B1.  Algorithms (25 points)
Do all four parts

a) [7 points] Assume given are an array, x1, x2, …, xn, of n elements and a function f defined on those elements. Assume that the possible values of f(x) are 1, 2, …, m. Rearrange the array in such a way that the values of f are in non-decreasing order, f(xi) ≤ f(xi+1),  and the elements with equal values of f are in the same order as before. The number of operations should be of order m + n.  Computing f(x), the value of f at an element x, counts as one operation.

b) [6 points] Briefly prove that the lower bound for sorting n items based on comparisons is ((n log n).

c) [7 points] Describe an algorithm that uses the minimum number of comparisons to select the second largest element from an unsorted array of n elements.

d) [5 points] Give an algorithm to find the median of an array of n elements.  Your algorithm may be probabilistic.  It must run in linear expected time.
B2 Algorithms (25 points)

Select any five of the following items.  If you select more than five, only the first five will be graded. For each item that you select, give a short explanation of the item (data structure, algorithm, or technique). You should capture the main idea/ideas of the algorithm or technique in your explanation, and for algorithms, state the running time.

a) Dijkstra’s single source shortest path algorithm

b) Knuth-Morris-Pratt pattern matching algorithm

c) Fast Fourier Transform

d) Strassen’s matrix multiplication algorithm

e) Prim’s minimum spanning tree algorithm

f) Kruskal’s minimum spanning tree algorithm

g) Ford-Fulkerson network flow algorithm

h) Dynamic programming

i) Warshall’s transitive closure algorithm

B3 Algorithms (25 points)

Do all parts

a)  [9 points] Binary heap. Given an array A of n integers, explain how to convert (permute) it into a binary min heap in the most efficient way. State and briefly justify/prove the time complexity of your algorithm.  Show the result of applying your algorithm to the following array: 4, 1, 3, 2, 16, 9, 10, 14, 8, 7.

b) [6 points] d-ary heaps: Some algorithms using a priority queue have a predictable number of inserts and extract-min operations.  For a heap implementation, it may be advantageous to keep the depth down by having more children at each node. Let d be an integer greater than 1.  A (min) d-ary heap is like a binary heap in that each parent has a fixed number of children except the last, which may have fewer.  In the d-ary case, each parent has d children except the last parent which has at most d.  Each parent has a value no greater than any of its children’s values.  A d-ary heap may be stored in an array, with the j-th child of i at position d*(i-1) + j + 1.  For a d-ary min-heap of n items, give and explain the run time of (i) inserting an element, and (ii) extracting the minimal element.   Express each runtime as a function of n and d. (Remark: a binary heap is a d-ary heap with d = 2.)

c) [10 points]  To support the dictionary operations of search, insert, and delete of key-value pairs, balanced tree schemes may be used, such as red-black trees, 2-3 trees, or AVL trees.  Select one of these tree balancing schemes and explain it’s structure and the steps used to insert a new element in the structure.  Be sure to make clear how depth proportional to log n is maintained.  Draw a picture of the structure after the keys 1,2,3,4,5,6,7,8,9 are inserted (in that order) into an initially empty tree.

B4 Algorithms (25 points)

Do all three parts.
a)  [6 points]  Formally define the following terms:
· P

· NP

· polynomially reducible

· NP-complete
b)  [5 points]  Is the following problem NP-complete?  Explain your answer.

INSTANCE:  An undirected graph G.
QUESTION: Does there exist a vertex cover of size 3 in G?  
c)  [14 points] A common problem faced by university registrars is in designing a final exam schedule for which no student has two exams at the same time.   Of course, that would be easy to do if every course was assigned a unique exam time, but with hundreds of courses being offered, that would result in a month long final exam schedule.  Thus, in practice, there is a limit on the number of available slots for final exams.  With this intuition in mind, we define the following problem:
Exam Scheduling
INSTANCE:  A list of courses, a list of binary conflicts between courses and a list of exam slots.
QUESTION: Does there exist an assignment of courses to exam slots so that courses with conflicts are never assigned to the same exam slot?

Here is an example:

INSTANCE:  
Course list:   
CIS621, CIS675, CIS829, CIS680, CIS601, CIS640



Conflicts: 
<CIS621, CIS601>

<CIS621, CIS680>





<CIS601, CIS680>





<CIS675, CIS829>



Exam slots: 
December 15 at 8AM





December 15 at 1PM





December 20 at 10AM

The answer to the QUESTION: In this case there are several valid schedules, one of which is:

December 15 at 8AM:  

CIS621, CIS675

December 15 at 1PM: 

CIS601, CIS829, CIS640


December 20 at 10AM: 

CIS680

Give a full proof that Exam Scheduling is NP-complete.  You may assume that the following three problems are known to be NP-complete:

Partition
INSTANCE: n numbers
QUESTION: Can the n numbers be partitioned into two sets so that the numbers in each set sum to the same value?

Graph Coloring

INSTANCE: Graph G, integer k
QUESTION: Is G k-colorable?

Hamiltonian Circuit

INSTANCE: Graph G

QUESTION: Does G contain a Hamiltonian circuit?
