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1948
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Information Theory

• Fundamental Limits

lossless data compression
lossy data compression
channel coding
complexity of simulation
portfolio allocation
decisions

• Information Measures

Shannon theory
ergodic theory
probability and statistics
physics, economics, neuroscience...

• Engineering Design Driver
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Lossless Data Compression
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Lossy Data Compression
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Error Correction Codes: Compact Disc
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Codes for Magnetic Recording
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Error Correction Codes: Satellite Communication
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Modems
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Data Transmission: Digital Subscriber Lines
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Data Transmission: Cellular Wireless
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WiFi
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Information Theory as a Design Driver

• Universal data compression

• Sparse-graph codes

• Voiceband modems

• Discrete multitone modulation

• CDMA

• Multiuser detection

• Flash Signaling

• Multiantenna

• Space-time codes

• Dirty-paper coding

• Opportunistic signaling

• Network coding

• Discrete denoising

• Secrecy
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Open Problems: Single-User Channels

14



Open Problems: Single-User Channels

• Reliability Function
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Open Problems: Single-User Channels

• Reliability Function

• Delay – Error Probability Tradeoff
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Delay – Error Probability Tradeoff: Non-asymptotic regime

 how much do we need to 
back off from channel capacity 

when blocklength = 1000?
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Delay – Error Probability Tradeoff: Non-asymptotic regime
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Figure 18: Convergence to capacity and the meaning of V : BEC(δ = 0.5), ε = 10−3.
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Delay – Error Probability Tradeoff: Non-asymptotic regime
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Figure 15: Normalized rates for various practical codes over AWGN, probability of block
error ǫ = 10−4.
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Open Problems: Single-User Channels

• Reliability Function

• Delay – Error Probability Tradeoff

• Feedback

partial/noisy feedback
delay-performance tradeoff;
constructive schemes
Gaussian channels with memory

• Deletions, Synchronization

• Zero-error Capacity
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Open Problems: Multiuser Channels
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Open Problems: Multiuser Channels

• Interference Channels
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Interference Channels
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Open Problems: Multiuser Channels

• Interference Channels

• Two-way Channels
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Two-Way Channels
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Open Problems: Multiuser Channels

• Interference Channels

• Two-way Channels

• Broadcast Channels
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Broadcast Channels
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Open Problems: Multiuser Channels

• Interference Channels

• Two-way Channels

• Broadcast Channels

• Relay Channels
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Relay Channels
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Open Problems: Multiuser Channels

• Interference Channels

• Two-way Channels

• Broadcast Channels

• Relay Channels

• Compression-Transmission

31



Open Problems: Data Compression: Non-asymptotics

how many bits do we 
need to compress a 

140-character
twitter message?
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Open Problems: Lossless Data Compression

• Non-asymptotic regime

• Joint source/channel coding

• Images

• Implementing Slepian-Wolf:

Backup hard-disks with dialup modems?

• ⇐= Artificial intelligence

• Entropy rate of sources with memory
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Entropy Rate of Sources with Memory

δ
0 1

1-p

p
1-p

p
0

1

0

1

δ

34



Open Problems: Lossy Data Compression

• Theory ↔ ↔ Practice
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Open Problems: Lossy Data Compression

• Theory ↔ ↔ Practice

• Constructive schemes

memoryless sources
universal lossy data compression
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Open Problems: Lossy Data Compression

• Theory ↔ ↔ Practice

• Constructive Schemes

memoryless sources
universal lossy data compression

• Multi-source Fundamental Limits
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Multi-source Fundamental Limits
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Open Problems: Lossy Data Compression

• Theory ↔ ↔ Practice

• Constructive Schemes

memoryless sources
universal lossy data compression

• Multi-source Fundamental Limits

• Rate-Distortion Functions
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Binary Markov chain; Bit Error Rate

0 ≤ p ≤ 1
2

R (D) =
{

h(p)− h(D) for 0 ≤ D ≤ D∗
UNKNOWN otherwise.
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Gradient

↗ Constructive

↗ Applied

↗ Multiuser

↗ Universal Methods

↘ Combinatorics

↘ Continuous Time

↘ Ergodic Theory

↘ Error Exponents

↗ Intersections
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Intersections

• Networks

Network coding
Scaling laws

.
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Network Coding
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Scaling Laws
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Intersections

• Networks

Network coding
Scaling laws

• Signal Processing

Estimation theory
Compressed sensing
Discrete denoising
Finite-alphabet
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Information Theory⇔ Estimation Theory

Arbitrary Inputs: Vector Channel

Theorem (Guo-Shamai-Verdú, 2005)

Y =
√

snr ·H X + W

For every PX satisfying E
{

X>X
}

< ∞,

d
dsnr

I
(
X;

√
snr ·H X + W

)
=

1
2
mmse(snr)

22

• Entropy power inequality

• Monotonicity of nonGaussianness

• Mercury-Waterfilling

• Continuous-time Nonlinear Filtering
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Information Theory⇔ Nonlinear Filtering

Random Telegraph Input
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Figure 4: Sample paths of the input and output process of an additive white Gaussian noise
channel, the output of the optimal forward and backward filters, as well as the output of the
optimal smoother. The input {Xt} is a random telegraph waveform with unit transition rate.
The signal-to-noise ratio is 15 dB.

the expressions for the MMSEs achieved by optimal filtering and smoothing are obtained as [52,
53]:

cmmse(snr) = c(snr)
∫ ∞

1
(u− 1)−

1
2u−

1
2 e−

2νu
snr du, (115)

and

mmse(snr) =[c(snr)]2
∫ 1

−1

∫ 1

−1

[
x+ y

1 + xy
− 1
]−1

· (1 + x)(1− x2)−2(1 + y)

· (1− y2)−2 · exp
[
− 2ν

snr

(
(1− x2)−1 + (1− y2)−1

)]
dx dy

(116)

respectively, where

c(snr) =
[∫ ∞

1
u

1
2 (u− 1)−

1
2 e−

2νu
snr du

]−1

. (117)

The relationship (112) can be verified by algebra [34]. The MMSEs are plotted in Figure 5 as
functions of the signal-to-noise ratio.

Figure 4 shows experimental results of the filtering and smoothing of the random telegraph
signal corrupted by additive white Gaussian noise. The forward filter follows Wonham [52]:

dQt = −[2νQt + snrQt(1−Q2
t )] dt+

√
snr(1−Q2

t ) dYt, (118)

where
Qt = E

{
Xt | Y t

0

}
. (119)
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Arbitrary Inputs: Filtering vs Smoothing

Theorem (Guo-Shamai-Verdú, 2005)

Yt =
√

snr Xt + Nt, t ∈ (−∞,∞),

cmmse(snr) =
1

snr

∫ snr

0

mmse(γ) dγ

47
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Intersections

• Networks

Network coding
Scaling laws

• Signal Processing

Estimation theory
Compressed sensing
Discrete denoising
Finite-alphabet
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Text Denoising: Don Quixote de La Mancha

Noisy Text (21 errors, 5% error rate):

”Whar giants?” said Sancho Panza. ”Those thou seest theee,” snswered yis master, ”with
the long arms, and spne have tgem ndarly two leagues long.” ”Look, ylur worship,” sair
Sancho; ”what we see there zre not gianrs but windmills, and what seem to be their arms
are the sails that turned by the wind make rhe millstpne go.” ”Kt is easy to see,” replied
Don Quixote, ”that thou art not used to this business of adventures; fhose are giantz; and
if thou arf wfraod, away with thee out of this and betake thysepf to prayer while I engage
them in fierce and unequal combat.”

DUDE output, k = 2 (7 errors):

”What giants?” said Sancho Panza. ”Those thou seest there,” answered his master, ”with
the long arms, and spne have them nearly two leagues long.” ”Look, your worship,” said
Sancho; ”what we see there are not giants but windmills, and what seem to be their arms
are the sails that turned by the wind make the millstone go.” ”It is easy to see,” replied Don
Quixote, ”that thou art not used to this business of adventures; fhose are giantz; and if
thou arf wfraod, away with thee out of this and betake thyself to prayer while I engage
them in fierce and unequal combat.”
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BSC systematic output; C = 1− h(0.25) = 0.19

0.25
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BP Decoder Output (RA; Rate = 0.25; k = 4000; 30 iter.)

0.21
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Denoising+Decoding

0.0003
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Intersections

• Networks

Network coding
Scaling laws

• Signal Processing

Estimation theory
Compressed sensing
Discrete denoising
Finite-alphabet

• Control

Noisy [plant −→ controller] channel.
Control-oriented feedback communication schemes.
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Intersections

• Networks

Network coding
Scaling laws

• Signal Processing

Estimation theory
Compressed sensing
Discrete denoising
Finite-alphabet

• Control

Noisy [plant −→ controller] channel.
Control-oriented feedback communication schemes.

• Computer Science

Analytic information theory
Interactive communication
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Other Intersections

• Economics

• Quantum

• Bio

• Physics
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Emerging Tools

• Optimization

• Statistical Physics

• Random Matrices
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