
UDMP-DoD accommodates circumstances where insufficientinput: Docking station seY” = Y3, sensor sefZ, wireless

number of docking stations are deployed in some region(s) communication rangeD; for each sensoi € Z,
of the network, such that the data mule has to re-visit some energy constraint, for each tour segment.

docking station(s) for re-charging in order to collect dfxtan

Output: The sefll of Pareto-efficient tours that satisfy the

as many sensors as possible in a tour. For example, when no segment energy constraint with both tour length and

docking station other than the depot exisie(Y = {d}

tour coverage objectives optimized.

as the central black node shown in Figure 4), the data mulestep 1: Initialize the tour stop s&t = Y;, the candidate

may re-visit the depot repetitively to renew battery energy tour stop setd = Z, and the candidate Pareto-
Consequently, the data mule could cover all sensors in one efficient solution sefl = {TSRR)}, whereTSRR)

tour, as illustrated in Figure 4(a). However, without reckimg

is the TSP tour oveRk calculated by a known TSP

the mule would have to complete the tour with only a subset
of the sensors visited (shown as gray nodes in Figure 4(b)).
UDMP-DoD is also NP-hard, as the proof for Theorem 1 can
be straightforwardly applied.

heuristic algorithm. UpdateZ by removing those
point-covered at vertices iR. If Z is empty or each
vertex in Z can be line-covered with some edge in
TSRR), returnII and terminate.

Step 2: For each vertek € H, calculate its neighbor set

5 HEURISTIC TOUR PLANNING ALGORITHMS

In general, the solution to a multi-objective optimization
problem is not a single instance, but a setPaireto-efficient

nSeti) = {j | ¢(j,7) < D;,Vj € Z}, and its weight
w; = |[nSeti)|. Remove fromH any vertex with zero
weight. Initialize the tabu seB = 0.

pne§ that represent th.e be_St cgmpromise among a" OpjeCtiveAf. It is trivial to solve cases wittly # () by prioritizing the covering order
in different tradeoff situationsj.e, none of the objectives of Z and applying our algorithms twice—first afi;, and second ol \ Z;.
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wo segment S;41 in order to correct ey violation in .S;.
(b) Iteration 2

.6‘6' °.° line-covering two sensorg and h (Step1). Since no sensor
Tolb QT is point-covered by the initial tour yef/ equals the candidate
p g stop setH which contains alll3 sensors. Next, a weight for
every candidate stop is calculated to be the size of its heigh
set, which includes sensors fhpoint-covered at the candidate
stop, as shown inside the circle centered at a candidate stop
:_ X ] X (Step2), e.g, wp = 5, we = w, = 4. Sensom is chosen with
e e the largest weight of (Step3), and the second toyd, b, a, d)
(c) lteration 3 (d) Iteration 4 is produced (Steg) as depicted in Figure 5(b). Assume that
both segment&d, b, a) and(a, d) satisfy the energy constraint.
Then those sensors in the new tour stdp neighbor set,
which have beepermanentlycovered at tour stop (via point-
, , _cover), are removed fron¥, as highlighted by the shadow
Step 3:1f1/\ B is empty, returr] and terminate. Otherwise gre5 Notice that sensors line-covered in the current tugh
find the vertexk = argmax;e g\ p) wi—select the 55 and ;) may not still be covered in the newly computed
one with the shortest average distance to all verticgsr que to the change of tour links. Therefore these sensors
in R in case of a tie, and add vertéxinto R. are onlytemporarilycovered and should not be removed from
Step 4: ConstructSR 1) and compute its length and cover-; g neighbor sets of the other candidate stopd iare also
age, counting both point-coverage and line-coveragg,jated so that the new neighbor sets contain only sensors
Check each segment's energy consumption (basedigny ang the candidate stops with empty neighbor sets are
Equation (5)) against the energy constragitand try emoved fromH (Step5). Notice that some sensors already
‘border adjustment’ to correct violations if any. If all ;o\ ered and deleted from can still be candidate tour stops
the segments are able to satisfy set/l = H\{k} in p, as long as their neighbor sets are not emptg,
andIl = ITU {TSRR)}, check dominance betweengensore with a weight of2. In the third iteration, sensor
the new tourTSR ) and previous solutions il SO js selected with the largest weight af to produce another
as to remove whomever dominated, and go t0 Stepoyr (4., 4, ¢, d) shown in Figure 5(c), with both segments
Otherwise, discardSRR), setR = R\ {k} and (44 o) and (a,c,d) satisfying the energy constraint. Now,
B = BU{k}, and go to Ste. sensorsg and h are line-covered with tour linkgc, d) and
Step 5: UpdateZ by removing those point-covered at StoR,, ) respectively, rather than withd, a) which no longer
k. If Z is empty or each vertex il can be line- pejongs to the current tour. After sensés neighbor set is
covered with some edge ISR 1), returnIl and  remayed fromz, the neighbor sets of candidate stopsHn
terminate. Otherwise, for those if whose neighbor 46 ypdated as before. In the fourth iteration, there is éntie
sets overlapi’s neighbor set, update their neighbogyg |5rgest weight df among the candidate tour stopsf, and
sets as well as weights, remove vertices with Zef0 then the distances between each candidate and the current
weights from /7, resetB = (), and go to Step. tour stop set are compared, and sensds selected as the
The algorithm is illustrated via an example shown in Figeloset one into the tour stop set (St&p Therefore the fourth
ure 5, whereY; =Y includes depotl and docking statiom, tour (d,b, e, a, ¢, d) is produced as shown in Figure 5(d), with
both of which must be docking-visited, aitincludesl3 non- both segmentsd, b, e, a) and (a,c¢,d) satisfying the energy
prioritized sensors to be covered as many as possible witlt@nstraint. Since the updated sétonly contains two sensors
uniform ‘distance threshold to be covered’ shown by the &équa and h, which can be line-covered with current tour links
radius dotted circles. For simplicity, energy constraigtis (c¢,d) and (a,c), respectively, the algorithm terminates and
assumed to be large enough so that the energy consumptionetdirns these four tours as heuristic Pareto-efficientt&wis.
each computed tour segment during the UDMP-AD algorithm When some segment in a computed TSP tour violates the
execution satisfies the energy constraint—we will demaistr energy constraint, ‘border adjustment’ is used to correchs
‘border adjustment’ in case of energy constraint violatamter. violation (Stepd), if possible, as illustrated in Figure 6, where
This example works in four iterations, each producing omsguares denote docking stations as segment boundarasscir
tour. Figure 5(a) shows that the initial todd, a,d) consists represent tour stops within segments, and edges (direick sol
of only depotd and docking station, with the tour link(d,a) lines or curves) reflect only the connectivity relationstafher

Figure 5. An example execution of UDMP-AD algorithm.



than the real shape of tour links. L&t be a segment with new tour stop from the set of uncovered sens@ép) to

a negative battery energy balande,., ¢y — e(S;) < 0. By check the line-coverage result of every new tour computed in
Equation (5), the segment energy consumption is propatiorstep4 for termination condition test, an@(n?) to update the

to both the length and the coverage of the segment, bateighbor sets that overlap with each new tour stop. Finksty,
of which decrease with fewer tour stops in the segmerf(k) be the running time of the heuristic TSP algorithm over
Therefore, in order to lowet(S;), ‘border adjustment’ tries to & vertices employed in the proposed UDMP algorithm. Then
shift out a minimum number of close-to-boundary tour stopgie running time of TSP in Stepis 7'(m), and the worst-case
from segmentS; into an adjacent segment—eith8f,; in running time in Stept is at mosty_""  (n — i+ 1)T'(m +1).

the right or.S;_; in the left, whichever has a positive energylherefore the overall time complexity of the algorithm ireth
balance, so that bot$; and the adjacent shift-in segment coulavorst case i (n?) + T'(m) + >_; (n — i + 1)T(m +i).
satisfy the energy constraint. Notice that the boundary tou

stops of the segments are always docking stations, whigh s[.)a2 Heuristic Algorithm for UDMP-DoD

unchanged during the adjustment. Sir¢#;) is decreased at ~
the cost of increasing(S;41) or e(S;_1), ‘border adjustment’  Input:  Docking station sel” 2 Y1, sensor se¥, wireless

can not solve the energy violation problem of segm&nthen communication rangeD; for each sensoi € Z,
S;’s two adjacent segments deplete their respective energy energy constraint, for each tour segment.
before digesting enough shift-in tour stops to eliminatés Output: The sefll of Pareto-efficient tours that satisfy the
energy deficiency. In such case, the tour fails the energy segment energy constraint with both tour length and
constraint and is simply discarded. Another side-effect of tour coverage objectives optimized.
‘border adjustment’ is the increase of the total tour lengie ~ Step 1:Initialize the tour stop sét = Y7, the candidate tour
to the detour cross from edge exchange, as will be evidenced stop set = Z, and the candidate Pareto-efficient
in Figure 8(c) of Section 6.1. Therefore, ‘border adjustthn solution setll = {TSRR)}. UpdateZ by removing
only applied between adjacent segments without propagatin those point-covered at vertices . If Z is empty
to farther segments. or each vertex inZ can be line-covered with some

We now analyze the worst-case computational complexity edge inTSR ), return]l and terminate.
of the algorithm. Suppose there atesensors and: docking ~ Step 2: For each vertek € H, calculate its neighbor set
stations § > m). Therefore,n = |Z| andm = |Y|. For nSeti) = {j | c(j,i) < D;,Vj € Z}, and its weight
the space complexity, it takes!" ,(m + i) = O(nm + n?) w; = [nSeti)|. Remove fromil any vertex with zero
space to store all candidate Pareto-efficient soluticis,?) weight. Initialize the tabu seB = 0.
for neighbor sets of all the sensors as well as the point-Step 3:If7\ B is empty, returril and terminate. Otherwise
point distances, and at moét(n®) to buffer calculated line- find the vertexk = argmax;c g\ 5y wi—select the
coverage results of tour links in Step Hence the overall one with the shortest average distance to all vertices
space complexity of the algorithm @(n?). in R in case of a tie, and add into .

For the time complexity, the algorithm také¥nm) time ~ Step 4: Construct the current tour= TSRR), and com-
to calculate the point-coverage of docking stations as well pute its length and coverage, counting both point-
as the line-coverage of. edges in Step, andO(n?2) time to coverage and line-coverage. Starting at the depot
compute the neighbor sets and weightsifarensors in Step. with full battery energyeo, track the remaining
For Step3 through Step5 which form two nesting loops, energy £, along 7, and use ‘docking on-demand’
we count each step’s overall running time by combining all to recharge at a selected docking station (added as a
possible repetitions. In the worst case, each addition afva n tour stop) whenevet, < 0. If the depot is finally
tour stop has to try every candidate stop due to repeateddail reached withE, > 0 after passing all tour stops and
to satisfy the energy constrairite, from Step4 going back to links in 7, setd = H\ {k} andIl = ITU{r}, check
Step3 repeatedly for a maximal number of times before going dominance between and the previous solutions in
forward to Step5). Step3 takesO(n? logn) time to find the IT so as to remove whomever dominated, and go to
maximum weight for every trial by sorting all the candidate Step 5. Otherwise ie. without enough energy to
stops at the start of each iteration, and at m@&tm + n?) return to the depot), discard, setiz = R\ {k} and
time to select the candidate closest to the set of curremt tou B = BU{k}, and go to Ste3.
stops to break ties, in the worst case that all the candidateStep 5: UpdateZ by removing those point-covered at tour
stops share the same weightg, all have the weight of one stop k. If Z is empty, or each vertex irZ can
with non-overlapping neighbor sets. StépakesO(n?) time be either point-covered at a newly inserted docking
to incrementally compute the length of all the tour segments station or line-covered with an edge in the current
O(n?) time to add up the point-coverage of tour stopgy?) tour 7, returnIl and terminate. Otherwise, for those
time to calculate and add up the line-coverage of possibie to in H whose neighbor sets overlap's neighbor
links, O(n%m) time to check the segment energy constraint, at set, update their neighbor sets as well as weights,
mostO(n?) time to adjust segment borders in case of energy remove those vertices with zero weights froff,
constraint violations, and)(n?) time to check dominance resetB = (), and go to Ste3.

between the new solution and the existent solutions. Step In UDMP-DoD, the number of docking segments varies
takesO(n?) time to remove sensors point-covered at evegnd the selection of docking-visits depends on the actual



y B .z“‘-.j+1 i1 segment aftey to be examined next. Notice that the candidate
----a - - '___. l-i--;;\._t---H-i pool for on-demand docking stations remains unchanged as
SR Y which permits re-docking. ‘Docking on-demand’, together
(a) Mature docking (b) Pre-mature docking With re-docking, eliminates the need for ‘border adjustthen
(used in UDMP-AD algorithm) to enforce the energy con-
straint. Since on-demand docking stations are selectegldbas
on the locations of on-demand stops in a specific tour, the
selected on-demand docking stations may vary with differen
tours between iterations. Therefore, sensors point-euvery
the mule at the on-demand docking stations in one iteration
may not be covered any more in other iterations due to the
possible changes of on-demand docking stations. Therefore
these sensors are treated tasnporarily covered (like line-
energy (recharging) need. This is achieved by incremgntajoverage) in Step 5.
building tours to cover sensors without considering ther@ne  For the worst-case computational complexity, the UDMP-
constraint at first (Steps 1, 2, 3, and 5), similar to the eXamDoD algorithm is comparable to the UDMP-AD algorithm.
in Figure 5. Meanwhile at each iteration, starting from thghe overall space complexity of UDMP-DoD #8(n?) due
depot the algorithm keeps track of mule’s the energy ren&indo the same line-coverage buffer requirement as in UDMP-
E,.(i) at each tour stop (indexed by its sequential order in aaAD. For the time complexity, we just examine the on-demand
segment) along the tour. Specifically, the data mule’s battejocking in Step 4. There are at most iterations, with
starts with full capacity, at the beginning of a tour segmenteach iteration adding at most on-demand docking stations
(a docking station), and is consumed within the tour segmestinsidering re-docking, each successful on-demand dgckin
over links (with communication energy from line-cover plusaking at most: backtracks of tour stops, and each tour stop
movement energy) and at stops (with communication energisting exactlymn candidate docking stations. Therefore, the
from point-cover), based on Eq (5). on-demand docking takes at mastn’m) time.
In case ofeq violation (.e., E, < 0), ‘docking on-demand’
@s used to_ selt_act a d0(_:king station for recharging (Step é PEREORMANCE EVALUATIONS
illustrated in Figure 7) in three steps. First, locate the
demand stopas thelast stop that a data mule may visit with Ve have conducted extensive simulation to validate theceffe
enough energy.g, stop(i—1) in Figure 7, withE, (i—1) > 0 tiveness of the proposed UDMP-AD and UDMP-DoD algo-
and E,.(i) < 0—without recharging, the data mule couldt rithms. For the TSP subroutine employed in both algorithms,
reach the next stop Second, try to find aon-demand docking We use Heldsgaun’s implementation of the Lin-Kernighan TSP
stationy € Y which is both reachable with the remainingluristic [22], [23], considered to be one of the best héiuss
energy from on-demand stog — 1) and incurring minimal for Euclidean TSP. In all simulation, we assume a uniform
increase in tour length, termedature docking (Figure 7(a), communication range for each sensor. The network topolo-
with the dotted circle surrounding the tour stop representi 9ies are either adapted from the test instances in TSPLIB [24
the search scope based @i at the stop). If mature docking OF generated with random distribution.
is not available from(i — 1), backtrackto the preceding stops
one by one in the same segment until finding an on-demagd Results of UDMP-AD

docking stationy, termedpre-mature docking (Figure 7(b)). L .
Apparently, the search scope at each further backtracksgd sg\{e vary the qommunlce}uon range, the energy constraint, and
' e network siz&in the simulation, and present tour snapshots

increases sinc&, increases while ‘moving backward. Mature .~ " - I o
and pre-mature dockings also differ in termskf at the stop plctpnally and ftour statistics quantitatively.
Figure 8 shows the snapshots of four tours out of totally

Lz(;rpurvem(;(:l] ?/Citr? rlh(ieer:q?nr:?nslgckggo it(?:g; Isons(;lned?od;‘ six tours generated for a network topology adapted from the
y " P ng tc TSPLIB instance ¢&il51.” The “eil51” instance consists of
on-demand stop. Note that the segment length might INCrease, . i-es on a terrain of siz&0 x 70 m2. We add one

more with mature docking (immediately after on-demand Storﬁore vertex at(0,0) (the lower left corner) as the depot,

(i —1)) than with pre-mature docking (after some backtracke nd randomly pick two other vertices as docking stations.

stop (i — j)), as compared between Figures 7(2) and 7(be#he three vertices (shown in black) form the st = Y

NotW|thstand|ng t_he possibility gf_a locally larger inc which must be docking-visited (as the initial tour stops in

in tour length, this greedy heuristic always chooses mat : L )

. ) . -igure 8(a)), while all the remaining vertices compose the
docking whenever possible, because by postponing recttargi . "

. . ensor seZ. We setr = 15m as the uniform communication

as late as possible, the heuristic may reduce the total numbé

of recharging in the tour, which would potentially lower &19€ for all sensors, which is selected to fit the actuahierr

the overall tour length. Third, the newly selected on-dechan € " the.edm msta}ncej, and could certalmly be. scaled
. X 2 ' L rztogether with the terrain size and the nodes’ coordinai®s)
docking stationy is inserted into the tour, and the original

tour_ segment splits into two with the new segment befg)re 5. In this paper, network size refers to the total number adesoin the
having already passed the energy constraint check and the metwork, which is not to be confused with the terrain sizehaf hetwork.

Figure 7. Two cases of ‘docking on-demand’ with (i — 1)
as the on-demand stop and y as the selected on-demand
docking station. In (a), y is visited immediately after the
on-demand stop. In (b), backtrack to preceding tour stops
when no y is reachable from stop (i — 1), until finding y to
be visited between stops (i — j) and (i — j + 1).
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. o s Figure 9. Cover vs. length objectives in UDMP-AD solu-
tions for adapted “eil51” with ¢q = 100.

¢ the computed TSP tour satisfies the energy constraint withou
a need for any ‘border adjustment.” Moreover, we find that thi

o tour dominates the previous one with three more sensordadde
in coverage and shorter length. The algorithm then terremat
and returns five tours as Pareto-efficient solutions, extmpt
() lteration 5 (d) lteration 6 the dominated one from Iteratioh

Figure 9 depicts the tradeoff between covegrakis) and
length (-axis) objectives for the same network topology as
Figure 8, except that the energy constraint is relaxed=¢
100, with no need for ‘border adjustment’) and a larger com-
munication range is used & 25m). We represent the cover-
objective by the number afincovered(i.e., not yet covered)
nodes so that both objective values are to be minimized. Each
plotted data point represents a tour produced by one itarati
of the algorithm, with the top leftmost point denoting théiad

match the realistic underwater acoustic transmissioneang tour at Iterationl with only the three members &f; that must
typical in the hundreds of meters up to kilometers. We aldt¢ docking-visited. Each next point toward the bottom right
enforce a smalleey = 20 in order to demonstrate the impactSigniﬁeS the addition of a new tour stop which increases the
of energy constraint with the effect of ‘border adjustmenttour length in order to, hopefully, cover more sensors. beti
Figure 8(a) depicts the initial tour constructed with alteta that the two tour points representing Iteratidnsnd4 are both
docking stations irt’, which become the boundaries of threglominated by the tour from Iteratiah and thus are not Pareto-
tour Segments_ The |ength of tour Segments increases V\m_fﬁCient. We pIOt them in the curve jUSt to show all iteragon
new|y added tour Stops in Subsequenﬂy generated tourde Wﬁihe Pareto frontier ComputEd for this network should Only
the boundary docking stations remain unchanged. Notice tfclude tours from lIterationd, 2, and 5. In general, as the
the tour ‘direction’ denoted by the arrows is onhominal length of the tour increases, the number of uncovered nodes
as it makes no difference between two opposite directiofgcreases until finally becoming zero when all sensors are
in a Cyc|e with regard to both Objectives as well as ener(}\)@vered. We find that at |terati(ﬂ',] there is Only one sensor not
constraint. After initialization, the initial tour exteacby one Yet covered with a tour length aBOm. However, it takes three
tour stop at each subsequent iteration to cover more sensdgiditional tour stops and abo2% increase in tour length in
Figure 8(b) shows the tour at the fourth iteration, with threorder to cover the last sensor at Iteratiorn practice, we may
more tour stops added and thirteen more sensors covered tfggide to give up visiting the very last sensor by choosireg th
lteration 1. So far the energy constraint is satisfied in aflour generated at Iteratidhto trade coverage for tour length.
three tour Segments_ Figure 8(C) depicts the tour at |tamdti Therefore, the Pareto frontier Computed by the algorithnﬂd:o
after Successfu”y adjusting the Segment border to cooret help make better tour decisions that balance both Obj@tive
energy constraint violation. The tour stop at the top right in practical applications.

shifted to the next tour segment so that both segments’ gnerg Next, we compare the heuristic UDMP-AD tours to the op-
consumption is less thany. As a result, the tour length istimal solutions of CSP with and without line-cover, denoésd
increased t®25.062m due to the cross detour formed at th&€CSP-LC and CSP, respectively. Both CSP-LC and CSP may be
top right portion of the tour. Figure 8(d) shows the tour ategarded as special cases of UDMP-AD with=Y', Z; = Z,
Iteration 6, which covers all9 sensors with a total length of and ey = oo, except that CSP uses only point-cover without
219.169m. Notice that although one more tour stop is addetine-cover. With a sufficiently largey value in UDMP-AD,

Figure 8. Snapshots with coverage ratio C and tour
length L of selected iterative UDMP-AD tours for adapted
“eil51” with eg = 20. (@) C' = 31/49, L = 143.292m; (b)
C =44/49, L = 193.487m; (c) C = 46/49, L = 225.062m,
with segment border adjustment to satisfy eg; (d) C =
49/49, L = 219.169m.
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Point-cover Line-cover

the length-objective (under full coverage) increases iarsgr

Usage | Optimality Usage | Optimality -
CSP-LC || yes, explicit | opimal ves, explict | optimal networks, as fewer nodes could be point-covered at the tour
UDMP yes, explicit | sub-optimal || yes,implicit | sub-optimal stops. One extreme case is when every node is outside any
csp yes, explicit | optimal no other node’s communication rangee., each node as a tour
Table 1 stop could only point-cover itself, which will force all ned to

become tour stops if only point-cover is used for full cogra

In this case, line-cover could potentially lower tour lemgt

by not selecting all the nodes as tour stops,, with some
we compare the tour length of the last iteration in UDMP-Ahodes being line-covered by tour links between adjacent tou
(which should cover all sensors if) to the corresponding stops. Second, UDMP-AD does not explicitly use line-cover
optimal solutions of CSP-LC and CSP which optimize onlfor selecting tour stops to decrease tour length as CSP-LC
the single length-objective with full sensor coverage. éNodoes, although the effect of line-cover is indeed counted in
that under this comparison scenario, CSP-LC and UDMP-ADDMP-AD to increase coverage after each tour decision, as
addressesxactlythe same problem both allowing line-covercompared in Table 1. Therefore, in sparser netwoekg, (with
Table 1 summarizes the usage of point-cover and line-coxgtorter communication range)where line-cover could poten
for the length-objective under full coverage in the optimalally have a bigger impact, UDMP-AD performs relatively
tours of CSP-LC and CSP, and in the heuristic tour of UDMPBoorer compared to CSP-LC optima due to theder-usage
(including both UDMP-AD and UDMP-DoD). Apparently, of line-cover.
point-cover has been explicitly used in all three solutions Compared to CSP, UDMP-AD could produce tours with
to select tour stops, except that UDMP heuristics may nigingth close to (less thaf.6% worse) and mostly shorter
achieve optimality. Notice that the usage level of line@ov (up to 4.5% better) than the optimal solutions of CSP, as
decreases in the order of CSP-LC, UDMP, and CSP. Firsken in Figure 10(b). This is due to the usage (although
CSP-LC explicitly specifies line-cover (together with point-implicit) of line-cover in UDMP-AD compared to no usage
cover) as part of the coverage constraint (Equation (7)) of line-cover in CSP, which helps improve the coverage
its ILP problem formulation, based on both optimal tourgithout sacrificing the tour length. In particular, UDMP-
are constructed. Next, UDMHmplicitly uses line-cover by AD tours are shorter than CSP optima in networks with
incorporating line-coverage into the total coverage aftgra shorter communication range and/or fewer number of nodes
TSP tour has been constructed with tour stops selectedysol@lpresenting sparser neighborhoods, where the added toenefi
based on point-cover (Steps 3 and 4 of both algorithms @f line-cover in UDMP-AD dominates the optimality of point-
Section 5). Finally, CSP totally omits line-cover. cover in CSP (Table 1). Moreover, similar to Figure 10(ag th

Due to the NP-hardness of CSP-LC and CSP, we couifference in length between tours of heuristic UDMP-AD and
only obtain optimal solutions for small networks within aoptimal CSP generally increasdse( deviates from the ratio
reasonable amount of execution time and memory usa@é.l) as the communication range decreases for all network
By formulating CSP-LC and CSP in ILP models (as isizes, due to the increasing benefit of line-cover in sparser
Section 4.2), we solve both problems optimally using the GNhkletworks, which is also evidenced in the sparser network
linear programming kit (GLPK) [25] for the network size ofwith 15 nodes (compared to the other two denser networks)
15, 20, and25 nodes, and the communication radius rangingt the communication range da80m. UDMP-AD solutions
from 120m to 200m. In each of these configurations, twentyare slightly inferior to CSP optima though for networks with
networks are generated with nodes randomly distributed ovaore nodes 25) and longer communication range$6(m
a terrain of size500 x 500 m?. Each network includes oneand180m) representing denser neighborhoods, because of the
depot and two docking stations that must be visited, with thelative bigger effect of point-cover over line-cover innde
remaining nodes as sensors to be covered. Each data pointeétworks and the suboptimal usage of both point-cover and
the following figures is an average of simulation resultsrfro line-cover in UDMP-AD.
these random networks. Figures 11(a), 11(b), and 11(c) compare the absolute values
Figures 10(a) and 10(b) depict the length ratios of thef tour length computed by the proposed UDMP-AD algorithm

UDMP-AD solution over the corresponding optimal solutionand by the optimal CSP-LC and CSP for different commu-
of CSP-LC and CSP, respectively, with different communicaication ranges with network sizes @6, 20 and 25 nodes,
tion ranges and network sizes. As observed in Figure 10(a), respectively. In all three figures, as the communicatiorgean
proposed UDMP-AD algorithm could produce tours of lengtincreases, the length of all corresponding tours decreases
much close to that of the optimal solutions—no more thasince a larger ‘distance threshold to be covered’ enableg mo
4.2% longer in all simulated network sizes and communicatiosensors to be covered without traveling longer distance. In
ranges, which validates the effectiveness of the UDMP-Aparticular, Figures 11(a) and 11(b) show that the UDMP-AD
algorithm. For each network size, the difference in lengtolutions are better than the CSP optima in sparse neighbor-
between the UDMP-AD and the optimal CSP-LC solutionisood {.e., smaller network size and/or shorter communication
generally increased.€., deviates from the ratio of) as the range) due to the benefit of using line-cover, as has been
communication range decreases (corresponding $paaser evidenced in Figure 10(b). Moreover, the length of the UDMP-
neighborhood for each node), due to the following reasomsD tour generally lies between that of CSP-LC (at below)
First, the relative benefits of line-cover versus point@ofor and CSP (at above), ordered by the usage level of line-cover
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Figure 11. Tour length values of heuristic UDMP-AD and optimal CSP and CSP-LC vs. radius and network size N.

as listed in Table 1. Notice that CSP does not always bouisdthe average oR0 different randomly generated networks
UDMP-AD from above as the network becomes denser witbr a given configuration, and is drawn wit% confidence
larger network size and longer communication range (shovmterval.

in Figure 11(c)), because the relative benefit of point-cove

versus line-cover is more significant in dense networks thanfigures 12(a) and 12(b) compare the tour lengths produced
in sparse networks, which causes the optimality of poineco PY the algorithms of UDMP-DoD and UDMP-AD, in terms

in CSP to dominate the sub-optimality of both line-cover arff ratios and absolute values, respectively, when the numbe
point-cover in UDMP-AD. of docking stations varies ovef2,4,6,...,16} with fixed

energy constraints of00 and800. As expected, UDMP-DoD

typically produces shorter tours than UDMP-AD when more
6.2 Results of UDMP-DoD docking stations are randomly deployed in the network, due t
We also evaluate the performance of UDMP-DoD algorithinetter chances fdess deviateon-demand recharging (i.e., to
in comparison to UDMP-AD, in terms of the length of the toumsert on-demand docking stations in tour with less inasas
that covers all nodes in the sensor gtwhich is generated of tour length), and vice versa. Specifically, Figure 12favss
in the last iteration in both algorithms. In the followingrsi that UDMP-DoD could decrease tour length (in comparison
ulation, theZ set consists 0800 sensors randomly deployedto UDMP-AD) by 22% in scenarios of two or more docking
over a terrain of sizel000 x 1000 m?, each with a fixed stations with a large battery capacity ef = 800, and by
communication radius of00m. The docking set” includes a 19% with a docking set of more than four and a small battery
depot located at the center of the terrain and a varying numloapacity ofe, = 400. However, for the cases af, = 400
of docking stations randomly deployed across the netwask. Fwith four or fewer docking stations, the UDMP-DoD tours
UDMP-DoD, only the depot must be docking-visitéag( Y; are slightly worse than the UDMP-AD tours on average (by
includes the depot only), while all other randomly deployedo longer thanl.8%), as fewer docking stations may cause
docking stations (which form the skt\ Y1) may be selectively longer detour for on-demand docking statistically. In gahe
docking-visited on-demand to satisfy the energy condtraithe length ratio of UDMP-DoD over UDMP-AD decreases
For UDMP-AD, however, both the depot and all other dockingith the increasing number of docking stations, except for a
stations must be docking-visited sintg = Y. In this study, slight ‘bump’ occurred at the case of four docking stations
we vary the number of docking stations frotnto 16 with with ey = 400 to be elaborated by Figure 12(b) next. The
an increment o2, and the energy constraint ové00, 500, length ratio also decreases whep becomes larger, since a
600, 700, and800. Each measurement in the following figuredattery with larger capacity has less need for rechargimopndu
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Figure 12. Comparison between DoD and AD tours vs. number of docking stations with eq = 400 and 800.

one complete tour to cover all sensors. to convenientdocking near any on-demand stop with less
Figure 12(b) shows that the tour length of UDMP-AD in-deviation from the tour. Thus the tour length remains shod a
creases almost linearly with the increasing number of dagki stable regardless of locations or total times of recharging
stations, since all the docking stations in the network Have the tour. In particular, with sixteen docking stations ramdy
be docking-visited no matter it is necessary (for rechagindeployed in the network, UDMP-DoD always achieves shorter
or not. Moreover, the UDMP-AD tour lengths with differenttours than UDMP-AD by abou20% on average for alkg
energy constraints coincide for each docking set size éxceplues, as is also evidenced by Figure 12(a) before.
for the small set of2, where the tour with a small battery In Figure 13(b), the tour lengths of UDMP-AD remain
capacity ofey = 400 is aboutl.5% longer than the tour with unchanged across varying, values for each docking set
a large battery capacity ef, = 800 on average. This is due tosize, except for the small set of two docking stations with a
the fact that with only two docking stations, the small bigtte small capacity battery of, = 400, which requires ‘border
case requires ‘border adjustment’ to correct energy caimgtr adjustment’ in order to satisfy energy constraint and thus
violations while the large battery case does not, and withcreases the tour length, as is also seen in Figure 12(b).
more docking stations in the tour (thus more smaller segs)enDue to the almost constant UDMP-AD tour lengths across
both cases satisfy the constraint without any violationxtNe differente values for each docking set size, the trend of either
for UDMP-DoD with e, = 800, the tour length remains the UDMP-DoD length curve resembles the related ratio curve in
shortest §841m) and constant across different docking sefigure 13(a). Notice that there is1a3% increase in UDMP-
sizes, since the large capacity battery does not requir@any DoD tour length with the small docking set of two whegn
demand charging during the complete tour. For UDMP-Doldcreases from00 to 500. This is due to the fact that a smalll
with eq = 400, the tour shortens at first and then stabilizeicrease of battery capacity may just change the locafion(s
in length when more docking stations are added. Notice theft on-demand stop(s) without reducing the total number of
there is a small rise o2% in length when the docking setrecharging in the tour, and the docking station(s) selected
size increases fror to 4 with eq = 400, because (a) maturein the greedy fashioni.€., postponing recharging as late as
docking is available immediately after the on-demand stqgssible) may cause modeviationwith ¢, = 500 than with
and thus selected by the greedy heuristic in the cases of feyr= 400 especially when the docking set is small. As a resullt,
docking stations, rather than in the cases of two which onilye increase of UDMP-DoD tour length & = 500 with two
have pre-mature docking available from some backtrackddcking stations, together with the decrease of UDMP-AD
stop; and (b) mature docking happens to add more lengthttur length in the same scenario, leads to the corresponding
tour (i.e., more deviate) than pre-mature docking in the abovatio increase in Figure 13(a). Finally, when provided with
cases (illustrated by Figure 7 in Section 5.2). The reastsus athe large capacity battery af, = 800, UDMP-DoD tours
explain the ‘bump’ in Figure 12(a). of both docking set sizes converge to the shortest length of
Figures 13(a) and 13(b) depict the length ratios and valug$41m, where no recharging is needed during a complete tour
of UDMP-DoD and UDMP-AD tours with varying energyof visiting all sensors, as is also evidenced in Figure 12(b)
constraints over{400, 500, ...,800} for 2 and 16 docking
stations in the network. As observed in Figure 13(a), thgtlen
ratio of UDMP-DoD over UDMP-AD generally decreases7 CONCLUSION
slowly with increasing value o, with two docking stations, In this paper, we formulate the tour planning of a data mule
due to less recharging need with an enlarging battery cgpacto collect sensor data in UWSNSs as an energy-constrained bi-
except for a slight rise at; = 500 to be elaborated by objective underwater data muling problem (UDMP). UDMP
Figure 13(b) next. With a larger docking set 0§, the slope defines two types of visit and two types of cover. In particu-
of the length ratio becomes more or less flat under varyitar, the line-cover helps improve the cover-objective with
energy constraints, since enough docking stations may lesatrificing the length-objective. We propose two heuristic
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Figure 13. Comparison between DoD and AD tours vs. energy constraint with 2 and 16 docking stations.

algorithms to solve one special case of all-docking (UDMR#
AD) and one generalized case of docking-on-demand (UDMP-
DoD). Each algorithm computes a set of Pareto-efficient
solutions addressing the tradeoff between the two optitioiza
objectives. Extensive simulation validates the effectags of [8]
both algorithms. In particular, UDMP-AD performs betteath 9]
the corresponding optimal solutions of the Covering Sales-
man Problem (CSP) in sparse neighborhooelg,( smaller
network size and/or shorter communication range), andeclos
to the optimal solutions of CSP with line-cover (CSP-LC)
in dense networkse(g, larger network size and/or longer(11l
communication range). This is because the relative benefit
of line-cover versus point-cover increases as the netwdulg]
becomes sparser, and the usage level of line-cover in@ease
from CSP (no usage at all), UDMP (implicit usage wit 13]
sub-optimal solutions), and to CSP-LC (explicit usage wit
optimal solutions). Moreover, UDMP-DoD often decreases th
tour length compared to UDMP-AD, by avoiding unnecessahllﬂ']
docking-visits in scenarios with enough number of randomly
deployed docking stations and/or large battery capacity.
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