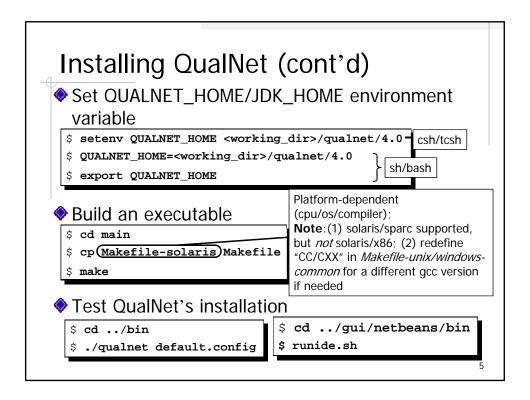

Using QualNet – Part I

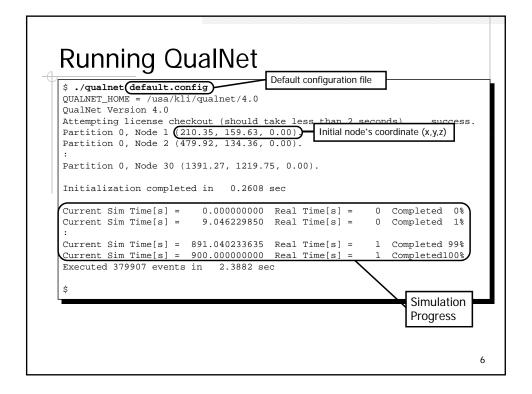
Simulating Well-Known Protocols

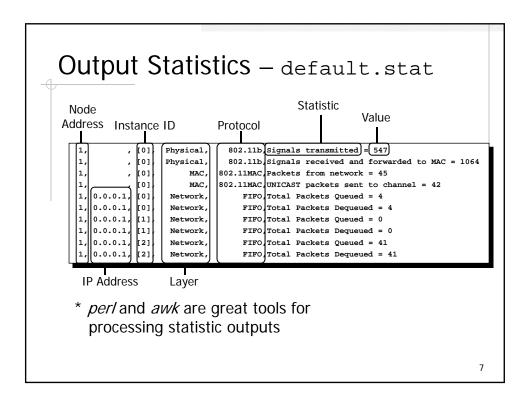
Why QualNet?

- Rapid prototyping of protocols
- Comparative performance evaluation of alternative protocols at each layer
- Built-in measurements on each layer
- Modular, layered stack design
- Standard API for composition of protocols across different layers
- Scalability via support for parallel execution & dual-core processor
- GUI Tools for system/protocol modeling

Installing QualNet


- Refer to QualNet-4.0-InstallationGuide.pdf
- Obtain QualNet 4.0 package from stimpy.cis


```
$ cd <working_dir>
$ gtar xvfz
/degas/research/simulators/qualnet/4.0/
qualnet-4.0-university-wireless-mme.tar.gz
```


Obtain the license file

```
$ cd qualnet/4.0
$ cp
/degas/research/simulators/qualnet/license/client.lic
license_dir/.
```

Note: for successful license check, QualNet *must* be installed on machines within EECIS domain (128.4.*.*), *not* even UD domain

Configuration Files

Line entry format:

[Qualifier] <PARAMETER> <VALUE>

- Qualifier (optional) specifies a range of nodes and has precedence over the general one
- E.g. MOBILITY NONE
 [5 thru 10] MOBILITY RANDOM-WAYPOINT

Notes:

- Some settings require additional parameters, e.g. NODE-PLACEMENT
- Lines starting with # are treated as comments
- Refer to scenarios/default/default.config

Qualifiers

- Determine the scope of the parameter
 - Global Qualifier

 MOBILITY NONE
 - Subnet Qualifier
 [N8-2.0] MAC-PROTOCOL MACA
 - Node Qualifier
 [5 thru 15] MOBILITY NONE

Ç

Simulation Parameters

- Global Parameters:
 - Simulation time
 - Coordinate system and terrain
 - Random seed
- Topology and subnets
- Layer/Protocol related parameters:
 - Channel/Radio
 - Physical Layer
 - MAC Layer
 - Network Layer
 - Application Layer

Important Global Parameters

- EXPERIMENT-NAME: Name of the output statistic file
 - e.g. **EXPERIMENT-NAME default**Resulting statistics are written in **default.stat**
- SIMULATION-TIME: The length of time to simulate.
 - e.g. **SIMULATION-TIME** 15M

(Available time units: NS, US, MS, S, M, H, D; default is in seconds)

SEED: The random seed used to derive all other seeds used in the simulation.

e.g. seed 1

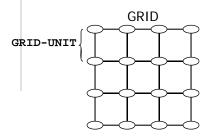
11

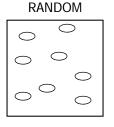
Coordinate System and Terrain Dimentions

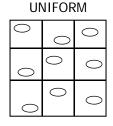
- COORDINATE-SYSTEM: LATLONALT or CARTESIAN e.g., COORDINATE-SYSTEM CARTESIAN
- TERRAIN-DIMENSIONS: The size of the rectangular area to simulate (in meters) for Cartesian coordinate.
 - e.g., TERRAIN-DIMENSIONS (1000, 1000)
- Terrain corners are required by LATLONALT system e.g., TERRAIN-SOUTH-WEST-CORNER (30.00, 40.00) TERRAIN-NORTH-EAST-CORNER (30.01, 40.01)
- Irregular terrain

```
TERRAIN-DATA-TYPE DEM

DEM-FILENAME[0] ../data/terrain/los_angeles-w


DEM-FILENAME[1] ../data/terrain/los_angeles-e
```


Tie nodes to the ground level
MOBILITY-GROUND-NODE YES



Specifying Topology

♦ NODE-PLACEMENT: GRID, RANDOM, UNIFORM, FILE

Use FILE to specify node positions in a file NODE-PLACEMENT FILE NODE-PLACEMENT-FILE ./default.nodes

■ Format: nodeId 0 (x, y, z) [azimuth elevation]

13

Specifying Subnet

- SUBNET Parameter
 - SUBNET <subnet> { comma-delimited list of nodes }
- ◆ Ex. SUBNET N8-1.0 { 1, 3, 7 thru 9 }
 - Nodelds 1, 3, 7, 8, and 9 have network interfaces with address 0.0.1.1 through 0.0.1.5

Node ID	Interface Address
1	0.0.1.1
3	0.0.1.2
7	0.0.1.3
8	0.0.1.4
9	0.0.1.5

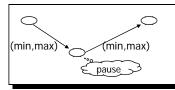
- ♦ Basic form: SUBNET N16-0 { 1 thru n }
 - *n* is the number of nodes
 - IP address and Node ID are identical
 - → Node 5 has IP address 0.0.0.5

Subnet Shorthand

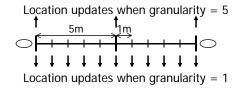
Format:

N<# host bits>-<address with front end 0's omitted>

◆ Ex. N8/1.0 The subnet address is 0.0.1.0


Host IP addresses are 8 bits

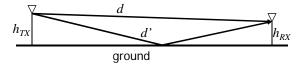
- This allows for 2⁸-2 (254) hosts in this subnet with IP addresses numbered from 0.0.1.1 through 0.0.1.254
- The broadcast address for this subnet is 0.0.1.255
- The subnet mask is 255.255.255.0
- *N8-0.0.1.0* is an equivalent representation


15

Mobility Model

- NONE, TRACE
- RANDOM-WAYPOINT
 - e.g. MOBILITY RANDOM-WAYPOINT
 MOBILITY-WP-PAUSE 30S
 MOBILITY-WP-MIN-SPEED 0
 MOBILITY-WP-MAX-SPEED 10

- MOBILITY-POSITION-GRANULARITY: distance in meters at which a node's location is updated
 - responding small values potentially slow down the simulation


Approximate mobility speed

Scenario	Speed	Speed (m/s)
Walking	5 mph	2.2 m/s
City driving	35 mph	15.5 m/s
Free way driving	65 mph	28.8 m/s
Aircraft	Mach 1	332 m/s

17

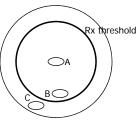
Propagation Model

- PROPAGATION-LIMIT: received signals with power below this limit (in dBm) will not be processed.
 - e.g. **PROPAGATION-LIMIT** -111.0
- PROPAGATION-PATHLOSS: specifies path-loss model
 - FREE-SPACE → Empty space, no ground
 - TWO-RAY → Flat ground
 - Considers a ray bounced back from the ground

ITM → Irregular terrain (terrain database required)

Fading Model

- Applied to only narrowband channels (flat fading)
- Specified by PROPAGATION-FADING-MODEL
- Available models
 - NONE No fading
 - RAYLEIGH Highly mobile, no line of sight
 - RICEAN requires an additional parameter RICEAN-K-FACTOR
 - K = 0 : no line of sight (similar to RAYLEIGH)
 - $K = \infty$: strong line of sight


e.q. propagation-fading-model rayleigh

19

Physical Layer Model

- Noise modeling
 - Thermal noise
 - PHY-NOISE-FACTOR (default 10)
 - ◆ PHY-TEMPERATURE (in K; default 290)
 - Interference
 - PHY-RX-MODEL (SNR-THRESHOLD-BASED | BER-BASED | 802.11b)
- Parameters specific to 802.11
 - PHY802.11-DATA-RATE (in bps)
 - PHY802.11b-TX-POWER-* (in dBm)
 - PHY802.11b-RX-SENSITIVITY-* (in dBm)
 - PHY802.11b-RX-THRESHOLD-* (in dBm)

Rx sensitivity

MAC Layer Model

- MAC-PROTOCOL: specifies MAC layer protocol
 - CSMA
 - Requires carrier sensing before transmission
 - · If the channel is free, the packet is transmitted immediately
 - · Otherwise, set a random timeout
 - MACA
 - · Uses RTS/CTS to acquire channel
 - · Does not carrier sense
 - MACDOT11
 - IEEE 802.11 CSMA/CA with ACKs and optional RTS/CTS
 - MAC802.16 → WiMAX
 - TDMA, GSM, ALOHA
 - MAC802.3/SWITCHED-ETHERNET → Wired networks
 - SATCOM → Satellite networks
- PROMISCUOUS-MODE: set to YES to allow nodes to overhear packets destined to the neighboring node (required by DSR).

21

IP Protocol

- Currently the only supported network layer protocol
- Available queuing models
 - First-in first-out (FIFO)
 - Variations of Random Early Detection: RED, RIO, WRED,
- Three priority types supported: control (0), real-time (1), and non-real-time (2)
- IP-QUEUE-PRIORITY-QUEUE-SIZE specifies the queue's size (in bytes)
 - Each priority queue's size can be specified separately IP-QUEUE-PRIORITY-QUEUE-SIZE[0] 25000 IP-QUEUE-PRIORITY-QUEUE-SIZE[1] 50000 IP-QUEUE-PRIORITY-QUEUE-SIZE[2] 50000

Routing Protocols

- Proactive protocols
 - BELLMANFORD
 - RIPv2
 - OSPFv2
 - OLSR-INRIA
- Reactive protocols
 - AODV
 - DSR
 - LAR1
- Static routing: requires STATIC-ROUTE-FILE

23

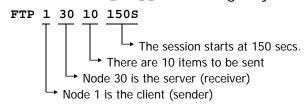
Application Specification

- APP-CONFIG-FILE: Specifies a file with a list of apps/traffic generators to run.
 - FTP
 - TELNET
 - CBR/MCBR
 - HTTP
 - VOIP
 - etc
- See scenarios/default/default.app for more details

Layer Statistics

Some statistics include:

•	APPLICATION-STATISTICS	(YES NO)
•	TCP-STATISTICS	(YES NO)
•	UDP-STATISTICS	(YES NO)
•	ROUTING-STATISTICS	(YES NO)
•	NETWORK-LAYER-STATISTICS	(YES NO)
-	QUEUE-STATISTICS	(YES NO)
•	MAC-LAYER-STATISTICS	(YES NO)
-	PHY-LAYER-STATISTICS	(YES NO)
•	MOBILITY-STATISTICS	(YES NO)


25

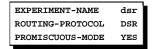
Other Configuration Files

- ♦ Node placement: NODE-PLACEMENT-FILE
 - → See details in scenarios/default/default.nodes
- Static routing: STATIC-ROUTE-FILE
 - → See details in scenarios/default/default.routesstatic
- Link/node faults: FAULT-CONFIG-FILE
 - → See details in scenarios/default/default.fault
- Multicast membership: MULTICAST-GROUP-FILE
 - → See details in scenarios/default/default.member

Example – routing protocol comparison

- Comparing throughput of an FTP application over AODV and DSR reactive routing protocols
 - Application traffic: one FTP session
 - Routing protocols: AODV/DSR
 - Collected statistics: application layer
- Configure application
 - Create bin/ftp.app containing only one line:

27


Preparing Config File for AODV

<u>AODV</u>: copy the file default.config to aodv.config, then modify aodv.config on the following parameters:

EXPERIMENT-NAME	aodv
ROUTING-PROTOCOL	AODV
APP-CONFIG-FILE	./ftp.app
APPLICATION-STATISTICS	YES
TCP-STATISTICS	NO
UDP-STATISTICS	NO
RSVP-STATISTICS	NO
ROUTING-STATISTICS	NO
ACCESS-LIST-STATISTICS	NO
IGMP-STATISTICS	NO
EXTERIOR-GATEWAY-PROTOCOL-STATISTICS	NO
NETWORK-LAYER-STATISTICS	NO
DIFFSERV-EDGE-ROUTER-STATISTICS	NO
QUEUE-STATISTICS	NO
MAC-LAYER-STATISTICS	NO
PHY-LAYER-STATISTICS	NO
MOBILITY-STATISTICS	NO

Preparing Config File for DSR

DSR: Copy the modified aodv.config to dsr.config, edit ROUTING-PROTOCOL parameter and enable promiscuous mode:

29

Collecting and Comparing Statistics

Run qualNet on the two configuration files

```
$ cd $QUALNET_HOME/bin
$ ./qualnet aodv.config
$ ./qualnet dsr.config
```

Examine output statistics:

Throughput difference

```
$ grep "Server,Throughput" aodv.stat
30, , [2], Application, FTP Server,Throughput (bits/s) = 38034
$ grep "Server,Throughput" dsr.stat
30, , [2], Application, FTP Server,Throughput (bits/s) = 62946
```

More Information

- Plain-text explanation for configuration files:
 - \$QUALNET_HOME/scenarios/default.*
- QualNet manuals
 - \$QUALNET_HOME/documentation/*.pdf
 esp. Installation Guide, Users Guide, and Programmers Guide
- QualNet community forums
 - http://www.scalable-networks.com/forums/
- QualNet exercises
 - http://degas.cis.udel.edu/QualNet/