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Better, Stronger, Faster 



Accelerating Data Deluge 

•  1250 billion gigabytes  
generated in 2010 
–  # digital bits > # stars  

in the universe 
–  growing by a factor  

of 10 every 5 years  

  

•  Total data generated   
 >  total storage 

•  Increases in generation rate >> increases in  
        transmission rate  

Available transmission bandwidth 



Case in Point:  DARPA ARGUS-IS 

•  1.8 Gpixel image sensor 
–  video rate output:  

  770 Gbits/s 
–  data rate input:   

  274 Mbits/s 
 
factor of 2800x 
 way out of reach of 
existing compression 
technology 

 
•  Reconnaissance 

without conscience 
–  too much data to transmit to a ground station 
–  too much data to make effective real-time decisions 



Accelerating Data Deluge 



Today’s Menu 

•  What’s wrong with today’s sensor systems?  
   why go to all the work to acquire massive 
   amounts of multimedia data  
   only to throw much/most of it away? 

•  One way out:  dimensionality reduction  
   (compressive sensing) 
   enables the design of radically  
   new sensors and systems 

•  Theory:   mathematics of sparsity 
   new nonlinear signal models 
   and recovery algorithms 

•  Practice:   compressive sensing in action 
   new cameras, imagers, ADCs, … 



Sense by Sampling 

sample 



Sense by Sampling 

sample too  
much  
data! 



Sense then Compress 
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•  Sparse signal:   only K out of N  
     coordinates nonzero 

–  model:  union of K-dimensional subspaces 

•  Compressible signal:  sorted coordinates decay 
     rapidly with power-law   

sorted index 

power-law 
decay 

Concise Signal Structure 



•  Sparse signal:   only K out of N  
     coordinates nonzero 

–  model:  union of K-dimensional subspaces 

•  Compressible signal:  sorted coordinates decay 
     rapidly with power-law   

–  model:        ball: 

sorted index 

power-law 
decay 

Concise Signal Structure 



What’s Wrong with this Picture? 

•  Why go to all the work to acquire  
N samples only to discard all but  
K pieces of data? 

compress 

decompress 

sample 



What’s Wrong with this Picture? 
linear processing 
linear signal model 
(bandlimited subspace) 

compress 

decompress 

sample 

nonlinear processing 
nonlinear signal model 
(union of subspaces) 



Compressive Sensing 
•  Directly acquire “compressed” data  

via dimensionality reduction 

•  Replace samples by more general “measurements” 

compressive sensing 

recover 



•  Signal      is    -sparse in basis/dictionary 
–  WLOG assume sparse in space domain 

•  Sampling 

sparse 
signal 

nonzero 
entries 

measurements 

Sampling 



Compressive Sampling 
•  When data is sparse/compressible, can directly 

acquire a condensed representation with  
no/little information loss through  
linear dimensionality reduction 

measurements sparse 
signal 

nonzero 
entries 



How Can It Work? 

•  Projection  
not full rank… 
 
 
 
… and so  
loses information in general 

•  Ex: Infinitely many    ’s map to the same 
(null space)  
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•  But we are only interested in sparse vectors 

columns 
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•  But we are only interested in sparse vectors 

•       is effectively MxK 

columns 



How Can It Work? 

•  Projection  
not full rank… 
 
 
 
… and so  
loses information in general 

 
•  But we are only interested in sparse vectors 

•  Design      so that each of its MxK submatrices  
are full rank (ideally close to orthobasis) 
–  Restricted Isometry Property (RIP) 

columns 



RIP = Stable Embedding 
•  An information preserving projection      preserves 

the geometry of the set of sparse signals 

•  RIP ensures that 



How Can It Work? 

•  Projection  
not full rank… 
 
 
 
… and so  
loses information in general 

 
•  Design      so that each of its MxK submatrices  

are full rank (RIP) 

•  Unfortunately, a combinatorial,  
  NP-Hard design problem 

columns 



Insight from the 70’s [Kashin, Gluskin] 

•  Draw     at random 
–  iid Gaussian 
–  iid Bernoulli 

 …  

 
•  Then      has the RIP with high probability   

provided 

columns 



Randomized Sensing 

•  Measurements      = random linear combinations  
       of the entries of 

•  No information loss for sparse vectors     whp 

measurements sparse 
signal 

nonzero 
entries 



CS Signal Recovery 

•  Goal:  Recover signal  
from measurements 

•  Problem:  Random 
projection      not full rank 
(ill-posed inverse problem) 

•  Solution:  Exploit the sparse/compressible 
geometry of acquired signal 



CS Signal Recovery 
•  Random projection  

not full rank 

•  Recovery problem: 
given 
find 

•  Null space   
 

•  Search in null space  
for the “best”  
according to some  
criterion 
–  ex: least squares (N-M)-dim hyperplane 

at random angle 



•  Recovery:    given 
(ill-posed inverse problem)   find           (sparse) 

•  Optimization: 

•  Closed-form solution: 

•  Wrong answer! 

  

Signal Recovery 



•  Recovery:    given 
(ill-posed inverse problem)   find           (sparse) 

•  Optimization: 

•  Closed-form solution: 

•  Wrong answer! 

  

Signal Recovery 



•  Recovery:    given 
(ill-posed inverse problem)   find           (sparse) 

•  Optimization: 

•  Correct! 

•  But NP-Complete alg 

Signal Recovery 

“find sparsest vector 
in translated nullspace” 



•  Recovery:    given 
(ill-posed inverse problem)   find           (sparse) 

•  Optimization: 

•  Convexify the      optimization 

Signal Recovery 

Candes   Romberg    Tao Donoho 



•  Recovery:    given 
(ill-posed inverse problem)   find           (sparse) 

•  Optimization: 

•  Convexify the      optimization 

 
•  Correct! 

•  Polynomial time alg 
(linear programming) 

Signal Recovery 



CS Hallmarks 
 

•  Stable 
–  acquisition/recovery process is numerically stable 

•  Asymmetrical (most processing at decoder)  
–  conventional:  smart encoder, dumb decoder 
–  CS:   dumb encoder, smart decoder 

•  Democratic 
–  each measurement carries the same amount of information 
–  robust to measurement loss and quantization 
–  “digital fountain” property 

•  Random measurements encrypted 

•  Universal  
–  same random projections / hardware can be used for 

any sparse signal class                               (generic) 



Universality 

•  Random measurements can be used for signals 
sparse in any basis 



Universality 

•  Random measurements can be used for signals 
sparse in any basis 



Universality 

•  Random measurements can be used for signals 
sparse in any basis 

sparse 
coefficient 

vector 

nonzero 
entries 



Compressive Sensing 
In Action 

 
Cameras 



“Single-Pixel” CS Camera 

random 
pattern on 
DMD array 

DMD DMD 

single photon  
detector image 

reconstruction 
or 
processing 

w/ Kevin Kelly  

scene 



“Single-Pixel” CS Camera 

random 
pattern on 
DMD array 

DMD DMD 

single photon  
detector image 

reconstruction 
or 
processing 

scene 

•  Flip mirror array M times to acquire M measurements 
•  Sparsity-based (linear programming) recovery 

… 



First Image Acquisition 

target  
65536 pixels 

1300 measurements  
(2%) 

11000 measurements 
(16%) 



Utility? 

DMD DMD 

single photon  
detector 

Fairchild 
100Mpixel  

CCD 



CS Low Light Imager 

photomultiplier  
tube 

low light image 

target 

true color low-light imaging 

256 x 256 image with 10:1 
compression 
[Nature Photonics, April 2007] 



CS Infrared Imager 

IR photodiode 

raster scan IR 

CS IR 



CS Hyperspectral Imager 

spectrometer 

hyperspectral data cube 
450-850nm  

N=1M space x wavelength voxels 
M=200k random measurements 



Compressive Sensing 
In Action 

 
Video Acquisition 



From Image to Video Sensing 

•  Nontrivial extension of CS image acquisition  
–  immoral to treat time as 3rd spatial dimension 

 
•  Ephemeral temporal events 

–  should measure temporal events at their “information rate”  
–  fleeting events hard to predict and capture 

•  Computational complexity involved in recovering 
billions of video voxels  

 



Simple LDS Model 

•  Linear dynamical system 
model 
–  image sequence lies along  

a curve on a linear subspace 

•  Reasonable model for 
certain physical phenomena 
–  flows, waves, … 

•  Leverage modern state space techniques to 
estimate image sequence from compressive 
measurements 



Flame Video 



Traffic Video 

ground truth 

CS video recovery 
 

measurement rate = 4% 



Compressive Sensing 
In Action 

 
A/D Converters 



Analog-to-Digital Conversion 
•  Nyquist rate limits reach of today’s ADCs 

•  “Moore’s Law” for ADCs: 
–  technology Figure of Merit incorporating sampling rate 

and dynamic range doubles every 6-8 years 

•  Analog-to-Information (A2I) converter 
–  wideband signals have  

high Nyquist rate  
but are often  
sparse/compressible 

–  develop new ADC  
technologies to exploit 

–  new tradeoffs among 
Nyquist rate, sampling rate, 
dynamic range, … 

frequency hopper 
spectrogram 

time 

fr
eq
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Streaming Measurements 

measurements 

streaming requires  
special 

•  Streaming applications:  cannot fit entire signal 
into a processing buffer at one time 



Streaming Measurements 

measurements 

streaming requires  
special 

•  Streaming applications:  cannot fit entire signal 
into a processing buffer at one time 

RIP? 



Streaming Measurements 

streaming requires  
special 

•  Many applications:  Signal sparse in frequency 
    (Fourier transform) 



Random Demodulator 

A 

A 
B 

B 

C 

C 
D 

D 



Random 
Demodulator 



Random 
Demodulator 



Sampling Rate 

 
 
•  Goal:  Sample near signal’s (low) “information rate”  

rather than its (high) Nyquist rate 

A2I 
sampling  
rate 

number of 
tones / 
window 

Nyquist 
bandwidth 



Sampling Rate 

•  Theorem [Tropp, B, et al 2007] 
 

 If the sampling rate satisfies 
 
 

 then locally Fourier K-sparse signals can be 
recovered exactly with probability 



Empirical Results 



Example: Frequency Hopper 

 20x sub-Nyquist 
sampling 

spectrogram sparsogram 

 Nyquist rate sampling  



Example: Frequency Hopper 

 20x sub-Nyquist 
sampling 

spectrogram sparsogram 

 Nyquist rate sampling  

20MHz sampling rate 1MHz sampling rate 

conventional ADC CS-based AIC 



Dynamic Range 

•  Key result:  Random measurements don’t affect 
   dynamic range 

IEEE SIGNAL PROCESSING MAGAZINE [71] NOVEMBER 2005

The pipelined structure and unknown structure have the
best overall performance, so that they are best suited for
applications with high performance requirements, such as
wireless transceiver applications and military use [3]. SAR
ADCs have widely ranging sampling rates, though they are
not the fastest devices. Still, these devices are popular for
their range of speeds and resolutions as well as low cost and
power dissipation. It can be seen that there is a borderline of
sampling rate at around 30 Ms/s separating the sigma-delta
and flash ADCs. Sigma-delta ADCs have the highest resolu-
tion with relatively low sampling rates from kilosamples per
second to megasamples per second, while flash ADCs have
the highest sampling rates up to
Gsps due to their parallel structure
but with a resolution limited to no
more than 8 b due to nonlinearity.
Between these two structures are
unknown structures compromising
speed and resolution. 

We are also interested in the
envelope of the sample distributions
in this plot since such an envelope
indicates the performance limita-
tions. It is reasonable to extract the
envelope information based on the
ADCs with the highest performance
to postulate the design challenges
and technology trends.

In Figure 1, if Walden’s claim that P
is relatively constant is true, according
to (1), the envelope line should show
that a 3 dBs/s increment in fs corre-
sponds to a 1-b reduction in resolution.
However, Figure 1 shows that the real
tradeoff is 1 b/2.3 dBs/s. Compared to
the 1 b/3 dBs/s slope hypothesis, there
is an improvement in P at low sam-
pling rates and degradation at high
sampling rates. This trend indicates
that the ADC performance boundary is
varying with sampling rate, as illustrat-
ed by Figure 2 where ENOB is plotted
versus the sampling rate.

As stated previously, noise and dis-
tortion cause most of the performance
degradation in practical ADCs. The
internal sample-hold-quantize signal
operations are nonlinear, and those
effects are represented as equivalent
noise effects so that they can be unified
into noise-based equations to simplify
the performance analysis. Therefore,
besides thermal noise, we have two
additional noise sources, quantization
noise [2] and aperture-jitter noise [1].

THERMAL NOISE
Thermal noise by itself [1] has a 1 b/6 dBs/s relationship to sam-
pling frequency assuming Nyquist sampling [2]. However, it is
usually overwhelmed by the capacitance noise since the S/H stage,
as the input stage of an ADC, shows strong capacitive characteris-
tics. Therefore, the capacitance noise (modeled as kT/C noise [4],
where k is Boltzmann’s constant, T is the temperature, and C is
the capacitance) is usually assumed as the input noise floor.

QUANTIZATION NOISE
The signal distortion in quantization is modeled as quantization
noise with a signal-to-quantization-noise ratio (SQNR) definition of

[FIG1] Stated number of bits versus sampling rate.
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[FIG2] ENOB versus sampling rate.
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Application:  Frequency Tracking 

•  Compressive Phase Locked Loop (PLL)  
–  key idea: phase detector in PLL computes inner product 

between signal and oscillator output 
–  RIP ensures we can compute this inner product between 

corresponding low-rate CS measurements 

CS-PLL w/ 20x 
undersampling 



Summary: CS 
•  Compressive sensing 

–  randomized dimensionality reduction 
–  exploits signal sparsity information 
–  integrates sensing, compression, processing 

 

•  Why it works:  with high probability, random  
   projections preserve information  
   in signals with concise geometric  
   structures 

•  Enables new sensing architectures 
–  ADCs, radios, cameras, … 

•  Can process signals/images directly from their 
compressive measurements 



Open Research Issues 

•  Links with information theory 
–  new encoding matrix design via codes (LDPC, fountains) 
–  new decoding algorithms (BP, etc.) 
–  quantization and rate distortion theory 

•  Links with machine learning 
–  Johnson-Lindenstrauss, manifold embedding, RIP 

•  Processing/inference on random projections 
–  filtering, tracking, interference cancellation, … 

•  Multi-signal CS 
–  array processing, localization, sensor networks, … 

•  CS hardware 
–  ADCs, receivers, cameras, imagers, radars, … 



dsp.rice.edu/cs 


