
Distributed Discrete-Event Simulation

JAYADEV MISRA

Department of Computer Sciences, The University of Texas at Austin, Austin, Texas 78712

Traditional discrete-event simulations employ an inherently sequential algorithm. In
practice, simulations of large systems are limited by this sequentiality, because only a
modest number of events can be simulated. Distributed discrete-event simulation (carried
out on a network of processors with asynchronous message-communicating capabilities) is
proposed as an alternative; it may provide better performance by partitioning the
simulation among the component processors. The basic distributed simulation scheme,
which uses time encoding, is described. Its major shortcoming is a possibility of deadlock.
Several techniques for deadlock avoidance and deadlock detection are suggested. The
focus of this work is on the theory of distributed discrete-event simulation.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems--distributed applications; D.1.3 [Programming Techniques]:
Concurrent Programming; D.4.1 [Operating Systems]: Process Management-
deadlocks; IA.1 [Simulation and Modeling]: Simulation Theory

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Asynchronous simulation, deadlock detection and
recovery, deadlock prevention, message communicating processes, modeling interaction by
message communication

INTRODUCTION

This survey presents an entirely new
approach to the problem of system simu-
lation. A system simulation is typically car-
ried out as a repetition of the following
sequential steps: Fetch one event from a
data structure, carry out one step of simu-
lation, and (possibly) update the data struc-
ture. Such simulations are practical only
when the number of events being simulated
is modest.

Recent advances in computer and com-
munication systems have resulted in de-
mands for new tools for their analyses.
Mathematical modeling techniques have so
far proved inadequate in dealing with these
systems, and simulation seems to be the

only viable alternative. Unfortunately, sim-
ulation is proving to be inadequate because
of the sheer magnitude of the problem. For
instance, a telephone switch generates
about 100 internal messages in completing
a local call. Large telephone switches can
handle 100 or more calls per second. Thus,
simulation of a telephone switch for 15
minutes of real time requires the simulation
of nearly 10 million messages, which
will require several hours on a very fast
uniprocessor.

One alternative is to exploit the cost
benefits of cheap micro/minicomputers and
high-bandwidth lines by partitioning the
simulation problem and executing the parts
in parallel. Unfortunately, however, the
typical simulation algorithm does not easily

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. TO
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1986 ACM 0360-0300/86/0300-0039 $00.75

Computing Surveys, Vol. 18, No. 1, March 1986

40 l Jayadev Misra

CONTENTS

INTRODUCTION
1. AN OVERVIEW OF SYSTEM SIMULATION

1.1 System Simulation Problem
1.2 Distributed Simulation
1.3 History

2. SEQUENTIAL SIMULATIONS OF SYSTEMS
2.1 Physical Systems
2.2 What Is Simulation?
2.3 The Sequential Simulation Algorithm

3. DISTRIBUTED SIMULATION: THE BASIC
SCHEME
3.1 A Model of Asynchronous Distributed

Computation
3.2 Basic Scheme for Distributed Simulation
3.3 Partial Correctness of the Basic Distributed

Simulation Scheme
3.4 Features of the Basic Distributed Simulation

Scheme
4. DISTRIBUTED SIMULATION: DEADLOCK

RESOLUTION
4.1 Overview of Deadlock Resolution
4.2 Deadlock Resolution Using Null Messages
4.3 Correctness of the Simulation Algorithm
4.4 Discussion
4.5 Demand-Driven Null Message Transmission
4.6 Circulating Marker for Deadlock Detection

and Recovery
5. SUMMARY AND CONCLUSION
ACKNOWLEDGMENTS
REFERENCES

partition for parallel execution. An entirely
new approach to simulation for multipro-
cessors is required. This survey presents
such an approach.

The text is organized in five sections.
Section 1 describes the need for distributed
simulation; it gives a quick survey of the
system simulation problem, the sequential
simulation algorithm and its shortcomings.
The scope of the paper and a history of
distributed simulation are also included in
that section. In order to make the paper
self-contained, basic notions of sequential
simulation are introduced and explained in
Section 2. A proof that the sequential sim-
ulation algorithm works correctly is given
in that section; surprisingly, the author
could not find such a proof in any simula-
tion book. It is then shown why this scheme
cannot be readily parallelized. Section 3
introduces the basic distributed simulation

scheme, which is shown to be partially cor-
rect. It is shown that this scheme may
result in deadlock. Several different ap-
proaches for deadlock resolution are dis-
cussed in Section 4. Section 5 contains a
summary and possible directions for future
investigation.

We believe that distributed simulation
offers a promising approach to speeding up
simulation. The basic theory has been
developed; it remains to experiment with
various alternative heuristics to ensure that
substantial performance gains over sequen-
tial simulation can be achieved. The prob-
lem of deadlock and its resolution are at
the core of the performance issue. There is
some indication that reasonable perfor-
mance gains may be expected at least for
simulations of certain classes of queuing
networks [Peacock et al. 1979a, 1979b;
Quinlivan 19811. However, several large-
scale studies, with a number of different
heuristics for deadlock resolution, are
needed before any claims about perfor-
mance can be made. We hope that this
paper will spur interest in such studies.

This paper does not introduce a new
simulation language, because distributed
simulations can be written using sequential
simulation languages for simulating the
physical processes, and message communi-
cation languages for describing interactions
among component machines. We also avoid
a number of traditional issues in simula-
tion: pseudorandom number generation,
statistical analysis of the outputs, etc.
Methods developed in these areas for se-
quential simulation still apply [Fishman
19781. Our goal in this paper is to show
how the body of actual simulation can be
distributed among a set of interacting
machines.

1. AN OVERVIEW OF SYSTEM SIMULATION

1.1 System Simulation Problem

We consider the problem of simulating
physical systems, also called networks, that
consist of one or more physical processes.
Each physical process operates autono-
mously, except to interact with other
physical processes in the system. The
interaction is by messages. Contents of a

Computing Surveys, Vol. 18, No. 1, March 1986

Distributed Discrete-Event Simulation l 41

message sent by a (physical) process de-
pend on the characteristics of the process
(its initial state, its rules of operation) and
the messages that the process has received
so far.

We describe the problem and the termi-
nology more precisely in the next section.
We note that many real systems can be
modeled in terms of processes and messages
as described above. For example, in a com-
puter system, CPU, disks, memory, and job
entry terminals may be thought of as pro-
cesses; the CPU may interact with a disk
by sending it messages requesting or releas-
ing disk space; a job entry terminal may
interact with the CPU by sending it mes-
sages, which are in fact jobs or tasks to be
executed. Detailed examples are given in
the next section.

Typical steps in constructing and using
a simulation program consists of

(1) starting with a real system and under-
standing its characteristics,

(2) building a model from the real system
in which aspects relevant to simulation
are retained and irrelevant aspects are
discarded

(3) constructing a simulation of the model
that can be executed on a computer
(simulations other than computer pro-
grams are not considered here), and

(4) analyzing simulation outputs to under-
stand and predict the behavior of the
real system.

In addition, the model and the simulation
must be verified and may be refined during
steps (2) and (3), perhaps iteratively, if they
do not meet the expectations. In this paper,
we look at only one step-step (3)-of the
entire simulation process. What is typically
called a model in step (2) is actually our
physical system; we show how to go from a
physical system to a computer program for
simulation that is distributed and hence
may be concurrently executed on several
machines. We do not consider the problem
of constructing a physical system descrip-
tion from the real system, nor do we con-
sider how to analyze simulation outputs to
predict the behavior of the real system.
Stated another way, we show how to con-
struct an asynchronous system (the simu-

lator running on asynchronous machines)
from a synchronous system (the physical
system, running in real time). We further
restrict ourselves to discrete-event simula-
tions; we assume that events in the physical
system-in our case, message transmis-
sions-happen at discrete points in time.

1.1.1 Traditional Approach to System
Simulation

Traditionally, discrete-event system simu-
lations have been done in a sequential man-
ner. A variable clock holds the time up to
which the physical system has been simu-
lated. A data structure, called the event list,
maintains a set of messages, with their
associated times of transmissions, that are
scheduled for the future. Each of these mes-
sages is guaranteed to be sent at the asso-
ciated time in the physical system, provided
the sender receives no message before this
message transmission time. At each step,
the message with the smallest associated
future time is removed from the event list,
and the transmission of the corresponding
message in the physical system is simu-
lated. Sending this message may, in turn,
cause other messages to be sent in the
future (which then are added to the event
list) or cause previously scheduled mes-
sages to be canceled (which are removed
from the event list). The clock is advanced
to the time of the message transmission
that was just simulated.

This form of simulation is called event
driven, because events (i.e., message trans-
missions) in the physical system are simu-
lated chronologically and the simulation
clock is advanced after simulation of an
event to the time of the next event. There
is another important simulation scheme,
time-driven simulation, in which the clock
advances by one tick in every step and all
events scheduled at that time are simu-
lated. We do not discuss time-driven
simulation in this paper.

1.1.2 Drawbacks of Sequential Simulation

The nature of the event-list mechanism
dictates a sequential simulation, since in
each cycle of simulation only one item is
removed from the event list, its effects

Computing Surveys, Vol. 18, No. 1, March 1986

42 l Jayadev Misra

simulated, and the event list, possibly, up-
dated. This is unfortunate; the algorithm
cannot be readily adapted for concurrent
execution on a number of processors, since
the event list cannot be effectively parti-
tioned for such executions. We contend
that the sequentiality inherent in the
event-list structure is a major impediment
to the widespread use of simulation. Com-
plex computer and communication systems
of the future will be intractable mathemat-
ically and therefore will have to resort to
simulation for their performance evalua-
tions. Current simulation techniques will
prove inadequate for these systems be-
cause, with current technology, only a mod-
est number of events can be simulated. It
is necessary to take a radically new ap-
proach to simulation that will utilize the
power and cost benefits of small computers
and high-bandwidth communication lines.

1.2 Distributed Simulation

Distributed simulation offers a radically
different approach to simulation. Shared
data objects of sequential simulation-the
clock and event list-are discarded. In fact,
there are no shared variables in this algo-
rithm. We suggest an algorithm in which
one machine may simulate a single physical
process; messages in the physical system
are simulated by message transmissions
among the machines. The synchronous na-
ture of the physical system is captured by
encoding time as part of each message
transmitted between machines. We show
that machines may operate concurrently as
long as their physical counterparts operate
autonomously; they must wait for message
receptions to simulate interactions of the
corresponding physical processes.

Distributed simulation offers many other
advantages in addition to the possible
speedup of the entire simulation pro-
cess. It requires little additional memory
compared with sequential simulation.
There is little global control exercised by
any machine. Simulation of a system can
be adapted to the structure of the available
hardware; for instance, if only a few ma-
chines are available for simulation, sev-
ral physical processes may be simulated
(sequentially) on one machine.

Several distributed simulation algo-
rithms have appeared in the literature.
They all employ the same basic mechanism
of encoding physical time as part of each
message. The basic scheme they use may
cause deadlock. Various distributed simu-
lation algorithms differ in the way they
resolve the deadlock issue.

1.3 History

Sequential simulation has a long history;
Franta provides a discussion of a number
of prominent simulation languages and
their relative merits [Franta 19771. Among
the many simulation packages introduced
recently, we mention DEMOS, SAMOA,
and MAY [Birtwistle 1979; Lonow and
Unger 1982; Bagrodia et al. N.d.1. DEMOS
is a discrete-event modeling package imple-
mented in SIMULA [Dahl et al. 19701. It
provides an extensive list of features for
event scheduling, data collection, and re-
port generation. SAMOA uses Ada as the
base language [U.S. DOD 19821. MAY pro-
vides a very small set of constructs for
message communication; these features
have been used to build an extensive library
for simulations of computer and commu-
nication networks. The minimality of MAY
makes it possible for it to be implemented
even on personal computers.

The idea of distributed simulation was
proposed by Chandy in 1977 in a series of
lectures at the University of Waterloo, and
independently by R. E. Bryant. Papers by
Chandy and Misra [1979], Chandy et al.
[19791, and Bryant [19771 contain the basic
ideas of distributed simulation, the problem
of deadlock, and schemes for deadlock res-
olution. Peacock et al. [1979a, 1979bj and
Holmes [19781 have proposed mechanisms
for avoiding deadlock by periodic use of
probe messages. Empirical work by Peacock
et al. has shown that their method is indeed
viable: The time needed for simulation of a
class of queuing networks steadily de-
creases when the number of processors
available for simulation increases. Empiri-
cal investigations by Seethalakshmi and
Quinlivan showed that the method is also
efficient for acyclic physical systems and
that performance can be substantially
improved if there is adequate space for

Computing Surveys, Vol. 18, No. 1, March 1986

Distributed Discrete-Event Simulation l 43

buffering messages [Seethalakshmi 1979;
Quinlivan 19811.

Chandy and Misra have subsequently
suggested a scheme for deadlock detection
and recovery [Chandy and Misra 19811.
Reynolds suggested using common memory
among neighbors to avoid deadlock [Rey-
nolds 19821. A notable departure from these
schemes is one proposed by Jefferson based
on virtual time [Jefferson 19851. A perform-
ance analysis of this scheme appears in
Lavenberg et al. [19831. The virtual time
approach is still being developed and it is a
little premature to include it in this survey.

Bezivin and Imbert propose an approach
in which each process in the simulator
maintains a local time, and an overall
global time is maintained by a central pro-
cess [Bezivin and Imbert 19831. Christo-
pher et al. propose precomputing minimum
wait time along all paths in a network so
that delay information may be propagated
rapidly among nonneighboring processes
[Christopher et al. 19831.

Kumar has combined some recent work
in deadlock and termination detection with
the basic simulation scheme [Kumar 1986;
Misra 19831. Behaviors of these algorithms
on a wide class of practical simulation
problems are currently being investigated,
both analytically and using empirical tech-
niques.

2. SEQUENTIAL SIMULATIONS OF
SYSTEMS

This section introduces the problem of sys-
tem simulation. A precise definition of sim-
ulation is given. The sequential simulation
algorithm using the event-list structure is
presented and proved. It is shown why the
sequential simulation scheme cannot be
readily adapted for parallel execution.

2.1 Physical Systems

We consider physical systems, also called
networks, consisting of a finite number of
physical processes (abbreviated as pp’s) .
Each pp represents some component of the
real system to be simulated. For instance,
in a computer system, the CPU, each disk,
each memory bank, and each job entry ter-
minal may be thought of as a pp. In tradi-

tional simulation terminology, each pp is
described by a set of events and each event
has an associated time of occurrence. Fur-
thermore, there is a dependency relation
among all events in the system; if the pair
of events (e, e’) is part of the dependency
relation, we say that e’ depends on e. De-
pendency relation captures our intuitive
understanding of the order in which events
must occur in the system; no event can
occur unless all the events on which it
depends have already occurred. Clearly, we
must then require that the dependency re-
lation not be cyclic, that is, it should be an
irreflexive partial order; furthermore, the
time associated with an event e ’ must be
no less than the associated time of any
event e on which it depends.

We next give an example that clarifies
the notion of events and dependencies.

Example 2.7 (Car Wash)

The following example is a variation of one
appearing in Birtwistle et al. [1973]. A car
wash system consists of an attendant and
two car washes, abbreviated CWl and
CW2. Cars arrive at random times at the
attendant. The attendant directs cars to
CWl or CW2 according to the following
rule: If both car washes are busy, that is,
washing cars, any arriving car is queued at
the attendant; if exactly one car wash is
idle, the car at the head of the queue, if
any, is sent to that idle car wash; if both
car washes are idle, the car at the head of
the queue, if any, is sent to CWl. CWl
spends 8 minutes and CW2, 10 minutes in
washing a car. Given some distribution of
car arrivals, it is necessary to compute the
average amount of time a car spends at the
car wash (including the washing time) and
the average length of the queue that builds
up at the attendant. We do not compute
the above statistics; we simply show the
sequence of events and message transmis-
sions in two different views of the car wash
problem.

The entire system can be described by
listing all possible events-all possible car
arrivals and their subsequent washings-
and dependencies between them. We re-
strict ourselves to describing part of this
system.

Computing Surveys, Vol. 18, No. 1, March 1986

44 l Jayadev Misra

cars enter cars leave

Figure 1. Schematics of car flow.

The schematic diagram of the flow of
cars is given in Figure 1.

Initially both CWl and CW2 are idle.
Assume that 6 cars, Cl through C6, arrive
at the attendant at times 3, 8, 9, 14, 16, 22.
An event in this system is either a car
arriving at some point, that is, at the at-
tendant, CWl, or CW2, or a car leaving the
car wash. We assume that the driving time
from the attendant to CWl or CW2 is zero.
Also, the washing of a car begins as soon
as it arrives at CWl or CW2. The chrono-
logical sequence of events is given in
Table 1.

Dependencies among events is shown in
the directed graph of Figure 2; a directed
line from event el to event e2 denotes that
event e2 depends directly on event el .

If an event e ’ depends on event e, then
simulation of e must precede simulation
of e’. Conversely, if e, e’ are independent,
that is, there is no dependency relation
between them, then they may be simulated
concurrently or, equivalently, in arbitrary
order. Thus, two independent events, such
as event 8 (C4 arrives at the attendant) and
event 12 (C3 leaves car wash) are inde-
pendent and hence can be simulated con-
currently.

We find it convenient to dispense with
the notion of event; we model a physical
system as a set of pp’s that operate auton-
omously to change their own states and
that interact by sending and receiving mes-
sages. Such a model is possible because if
event e ’ at process q depends on event e at
process p, then process p may send a mes-
sage to process q after it completes execu-
tion corresponding to event e, and q, upon
receiving this message (and other messages
corresponding to other dependencies of e’)
may carry out the actions necessary for

Computing Surveys, Vol. 18, No. 1, March 1986

Table 1. A Sequence of Events in the Car Wash

Event
number Time Event

1 3 Cl arrives at the attendant
2 3 Cl arrives at CWl
3 8 C2 arrives at the attendant
4 8 C2 arrives at CW2
5 9 C3 arrives at the attendant
6 11 Cl leaves car wash
7 11 C3 arrives at CWl
8 14 C4 arrives at the attendant
9 16 C5 arrives at the attendant

10 18 C2 leaves car wash
11 18 C4 arrives at CW2
12 19 C3 leaves car wash
13 19 C5 arrives at CWl
14 22 C6 arrives at the attendant
15 27 C5 leaves car wash
16 27 C6 arrives at CWl
17 28 C4 leaves car wash
18 35 C6 leaves car wash

implementation of e ‘. Message transmis-
sion delays are zero, that is, any message
sent at time t is received by the intended
recipient at t. (Recall that we are describing
a physical system, not the computer system
on which the simulation is to run.) If it is
necessary to model delays in the real-world
system (viz., driving time from attendant
to a car wash in the last example), then
either the sender of a message idles for
some time before sending the message or
the recipient of a message idles for some
time after receiving the message; another
possibility is to model the communication
medium as a process incorporating the
delay.

Example 2.7 (continued)

We now present the car wash viewed as a
message-passing system. The car wash sys-
tem has 5 pp’s: the source, which generates

Distributed Discrete-Event Simulation l 45

Figure 2. Schematics of events in a car wash.

source

Figure 3. Schematics of message flow in the car wash system.

cars at the prescribed times, the attendant,
CWl, CW2, and the sink (exit). The sche-
matic diagram of message communications
among these pp’s is given in Figure 3.

Note that we have possible message flow
paths from CWl and CW2 to the attend-
ant. This is because the attendant must
know when a car wash becomes idle. (In
this particular problem, the attendant can
keep track of the times at which the last
cars were sent to CWl and CW2 and, since
the washing times are fixed, can deduce the
times at which CWl and CW2 will next
become idle. This means that the attendant
is simulating CWl and CW2. In general it
will not be possible, or preferable, to do so
in a simulation.) A complete list of mes-
sages for this example is shown in Table 2,
with corresponding event numbers from
Table 1. Each message has a sender, a
receiver, and message content. In our case
the content is either a car number or the
status (idle) of a car wash.

This example shows how to model event
interactions by message transmissions. In
particular, if an event at one pp causes
events to happen at several other pp’s, we
shall have to model such event dependen-
cies by several message transmissions. Sec-
ond, the chronological order of simulations

of events in sequential simulation (de-
scribed later) guarantees that every event
simulation precedes the simulation of
events that depend upon it. Our approach
in distributed simulation dispenses with
chronological simulations of events.

There are two conditions that are met by
every physical system imaginable: realiza-
bility and predictability. We assume that
both these conditions hold for all physical
systems we consider.

Realizability. A message sent by a pp at
time t is a function of its initial state, t, and
the messages it has received up to and
including t.

Realizability says merely that a pp can-
not guess any message it will receive in the
future. Note that we admit the possibility
of a message that is received at t affecting
a message that is sent at t. An example of
a pp in which this instantaneous cause-
effect is seen is given below.

Example 2.2 (Instantaneous Message
Transmission)

Consider a pp that acts as a merge point
for several pp’s. Schematically, such a pp,
A, is shown in Figure 4. Messages arriving
at A, either from the top or from the

Computing Surveys, Vol. 18, No. 1, March 1986

46 l Jayadev Misra

Table 2. A Sequence of Message Transmissions in the Car Wash System

Time
Message Event message Message Message
number number sent sender receiver Content

1
2
3
4
5
6
7
a
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

-
1
2
3
4
5
6

-
7
8
9

10

11
12
-
13
14
15

16
17
-
18

0
0
3
3
8
8
9

11
11
11
14
16
18
18
18
19
19
19
22
27
27
27
28
28
35
35

CWl Attendant
cw2 Attendant
Source Attendant
Attendant CWl
Source Attendant
Attendant cw2
Source Attendant
CWl Sink
CWl Attendant
Attendant CWl
Source Attendant
Source Attendant
cw2 Sink
cw2 Attendant
Attendant cw2
CWl Sink
CWl Attendant
Attendant CWl
Source Attendant
CWl Sink
CWl Attendant
Attendant CWl
cw2 Sink
cw2 Attendant
CWl Sink
CWl Attendant

Idle
Idle
Cl
Cl
c2
c2
c3
Cl
Idle
c3
c4
c5
c2
Idle
c4
c3
Idle
C5
C6
c5
Idle
C6
c4
Idle
C6
Idle

” ml A QUeUe

I
Figure 4. A merge point pp.

bottom, are instantaneously sent to the
queue on the right. Therefore, a message
sent by A at t depends upon messages re-
ceived at t. It may be argued that pp A
cannot be physically constructed. However,
this pp may represent a real-world entity,
where the interval between reception and
transmission of a message is small enough
to be ignored altogether in the modeling
process. Such merge points are often used
in queuing network descriptions of systems.

Predictability. Suppose the physical
system has cycles, that is, a set of processes
PPO, . - * 9 ppnpl, where ppi sends messages
to ppi+l (and perhaps to other pp’s) and
receives messages from ppi-1 (and perhaps
other pp’s).’ Suppose that the message, if
any, sent by ppi at some time t depends on
what ppi receives at t, for all i; then we
have a circular definition where the mes-
sage received by every pp at t is a function
of itself. In order to avoid such situations,
we require that for every cycle and t there is
a pp in the cycle and a real number t, E > 0,
such that the messages sent by the pp along
the cycle can be determined up to
t + c, given the set of messages that the pp
receives up to and including t.

Predictability guarantees that the system
is “well defined” in the sense that the out-
put of every pp up to any time t can be
computed given the initial state of the
system.

’ All arithmetic in pp subscripts is modulo n.

Computing Surveys, Vol. 18, No. 1, March 1986

Distributed Discrete-Event Simulation l 47

\

* A *B-C 41 I Figure 5. Schematic diagram of
the example assembly line.

source sink

Table 3. Job Generation Times and Service Times
in the Example of Figure 5

Jobs

Work station 1 2 3 4

Job generation times
Source 5 7 30 32

Service times
A 4 10 1 5
E 12 15 2 7
C 2 3 1 4

We next consider some typical simula-
tion examples and show that they satisfy
the realizability and predictability condi-
tions.

Example 2.3 (Car Wash-Realizability and
Predictability)

We consider the car wash problem intro-
duced in Example 2.1. Each pp’s output at
time t depends only upon the messages it
has received up to t. Of particular interest
is the behavior of the attendant. If it re-
ceives an “idle” message from either of the
car washes at time t and the queue is not
empty at t, then it sends a message at t.
Therefore, the realizability condition is
satisfied. The predictability condition
is satisfied because each cycle contains one
of CWl or CW2 and, given the input to
CWl (CW2) up to t, we can predict the
output from it up to t + 8 (t + 10).

Example 2.4 (Assembly Line)

An assembly line consists of a series of n
work stations. Jobs enter the assembly line
at work station 1; when a job has been
serviced at work station i, it proceeds to
work station (i + l), i = 1, 2, . . . , n - 1; a
job leaves the system after being serviced
at work station n. Service times at different
work stations are random variables; jobs
may be queued at a station awaiting service.
A work station takes one job from its input

queue when it is free, services that job, and
then sends it to the queue of the following
work station. All work stations service the
jobs in a first come, first served (FCFS)
basis. It is desired to find the expected
number of jobs in the queue of each work
station and the expected waiting time for
jobs at each work station.

Specifically, consider an assembly line
consisting of three work stations, A, B, and
C, which services four jobs identified as 1,
2, 3, and 4. Schematically, the assembly
line is shown in Figure 5.

The times at which the source generates
jobs and the service time of each work
station for each job are given in Table 3.

The source (call it work station 0), the
sink (call it work station 4), and each work
station are pp’s. pp; sends messages to
ppi+l, i = 0, 1, 2, 3. The source sends
messages (which represent jobs) to work
station 1 at times 5, 7, 30, and 32. If a job
j, j > 1, arrives at a work station at time t,
then its service at this work station begins
either immediately (at t) if the work station
is then idle, or it begins immediately after
the departure of the (j - 1)th job from the
work station. Let Aj be the time of arrival
of job j at some work station, let Dj be the
time of departure of job j from this work
station, and let Sj be the service time for
job j at this work station. Then we have

Do=O;

Dj = max(Aj, Dj-1) + Sj, j=l,2 ,

Using the service times and generation
times of jobs given in the previous table,
we can construct the departure times from
work stations, that is, times at which mes-
sages are sent, as in Table 4.

Each work station’s output at time t de-
pends only on the jobs it has received up to
t, and therefore the realizability condition
is satisfied. The predictability condition is
trivially satisfied since there is no cycle in
the physical system.

Computing Surveys, Vol. 18, No. 1, March 1986

48 ’ Jayadev Misra

Table 4. Times at Which pp’s Send Messages
in the Example of Figure 5

Message

PP 1 2 3 4

Source 5 7 30 32
A 9 19 31 37
B 21 36 38 45
C 23 39 40 49

Example 2.5 (A Computer System)

Imagine a computer installation that con-
sists of a central processing unit (CPU) and
two peripheral processors, procl and proc2.
Jobs enter the CPU, spend some time there,
and then branch to one of the peripheral
processors with some given probability.
Upon completion of processing at the
peripheral processor, a job may leave the
system or return to the CPU with some
probability. The schematic diagram of the
system is shown Figure 6.

This system has pp’s for the source, the
sink, merge points Ml and M2, branch
points B1 and &, the CPU, procl, and
proc2. Each message represents the trans-
fer of a job from one pp to another. The
realizability property holds because no pp
bases its behavior on anticipation of the
future. Probabilistic decisions at Bi, Bz
cause no difficulty because the inputs to
B, , Bz up to time t determine their outputs
up to time t (though the outputs may be
different at different times owing to the
probabilistic nature). We can realistically
assume that each processor spends nonzero
time in processing a job. Therefore the sys-
tem also has the predictability property.

This concludes our discussion of using
physical systems to model real-world sys-
tems. From now on we assume that we are
dealing with physical systems with the
properties of realizability and predictabil-
ity. Now we define the meaning of simula-
tion for such physical systems.

2.2 What Is Simulation?

We wish to build a simulator, or a logical
system consisting of logical processes (ab-
breviated lp), to simulate a physical system.
We use “simulation” in a rather strict
sense: We say that a logical system cor-

Computing Surveys, Vol. 18, No. 1, March 1986

rectlv simulates a physical system if it is
possible for the logicalsystemto predict the
exact sequence of message transmissions in
the physical system. That is, if tl, tz, . . . ,
ti, * * . are the times at which the messages

. . , mi . . . are transmitted in the
;&?a1 ‘system and tl 5 t2 . . . 5 ti 5 . ’ ’ y
then the logical system should be able to
output the sequence ((tl , mi), (tz, m2), . . . ,
(tip mi), - . - >-

The logical system may not actually print
the sequence (. . . (ti, mi) . . .). All that is
desired is that it should be possible to do SO
from the logical system.

Clearly a physical system is a simulation
of itself. We wish to construct logical sys-
terns that may not operate at the same
speed as the physical system. Our goal is to
construct a logical system out of a machine
or machines where the speeds of processors
and communication links (if any) are
arbitrary. In other words, we wish to
duplicate the behavior of a synchronous
physical system using asynchronous logical
components.

It should be observed that we can carry
out the typical functions of simulation-
analyze data, predict performance or future
behavior, generate reports, etc.-using the
logical system. We do not address these
issues in this paper; we merely observe that
since it is possible to create the sequence
of physical message transmissions in the
logical system, all interactions can be re-
constructed and analyzed.

Example 2.6 (Message Transmission in the
Assembly Line Example)

A simulation of the assembly line of
Example 2.4 should be able to predict the
following message sequence. This sequence
is derived from Table 4. In the following,
a message consists of (sender id, receiver
id, message content). We write a 4-tuple
(t, s, r, m) to denote that at time t, pp s
sends a message to pp r with content m.

((5, source, A, l), (7, source, A, 2),
(9, A, B, 1) (19, A, B, 21, (21 B, C, l),
(23, C, sink, l), (30, source, A, 3),
(31, A, B, 3), (32, source, A, 4),
(3% 4 C, 2), (37, A 8 41, (38, B, C, 3),
(39, C, sink, 2), (40, C, sink, 3),
(45, B, C, 4), (49, C, sink, 4))

Distributed Discrete-Event Simulation l 49

2.3 The

Figure 6. Schematic diagram of job flow in a computer system that has a CPU and two
peripheral processors: a, mean time between arrival of jobs from the outside source, a
random variable; t,, mean time spent by a job at the CPU, a random variable; tl, mean
time spent by a job at the peripheral processor 1 (procl), a random variable; tl, mean time
spent by a job at the peripheral processor 2 (proc2), a random variable; ol, probability of a
job going to procl; p, probability of a job exiting the system; M,, A42, merge points; B,, &,
branch points.

Sequential Simulation Algorithm

Two major data objects used by the sequen-
tial simulation algorithm are the clock and
event list, which are described as follows:

Clock. A real-valued variable. It gives the
time up to which the corresponding physi-
cal system has been simulated, that is, all
messages (t, m) sent in the physical system
with t < clock, can be deduced from the
logical system at any point in its execution.

Event list. A set of tuples of the form
(tip mi), where ti 2 clock and mi is a message.
(We assume that the identities of the
sender and the receiver are parts of the
message.) A tuple (ti, mi) is in the event list
means that, in the physical system, if the
sender of mi receives no message at any t,
clock 5 t < ti, then it sends mi at ti and
sends no other message at any time t,
clock 5 t 5 ti.

It is required that for every ppi there be
at least one event-list entry (ti, mi) in which
ppi is the sender. If a pp sends no message
in the future, unless it receives further mes-
sages, the corresponding event-list entry
will be (w, m), where the message content
in m is arbitrary. A similar entry, (co, m),
will always be in the event list for a pp that
has terminated.

Example 2.7 (A Snapshot in Sequential
Simulation of the Assembly Line)

In simulating the assembly line of Example
2.4, a possible value of clock and corre-

sponding entries in the event list are shown
as follows:

clock: 9
event list {{(19, A, B, 2), (21, B, C, l),

(a, C, sink, -),
(30, source, A, 3)]

This snapshot of the simulation corre-
sponds to the point in the physical system
where the source has produced jobs 1 and
2, and job 1 has been processed at A and
sent to B. The source has one more job
scheduled for production; A has scheduled
to send job 2 to B at time 19, provided A
receives no more jobs between 9 and 19; B
has scheduled to send job 1 to C at time 21,
provided it receives no more jobs before
then; C has scheduled no message because
it has received no jobs.

It should be noted that each entry (t, m)
in the event list is conditional. An entry
(t, m) may not actually occur in the physi-
cal system, because this message transmis-
sion may be canceled if the sender of m
receives a message prior to t. In fact, it is
impossible to construct general-purpose
sequential simulations without canceling
events from the event list. For example,
cancellation is required in the simulation
of a system with preemption: Scheduled
departure of a job from a server for some
future time may have to be canceled (and
recomputed) owing to the arrival at the
server of a job that preempts the previous
job.

Computing Surveys, Vol. 18, No. 1, March 1986

50 l Jayadev Misra

Let (t, m) be an entry in the event list
where t is smaller than t’ for every other
G’, m’) in the event list. We can then
guarantee that the first message to be sent
at or after the current value of clock is mes-
sage m and that it is sent at time t. This is
the content of the following theorem, upon
which sequential simulation is based.

Theorem 1

Let (t, m) be an entry in the event list such
that t < t’ for every other entry (t’, m’) in
the event list. Then the message m is trans-
mitted at time t in the physical system and
no other message is transmitted at t”, where
clock 5 t” < t.

Proof. If message m is not transmitted
at t, it must be because some other message
is transmitted at or before t (and at or after
clock), which causes the sender of m to
cancel transmission of m. Consider the first
message m ’ to be so transmitted; it must
be transmitted at t ’ where clock 5 t’ 5 t.
The sender of m ’ could not have received
any message between clock and t’, because
such a message would be the first message
transmitted after clock. Then (t ‘, m ‘) must
be an entry in the event list, because the
sender of m’ sends its message without
receiving any other message after the cur-
rent clock value and before t’. Since t’ C- t,
it contradicts our choice of (t, m). Hence
the result. 0

2.3.1 Simulations of Simultaneous Events

We assumed in Theorem 1 that there is a
unique tuple (t, m) in the event list, where
t is smaller than t’, for all other (t ‘, m ‘).
In a sequential simulation, two message
transmissions that happen simultaneously
in the physical system, that is, at the same
time t, must be simulated in some order.
Simulating them in arbitrary order can lead
to problems, as in the following: pp A plans
to send a message m to pp B at time t; pp
B is an alarm clock that is scheduled to go
off, that is, to send a message m’ to pp A
at time t, unless it receives a message from
pp A before or at t. In the physical system,
pp B will not send m’ to pp A. However, if
these message transmissions are simulated

sequentially in arbitrary order, a possible
simulation may result in pp B sending m’
to pp A. This example illustrates that
events should be simulated in the order of
their dependencies (m’ is dependent on m
in this example). Simulation in the order
of dependencies also guarantees chronolog-
ical order. Certain sequential simulation
languages, such as GPSS [Franta 19771,
provide the user with facilities for defining
orderings among simultaneous events. In
this case, information defining orderings
must be kept with tuples in the event list.
Distributed simulation is based on the
dependency order and hence avoids this
problem.

A tuple (t, m) in the event list is a small-
est tuple if t % t’ for every (t ‘, m’) in the
event list, and, if t = t’, then message m’
does not precede m {this has to be deduced
from additional facts stored with m’ and
m). Note that there may be several smallest
tuples and they may be simulated in arbi-
trary order.

The simulation algorithm, given below,
works as follows. In each step a smallest
tuple is removed from the event list, its
effects are simulated (causing possible ad-
ditions to and deletions from the event list),
and the clock is advanced to the time as-
sociated with this message transmission.
This algorithm is given in a pseudopro-
gramming notation below.

2.3.2 The Sequential Simulation Algorithm
(See Figure 7)

The correctness of this algorithm should
be obvious from our previous discussions.
Note that the sequential simulation algo-
rithm is capable of producing the sequence
of message transmissions in the physical
system; it simply prints (t, m), whenever it
removes (t, m) from the event list.

Example 2.8 (A Sequence of Snapshots
in the Simulation
of the Assembly Line)

We consider the assembly line example and
show in Table 5 a partial sequence of event
lists and clock values.

Computing Surveys, Vol. 18, No. 1, March 1986

Distributed Discrete-Event Simulation l 51

Initialize::
clock := 0;
event list := [(tx, mi) 1 message mi will be sent at t,

unless the sender of rni re-
ceives a message before t;;
one such entry exists for each
pp as the sender).

Iterate::
while termination criterion is not met do

remove a smallest tuple (t, m) from the event list;
simulate the effect of transmitting m at time t;
[This may cause changes in the event list.
Note however that any addition or deletion,
(t’, m ‘) to the event list will have t’ P t.1
clock := t

endwhile

Figure 7. The sequential simulation algorithm.

Table 5. Partial Sequence of Event Lists and
Clock Values

Clock Event list Smallest tuple

0 ((5, source, A, l), (5, source, A, 1)
(m, A, --,--A
(9 B, -, -A
(Q), c, -, -))

5 ((7, source, A, 21, (7, source, A, 2)
(9, A B, l),
(9 B, -, -L
(m, C, -, -))

7 (~C&w;rCle). A, 3), (9, A, 4 1)

(d, Ii, 2, L,,

(9 c, -, -1)
9 (I;$ yr;)A 3) (1% A, B, 2)

(21: B: c: 1,:

(m, c, -, -))

Notes on Parallel Execution. It should
be obvious that to process more than one
tuple at once, say, both (t, m) and (t ‘, m ‘),
we must be sure that these two events are
independent, that is, that execution of one
will not in any way affect the execution of
the other. This requires us to know more
about the cause-effect relationship among
messages. We consider these issues in the
next section and develop a basic scheme for
distributed simulation.

3. DISTRIBUTED SIMULATION: THE BASIC
SCHEME

In this section we introduce a model of
distributed computation and show how a

simulation may be carried out by a set of
communicating processes. We limit our dis-
cussion here to a basic scheme, one which
can result in deadlock. More sophisticated
schemes that resolve deadlock are discussed
in the next section.

3.1 A Model of Asynchronous Distributed
Computation

A distributed system consists of a finite
number of processes and directed channels
connecting some pairs of processes. To dis-
tinguish these processes from physical
processes, we call them logical processes or
1~‘s. Each lp may execute sequential code
and two special commands: receive and
send. In a send, an lp names an outgoing
channel and a message that is to be sent
along that channel. Execution of the send
results in the message being deposited on
the named outgoing channel; the sender
then proceeds with the execution of its
code. Each message takes an arbitrary but
finite time to reach its destination. Mes-
sages sent along a channel are delivered in
the sequence in which they are sent. In a
receive command, an lp names one or more
incoming channels from any one of which
it wishes to receive a message. An lp wish-
ing to receive may have to wait until a
message arrives along one of the incoming
channels. Note that our communication
protocol is extremely simple and can be
implemented on many existing machine
architectures.

A set of lp’s D is deadlocked at some
point in the computation if all of the follow-
ing conditions hold: (1) every lp in D is
either waiting to receive or is terminated;
(2) at least one lp in D is waiting to receive;
(3) for any lpi in D that is waiting to receive
from some lpi, lpj is also in D, and there is
no message in transit from lpj to lpi.

It follows then that none of the lp’s in D
will carry out any further computation
since they will remain waiting for each
other.

3.2 Basic Scheme for Distributed Simulation

To simulate any given physical system, we
construct a distributed logical system as
follows. We will associate one Ip with each

Computing Surveys, Vol. 18, No. 1, March 1986

52 9 Jayadev Misra

pp; lpi will simulate the actions of ppi. If
ppi can send messages to ppj, there is a
channel from lpi t0 lpj.

An lp can simulate the actions of a pp up
to time t if the lp knows the initial state
and all messages that the corresponding pp
receives up to time t. This is because, from
the realizability property, no future message
(message received by the pp after time t)
can affect the pp’s behavior at t. We note
further that an lp may be able to simulate
a pp beyond time t, even though it knows
its input messages only up to time t, as
shown in the following example.

Example 3.1 (An lp May Predict the Future)

Consider a typical nonpreemptive first
come, first served (FCFS) server, which
spends exactly 10 units of time servicing
each job. Assume that a job arrives at time
t when this server is idle. From this infor-
mation about input messages up to time t,
we can predict the behavior of the server
up to time t + 10: It will produce no output
between times t and t + 10, but it will
output a message at t + 10, sending the
job that has been serviced to its next
destination.

From these observations, we can con-
struct an algorithm for distributed simula-
tion. We note that the times at which pp’s
send messages must be encoded into the
message that the Ip’s send: If messsage m is
sent by ppi to ppj at time t, message (t, m)
will be sent by lpi to lpj at some point during
simulation.

We make a chronology requirement:
If an lp sends a sequence of messages
(... (ti, mi), (ti+l, %+I) . . .) to another lp,
then ti < ti+l + * *. The implication of this
requirement is that if lpi receives (t, m)
from lpi, then it knows all messages that ppi
receives from ppj up to and including time
t, because any future message will have a
higher t component.

Define the channel clock value of a chan-
nel to be the t component of the last
message received along that channel; the
channel clock value is 0 if no message has
been received along that channel. Clearly,
every lpi knows all messages received
by the corresponding ppi up to time Ti =

mini (tj 1, where tj ‘S are the channel clock
values of all incoming channels to that lp,
and the minimum is taken over all these
incoming channels. We call Ti the clock
value of lpi. Hence, lpi can safely simulate
ppi up to Ti; that is, it can deduce every
message that ppi sends up to time Tie Also,
lpi may be able to deduce ppi’s message
transmissions beyond Tie In any case, lpi
will send messages corresponding to all the
messages it can deduce for ppi. The basic
simulation algorithm followed by lpi is
sketched next; we assume that all messages
are sent at t > 0 in the physical system.

3.2.1 Basic Distributed Simulation Algorithm for
/pi (See Figure 8)

Note. The lp’s that have no incoming
channels are called source 1~‘s. Each source
lp also follows this algorithm: It simply
sends messages until the simulation com-
pletion criterion is met. A sink lp simply
receives messages and otherwise does not
affect the simulation.

Example 3.2 (Distributed Simulation of the
Assembly Line)

Let us review the assembly line example
(Example 2.4). In the following, we have
one lp each for the source, the sink,
work station A, work station B, and work
station C.

See Table 3 for the job generation and
processing times.

Figure 9 shows the messages sent by each
lp; an arrow from (t, m) to (t ‘, m ‘) means
that sending of (t, m) precedes sending of
(t ‘, m’).

Note in this example that the source can
send its messages to A without waiting for
any input; A can send the ith message to B
only after receiving the ith message from
the source, etc. Two messages on different
lp’s between which there is no sequence of
arrows are independent and hence may
be transmitted simultaneously in the
simulator. For instance, (32, Source, A, 4),
(31, A, B, 3), (36, B, C, 2), (23, C, Sink, 1)
can possibly be transmitted simultane-
ously. The five lp’s form a pipeline through
which each job passes. If the speeds of the

Computing Surveys, Vol. 18, No. 1, March 1986

Distributed Discrete-Event Simulation l 53

Initialize:: Ti := 0 {All messages received by pp, up to Ti, are now known to lp,)
while simulation completion criterion is not met do

{simulate ppi up to Ti by doing the following}::
for each outgoing channel, compute the sequence of messages
((h, ml), (t2, m) . . (t,, m,)), where tl < t2 . . . < t, and, ppi sends m, at time t, along this channel;
send each message in sequence along the appropriate channel;

{Note: All messages sent by ppx up to 7’, can be deduced by lp, and sent; also some messages to be sent
beyond Ti may be predicted by lpi and sent. Only new messages that have not been sent before are
sent. Also note that some or all of these message sequences may be empty.)

(receive messages and update T, until T, changes value}::
T,f := T,;
while Tf = T; do

wait to receive messages along all incoming channels;
upon receipt of a message, update lp,‘s internal state and recompute T,, the minimum over all incoming
channel clock values

endwhile
endwhile

Figure 8. Basic distribution algorithm for 1~;.

Source: (5, Source, A, 1) - (7, Source, A, 2) + (30, Source, A, 3) + (32, Source, A, 4)

A: (9, A%, 1) + (19, A: B, 2) - (31, A! B, 3) + (37, A: B, 4)

1 1 1
B: (21, B, C, 1) - (36, B, C, 2) + (38, B: C, 3) --+ (45, B, C, 4)

1 1 1 1
c: (23, C, Sink, 1) + (39, C, Sink, 2) + (40, C, Sink, 3) + (49, C, Sink, 4)

Figure 9. Messages sent by each lp.

lp’s are approximately equal, and the trans-
mission delays between lp’s are approxi-
mately equal, then the pipeline should work
at full efficiency; one job is input and one
job is output per cycle after an initial delay
of three cycles.

This is about the simplest simulation
example one can think of. We study a
harder example next.

Example 3.3 (A Primitive Computer system)
(See Figure 10)

We have one lp each for the source, the
CPU, Procl, Proc 2, M, B and the sink. For
this example, assume that jobs arrive at the
CPU from the source every 5 time units
starting at time 3, that jobs spend 1 unit at
the CPU, that jobs alternately go to Procl
and Proc2 from B, and that a job spends 5
units at Procl, 18 units at Proc2, and no
time at B or M. We show the sequence of
messages and their dependencies in Fig-
ure 11. (To simplify the diagram, we have

not shown the arrows between messages
at a PP.)

Note the behavior of the lp correspond-
ing to M. Assume that it first receives
(27, Proc2, M, 2) from the lp corresponding
to Proc2. This is possible if, for instance,
the lp corresponding to Proc2 were consid-
erably faster than the one corresponding to
Procl. Then the lp for M can only infer
that it will not receive any other message
from the lp corresponding to Proc2 with
time component smaller than 27. However,
it cannot assert anything about messages
from Procl; it can thus simulate pp M only
up to time 0. Suppose that it next receives
(45, Proc2, M, 4); it must still wait. The
next input is, say (9, Proc, M, 1). Then the
lp corresponding to M can assert that it
knows all inputs that M receives up to time
9 and hence predict all of M’s outputs
at least up to 9; therefore, it can output
(9, M, Sink, l), since jobs spend no time at
M. The rest of the outputs of M are easy to
see. Finally, note that M cannot output

Computing Surveys, Vol. 18, No. 1, March 1986

Jayadev Misra

Figure 10. A primitive computer system.

Source: (3, Source, CPU, 1) (8, Source, CPU, 2) (13, Source, CPU, 3) (18, Source, CPU, 4) (23, Source, CPU, 5)

J 5- & 4
CPU: (4, CPU, B, 1) (9, CPU, B, 2) (14,CPU,B,3) (19,CkJ,B,4) (24, CPU, B, 5)

B:

Procl:

Proc2:

1 1
(4, B, Procl, 1) (9, B, Proc2,2) (14, B, Procl, 3) (19, B, ProcP, 4) (24, B, Procl, 5)

Figure 11. Sequence of messages and their dependencies.

(45, M, Sink, 4) at the very end, because it part of the correctness condition stated
does not know whether it will receive a above: Whatever is transmitted in the sim-
message with a t component lower than 45 ulator actually happens in the physical sys-
from the lp corresponding to Procl. An tem. We are postponing discussion of the
extra message with a t component exceed- converse statement-if message m is trans-
ing 45 must be sent from Procl to M to mitted at time t in the physical system,
“flush out” this message. We discuss this then (t, m) is transmitted in the simula-
issue later. tor-to the next section.

3.3 Partial Correctness of the Basic
Distributed Simulation Scheme

Correctness of a distributed simulation
algorithm consists of two parts: (1) If a
message m is transmitted in the physi-
cal system at time t, then (t, m) is trans-
mitted in the simulator; (2) if (t, m) is
transmitted in the simulator, then message
m was transmitted at time t in the physical
system. These statements are not quite true
for the basic distributed simulation scheme
just presented. As we observed in the last
example, job 4 is sent at time 45 from M to
the sink in the physical system, but the
corresponding message is never sent in the
simulator. Therefore, we can prove only one

Define a simulation to be correct at some
point if it meets the following two condi-
tions: (1) If message m is sent at time t
along channel e in the physical system, and
t is less than or equal to the channel clock
value of channel e at this point in simula-
tion, then (t, m) has been sent along chan-
nel e in the simulation; (2) if (t, m) has
been sent in the simulation, then message
m is sent at time t in the physical system.

We note that, in a simulation that is
correct at some point, every lp must have
received a correct input sequence along
every incoming channel, that is, every
message on this channel that has been
transmitted in the physical system up to
this channel clock value has been received
along this channel in the simulation, and

Computing Surveys, Vol. 18, No. 1, March 1986

Distributed Discrete-Event Simulation l 55

vice versa. We assume that every lp cor-
rectly simulates the corresponding pp; that
is, any message sent by an lp is correct
provided that all messages it has received
prior to sending this message are correct.
Clearly a simulation is correct if and only
if every lp has sent correct output sequences
along every outgoing channel. Theorem 2
follows by applying induction on the
number of messages transmitted in the
simulation.

Theorem 2

Simulation is correct at every point.

Proof. Simulation is obviously correct,
by definition, when no message has been
transmitted in the simulation. Assume that
a simulation is correct up to some point.
The next messsage in the simulation is sent
by some lpi. Since simulation is correct
prior to this message transmission, lpi has
received correct input sequences so far.
From our assumption that lpi correctly sim-
ulates ppi, the output sequences of lpi, in-
cluding the last message sent, are correct.
Every other lp has sent correct sequences
so far, from the inductive hypothesis.
Hence the simulation is correct following
the last message transmission. 0

In a similar manner, we can derive the
following result.

Theorem 3

All messages sent by one lp to another are
chronological in their time components.

3.4 Features of the Basic Distributed
Simulation Scheme

3.4.1 The Problem of Deadlock

Theorem 2 tells us only that whatever is
transmitted in the simulator corresponds
to a message in the physical system. As we
have noted earlier, not all messages in the
physical system are transmitted in the sim-
ulator using the basic simulation scheme.
In fact, the next example shows a system
in which no message is transmitted to a
subsystem in the simulator.

Example 3.4 (A Deadlocked Subsystem in a
Distributed Simulation)

Consider a physical system in which the
source sends messages to a branch point B,
and B routes the messages to Procl or
Proc2. After some finite time, each message
is sent from Procl or Proc2 to a merge
point M, after which it enters a network N
(see Figure 12). Consider the case in which
B sends every message to Procl. Then in
the simulation, the lp corresponding to M
will never receive a message from Proc2.
Hence the channel clock value for the chan-
nel (Proc2, M) will remain at 0 and the lp
for M will never send a message. The sub-
system N will thus never receive a
message.

We show another example in which dead-
lock arises owing to a circular pattern of
waiting among the 1~‘s.

Example 3.5 (Cyclic Waiting in a Distributed
Simulation) (See Figure 13)

Consider a network of three processes and
a source, shown schematically in Figure 13.
The number on each channel is the channel
clock value; that is, the last message sent
from x to y and received by y had a t
component of 20, and so on. Suppose that
none of x, y, z will now send a message
unless they receive a message, that is, they
can predict no future messages.

We can see that 2 will not send a message
unless x first sends a message to y. Hence
x need not wait for 2; it can process the
next message from the source. However,
none of the lp’s corresponding to x, y, 2

have this global knowledge; they only have
local knowledge of the behavior of each
individual pp. Therefore, x cannot proceed
unless it receives from a, 2 cannot proceed
unless it receives from y, and y cannot
proceed unless it receives from X, leading
to a deadlock.

3.4.2 Simulation Snapshot

In a sequential simulation, it is possible to
assert that the simulator has completed
simulation up to the time given by the
clock: every pp must have been simulated
up to this point in time. We cannot make

Computing Surveys, Vol. 18, No. 1, March 1986

56 . Jayadev Misra

Figure 12. A distributed simulation that does not progress.

Figure 13. A distributed simulation that deadlocks.

a similar statement for distributed simula-
tion, because each lp may have simulated
the corresponding pp to a different point in
time. For instance, in the example of the
primitive computer system (Example 3.3),
we can assert at the end that the lp’s
have simulated the corresponding pp’s as
follows: (Source: 23)(CPU: 24), (B: 24),
(Procl: 29), (Proc2: 45), (M: 29).

Let T, the clock value of the simulator, be
the minimum of all lp clock values. We can
assert that at any point in the simulation,
the physical system has been simulated up
to the simulator’s clock value, even though
some individual lp’s may have simulated
the corresponding pp’s far beyond T.

3.4.3 Encapsulation of Physical Processes
by Logical Processes

In distributed simulation, the radical de-
parture from sequential simulation is the
lack of any global control. (We show dead-
lock resolution without global control in
the next section.) Since a pp is simulated
entirely by one lp, various different simu-
lations of a pp can be attempted by substi-
tuting different lp’s for it. Furthermore, the
correctness of simulation can be checked
one lp at a time-the proof of correctness
is naturally partitioned among lp’s, that is,
we show that each lp correctly simulates

Computing Surveys, Vol. 18, No. 1, March 1986

the behavior of the corresponding pp. We
have shown that, if each lp behaves cor-
rectly, the simulation as a whole behaves
correctly. This observation may lead to ma-
jor simplifications in designing complex
simulations. In fact, distributed simula-
tions can be implemented using existing
sequential simulations; instead of reporting
to a central event-list manager, an lp sends
messages. In all other respects, the core of
the simulation remains unchanged.

4. Distributed Simulation: Deadlock
Resolution

We have seen in the last section that the
basic distributed simulation scheme may
lead to deadlock even in acyclic networks.
In this section we present several different
approaches to resolution of deadlock. We
comment on some of the most viable ap-
proaches to deadlock resolution.

4.1 Overview of Deadlock Resolution

In all the examples we have seen so far, the
simulator clock value (i.e., the minimum of
all lp clock values) remains at some final
value T forever. If T is smaller than the
point up to which we need to run the sim-
ulation, we have to apply some other

Distributed Discrete-Event Simulation l 57

sink

Figure 14. A physical system with loop.

scheme to advance the simulation. For
instance, in the example of the primitive
computer system (Example 3.3), the lp cor-
responding to M cannot proceed any fur-
ther unless it is told that Procl will never
send it a message. In Example 3.5, lp x
must be told that it will never receive any
input along zx until x first sends a message.
The first scheme we describe, using null
messages, is effectively an implementation
of this idea [Bryant 1977; Chandy and
Misra 19791. We also discuss some other
schemes that avoid deadlock using different
kinds of overhead messages.

4.2 Deadlock Resolution Using /Vu//
Messages

We postulate a new kind of message to be
used by the simulator: (t, null) sent by lpi
to lpi means that ppi sends no message to
ppj between the current channel clock value
of the channel from lpi to lpi and t; there-
fore, any future message from lpi to lpj will
have a t-component exceeding t. Clearly
null messages have no counterpart in the
physical system. A null message is used to
announce absence of messages. Absence of
messages in a physical system at time t is
recognized by no message being transmit-
ted at that time. Unfortunately, the basic
scheme of the last section cannot guarantee
absence of messages to an lp without send-
ing it an actual (nonnull) message having
a higher t-component value.

We now propose modifications to the
basic algorithm of Section 3 to incorporate
null messages. Let us first review the basic
distributed simulation scheme of the last
section. Ti denotes the clock value of lpi.
Whenever lpi receives a message, it
properly updates Ti, and, if Ti changes in

value, then lpi advances the simulation of
ppi UP t0 Ti. At this point lpi predicts for
each outgoing channel, a sequence of mes-
sages that the ppi would have sent. Thus
lpi typically generates ((tjl, mjl), (tj2, mjz),

. . .) for transmission to lpj, for every j to

which it has outgoing channels. Some of
these sequences may be empty, in which
case no message is sent to the correspond-
ing lp. Suppose that lpi can further predict
that after transmission of this message se-
quence ppi will not send any more messages
to ppj until time tje Then, in the new
scheme, Ipi sends (tj, null) to lpi after send-
ing the genuine message sequence. Since lpi
knows the state of the corresponding pp up
to time Tip it can predict all messages (that
are to be sent) and absence of messages, at
least up to Tie Therefore, every outgoing
channel will have a last message on it with
time component equal to or greater than
Ti. Note that, in any iteration, only the last
message sent along a channel may be a null
message.

Reception of a null message is treated in
the same manner as the reception of any
other message: It causes the lp to update
its internal state, including the clock value,
and (possibly), to send messages.

Suppose it is required to simulate the
physical system up to some time T. Then
every source must send messages until the
t component of the last message equals T;
if no nonnull message exists with this prop-
erty, then finally, (T, null) should be sent.

Example 4. I

Consider the physical system shown sche-
matically in Figure 14.

We study the progress of one possible
simulation run of this physical system. The

Computing Surveys, Vol. 18, No. 1, March 1986

58 l Jayadev Misra

source sends out jobs that are processed at
X for 2 time units. Jobs are routed alter-
nately to Y and 2 from Bi. Y processes a
job for 1 unit and 2 for 4 units. Every job
loops through the system twice; that is, the
first time a job arrives at &, it is sent back
to MI, and on the second arrival at BB it is
sent to the sink.

Table 6 shows a succession of message
transfers, where each horizontal row is a
time slice and each entry corresponds to a
single activity of one of the processes. It is
evident that several activities may happen
concurrently.

4.3 Correctness of the Simulation Algorithm

The partial correctness results of the last
section still apply. The only difference now
is the presence of null messages. We define
the simulation to be correct at some point,
if it is correct according to the definition of
Section 3 after ignoring null messages.

Theorem 4

Simulation is correct at every point.

Proof. The proof is almost identical to
the previous proof and hence omitted
here. 0

The next theorem shows the power of
adding null messages: We show that we
have a deadlock-free system that can sim-
ulate a physical system up to any desired
time.

Theorem 5

Assume that every sourceprocess sends mes-
sages until the t-component of a message
equals T. Then every lp will simulate the
correspondingpp, at least up to T.

Proof Consider the point at which the
simulation terminates, that is, at which all
messages that have been sent have been
received and no lp has any outstanding
message to send. The following observation
is critical: For every Ip (except a source lp)
there exists an incoming channel to that lp
whose channel clock value is less than or
equal to the channel clock value of every
outgoing channel from that lp. This obser-
vation follows because (1) an lp that has
received messages at least up to t along

every input channel must have sent mes-
sages (t ‘, m’), t ’ L t, along every outgoing
channel; (2) every message that has been
sent has been received when simulation
terminates. Note that (1) could not be as-
serted in the basic scheme because an lp
need not send out messages with high-
er t-component values than the input
messages.

We now claim that the channel clock
value for every channel is at least T. If not,
consider a channel el for some lp, whose
channel clock value is tl, with tl < T. Ac-
cording to the above observation, there ex-
ists a channel e2, which is an incoming
channel to this lp, such that ez’s channel
clock value is t2, where t2 5 tl. Continuing
in this manner, we can construct a sequence
of channels, el, e2, . . . , ei, . . . such that for
all i, ei+l is a predecessor channel of ei and
ti+l zz tiy and we have tl < T. Since the
physical network is finite, eventually we
either (i) get to a source Ip, or (ii) have a
cycle of channels. In the first case, since
every source lp sends messages until the t
component of the last message sent is T,
we cannot have channel clock value of any
outgoing channel of a source lp smaller
than T. In the second case, all channel clock
values in the cycle are equal to tl and
tl < T. From the predictability property
(Section 2), for this cycle and this tl, there
exists a pp, say ppj, whose outputs can be
determined beyond tl, given its inputs up
to tl . Hence, lpi has some messages to send,
which contradicts our assumption that the
simulation has terminated. Therefore, the
channel clock value of every channel is at
least T, and hence the simulation clock
value is at least T.

We have implicitly used the fact that, for
any finite T, only a finite number of mes-
sages may be transmitted in the logical
system. This is derived from the predicta-
bility property, in which the parameter E,
t > 0, is a fixed quantity. A more rigorous
proof of this boundedness property may be
found in Chandy and Misra [1979]. Cl

4.4 Discussion

It is interesting to note that the sim-
ulator never deadlocks; If the physical
system deadlocks, the simulator continues

Computing Surveys, Vol. 18, No. 1, March 1986

Table 6. Message Transmissions in the Simulation of Example 1

I I

3 I (2.nu11)(2.null) (hJU

(2.dU :bUUi (4nuuX

60 l Jayadev Misra

computation by transmitting null messages
with increasing t values. This correctly sim-
ulates the corresponding physical situation,
in that, while time progresses, no messages
are transmitted in the physical system and
the simulator terminates with every clock
value at least at T. The simplicity of this
scheme is one of its most attractive points.
It requires small coding changes to send out
null messages. Furthermore, the require-
ment of unbounded buffers between two
lp’s is not really necessary. The same re-
sults hold if there are only a finite number
of buffer spaces between every lpi and lpj,
and lpi has to wait to send if all buffer
spaces are currently full. The proof that
there is no deadlock in this situation is
essentially contained in Chandy and Misra
[19791.

The metric of interest in performance
calculations is the turnaround time, that is,
the amount of time it takes to complete the
simulation, rather than processor utiliza-
tion, that is, the fraction of time the pro-
cessors are utilized. In fact, one would ex-
pect the processors to be lightly utilized.
The other parameter of interest, line band-
width, has not received adequate attention.

Empirical studies show that this scheme
is quite efficient for acyclic networks
[Seethalakshmi 19791. Several factors seem
to affect the efficiency in general networks:

(1) Degree of Branching in the Network.
Consider a network with one source and
one sink. The number of distinct paths
between the source and the sink is a (rough)
measure of the amount of branching in the
network. Null messages tend to get created
at branches and they may proliferate at all
successive branches (if not subsumed). So,
one would expect that the fewer the number
of branches, the better the performance.
Empirical studies seem to confirm this
[Seethalakshmi 19791. Theoretically, opti-
mum efficiency is achieved for a tandem
network (the assembly line example of Sec-
tion 2, Example 2.4), and excellent results
are obtained for low-branching-type net-
works. In general, acyclic networks exhibit
reasonably good performance levels.

Experiments were carried out by Peacock
et al. [1979a, 1979b] on networks of various

topologies. Their conclusions are: “For
some topologies of queueing networks
models, this approach results in a speedup
in the total time to complete a given simu-
lation. However, for other topologies, es-
pecially those with loops, the speedup may
not be significant.” They also investigated
several different ways of partitioning the
physical network so that more than one pp
may be implemented on one lp.

(2) Time-Out Mechanisms to Prevent
Null Message Transmission. A slight
modification to the scheme of this section
may save a considerable number of message
transmissions. A null message (t, m) has no
effect if it is followed by another message
(t ‘, m’), t ’ > t. Therefore, it may be effi-
cient to delay transmissions of null mes-
sages in the hope that future messages
received by an lp would make it unneces-
sary to transmit them at all. Clearly, the
amount of time 7 that an lp waits before
transmitting a null message is of impor-
tance. If 7 = 0, we have the algorithm as
stated in this section. If T = ~0, null mes-
sages are never transmitted, and then we
have the basic algorithm of Section 3,
which may lead to deadlock. Other values
of 7 are of potential interest, but no empir-
ical studies have been performed for other
values.

(3) Amount of Buffering on Channels.
The number of buffer spaces on channels
seem to have substantial effects on per-
formance [Quinlivan 1981; Seethalakshmi
19791. When the number of buffer spaces
was reduced to 0, senders had to wait until
the receivers were ready to receive, and a
considerable amount of time seemed to be
spent in waiting. The number of buffer
spaces was then increased and the following
rule was used to annihilate null messages:
Any message put in the buffer after a null
message (and therefore with a higher t com-
ponent) annihilates any null message ahead
of it still in the buffer. The annihilation
rule is somewhat similar to the time-out
mechanism. It was found that, in the sim-
ulation of a certain class of queuing net-
works, the performance improved rapidly
until the number of buffer spaces on
a channel approached 10, increased less
rapidly until about 20, and remained

Computing Surveys, Vol. 18, No. 1, March 1986

Distributed Discrete-Event Simulation l 61

essentially unchanged thereafter. However,
these numbers cannot be applied directly
to other problems; we expect these numbers
to depend on the type of problem and the
speeds of processors and lines.

Next, we describe two different schemes
that limit the number of null message
transmissions. In the query-reply scheme
(4.5), no null message is transmitted along
a channel(y, z) until z demands to have
(y, 2)‘s clock value increased; y may then
be forced to send a null message incre-
menting the channel clock value of (y, z).
In the circulating marker scheme (4.6), a
single marker is used to carry null mes-
sages. It is not clear that either of these
schemes is superior to the basic scheme,
where null messages are transmitted after
a proper time-out. Only empirical investi-
gations can settle these issues.

4.5 Demand-Driven Null Message
Transmisision

Suppose that, on the basis of time-out, lp z
asks lp y to advance the clock value of
(y, z). Such an advance is always possible
if (y, 2)‘s current clock value is less than
y’s clock value (which is the minimum of
channel clock values of (x, y), for all x). In
this case y sends a message, possibly null,
advancing (y, 2)‘s clock value. However, if
(y, 2)‘s clock value equals y’s clock value,
then no advance may be possible. In this
case y has to advance its own clock first,
making the same kind of request of all lp x
for which (x, y)‘s clock value equals y’s
clock value. Hence, effectively the request
has been propagated by y. Only when y’s
clock value increases beyond (y, 2)‘s clock
value can y send a message to z increment-
ing (y, 2)‘s clock value. The propagations
of requests may form a cycle, in which case
a deadlock is detected.

We sketch the algorithm below for an lp
y- A query is a message that is sent by one
lp to another to request that a channel
clock value be advanced; queries will be
propagated, in general. Hence, we assume
that a query contains the path it has tra-
versed and the channel clock values of all
channels along the path; query (po p1 . . .
p,) denotes a query initiated by p. and sent

from Pi to Pi+19 for all i, 0 5 i < n. In
addition, the query contains tip clock
value of the channel (pi+1 9 pi), for all i,
0 5 i < n. It is obvious that tj 2 tj+l and
Olj<n-1.

A reply for a query contains the query
and a new clock value for the last channel
in the query; that is, for a query (p . . .
y x), there is a new (larger) clock value for
channel (x, y). Additionally, a reply may
contain one or more messages. In the fol-
lowing we use “y has query (p a . . y) m as a
Boolean proposition that is set true or false
in the algorithm. Actions of lp y are de-
scribed by the following rules.

(1) Initiating a query ::
if time-out then y has a query(y).

(2) l-$p” receiving a reply to query (p . . .
::

advance channel clock value of (x y) and
receive messages, if any, in the reply; y
has query (p +. . y).

(3) lp y has or receives query (p . a . z y)
(where the sequence may have only one
element y) ::

if y appears more than once in the query
then detect deadlock (recovery from dead-

lock is treated below)
else if lp y can advance the channel clock

value of (y 2)
then send reply to z (including the query,

the new channel clock value and mes-
sages, if any)

else send query (p . . . z y X) to every x
for which clock value of channel
(x: y) = clock value of lp y (unless
such a query has been sent and no
reply is yet received).

A query eventually leads to either detection
of a deadlock or increase of some channel
clock value; we refer the reader to Chandy
and Misra [1982] and Chandy et al. [1983]
for the essential ideas in the proof of this
claim.

Consider the situation in Example 3.5.
A query initiated by y is received by x,
propagated to z, and then propagated to y,
which detects deadlock. If the query were
initiated by x, it is sent to z and is propa-
gated by z to y; then y replies, advancing
the channel clock value of (y, z) to 20, z

Computing Surveys, Vol. 18, No. 1, March 1986

62 l Jayadev Misra

sends the query to y again, and y sends the mation for deadlock detection, as described
query to z, which detects deadlock. below.

Resolution of deadlock is surprisingly
difficult. In the above example x can detect
deadlock, but it cannot, in general, advance
its own clock to 25, the channel clock value
of the channel outside the deadlocked set.
This is because the physical process x may
send out a message, say at time 22, if it
receives no message between 20 and 22
along either input channel. This is certainly
conceivable, for example, if x is an alarm
clock that is set at time 20 to go off at time
22 unless it is canceled before that time.
Therefore, lp X’S clock value cannot be ad-
vanced to 25. Resolution of deadlock may
be accomplished by determining the mini-
mum of the “next event times”: For every
lp in the deadlocked set, the time at which
a message will be sent (provided no further
message is received up to then) is deter-
mined, and the clock value of the lp with
the minimum clock value is advanced to
this time. This calculation may be carried
out in a centralized or decentralized fash-
ion; in fact, the query may carry the next
event time for each lp it has seen, in which
case the detection of deadlock can also de-
termine which lp may restart and at what
clock value.

Each lp has a l-bit flag to show whether
the lp has received or sent a message since
the last departure of the marker from the
lp. We say that an lp is white if it has
neither received nor sent a message since
the last departure of the marker from the
lp; the lp is black otherwise. Initially all lp’s
are black. The marker declares deadlock
when it finds that the last N lp’s that is
has visited were all white when it arrived
at the lp, where N is the number of chan-
nels in the network. The algorithm is cor-
rect if messages between two lp’s, including
the marker, are received in the order sent;
see Misra [1983] for a precise description
and proof of this result.

We can use this scheme to detect and
recover from deadlock. The marker, in ad-
dition to keeping the number of white lp’s
it has seen since it last saw a black lp,
carries the minimum of “next-event-times”
for the white lp’s it visits: Each white lp
can report the time of the next event, as-
suming it receives no further messages, to
the marker, and the marker merely keeps
track of the smallest of these, and the cor-
responding lp. When the marker detects
deadlock, it knows the next event time and
the lp at which this next event occurs.
Therefore, it can restart that lp. Alter-
nately, a central process may broadcast
(send messages to all 1~‘s) to advance their
clocks to the next event time in the system.

4.6 Circulating Marker for Deadlock
Detection and Recovery

A suggestion has been made in Chandy and
Misra [1981] to let the basic simulation
scheme deadlock, detect deadlock, and
recover from it. We now discuss two meth-
ods for deadlock detection and recovery.

Consider a marker that continuously cir-
culates in a network. It follows a cycle of
channels such that it traverses every chan-
nel of the network sometime during a cycle.
Such a cycle exists if the network is
strongly connected; new channels may be
added to the network to make it strongly
connected. The marker is merely a special
type of message. It initially starts at some
lp. If an lp receives the marker, its obliga-
tion is to send the marker (along its desig-
nated route) within a finite time of being
idle (i.e., not having anything more to
send). We let the marker carry some infor-

The overhead messages in this case are
for marker transmissions. If deadlocks are
infrequent, the marker may move slowly.
In this case the deadlock may be detected
some time after it occurs, but the propor-
tion of overhead messages to genuine mes-
sages will be low.

An elegant variation of this deadlock de-
tection scheme has been discovered by
Chandy [unpublished notes] and refined by
Kumar [19861. As before, there is a marker
that visits the 1~‘s. However, it visits them
in an arbitrary fashion, with the only re-
quirement being that it visit each lp even-
tually. It collects the following information
from an lp when it visits it: (1) status
of the lp (an lp is idle if it will send no
more messages unless it first receives a

Computing Surveys, Vol. 18, No. 1, March 1986

Distributed Discrete-Event Simulation l 63

message; it is nonidle, otherwise), and (2)
number of messages received along every
input channel and number sent along every
output channel of the lp. This information
overwrites any previous information col-
lected from that lp. Note that the infor-
mation collected by a marker may become
obsolete if an lp receives messages, becomes
nonidle, and/or sends messages after the
marker collects the information from the
lp. Yet, the marker can declare deadlock if
the information it has collected shows that
every lp is idle and, for every channel, the
number of messages sent equals the number
of messages received.

These schemes have to be modified for
detecting deadlocks within a subnetwork in
the logical system; we can determine,
through preprocessing, the subnetworks
that may deadlock, and then we can assign
markers to these subnetworks.

5. SUMMARY AND CONCLUSION

In this section, we summarize the discus-
sions about distributed simulation, its
status, problems, and future research
directions. We hope to have demonstrated
that distributed simulation may be applied
in every situation in which sequential dis-
crete-event simulation may be applied. Our
examples have been predominantly from
the area of computer systems, since a
queuing network description of a computer
is a physical system. However, our physical
systems encompass a large variety of real-
world applications. Implementation of
distributed simulation is possible in any
language that allows creation of message
communicating processes.

The assignment of logical processes to
physical processors should follow the guide-
line that the message traffic among pro-
cessors be as low as possible. Message
communication may be accomplished
either through a common memory (mes-
sages are deposited in a common memory
by the sender and removed by the receiver)
or by other interaction mechanisms among
processors. The important criterion is how
loosely coupled the processors are. If two
processors are tightly coupled, that is, if the
logical processes on these processors ex-

change a large number of messages, then
the processors must also exchange at least
that many messages, and the message
traffic will be heavy. If processors are
loosely coupled, they can operate autono-
mously, that is, without communicating
with other processors, for longer periods of
time. It is also easier to avoid deadlock
among a set of logical processes if they are
simulated on one processor, because a cen-
tralized scheduler, employed for message
communication, can also detect deadlock.

Static partitioning of the physical net-
work among a fixed number of processors
requires preprocessing prior to simulation.
Preprocessing is useful for many other rea-
sons, too. In the circulating marker algo-
rithm, preprocessing is needed to determine
a (static) cyclic path for the marker. Pre-
processing could also be used to partition
the lp’s such that the amount of branching
is reduced and cycles are mostly contained
within one processor. Preprocessing can de-
termine other simulation parameters for
time-out, sizes of buffers on channels, etc.
This is an area that has been extensively
studied for sequential simulations. It needs
to be studied again for distributed simula-
tion, since the problems are somewhat
different in nature.

We have sketched several variations of
the basic scheme for deadlock resolution.
There is little evidence yet of the superior-
ity of any one scheme. The large number
of heuristics suggests that some combina-
tion may be appropriate for particular prob-
lem domains. For instance, if we use a set
of uniform processors, among which mes-
sage communication is expected to be reg-
ular, we can expect that deadlock will rarely
arise, and therefore a (slowly) circulating
marker scheme would be preferable. Also,
the marker can be used to collect statistical
information about the simulation itself,
and hence the simulation parameters, such
as time-outs, can be dynamically changed.

We have not discussed specific hardware
architectures that can support simu-
lation. There has not been enough experi-
mentation with distributed simulation to
know where it spends most of its time,
and whether any architectural improve-
ment would be useful for all distributed

Computing Surveys, Vol. 18, No. 1, March 1986

64 . Jayadev Misra

simulation problems. At present, any
architecture that supports processes and
communication among them would be
appropriate.

Currently, the most important problem
in distributed simulation is the empirical
investigation of various heuristics on a wide
variety of problems to establish (1) which
heuristics work well for which problems
and on which machine architectures,
(2) how to partition the physical system
among a fixed set of processors, and (3)
how to set simulation parameters such as
time-outs and buffer sizes.

ACKNOWLEDGMENTS

This research has been supported by a grant from the
Air Force Office of Scientific Research under grant
AFOSR 85-0252.

I am deeply indebted to my friend and colleague,
K. M. Chandy of The University of Texas, Austin, for
his help, advice, and stimulating ideas. I am thankful
to the Computer Systems Lab at Stanford University,
and in particular to Susan Owicki, for providing a
proper environment for the initial preparation of this
paper. I am grateful to Doug DeGroot, formerly of
IBM, Yorktown Heights, and Devendra Kumar of The
University of Texas, Austin, for their editing efforts
and helpful comments on the first draft of this man-
uscript. Unusually thorough reviews by two anony-
mous referees and the help and guidance of Dick
Muntz, associate editor of Computing Surveys, are
deeply appreciated.

REFERENCES

BAGRODIA, R., CHANDY, K. M., AND MISRA, J. N.d.
A message-based approach to discrete-event sim-
ulation. IEEE Trans. Softw. Eng., to appear.

BEZIVIN, J., AND IMBERT, H. 1983. Adapting a sim-
ulation language to a distributed environment. In
Proceedings of the 3rd International Conference
on Distributed Computing Systems (Ft. Lauder-
dale, Fla.). IEEE, New York, pp. 596-603.

BIRTWISTLE, G. 1979. DEMOS: A System for Dis-
crete Event Simulation. Macmillan Press, New
York.

BIRTWISTLE, G. M.,DAHL, 0. J., MYHRHAUG, B., AND
NYGAARD, K. 1973. Simula Begin. Auerbach,
Philadelphia.

BRYANT, R. E. 1977. Simulation of packet commu-
nication architecture computer systems. Tech.
Rep. MIT, LCS, TR-188, Massachusetts Institute
of Technology, Cambridge, Mass.

CHANDY, K. M., AND MISRA, J. 1979. Distributed
simulation: A case study in design and verifica-
tion of distributed programs. IEEE Trans. Softw.
Eng. SE-5, 5, 440-452.

CHANDY, K. M., AND MISRA, J. 1981. Asynchronous
distributed simulation via a sequence of parallel
computations. Commun. ACM 24, 4 (Apr.),
198-205.

CHANDY, K. M., AND MISRA, J. 1982. A distributed
algorithm for detecting resource deadlocks in dis-
tributed systems. In Proceedings of the ACM
SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (Ottawa, Ontario, Can-
ada). ACM, New York, pp. 157-164.

CHANDY, K. M., MISRA, J., AND HOLMES, V. 1979.
Distributed simulation of networks. Comput.
Netw. 3, 105-113.

CHANDY, K. M., MISRA, J., AND HAAS, L. M. 1983.
Distributed deadlock detection. ACM Trans.
Comput. Syst. I,2 (May), 144-156.

CHRISTOPHER, T., EVENS, M., GARGEYA, R. R., AND
LEONHARDT, T. 1983. Structure of a distributed
simulation system. In Proceedings of the 3rd In-
ternational donference on Distribute> Computing
Svstems (Ft. Lauderdale. Fla.). IEEE. New York.
pp. 584-589.

I I

DAHL, 0. J., MYHRHAUG, B., AND NYGAARD, K. 1970.
Simula 67 Common Base Language. Norwegian
Computing Centre, Oslo, Norway.

FISHMAN, G. S. 1978. Principles of Discrete Event
Simulation. Wiley, New York.

FRANTA, W. R. 1977. Process View of Simulation.
Elsevier Computer Science Library, Operating
and Programming Systems Series, P. J. Denning,
Ed. Elsevier North-Holland, New York.

HOLMES, V. 1978. Parallel algorithms on multiple
processor architectures. PbD dissertation, Com-
puter Science Dept., Univ. Texas at Austin, Aus-
tin, Tex.

JEFFERSON, D. R. 1985. Virtual time. ACM Trans.
Prog. Lang. Syst. 7, 3 (July), 404-425.

KUMAR, D. 1986. Ph.D dissertation (in preparation).
Computer Science Dept., Univ. Texas at Austin,
Au&n, Tex. -

LAVENBERG, S., MUNTZ, R., AND SAMADI, B. 1983.
Performance analysis of a rollback method for
distributed simulation. In Performance ‘83, A. K.
Agrawala and S. K. Tripathi, Eds. North Holland,
New York, pp. 117-132.

LONOW, G., AND UNGER, B. 1982. Process view of
simulation in Ada. In 1982 Winter Simulation
Conference (San Diego, Calif., Dec. 6-8). IEEE,
New York, pp. 77-86.

MISRA, J. 1983. Detecting termination of distributed
computations using markers. In Proceedings of
the ind ACM Principles of Distributed Computing
(Montreal, Ontario, Canada). ACM, New York,
pp. 290-293.

PEACOCK, J. K., WONG, J. W., AND MANNING, E. G.
1979a. Distributed simulation using a network
of processors. Comput. Netw. 3, 1,44156.

PEACOCK, J. K., WONG, J. W., AND MANNING, E. G.
197913. A distributed approach to queuing net-
work simulation. In Proceedings of- the @inter
Simulation Conference (San Diego, Calif.). IEEE,
New York, pp. 399-406.

Computing Surveys, Vol. 18, No. 1, March 1986

Distributed Discrete-Event Simulation l 65

QUINLIVAN, B. 1981. Deadlock resolution in distrib- SEETHALAKSHMI, M. 1979.
uted simulation. Master’s thesis, Computer Sci-

A study and analysis of
performance of distributed simulation. Master’s

ence Dept., Univ. Texas at Austin, Austin, Tex. thesis, Computer Science Dept., Univ. of Texas
REYNOLDS, P. 1982. A shared resource algorithm for at Austin, Austin, Tex.

distributed simulation. In Proceedings of the 9th U.S. DOD 1982. Reference Manual for the ADA Pro-
International Symposium on Computer Architec-
ture (Austin, Tex.). IEEE, New York, pp.
259-266.

gramming Lan&age. U.S. Department of De-
fense.

Received February 1985; final revision accepted May 1986

Computing Surveys, Vol. 18, No. 1, March 1986

