
Future Directions for
Research

in Symbolic Computation

Report of a Workshop on Symbolic and Algebraic
Computation

April 29–30, 1988
Washington, DC

Ann Boyle
B. F. Caviness

Editors

Anthony C. Hearn
Workshop Chairperson

The preparation of this report was partially supported by grant CCR-8814224 from
the National Science Foundation and by the U.S. Army Research Office through
the Mathematical Sciences Institute, Cornell University. This is a report to the
National Science Foundation and other agencies and is not a report by or of NSF
or any other agency.

Published by the
Society for Industrial and Applied Mathematics

Philadelphia
1990

Copyright c©1990 by the Society for Industrial and Applied Mathematics

For additional copies write:
Society for Industrial and Applied Mathematics

3600 University City Science Center
Philadelphia, PA 19104-2688

Reprinted as a University of Delaware technical report with permission from the
Society for Industrial and Applied Mathematics. Copyright 1990 by the Society
for Industrial and Applied Mathematics, Philadelphia, Pennsylvania. All rights

reserved.

For additional copies of the technical report write:
Department of Computer and Information Sciences

103 Smith Hall
University of Delaware

Newark, DE 19716
USA

2

Participants at the Workshop on Symbolic
and Algebraic Computation

Anthony C. Hearn, RAND Corporation, Workshop Chair
B. F. Caviness, Coordinator, National Science Foundation and University

of Delaware1

Subpanel on Applications

André Deprit, National Bureau of Standards,2 Chair
John Fitch, Department of Computer Science, University of Bath,

United Kingdom
Gerald Guralnik, Department of Physics, Brown University
Michael Levine, Pittsburgh Supercomputer Center and Physics

Department, Carnegie-Mellon University
James McIver, Department of Chemistry, SUNY Buffalo
Anil Nerode, Mathematical Sciences Institute, Cornell University

Subpanel on Software and Systems Design

Richard Jenks, IBM Watson Research Center, Chair
Richard Fateman, Division of Computer Science, University of

California–Berkeley
Gaston Gonnet, Computer Science Department, University of

Waterloo
Alan Perlis, Department of Computer Science, Yale University

Subpanel on Algorithms and Theory

Moss Sweedler, Department of Mathematics, Cornell University,
Chair

Shreeram Abhyankar, Departments of Mathematics and Indus-
trial Engineering, Purdue University

Bruno Buchberger, Research Institute for Symbolic Computa-
tion, Johannes Kepler University, Linz, Austria

David Chudnovsky, Department of Mathematics, Columbia Uni-
versity

William F. Schelter, Department of Mathematics, University of
Texas

Peter Weinberger, AT&T Bell Laboratories
1Given affiliations were the ones in effect at the time of the workshop.
2The name of the NBS has been changed to the National Institute of Standards and

Technology.

Subpanel on Symbolic/Numeric Interfaces

Morven Gentleman, Division of Electrical Engineering, National
Research Council of Canada, Chair

Richard Askey, Department of Mathematics, University of Wis-
consin

John Rice, Department of Computer Science, Purdue University
Phil Smith, IMSL, Houston
Paul Wang, Department of Mathematical Sciences, Kent State

University

Preface

At the meeting of the Advisory Committee for the Division of Computer and
Computation Research of the National Science Foundation on December 3–
4, 1987, “It was noted that the symbolic and algebraic computation area
currently receives few proposals and that the potential of the area is largely
unrealized. A proposal to appoint a panel to develop an initiative in this
area was endorsed.”1

The Mathematical Sciences Institute at Cornell University indicated an
interest in organizing a workshop. Since it had considerable experience and
expertise in organizing workshops and much interest in the subject matter,
the National Science Foundation encouraged the submittal of a proposal that
led to its organizing the event. This report is based on the issues raised, the
solutions suggested, and the actions recommended at the workshop that was
held in Washington, DC, on April 29–30, 1988.

The purpose of the workshop was to provide NSF and other research
funding agencies with a deeper understanding of the current status of re-
search in this area, the potential of future research, and the expected payoff
of increased funding for symbolic and algebraic computation. In attendance
were a coordinator and 22 participants from a wide variety of backgrounds
in symbolic computation research, in the underlying mathematical theory,
and in various application fields. In addition, several observers from federal
agencies were present (see Appendix A). The workshop began with a general,
roundtable discussion of the main issues. Then the participants divided into
four subpanels—applications, systems and software, algorithms and theory,
and numeric/symbolic interfaces—to discuss issues in these areas in more
detail.

The report has been assembled and written by the editors from material
provided by the workshop participants and others, especially reports pro-
vided by the subpanel chairs: André Deprit, Morven Gentleman, Richard
Jenks, and Moss Sweedler. The editors acknowledge and express our ap-
preciation to the following additional colleagues who helped in various ways

1From the minutes of the meeting.

i

ii Symbolic Computation

with the preparation of the report. Their contributions were manifold, in-
cluding written contributions on some specialized topics, various items of
information, and constructive criticism.

Kamal Abdali Dennis Arnon
Guy Cherry James Davenport
David Elliott Hans van Hulzen
Moayyed Hussain Erich Kaltofen
Arthur Norman Richard Pavelle
Richard Petti David Saunders
Charles Sims Michael Singer
Stephen Wolfram Richard Zippel

We thank Wilson Kone for his able administration of the workshop, Susan
Allmendinger for her valuable editorial assistance in preparing the report for
publication, and the referees for their suggestions, especially the ones that
lead to a better organization of Chapter 5.

Drafts of the report were reviewed by the participants and others. Many
of the resulting suggestions have been incorporated into the final report, but
any remaining errors, omissions, or other failings are the sole responsibility
of the editors.

Contents

Executive Summary 1

1 Introduction 9

2 Current Status 13
2.1 Software and Systems . 17
2.2 Algorithms and Theory . 22
2.3 Numeric and Symbolic Computation 27
2.4 Education . 30
2.5 Funding for Research . 33
2.6 Current Problems . 34

3 Applications in Science and Engineering 39
3.1 High Energy Physics . 41
3.2 Celestial Mechanics . 42
3.3 Group Theory . 44
3.4 Chemistry . 45
3.5 Numeric Computing . 46
3.6 Robotics . 47
3.7 Geometric Modeling . 48
3.8 Mathematical Biology . 49
3.9 Radar Design . 49
3.10 Signal Processing and Coding 50
3.11 Control Theory . 51
3.12 Geostatistics . 51
3.13 Algebraic Geometry . 53
3.14 Number Theory . 53
3.15 Applied Mathematics . 54
3.16 Other Surveys . 56

iii

iv Symbolic Computation

4 Future Directions 57
4.1 Computing Technology . 58
4.2 Nonlinearity . 59
4.3 Breaking the Deterministic Complexity Barriers 60

5 Findings and Recommendations 63
5.1 Findings . 63
5.2 Recommendations . 66

A Workshop Participants and Observers 73
A.1 Participants . 73
A.2 Observers . 74

B A Sample Curriculum for Education in Symbolic
Computation 77

C Textbooks and Other Instructional Materials for Symbolic
Computation 81

D The Scholarly Community 83
D.1 Professional Societies . 83
D.2 Publications . 84
D.3 Places with Educational, Research, or Software Development

Activities in Symbolic Computation 84

Executive Summary2

Computing is dramatically affecting the way that modern science and engi-
neering are carried out. To date, symbolic computation has played a limited,
but important, role in the twentieth century advancement of science and en-
gineering. This report documents that role, explores the potential of this
mode of computation, and recommends ways to harness its large and mostly
untapped potential.

Symbolic computation is the science and technology that aims to auto-
mate a wide range of the computation involved in mathematical problem
solving. It emphasizes discrete computation on symbols representing math-
ematical objects. The symbols represent not only numbers like the integers
and rationals, but also other mathematical objects like polynomials, rational
and trigonometric functions, algebraic numbers, groups, ideals, and tensors.
Typically, the computations are exact, in contrast to most numeric calcula-
tions where computations use approximate floating point arithmetic. Often
though, exact and approximate calculations are used together in important
ways, for example, in computing exactly the first n terms of a series that is
an approximation to the solution of a differential equation. The truncated
series can then be evaluated at a particular point using floating point arith-
metic to approximate the numerical solution of the differential equation.

Notable results have been achieved in symbolic computation over the
last two decades. Algorithms have been discovered for integration in fi-
nite terms and for computing closed form solutions of differential equations.
Fast algorithms have been devised for factoring polynomials and computing
greatest common divisors. Powerful interactive systems for doing symbolic
computation have been designed and built. The software has improved the
productivity of scientists and engineers; it has made possible the solution
of problems that were previously intractable. However, only the surface has
been scratched. We are still confronted with a wide spectrum of challenging

2The format of the Executive Summary is borrowed from the Executive Summary of
Future Directions in Control Theory—A Mathematical Perspective, Report of the Panel on
Future Directions in Control Theory, Wendell H. Fleming (Chair), Society for Industrial
and Applied Mathematics, Philadelphia, 1989.

1

2 Symbolic Computation

problems whose solution will have a crucial influence on our technological
problem solving ability.

Uses for symbolic computation range over the entire scope of mathemat-
ics and its applications, that is, essentially all science and engineering. There
are three modes of use: (1) computations that could be carried out by hand,
but can be done more productively and accurately by a symbolic computa-
tion system, (2) computations that are beyond hand calculation but can be
done more or less routinely by machine, and (3) calculations that require
substantial effort to complete even when using a computer. In addition,
there are important applications that are out of reach of present compu-
tational methods and hardware. This report contains short descriptions of
sample applications in a variety of fields.

Findings

Symbolic computation is a field of accomplishment, a field of promise, and a
field of contrasts. It faces educational, technological, research, and commu-
nications challenges that arise from its diversity, richness, wide applicability,
and immaturity. The field is at a turning point of possibilities brought forth
by improvements in computer hardware, new algorithms, and new software.
A central challenge is to increase the number of applications and users, which
will bring symbolic computation more into the main stream of science and
engineering.

The prerequisites for more users are:

• Better software platforms that include the key ingredients of improved
user interfaces and well integrated symbolic and numeric capabilities

• Better documentation and other educational materials for users

• More effective methods and algorithms for solving important scientific
and engineering problems

• The increased availability of cheap, high-performance, large-memory
computers that are capable of serving as adequate hardware platforms
for symbolic computation systems

Other key findings are:

• Symbolic computation is a part of a key technology, namely, scientific
and engineering computation, that is becoming increasingly important
to science, technology, and society

• Symbolic computation enhances scientific and engineering productivity

Executive Summary 3

• Symbolic computation has made important progress in developing soft-
ware and in discovering new algorithms since the mid-1960s

• The opportunities for substantial progress in symbolic computation are
significant

There are many aspects to this multi-faceted field.

• Mathematics and computer science are the primary disciplines that
contribute to basic research in this area. Applications occur through-
out science and engineering. The interplay between fundamental re-
sults and technology is an important dynamic of the field.

• A broad range of mathematics is relevant to symbolic computation re-
search and vice-versa. To date algebra, algebraic geometry, logic, group
theory,number theory, combinatorics, complex variables and analysis,
among others, have played important roles in fundamental research on
symbolic computation. Conversely, symbolic computation is a poten-
tial research tool for all areas of mathematics.

• In computer science complex data structures, object-oriented program-
ming, and other advanced programming tools are important. Design of
user interfaces is particularly crucial. Both heuristic and algorithmic
methods are necessary for successful applications. There are important
interactions with scientific text processing, graphics, and numerical
computing.

Symbolic computation software reflects many of the successes and prob-
lems of the field.

• Symbolic computation software is typically large, sophisticated, and
error prone. All the problems associated with the design and engineer-
ing of large software systems are present here.

• Implementation of new results is lagging; many new algorithms that
have been discovered over the past decade have been implemented in
few, if any, systems.

• Software development is lagging behind new hardware technology, es-
pecially in the use of new display hardware and in the use of new
architectures, including supercomputers.

• More modular, reusable, high-quality, library-style software needs to
be developed. The lack of such publicly available software inhibits
researchers from building on the work of others and impedes the de-
velopment of special systems for applications.

4 Symbolic Computation

The theory and algorithms base has been substantially improved in recent
years, but there is much work still to be done.

• The algorithm base contains gaping holes in fundamental areas such as
symbolic linear algebra, symbolic approximations, and complex vari-
ables.

• Little research has been done on parallel symbolic algorithms.

• More research is needed on large scale and special purpose algorithms.

Educational matters are particularly crucial at this time.

• Nonspecialists have little knowledge about the capabilities and limita-
tions of symbolic computation.

• The pool of human resources for research in symbolic computation is
small.

• Educating new researchers and attracting new users are keys to the fu-
ture development of the field of symbolic computation. In the United
States, education in this area is almost nonexistent. Currently, estab-
lished curricula do not exist for graduate students who wish to work in
this area. At most American institutions with graduate mathematics
and computer science programs, graduate students have no opportu-
nity to study this area, no faculty are doing research in the area, and
few courses are directly relevant.

Recommendations

From 1965 to 1980 a small but dynamic group of researchers in the United
States provided the early foundations for the field of symbolic computa-
tion. Out of this work came important advances in algorithms and software.
Most of the important worldwide software developments were done in North
America. Important examples include Altran, Macsyma, mu-Math, Re-
duce, SAC-I & II, Scratchpad, and SMP. Since 1980 fundamental re-
search and software development have leveled off.1 Derive,2 Maple,3 and

1Important contributions have been made since 1980 in both algorithms and systems,
but the research activity in the United States has leveled off or even declined.

2Derive User Manual, 3rd ed., Soft Warehouse, Inc., Honolulu (1989).
3B. W. Char et al., Maple User’s Guide, 4th ed., WATCOM Publications Ltd., Wa-

terloo, Ontario (1985).

Executive Summary 5

Mathematica4 are three of the few, if not the only, important new sym-
bolic computation systems to appear since 1980. Now other countries are
beginning to exploit the advances that have been made. The United States
can continue to lead in this area, can leverage its previous investments, and
reap the considerable potential benefits of this field by reinvigorating its re-
search efforts. The following recommendations are designed to accomplish
these objectives.

The most important recommendations are concerned with increasing the
number of applications and users of symbolic computation. Other recom-
mendations will help to build a critical mass of researchers in this area.
Improvements to the software platform are also needed to accelerate and to
speed applications. These recommendations should be given priority.

Many of the recommendations are couched in terms of funding initia-
tives, but much can be accomplished by the academic and industrial sec-
tors independent of any new funding. Universities can immediately begin
to teach more in this area and in other ways begin to focus on improving
the flow of information about symbolic computation. Industry can continue
its fledgling steps to take software needs in this area seriously. However,
to make substantial progress will require serious government action. Gov-
ernment funding for upstream research developments, university efforts in
research and in increasing the human resource pool, and both coupled with
commercial efficiencies and focus on downstream implementation should be
an effective outline for progress.

New initiatives are needed by the funding agencies to increase signifi-
cantly the levels of research on and applications of symbolic computation.
Reacting to the normal flow of proposals is likely to be insufficient since a
critical mass has not been obtained in this field. The following actions are
recommended.

Priority Recommendations

To the Funding Agencies

• Substantially improve the software platform for research and applica-
tions by:

– Funding research on high-quality, reusable user interfaces

– Funding software acquisition, development, and maintenance need-
ed to capitalize the instrumentation for symbolic computation re-
search and applications

4S. Wolfram, Mathematica—A System for Doing Mathematics by Computer, Addison-
Wesley Publishing Co., Redwood City, California (1988).

6 Symbolic Computation

– Funding establishment of high-quality libraries of symbolic algo-
rithms and methods

– Funding research on interface protocols between various software
packages and systems

– Encouraging joint university and industry research

– Supporting summer sessions and special years to support tool
building and experimental aspects of the field

• Stimulate developments at the interface of symbolic and numeric com-
putation by:

– Funding research in defining the interface and on algorithms that
employ both symbolic and numeric methods

– Funding course development that incorporates symbolic and nu-
meric computing

– Funding workshops to attack a particular problem using symbolic
and numeric methods

• Improve the basic mathematics and algorithms underlying symbolic
computation by:

– Accelerating research on symbolic methods that are especially rel-
evant to applications such as approximation methods and meth-
ods for solving ordinary and partial differential equations

– Funding further research on algorithms for fundamental compu-
tations in areas like symbolic linear algebra, nonlinear algebra,
and complex variables

– Funding research on symbolic algorithms to take advantage of
new computer architectures, including supercomputers

– Encouraging more research on ways to deal with complexity prob-
lems in symbolic computations such as the use of probabilistic
algorithms

• Address education for users and new researchers by:

– Funding research on incorporating symbolic computation in math-
ematics, science, and engineering curricula

– Supporting the development of educational materials on symbolic
computation

Executive Summary 7

To the Universities

• Provide adequate computing facilities for symbolic computation, in-
cluding appropriate software.

• Include more material relevant to symbolic computation in university
curricula. This can be done in a variety of ways:

– Introduce symbolic computation as a tool into existing courses,
especially ones covering aspects of applied mathematics.

– Introduce new courses that contain material on the various as-
pects of symbolic computation, including applications.

– Put more emphasis on constructive techniques in current mathe-
matics courses, especially courses in algebra, algebraic geometry,
and number theory.

– Use more examples from symbolic computation in computer sci-
ence courses dealing with software engineering, graphics, and al-
gorithms. An increased emphasis on ideas from category theory
and universal algebra in software design would be particularly
applicable to symbolic computation software.

– Develop special education and research programs in which sym-
bolic computation plays a key role. A curriculum that combines
mathematics and computation provides a good fundamental ed-
ucation for future scientists and engineers. One such curriculum
is given in Appendix B.

To the Professional Community

• Produce more and better educational materials. A lack of textbooks is
an especially pressing problem. These needs have been cited on several
occasions and improvements are slowly occurring, but continued efforts
are still needed.

Additional Recommendations

To the Professional Community

• Increase efforts to improve and increase interactions among the vari-
ous components of the scientific computation community. More inter-
actions are desirable between mathematicians and computer scientists
interested in symbolic computation, between researchers in numerical
and symbolic computing, and between software builders and users.

8 Symbolic Computation

• Resolve the conflict over the commercial requirements to protect prod-
ucts and the academic requirements to exchange information freely. A
solution to this problem may be found through the use of proprietary
software kernels with publicly available source code built on top. For
this model to serve science successfully, the mathematical algorithms
must be in the public domain. Several producers of symbolic software
have already adopted this model.

To the Commercial Sector

• Continue the initial steps to take symbolic computation software seri-
ously.

To the Funding Agencies

Address the interdisciplinary nature of the field by:

• Establishing mini-centers for symbolic and algebraic computation

– that span science and engineering with a users point of view

– that cut-across computer science and mathematics from a system
development point of view

• Funding workshops and special years devoted to symbolic computation
and its applications

• Supporting summer session programs with a regional or national scope
on the use and development of symbolic computation systems

Chapter 1

Introduction

Symbolic computation, while implemented on computers only since 1953,
has a long history as an important tool in scientific development.

Exploitation of algebra and computation were prominent aspects
of the revolutionary science of the 16th century. Architects of that new
science were Paracelsus (d. 1541) in chemistry, Nicolause Copernicus
(d. 1543) in astronomy, Andreas Vesalius (d. 1564) in anatomical
medicine, and Girolamo Cardano (d. 1576) in algebra.1

Several generations later in Europe’s “century of genius,” from 1620 to
1720, we find that:

Europe’s turbulent “century of genius” embraced the visual arts,
literature, and thought, as well as mathematics. For some scholars this
coexistence of high creativity in culture and high disorder in society is
paradoxical; to others it indicates the tenacity of Europe’s republic of
letters, expanded patronage from wealthy bourgeoisie, and the robust
vitality of the age. . . . Mathematics too had enjoyed spectacular de-
velopment since the mid-sixteenth century. Algebra and arithmetical
computations particularly had flourished.2

Leibniz’s studies leading to the calculus began under the guidance
of Huygens in Paris between 1673 and 1676. His work rests on at
least three basic components. Leibniz sought a characteristica gener-
alis, a symbolic language, for translating mathematical methods and
statements into algorithms and formulas.3

Very early in the development of the technology for automatic compu-
tation it was realized that computers could do symbolic as well as numeric

1J. E. Brown, The Medieval-Renaissance-Reformation Periods in Europe—
Introduction, in R. Calinger, Classics of Mathematics, Moore Publishing Co., Oak Park,
Illinois (1982), p. 219.

2R. Calinger, op. cit., pp. 267–273.
3Ibid., p. 279.

9

10 Symbolic Computation

computation. In 1842 L. F. Menabrea summarized the remarkable ideas of
Charles Babbage for an “Analytical Engine.” Menabrea’s paper was trans-
lated into English and extensively annotated by the Countess of Lovelace
(daughter of Lord Byron) and published in Taylor’s Scientific Memoirs.4

Unlike many of her contemporaries, Byron thoroughly understood and
appreciated Babbage’s machine. She was also a scientific visionary in her
own right, as can be seen when she wrote:

Many persons who are not conversant with mathematical studies
imagine that because the business of the engine [Babbage’s Analytical
Engine] is to give its results in numerical notation, the nature of its
processes must consequently be arithmetical and numerical rather than
algebraical and analytical. This is an error. The engine can arrange
and combine its numerical quantities exactly as if they were letters or
any other general symbols; and in fact it might bring out its results in
algebraical notation were provisions made accordingly.5

In 1953, after the invention of the electronic computer, the Countess’
vision was first realized in two master’s theses, one by J. F. Nolan of the
Massachusetts Institute of Technology6 and another by H. G. Kahrimanian
at Temple University.7

By the mid-1960s research on symbolic computation had begun in earnest
at several places, primarily in the United States, as is documented by the
proceedings of an early conference.8 However, after an initial flurry of ac-
tivity, research on symbolic and algebraic computation has faltered in the
United States. The considerable potential of the powerful new techniques
has hardly been realized.

This report investigates why this is the case and its focus is therefore:

• to describe the current state of symbolic computation

• to indicate its impact on science and engineering

• to assess the potential future impact
4L. F. Menabrea, Sketch of the Analytical Engine Invented by Charles Babbage. With

Notes upon the Memoir by the Translator, Ada Augusta, Countess of Lovelace [From
the Bibliothèque Universelle de Genève, Oct 1842, No. 82.], Source: P. Morrison and
E. Morrison (eds.), Charles Babbage and His Calculating Engines—Selected Writings by
Charles Babbage and Others, Dover Publications, Inc., New York, 1961.

5Ibid.
6J. F. Nolan, Analytical Differentiation on a Digital Computer, SM Thesis, Massachu-

setts Institute of Technology, May 1953.
7H. G. Kahrimanian, Analytical Differentiation by a Digital Computer, MA Thesis,

Temple University, May 1953.
8R. W. Floyd (ed.), Proceedings of the ACM symposium on symbolic and algebraic

manipulation, Comm. ACM 9 (1966), pp. 547–643.

Introduction 11

• to determine what is needed to advance the field significantly

It has been generally recognized that mathematical computing, of which
symbolic computing is a part, is a basic mode for research and develop-
ment in science and engineering. Several reports have focused on the im-
portance of mathematical computing to the well-being of the nation. To
date these reports have concentrated on the important areas of numeric and
high-performance computing. The emergence of symbolic computation is
making possible the fruitful and natural use of a full-range of both sym-
bolic and numeric computation in mathematical, scientific, and engineering
computation.

Recent national reports

1. Report of the Panel on Large Scale Computing in Science and Engi-
neering. Peter Lax, Chairman, Sponsored by the U.S. Department
of Defense and the National Science Foundation, in cooperation with
the Department of Energy and the National Aeronautics and Space
Administration, Washington, DC, December 26, 1982.

2. A National Computing Environment for Academic Research. Marcel
Bardon and Kent Curtis, NSF Working Group on Computers for Re-
search. National Science Foundation, July 1983.

3. Renewing U.S. Mathematics—Critical Resource for the Future, Report
of the Ad Hoc Committee on Resources for the Mathematical Sciences,
The Commission on Physical Sciences, Mathematics, and Resources,
National Research Council, National Academy Press, Washington, DC,
1984.

4. A Report of the Panel on Future Directions in Computational Math-
ematics, Algorithms, and Scientific Software. Werner C. Rheinboldt,
Chairman. SIAM, Philadelphia, 1985.

5. A National Computing Initiative—The Agenda for Leadership. Report
of the Panel on Research Issues in Large-Scale Computational Science
and Engineering. Harold J. Raveché, Duncan H. Lawrie, and Alvin M.
Despain. SIAM, Philadelphia, 1987.

12 Symbolic Computation

6. Research and Development Strategy for High Performance Computing.
Executive Office of the President, Office of Science and Technology
Policy, November 20, 1987.

Chapter 2

Current Status

Since World War II, science and technology have made spectacular advances
in field after field, but among the most spectacular have been the advances
in computing. Computing is a part of a wave of fundamental scientific and
technological advances that are unique to our history. Symbolic computation
is a part of these spectacular advances. Some of the assessments of symbolic
computation that have appeared in the popular scientific press underline the
fascination with this computational mode. Pavelle, Rothstein, and Fitch in
Scientific American note that “Of all the tasks to which the computer can
be applied none is more daunting than the manipulation of complex math-
ematical expressions.”1 Science News, in an article on computer calculus,
began

“Awesome . . . invaluable . . . unbelievable” These are the assess-
ments by normally taciturn research scientists of symbolic computer
algebra, a group of programs that allows computers to carry out the-
oretical (rather than merely numerical) calculations. These programs
do in a few brief minutes virtually all mathematics that most engineers
and scientists know; their ability to slog through theoretical solutions
to large systems of equations has already led to advances in [the study
of] gravitation and high energy physics.2

An article in Nature3 begins, “The notion that computers are mere number
crunchers is fast being exorcised by one small group of people—the computer
algebraists. In the past twenty years, several classes of problems which re-
quire analytical and not numerical solutions have been tackled successfully.”

1R. Pavelle, M. Rothstein, and J. Fitch, Computer algebra, Scientific American 245
(1981), pp. 136–152.

2L. A. Steen, Computer calculus, Science News 119 (1981), pp. 250–251.
3Algebra made mechanical, Nature 290 (1981), pp. 198–200.

13

14 Symbolic Computation

An article in the New York Times4 about Mathematica says, “The im-
portance of the program cannot be overlooked or overestimated, however,
because it so fundamentally alters the mechanics of mathematics. It calcu-
lates and graphically displays, in either two or three dimensions, virtually
any formula or expression you can concoct.”

Hyperbole aside, what is this computational paradigm that evoked such
statements? Symbolic computation is the science and technology that aims
to automate a wide range of the processes involved in mathematical prob-
lem solving. More particularly, symbolic computation is mathematical com-
putation in which the emphasis is on discrete computation with symbols
representing mathematical objects. The symbols include the usual represen-
tation systems for numbers like the integers and rationals. But it also in-
cludes polynomials, rational and trigonometric functions, algebraic numbers,
groups, ideals, and tensors, among others. In fact, it is possible, in theory,
to carry out any heuristic or algorithmic computational method. Typically,
the computations are carried out exactly. In contrast, most numeric calcu-
lations are carried out using approximate floating point arithmetic. Often
though, exact and approximate calculations are used together in important
ways, such as computing exactly the first n terms of a series that is an ap-
proximation to the solution of a differential equation. The truncated series
can then be evaluated at a particular point using floating point arithmetic to
get an approximation to the numerical solution of the differential equation.

A notable feature and difficulty of symbolic computation research, devel-
opment, and applications is the diversity of knowledge and skills required.
With respect to development of software systems, all the well-known engi-
neering problems that occur in building large-scale computer software sys-
tems are compounded by the complexity and scope of the underlying math-
ematics. Good symbolic computation systems can be developed only by
teams with considerable software engineering skills and broad mathematical
knowledge. In algorithm research, a diversity of computer science and math-
ematical issues arises. For example, techniques from classical analysis are
used in studying the computational complexity question of bounding the size
of expressions that arise in computation. Algebra and algebraic geometry
are important tools in algorithm research, even in areas like integration in fi-
nite terms and differential equations. Applications of symbolic computation
range over all of mathematics,5 science, and engineering.

Numeric computation automates the last step of mathematical problem
solving. It has had substantial effect on the efficiency and modes of scientific

4Liberating the ‘prose’ of math from its grammar, New York Times, July 19, 1988, p.
21.

5Both pure and applied.

Current Status 15

and engineering inquiry. Symbolic computation aims at the automation of
the steps of mathematical problem solving that precede evaluating numerical
models and that, to a large extent, are still the domain of human problem
solvers. Used together, symbolic and numeric computation enhance each
other.

Many terms have been used for symbolic computation in the litera-
ture, including computer algebra, symbolic and algebraic computation, sym-
bolic mathematical computation, seminumerical computation, symbolic and
algebraic6 manipulation, and formula manipulation. The terms computa-
tional group theory and computational number theory denote important sub-
fields of symbolic computation.

Symbolic and algebraic computation shares intellectual interests with
several other areas, including numeric computation, automatic theorem prov-
ing and checking, automatic program verification, computational geometry,
and programming language design.

Constructive methods in mathematics have a long tradition, going back
to Euclid’s algorithm and earlier. Early examples of symbolic computa-
tion can be found in Isaac Newton’s Universal Arithmetic (1728), in which
rules for manipulating universal mathematical expressions, that is, formu-
las containing symbolic indeterminates, and algorithms for solving equations
built with these expressions are systematically discussed. Before the mid-
nineteenth century the work involved in mathematical problem solving was
much different from that of today. In particular, computation played a
much larger role, but by the end of the nineteenth century mathematics had
changed substantially; it had become more abstract and more qualitative.
Mathematicians increasingly concerned themselves with questions about the
structure of mathematical systems. Many mathematical problems were too
difficult to be solved with the computational tools that were available.

With the existence of computers and with advances in mathematics that
have led to better algorithms, the solution of problems via computation has
once again become a profitable way to do science and engineering. The first
uses of computers to do symbolic computation occurred in the 1950s, but
the full use of symbolic computation still awaits the exploitation of recently
available hardware with fast processors and, more importantly for symbolic
computation, with large and cheap memories.

6The term algebra is used both in its meaning as a branch of mathematics that includes
many interactions with symbolic computation and in its more generic sense as a mathe-
matical system with a set of symbols satisfying given rules and relations. It is in this latter
sense that algebraic computation is often used as a synonym for symbolic computation.
But the reader should not conclude that symbolic computation is only for computation in
algebra (in the sense of a subfield of mathematics). Symbolic computation is useful in all
areas of mathematics and has applications to many other fields.

16 Symbolic Computation

With the advent of time-sharing and virtual memory operating systems
in the mid- to late 1960s, research on symbolic computation flourished at
a few research sites. This research on new algorithms, on the design and
engineering of software, and on the use of symbolic computation software
gradually lead to the development of an international research community
sponsoring regular symposia and workshops. The research roots were in
computer science and mathematics, and they drew on some of the deep-
est aspects of both disciplines as well as those of the application areas like
theoretical physics. Thus, symbolic computation lies at a boundary among
several fields, a position that gives it much depth and richness and, from a
research perspective, makes it a difficult and challenging area. From an ad-
ministrative and support perspective, the interdisciplinary nature presents
difficult problems.

Notable results have been achieved in symbolic computation over the
last two decades. Algorithms have been discovered for integration in fi-
nite terms and for computing closed form solutions of differential equations;
fast algorithms have been devised for polynomial factorization and greatest
common divisor computations, and powerful interactive systems have been
designed and built for carrying out symbolic computation. The software has
improved the productivity of scientists and engineers; it has made it possi-
ble to solve previously unsolvable problems. However, only the surface has
been scratched. We are still confronted with a wide spectrum of challenging
problems whose solution will have a crucial influence on our technological
problem-solving potential.

Mathematics is a basis of technological progress, and technological prog-
ress is a key for international competitiveness. Automating an important
part of the mathematical problem-solving process is a key technology for a
nation that wishes to control, structure, and accelerate technological prog-
ress. The automation of the solution of mathematical problems is a powerful
lever by which human productivity and expertise can be amplified many
times.

Symbolic computation research is accelerating in other countries at the
same time that it is leveling off in the United States. Of the 1130 sites and
individuals who have obtained at least one copy of Reduce from licensed
distributors during the past three years, 40% were in Japan, 30% in Europe,
27% in the United States and Canada, and 3% in the rest of the world.
In the twelve months from June 1987 to June 1988, Symbolics, Inc., sold
over 600 new licenses and software update contracts. About 30% of those
sold were to users outside the United States. Also, in the last three years
the Austrian government helped set up an institute at the Johannes Kepler
University in Linz that is entirely devoted to symbolic computation. There

Current Status 17

is no comparable facility in the United States.
Applications of symbolic systems do seem to be increasing in this country.

At the General Electric Corporate Research and Development Center in Sch-
enectady, New York, symbolic computation is used routinely for such tasks
as designing coils for their nuclear magnetic resonance imaging systems, for
designing antenna arrays, and for inverse problems in tomography. At the
GE Microelectronics Center in the Research Triangle Park, North Carolina,
symbolic computation systems are used to do integrations that arise in cir-
cuit simulations. At the General Motors Research Laboratory in Warren,
Michigan, and at the GM Systems Engineering Center in Troy, Michigan,
symbolic computation is being used in several general-purpose programs to
derive mathematical models, to do Jacobian sensitivity analysis, and to do
analyses for control applications. In addition, symbolic computation systems
are used in calculator mode to increase productivity and to ensure correct-
ness of mathematical computations. At the Sandia National Laboratory in
Livermore, California, symbolic computation is used for combustion stability
analysis and for nonlinear spectroscopy calculations.

Assessment of symbolic computation is bedeviled by the half-full, half-
empty phenomenon: when to be optimistic about how far symbolic compu-
tation has progressed and when to be pessimistic about how much needs to
be done for solving important problems. But given the current low levels of
federal support for research in this area, it is hardly surprising that more
has not been accomplished.

2.1 Software and Systems

One of the biggest successes in symbolic computation research has been the
development of software systems of substantial sophistication and scope. It
was the software systems that evoked the previously quoted enthusiastic
admiration of the scientific press.

The term symbolic computation software refers to a full range of software
from the implementation of a single algorithm to the implementation of
large integrated systems, from special-purpose application systems to large
general-purpose systems. Such software often includes graphics, elaborate
user interfaces, and numeric software as well as algorithms for symbolic
computation.

The main intellectual focus for symbolic computation software is the
design issue. Some issues are specific to scientific computation, such as how
does one design software that

• advances the ability of scientists and engineers to solve complex math-
ematical problems efficiently and effectively,

18 Symbolic Computation

• takes advantage of the natural abstraction and structure in the do-
main of mathematics and thus has clean semantics that avoids the
complicated use of flags and other ad hoc devices,

• integrates with symbolic computation other modes of scientific and
mathematical computation such as graphics and numerical computing,

• is well designed for a range of equipment from workstations to super-
computers while taking advantage of new trends in architectures such
as parallelism,

• is general in the sense of providing a wide range of facilities and math-
ematical algorithms but is still effective for specific applications?

Other issues are common to all large software systems. For example, how
does one design symbolic computation software that

• is reliable and maintainable,

• is appropriately standardized,

• has a good user interface appropriate for the target group of users,

• is reusable in both general- and special-purpose systems,

• takes advantage of new trends in software methodologies, for example,
object-oriented and logic programming?

In addition to the intellectual issues, there are issues of practical produc-
tion: symbolic computation software is often large and exceedingly complex,
requiring many person-years of effort to implement, document, maintain,
and upgrade. A real challenge for symbolic computation is to find ways
to modularize the software development process so that it can be done in
smaller parts. Then the parts can be shared and used in many contexts and
will be easier to maintain and upgrade.

The use of symbolic systems has grown substantially in recent years.
This growth can largely be attributed to improvements in hardware, in which
numbers of computational cycles and bytes of memory grow by a factor of
two per year. At the same time, advances in hardware for color graph-
ics, desktop publishing, and storage media such as compact disks will likely
have a profound effect not only on the cost but also on the effectiveness
and expectations of symbolic computation systems over the coming decade.
Corresponding improvements in algorithms have made previously intractable
algebraic computations a reality. Software for indefinite integration of ele-
mentary functions, for example, has become a tool that rivals or exceeds the

Current Status 19

usefulness of tables of integrals. Improved understanding and development of
Gröbner basis techniques, integer factorization, and techniques for analytic
approximation have opened up new application areas of symbolic computa-
tion never before realizable. Nevertheless, numerous problems continue to
stunt the potential growth and use of symbolic computation.

Reusability and interaction with other software. Symbolic compu-
tation systems generally do not interact with other software systems. Most
are stand-alone systems with their own interactive language used to access
their facilities. Systems often do not provide adequate access to the com-
monly used numeric libraries such as IMSL and NAG, but there is some
recent, interesting progress in this area. Furthermore, most systems can-
not be used as a symbolic engine by other software. Symbolic computation
systems need further development of interface software that enables them
to interact with other software, including editors, numeric languages and
libraries, text processors, graphics, and artificial intelligence programs.

There have been several efforts along these lines. Gentran,7 imple-
mented in both Reduce and Macsyma, facilitates the generation of For-
tran programs from symbolic results generated by a symbolic computation
system. The notebook concept in Mathematica ties text processing closely
to computation. J. J. Uhl has noted some of the possibilities of the latter
combination.

With the introduction of Mathematica notebooks as live elec-
tronic texts, I believe Mathematica will revolutionize undergradu-
ate mathematics. When this happens, undergraduate mathematics in
America will reach Lynn Arthur Steen’s goal of becoming more like
real mathematics both in the industrial workplace and in academic
research.8

In addition, symbolic computation systems should be able to interact
with one another. For example, it would be convenient to do group theoretic
computations in Cayley and polynomial computation in another system.
A design of a computational environment that would allow communication
between several independent software programs is needed to enhance the use
of computer algebra. Robust, high-quality “libraries” of symbolic compu-
tation algorithms that can be used in many applications are needed. Some
work on generic interface issues has been done.9

7B. L. Gates, A numerical code generation system for Reduce, in Proc. 1986 Symp.
on Symbolic and Algebraic Computation., ACM (1986), pp. 94–99.

8J. J. Uhl, Mathematica and me, Notices AMS 35 (1988), pp. 1345–1347.
9J. Purtilo, Applications of a software interconnection system in mathematical problem

solving environments, in Proc. 1986 Symp. on Symbolic and Algebraic Computation, ACM
(1986), pp. 16–23; D. Arnon, R. Beach, K. McIsaac, and C. Waldspurger, CaminoReal:

20 Symbolic Computation

Improved coverage of mathematics. Most systems provide a good
deal of symbolic computation through college-level calculus. Beyond that
the knowledge and algorithms are spotty. In particular, facilities for ap-
plied mathematics are relatively minimal. An important need is for addi-
tional symbolic approximation methods that apply to a wide range of applied
problems. Using a symbolic computation system, a student should be able
to formulate many computational problems found in a college-level applied
mathematics textbook.

A related problem is the implementation of state-of-the-art algorithms.
In recent years important new algorithms have been discovered that are not
routinely available in the current software. This is basically a person-power
problem—there are just not enough persons to do the time-consuming work
to implement these complex methods.

State-of-the-art displays. Well-displayed input and output are other
critical issues for the effective use of symbolic computation systems. It is
important that the input and output of symbolic systems appear on the
screen in textbook quality. More effective ways of handling large expres-
sions that are often generated in the course of symbolic computation are
needed. The systems should provide visual means for extracting or replac-
ing parts of expressions, moving terms around, and effecting transpositions,
cancellations, and other manipulations. Further research and development
like that on Iris10 and MathScribe11 should be encouraged. In addition,
it is important for data to be presented effectively in numeric, symbolic,
or graphic form. The user should be able to transform the expression in a
way to achieve some specially appropriate format. The appropriate graphic
representation may be a curve, a surface, a contour plot, a movie, or any
combination of these.

Understandability. Symbolic computation systems must deal with
many subtle issues in mathematical notation. Sometimes mathematical no-
tation is ambiguous; other times the same or similar notation is used for
different concepts in various branches of mathematics. A symbolic compu-
tation system must deal with the ambiguity and different meanings. Cur-
rently, this is most often done in an ad hoc fashion that makes the systems
cumbersome. The study of ways to provide symbolic computation systems

an interactive mathematical notebook, in Document Manipulation and Typography (Proc.
Intl. Conf. on Electronic Publishing, Document Manipulation, and Typography [EP88],
Nice, France, April 20–22, 1988), Cambridge University Press, New York (1988), pp. 1–18.

10B. L. Leong, Iris: design of a user interface program for symbolic algebra, in Proc.
1986 Symp. on Symbolic and Algebraic Computation, ACM (1986), pp. 1–6.

11C. J. Smith and N. M. Soiffer, MathScribe: a user interface for computer algebra
systems, in Proc. 1986 Symp. on Symbolic and Algebraic Computation, ACM (1986), pp.
7–12.

Current Status 21

with clean semantics that make them more understandable and easier to use
is a research topic that deserves much more attention. Important progress
has been made on some of these problems through powerful abstractions
that have been built into some recent systems.12 The best known of these is
Scratchpad.13

Simplification of expressions is a central issue in symbolic computation.
It too is handled mostly in an ad hoc fashion by present software, and that
adds to the difficulty of using and understanding current systems. Sym-
bolic forms must be convertible to “understandable” alternative forms that
may involve factorization, common subexpression elimination, or collection
of coefficients, for example. Some of the simplification should be done au-
tomatically by the system, and some should be under user control. More
research is needed on these difficult problems.

Extensibility. Systems should be easily extendible by the scientist or
engineer so that new facilities can be added to the existing system. Here it
is desirable that the user be able to build easily on existing facilities. It is
also important that the systems allow users to alter existing facilities and to
do this without a performance penalty.

Large computations and the use of supercomputers. Unlike nu-
meric computation, it is difficult to estimate the time and space requirements
for symbolic computation. The success of a symbolic computation depends
critically on the size of intermediate expressions generated during the com-
putation. Carefully designed monitoring aids for software and hardware
would be useful in measuring space, time, and progress toward a solution.
If a satisfactory answer has not been obtained, a user may wish to know
whether

• there are fundamental inadequacies in the approach; for example, no
algorithm is known or known algorithms have not been programmed,

• a heuristically determined limit has been exceeded in some kind of
search, or

• some resource limit (for example, stack overflow, memory) has been
encountered and why.

Supercomputers have not been used extensively for symbolic computa-
tion. But there are applications that could benefit from a combination of

12J. Foderaro, The Design of a Language for Algebraic Computation Systems, Ph.D.
Thesis, University of California–Berkeley, 1983; S. K. Abdali, G. W. Cherry, and N. Soiffer,
An object oriented approach to algebra system design, in Proc. 1986 Symp. on Symbolic
and Algebraic Computation., ACM (1986), pp. 24–30.

13R. D. Jenks, A primer: 11 keys to new Scratchpad, Proc. EUROSAM ’84, Lect.
Notes Comp. Sci. 174 (1984), pp. 123–147.

22 Symbolic Computation

supercomputers and symbolic computation, as has been demonstrated by a
recent work on a Cray at the Konrad-Zuse-Zentrum für Informationstechnik
in West Berlin.14

Reliability and maintainability. Another major problem is the main-
tenance of software so that it is robust and reliable. Immense software
structures are needed to solve some of the most simply stated mathematical
problems, for example, computation of an indefinite integral. The question
of how to organize a large software system that can accumulate, over time,
the machinery necessary to provide facilities for a far-reaching and general
mathematical system is a difficult one.

2.2 Algorithms and Theory

Just as symbolic computation would not exist as we know it today without
the significant accomplishments in designing and building software systems,
the same can be said about accomplishments in algorithms and theory. Many
of the significant computations that can be done today would be impossi-
ble without the important advances that have been made in algorithms,
especially the progress on faster algorithms for fundamental, ubiquitous op-
erations like computing greatest common divisors of polynomials and factor-
ization.

Other recent advances in algorithms and theory span a wide range,
including fast algorithms for operations like integer factorization, compu-
tational methods in group theory, nonlinear algebra, the computation of
closed-form solutions in integral calculus, and others. In some areas, al-
gorithm development dwindled in the late nineteenth and early twentieth
centuries because the algorithms had reached the limit of what could be
done by hand. The advent of the computer and symbolic computation has
spurred algorithm development for two reasons: additional horsepower pro-
vided by computers makes more complex algorithms feasible, and additional
applications being run on computers make algorithm development necessary.

Much of science and engineering is put in terms of equations. Often
we use linear approximation rather than higher-degree equations because of
the difficulty in dealing with nonlinear equations. In the mid-sixties Buch-
berger in his dissertation15 presented a method, based on what he later called

14M. Melenk, H. M. Möller, and W. Neun, On Gröbner bases computation on a su-
percomputer using Reduce, Preprint SC 88–2 (Jan. 1988), Konrad-Zuse-Zentrum für
Informationstechnik—Berlin.

15B. Buchberger Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal, Ph.D. Thesis, University of Innsbruck,
December, 1965.

Current Status 23

Gröbner bases, for effectively dealing with multivariate polynomial equations
of arbitrary degree. This work received little attention from the mathemati-
cal community. In the mid-seventies, when the computer algebra community
discovered Buchberger’s work, his method became the basis of a powerful
set of tools for working with higher-degree polynomial equations. A recent
bibliography on Gröbner basis–related work contains almost 300 items, and
there continues to be much research activity based on Buchberger’s work.16

Buchberger’s methods are but one approach to working with nonlinear
equations. In the mid-seventies George Collins developed a method for find-
ing exact real solutions to equations.17

In the areas of integration in finite terms and finding closed form solu-
tions to differential equations, fundamental progress has been made on long-
standing problems. Today, indefinite integration of elementary functions
with elementary integrals18 is conveniently done by symbolic computation
systems even though many of the latest algorithm improvements are yet to
be implemented. A decision procedure exists for solving n-th order homo-
geneous linear ordinary differential equations,19 and an implementation of a
different algorithm20 that works only for second order equations has proved
effective in practice. A method and an implementation also exist for solving
first order nonlinear equations (or equivalently for solving two-dimensional
autonomous systems).21 Progress has also been made on symbolic methods
for computing series solutions to differential equations.22

Another example of algorithm development concerns factoring polyno-
mials. While superficially the problem seems related to the computationally
difficult problem of factoring integers—Isaac Newton23 based his polynomial

16B. Buchberger, Gröbner bases: an algorithmic method in polynomial ideal theory, in
N. K. Bose (ed.), Multidimensional Systems Theory, D. Reidel Publishing Co., Hingham,
Massachusetts (1985), pp. 184–232.

17D. S. Arnon, G. E. Collins, and S. McCallum, Cylindrical algebraic decomposition I:
the basic algorithm. SIAM J. Comput. 13 (1984), pp. 865–877.

18R. H. Risch, The problem of integration in finite terms, Trans. Amer. Math. Soc.
139 (1969), pp. 167–189.

19M. F. Singer, Liouvillian solutions of nth order homogeneous linear differential equa-
tions, Amer. J. Math. 103 (1981), pp. 661–682.

20J. J. Kovacic, An algorithm for solving second order linear homogeneous differential
equations, J. Symbolic Comp. 2 (1986), pp. 3–43.

21M. J. Prelle and M. F. Singer, Elementary first integrals of differential equations,
Trans. Amer. Math. Soc. 279 (1983), pp. 215–229.

22J. Della Dora, Cl. di Crescenzo, and E. Tournier, An algorithm to obtain formal solu-
tions of a linear homogeneous differential equation at an irregular singular point, Computer
Algebra—EUROCAM ’82, Lect. Notes Comp. Sci. 144 (1982), pp. 273–280.

23Arithmetica Universalis, 2nd ed., London (1728). Reprinted in D. T. Whiteside (ed.),
The Mathematical Works of Isaac Newton, vol. 2, Johnson Reprint Corp., New York
(1967).

24 Symbolic Computation

algorithm on factoring their integral values and interpolating all possible fac-
tor combinations—the algorithms invented within the past twenty-five years
have made it possible to factor large multivariate polynomials over many
coefficient domains.

Modern research begins with the algorithms by E. Berlekamp24 for fac-
toring a polynomial in a single variable over a finite field. Berlekamp’s con-
tributions are twofold. First, the 1967 algorithm for small coefficient fields
is the first indication that polynomial factoring is computationally simpler
than integer factoring. Over the finite field with two elements, one can factor
a polynomial of degree n, represented by Berlekamp by an n-digit integer,
in cubic time in n, but to-date the corresponding integer factoring problem
requires exponential time in n. Berlekamp’s 1970 paper concerns large coeffi-
cient fields. In order to obtain a similar running time, Berlekamp introduced
the use of random elements into his method. His algorithm is probably the
first instance of a randomized solution to a problem whose deterministic best
solution is exponential. It should be noted that, despite the inefficient deter-
ministic algorithms known, by randomization one factors polynomials over
large finite fields routinely on computer algebra systems, perhaps without
the users even realizing that the method is of a probabilistic nature.

Shortly after Berlekamp resolved the problem of factoring polynomials
over finite fields, H. Zassenhaus,25 following a direction in van der Waer-
den’s 1936 book Moderne Algebra,26 employed the so-called Hensel lemma
of p-adic number arithmetic to “lift” factors of an integral polynomial that
are first computed modulo a suitable prime by Berlekamp’s algorithm to
full-fledged integral factors. Hensel lifting, as the process is now called, is a
generic approach27 to reconstruct factors from their modular images. Unlike
interpolation, which requires several images, Hensel lifting requires only a
single image.

Several packages are in existence that realize the Berlekamp-Zassenhaus
scheme, for example, the Macsyma, Maple, Reduce, SAC/2, and Math-
ematica polynomial factorization codes. This class of algorithms suffers
from two major shortcomings. First, the algorithms exhibit exponential
running time behavior on certain special inputs. This turns out to be a seri-
ous problem, since another algorithm, the Kronecker algorithm for factoring
polynomials over an algebraic extension of the rational numbers28 relies ex-

24E. R. Berlekamp, Factoring polynomials over finite fields, Bell Systems J. 46 (1967),
pp. 1853–1859; , Factoring polynomials over large finite fields, Math. Comput. 24
(1970), pp. 713–735.

25H. Zassenhaus, On Hensel factorization I, J. Number Theory 1 (1969), pp. 291–311.
26B. L. van der Waerden, Modern Algebra, F. Ungar Publishing Co., New York (1953).
27D. R. Musser, Multivariate polynomial factorization, J. ACM 22 (1975), pp. 291–308.
28B. Trager, Algebraic factoring and rational function integration, in Proc. 1976 Symp.

Current Status 25

actly on the factorization of such bad polynomials. Secondly, for multivariate
polynomials, the algorithms work with a dense encoding of the polynomials
and experience fill-in problems similar to that of Gaussian elimination when
applied to a sparse matrix.

Putting the problem of multivariate polynomial factorization into the
class of problems solvable in polynomial time is a lasting accomplishment.
There are essentially two key ingredients to the solution. The first comes
from the geometry of numbers and is an ingenious diophantine optimiza-
tion algorithm, the so-called lattice reduction algorithm of Lenstra, Lenstra,
and Lovász, that is used in conjunction with the Berlekamp-Zassenhaus
method.29 The second is a family of effective Hilbert irreducibility theo-
rems due to Kaltofen30 that guarantee that the lifting process will start out
with good modular factors. Other researchers, among them A. L. Chistov,
J. von zur Gathen, D. Yu. Grigoryev, S. Landau, A. Schönhage, and P.
Weinberger, have also made important contributions to this problem.

The investigations into sparsity preserving multivariate polynomial fac-
torization were begun in 1979 by R. Zippel.31 This is the second subject
where randomization is a crucial tool to make the algorithms work efficiently.
Perhaps the key contribution to the resolution of the problem is not a clever
algorithm but the realization that the sparse representation of multivariate
polynomials is not a natural one. In fact, this can be deduced from the
way we represent multivariate polynomials in mathematical notation, be it
as a Toeplitz determinant or a product-of-summations formula. There are
two models of representation that have been suggested, one is Strassen’s
straight-line program representation,32 and one is the representation by a
“black-box” program for computing values of the polynomial when given
values for the variables. It is certainly surprising that for the polynomial
factorization problem both representations are stable; that is, given a mul-
tivariate polynomial in straight-line or a black-box representation, one can
efficiently compute a straight-line program33 or a black box,34 respectively,

on Symbolic and Algebraic Computation, ACM (1976), pp. 219–228.
29A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring with rational coefficients,

Math. Ann 261 (1982), pp. 515–534.
30E. Kaltofen, A polynomial reduction from multivariate to bivariate integral polynomial

factorization, in Proc. 14th Ann. ACM Symp. Theory Comput., ACM (1982), pp. 261–263.
31R. E. Zippel, Newton iteration and the sparse Hensel algorithm, in Proc. 1981 Symp.

on Symbolic and Algebraic Computation, ACM (1981), pp. 68–72.
32V. Strassen, Berechnung und Programm I, Acta Inf. 1 (1972), pp. 320–335.
33E. Kaltofen, Uniform closure properties of p-computable functions, in Proc. 18th Ann.

ACM Symp. Theory Comput. ACM (1986), pp. 330–337.
34E. Kaltofen and B. Trager, Computing with polynomials given by black boxes for

their evaluations: greatest common divisors, factorization, separation of numerators and
denominators, in Proc. 29th IEEE Symp. Foundations Comput. Sci. IEEE (1988), pp.

26 Symbolic Computation

that represents all irreducible factors of the multivariate polynomial. Sparse
factors can be retrieved efficiently from these straight-line programs or black
boxes by several of the recently discovered sparse multivariate interpolation
algorithms.35 It is important to observe that the black-box representation
has broken a major barrier in computer algebra, namely that of intermediate
expression size growth. The black-box programs for the factors, for example,
have more or less constant size—they accomplish the evaluation of the fac-
tors by making within a loop calls to the black box of the input polynomial.
In the future, this representation can perhaps be adopted to other problems
in computer algebra that currently suffer from large intermediate expression
size, such as the Gröbner basis problem.

Recent work on polynomial factorization has focused on the problem of
representing algebraic coefficient fields36 and on the problem of factoring
polynomials, especially the bivariate defining equations of algebraic curves,
over the real or complex numbers.37

As demonstrated in the preceding discussion on polynomial factorization,
an important idea in algorithm design is the use of probabilistic algorithms.
Probabilistic algorithms suffer from certain likelihoods of failure, because
they may occasionally either give incorrect answers (the Monte Carlo vari-
ety) or fail to produce an answer in polynomial time (the Las Vegas variety).
For several problems, researchers have discovered probabilistic algorithms
that are much more efficient than any possible deterministic algorithms.
Another notable example in symbolic computation is Schwartz’s probabilis-
tic algorithm for verifying polynomial identities.38 The use of probabilistic
algorithms in symbolic computation deserves to be more intensely studied,
especially for problems with intrinsically high deterministic complexity.

Another recent major consideration in algorithm development is the
problem of taking advantage of new parallel computer architectures. For
many problem classes, the algorithms that are best suited for sequential ma-

296–305.
35R. E. Zippel, Interpolating polynomials from their values, J. Symbolic Comp., (in

press).
36J. A. Abbott, Recovery of algebraic numbers from their p-adic approximations, in

Proc. 1989 Intl. Symp. Symbolic Algebraic Comput., ACM (1989), pp. 112–120.
37A. Schönhage, The fundamental theorem of algebra in terms of computational com-

plexity, Technical Report, University Tübingen, 1982; D. Duval, Absolute factorization of
polynomials: a geometric approach, Technical Report 103 (1988), University of Grenoble;
E. Kaltofen, Computing the irreducible real factors and components of an algebraic curve,
Proc. 5th ACM Symp. Comput. Geometry, ACM (1989), pp. 79–87; C. Bajaj, J. Canny,
T. Garrity, and J. Warren, Factoring rational polynomials over the complexes, in Proc.
1989 Intl. Symp. Symbolic Algebraic Comput., ACM (1989), pp. 81–90.

38J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities,
JACM 27 (1980), pp. 701–717.

Current Status 27

chines are not necessarily the best ones when converted into algorithms for
parallel machines. In fact, the available and soon-to-be available parallel
architectures are of such wide variety that the optimum use of each may
warrant the development of quite different algorithms.

These are just some examples of recent advances in algorithm develop-
ment. Additional algorithmic advances and seminal problems are surveyed
in Kaltofen’s article.39 Other overviews have been given by Winkler40 and
Caviness.41 However, despite the important and deep progress that has
been made on new symbolic computation algorithms, nothing more than
a substantial beginning has been accomplished. A systematic investigation
of better algorithms is needed in many fundamental areas, including linear
algebra, nonlinear algebra, vector calculus, ordinary differential equations—
especially systems, partial differential equations, and complex function the-
ory. Research is also needed on algorithms that take advantage of special
characteristics of important applied problems.

Significant advances in computational power depend on the development
of computationally oriented mathematics leading to new algorithms. That
this happens, in algebra, is illustrated by Buchberger’s ideal theoretic tech-
niques, as contrasted with Kronecker’s ideal theoretic techniques. A new
generation of computational scientists with intense mathematical and com-
putational training related to symbolic computation and working in compu-
tationally oriented research programs is required.

2.3 Numeric and Symbolic Computation

Daniel Lazard, writing in the preface to the new book Computer Algebra—
Systems and Algorithms for Algebraic Computation,42 notes a curious anom-
aly about the term scientific computation as it has come to be used in the
last thirty years as a result of the way computers have been used to do
computation.

This concept of “scientific calculation” conceals an ambiguity, which
it is important to note: before computers appeared on the scene, a cal-
culation usually consisted of a mixture of numerical calculation and

39E. Kaltofen, Computer algebra algorithms, Ann. Rev. Comput. Sci. 2 (1987), pp.
91–118.

40F. Winkler, Computer algebra, in Ency. of Physical Science and Technology 3, Aca-
demic Press (1987), pp. 330–356.

41B. F. Caviness, Computer algebra: past and future, J. Symbolic Comp. 2 (1986), pp.
217–236.

42J. H. Davenport, Y. Siret, and E. Tournier, Computer Algebra—Systems and Algo-
rithms for Algebraic Computation, Academic Press, London (1988), pp. vi-vii.

28 Symbolic Computation

what we shall call “algebraic calculation”, that is calculation by math-
ematical formulae. The only example of purely numerical calculation
seems to have been the feats of calculating prodigies such as Inaudi: the
authors of tables, especially of logarithms, did indeed carry out enor-
mous numerical calculations, but these were preceded by a restatement
of the algebraic formulae and methods which were essential if the work
was to be within the bounds of what is humanly possible. For exam-
ple the famous large calculations of the 19th century include a large
proportion of formula manipulation. The best known is certainly Le
Verrier’s calculation of the orbit of Neptune, which started from the
disturbances of the orbit of Uranus and led to the discovery of Nep-
tune. The most impressive calculation with pencil and paper is also in
astronomy: Delaunay took 10 years to calculate the orbit of the moon,
and another 10 years to check it. The result is not numerical, because
it consists for the most part of a formula that by itself occupies all the
128 pages of Chapter 4 of his book.

The ambiguity mentioned above is the following: when computers
came on the scene, numerical calculation was made very much eas-
ier and it became commonplace to do enormous calculations, which
in some cases made it possible to avoid laborious algebraic manipula-
tions. The result was that, for the public at large and even for most
scientists, numerical calculation and scientific calculation have become
synonymous.

The emergence of symbolic computation software is once again making
possible the fruitful and natural symbiosis, noted by Lazard, between sym-
bolic and numeric computation. As was historically true, the principal focus
is on restating algebraic formulas and methods to particularize them to the
problem at hand, so that the eventual numeric computation can be cheaper,
more accurate, and less sensitive to errors. Hearn estimates that over 50%
of the Reduce usage on mainframes is spent producing Fortran code.
Symbolic computation is thus an important tool for scientists and engineers
seeking numerical answers. It can be an even more important tool for the
numerical analyst, that is, someone whose primary interest is in the design
and analysis of numeric methods. The analysis and comparison of numeric
methods often require richer mathematics than does mere derivation.

Beyond derivation and analysis of numeric methods, there are other ways
in which the combination of symbolic and numeric computation can be ef-
fective. Many problems involve specifying a model in algebraic form with
undetermined coefficients that are fit statistically to observed data, but
subsequent symbolic manipulation of the model is needed. Numerical ex-
ploration of complicated closed form solutions to problems can investigate
questions that are not tractable symbolically, or can expose behavior that
can then be established formally. On the other hand, symbolic exploration
of complicated expressions can establish properties such as nonnegativity,

Current Status 29

monotonicity, relative maxima, or asymptotes that may be interesting for
understanding the qualitative numerical behavior of the expression or may
be important for choosing the preferred numeric algorithm to use for a prob-
lem involving that expression.

Unfortunately, some potential benefits of the combination of symbolic
and numeric computation are not yet realizable because symbolic compu-
tation software does not yet provide the mathematics needed to support
numerical analysis. The indeterminates in symbolic systems have most com-
monly represented rational or real values, whereas the algebra for numeric
methods often requires indeterminates that represent complex numbers, or
matrices in N -space (where N is symbolic), or even functions. Manipulation
of inequalities or of operator algebra is just beginning to become available.
Commonly used knowledge, such as the standard matrix factorizations, is
not yet built into the symbolic computation systems. These shortcomings
can be circumvented for specific applications, but the impression of awkward-
ness and user-unfriendliness is left. The symbolic computation systems are
not yet considered to be of production quality by the numeric computation
community.

Another barrier to greater use of symbolic systems by the numeric com-
putation community concerns what it means to solve a problem. Although
there has been some symbolic work with approximation, principally using
power series, by and large the objective of symbolic computation has been
to obtain exact answers. By contrast, exact answers are often worthless
for the problems addressed by numeric computation, since they may not
exist, or they may be too complicated to be useful or even insightful. Of-
ten, the mathematical problem to be solved is only an approximation to the
real physical problem. Thus, approximation is essential to addressing the
problems of interest to the numeric computation community. Many types of
approximation are used, including linearization of functions, approximation
of operators, and expansion in many different bases from Fourier series to
Bessel functions to B-splines to Sobolov bases, with error term representa-
tions from difference formulations to integral formulations to Rolle’s theorem
to formulations as poles of functions of a complex variable. Approximation
in this rich setting could exploit symbolic computation, but because of the
clash in objectives, there is as yet no support for it.

Hamming’s famous quotation,43 “The purpose of computing is insight,
not numbers,” can be paraphrased as, “The purpose of computing is insight,
not formulas,” for symbolic computation. The assertion is not strictly true,
for we have seen production of executable code as one important benefit.

43Richard W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill,
New York (1962), p. v.

30 Symbolic Computation

Nevertheless, it is largely the case that human understanding of input to and
output from scientific computation, both symbolic and numeric, is essential.
That implies that mathematical notation and graphic representations are
essential for both input and output.

2.4 Education

Research and education have always been closely linked. This is especially
true for symbolic computation. To have better symbolic computation re-
search we need better education and vice versa. In the area of symbolic
computation, both research and education face the difficulty that symbolic
computation does not fall neatly within one discipline. Symbolic compu-
tation lies at the frontier of several fields, notably computer science and
mathematics. The discipline of computer science has grown out of math-
ematics and electrical engineering. For much of the last twenty years, the
computer science community has looked inward, and rightly so, to under-
stand and shape the nature of the discipline. Much important work has
been accomplished. Now there are important links to be reestablished. As
noted by Steen,44 computing has had fundamental influences on mathemat-
ics. Now is an opportune time to reunite aspects of computer science and
mathematics and to bring symbolic and numeric computation together in
a new synergism. To accomplish this, it is necessary to face the task of
educating the current and future scientific community.

Three concerns regarding symbolic computation and education are:

• education about symbolic computation—what is available and how to
use it

• development of more researchers in symbolic computation

• use of symbolic computation as a teaching tool

A common problem in all three areas is a lack of human resources.
A key to the future development of the field of symbolic computation

is the education and development of current and future researchers. The
education of potential researchers in the area of symbolic computation is
essentially nonexistent in the United States. Currently, there is no gener-
ally established curriculum in the United States for graduate students who
wish to work in this area. At most American institutions with graduate
mathematics and computer science programs, graduate students have no
opportunity to study this area, no faculty are doing research in the area,

44The quote appears later in this section.

Current Status 31

and there are few directly relevant courses. Furthermore, there are few, if
any, postdoctoral positions for scientists and engineers interested in sym-
bolic computation. Postdoctoral positions are important training vehicles
for interdisciplinary fields like this one.

To capitalize fully on the potential of symbolic computation in science,
engineering, and education, better and different tools are needed. An impor-
tant job for future symbolic computation research and software development
is to provide these tools. However, the lack of human resources to do the
needed research makes this a difficult problem to address.

The most fully developed educational program on symbolic computation
is at the Johannes Kepler University in Linz, Austria. A description of this
program appears in Appendix B. Ten years ago there were several small, but
dynamic symbolic computation educational programs at universities in the
United States. MIT, Wisconsin, Utah, Rensselaer, and Berkeley produced a
steady supply of symbolic computation researchers. On a worldwide basis,
over the past ten years, the trend in symbolic computation education and the
production of symbolic computation researchers has been one of decline in
the United States and growth in such countries as Austria, Canada, France,
Italy, Japan, and the United Kingdom.

There is a lack of awareness about what present-day symbolic manipu-
lation systems can do. This was highlighted at the April, 1988 workshop
on symbolic and algebraic computation when attendees lamented that there
was no current system having a certain capability, only to be told that some
system other than the one they were currently using did have that facility. If
sophisticated symbolic computation users are unaware of general facilities,
the problems for the casual and neophyte users must be legion. Most people
doing research in mathematics, science, and engineering are unfamiliar with
even the best-known symbolic computation systems. It would be difficult for
them to develop or fully appreciate a curriculum involving symbolic compu-
tation. A reason for this state of affairs is that few educational materials,
especially textbooks, are available in this area. A list of the few such books
is given in Appendix C. The development of more educational materials
for symbolic computation would help increase awareness substantially. The
recent, more aggressive marketing of symbolic computation systems should
also help with the awareness problem.

Symbolic computation is destined to have a dramatic impact on math-
ematical and all technological education. The use of computers in under-
graduate education is actively being deliberated. Inevitably, symbolic com-
putation will become an integral part of scientific and engineering courses.
Symbolic computation will not only shape teaching methodology; it will
shape course content as well.

32 Symbolic Computation

In his retiring presidential address to the Mathematical Association of
America on January 8, 1988,45 Steen explored the important relationship
between computation, especially symbolic computation, and the teaching of
mathematics. In so doing he exhorted his listeners to

think, as many did at the NRC colloquium on Calculus for a New
Century, about the contrast between the five thousand exercises in
typical calculus books that mostly ask students to imitate calculator
buttons, and the discovery potential in symbolic computer systems

Steen goes on to observe:

Computers influence mathematicians not only by providing new
tools for research and teaching, but also by posing deep questions about
central issues in our discipline. Now that calculators manipulate sym-
bols and calculate answers,
- What—if not arithmetic—should be the core of elementary school
mathematics?
- What—if not manipulation—should be the core of high school alge-
bra?
- What—if not calculation—should be the core of calculus?
- What—if not calculus—should be the core of college mathematics?

At the same time that computers force attention on issues that
are deeply rooted in unexamined tradition, mathematical research has
transformed the nature of mathematics, opening up new options for
what might be considered central and what derivative among the con-
cepts of mathematics.

We need to find new threads of continuity with which to weave a
mathematics curriculum for the twenty-first century. Finding appro-
priate central themes poses an immense challenge for the best minds
among us, researchers and teachers alike. It gives common purpose to
our diverse expertise, and sets a common agenda for those in research,
those in college teaching, and those in school mathematics.

The question is no longer whether symbolic computation ought to be
used in scientific and engineering courses but rather how it can be used
most effectively. The current role of symbolic computation in education is
minimal. Several reasons for this exist, the most obvious ones being the
lack of adequate facilities at many institutions and the lack of educational
materials. However, with cost of computer equipment coming down and
the attitude of university administrations toward the access of equipment
changing, this is not the obstacle that it used to be. The development of
educational materials and textbooks should be encouraged.

Some institutions are already experimenting with symbolic computation
systems for educational purposes. The University of Waterloo has conducted

45L. A. Steen, Celebrating mathematics, Amer. Math. Monthly 95 (1988), pp. 414–427.

Current Status 33

one of the most extensive experiments.46 At St. Olaf College, where the use
of computer algebra systems began in undergraduate mathematics several
years ago, Paul Zorn stated that computer algebra systems

offer important new possibilities for mathematical teaching and
learning. They offer, for the first time, a kit of powerful mathemat-
ical tools—graphical, algebraic, and numerical—at acceptable cost in
time and distraction. Using such tools, we and our students can rep-
resent and manipulate mathematical ideas more efficiently, effectively,
and flexibly than before. At a minimum, Mathematica and other
systems offer computational leverage. At best—and I believe we can
expect this—Mathematica can help us foster genuinely deeper un-
derstanding of mathematical ideas.47

2.5 Funding for Research

In the past the Department of Energy, the Army Research Office, the Na-
tional Science Foundation, and the Systems Development Foundation have
provided much of the funding for symbolic computation research activities.
For example, in the late 1960s and early 1970s the Department of Energy
provided much of the support for the development of Macsyma. In fiscal
year 1987 the National Science Foundation created the Numeric and Sym-
bolic Computation Program, which had as one of its primary objectives to
support symbolic computation research. However, mainly because of a lack
of proposals, the funds, as can be seen from Table 2.1, devoted to symbolic
computation research have been minimal. The lack of proposals is another
indication of the need for more researchers in this field.

Table 2.1: Funding for Symbolic Computation from the NSF Pro-
gram for Numeric and Symbolic Computation

Fiscal Year 1984 1985 1986 1987 1988
Amount $14K $252K $73K $254K $359K

To provide an estimate of current funding by federal sources for symbolic
computation research, an informal survey of federal agencies was carried out.
Agencies were asked to identify 1988 fiscal year expenditures for research on
symbolic algorithms, symbolic software, and applications. The estimates
obtained are given in Table 2.2.

46B. W. Char et al., Computer algebra in the undergraduate mathematics classroom, in
Proc. 1986 Symp. on Symbolic and Algebraic Computation, ACM (1986), pp. 135–140.

47Paul Zorn, Mathematica in undergraduate mathematics, Notices AMS 35 (1988),
pp. 1347–1349.

34 Symbolic Computation

Table 2.2: Funding for Symbolic Computation Research in Fiscal
Year 1988

Division of Electrical, Communications & Systems Engineering
(Program in Systems Theory & Operations Research), NSF $50,000

Division of Emerging Engineering Technologies
(Program in Computational Engineering), NSF 423,255

Division of Computer and Computation Research, NSF 560,665
Division of Mathematical Sciences, NSF 547,019
Office of Undergraduate Science, Engineering & Mathematics

Education (Program on Course & Curriculum), NSF 68,436
Air Force Office of Scientific Research 0
Army Research Office 250,000
Department of Energy 0
National Security Agency (computational number theory) 200,000
Office of Naval Research (research in related areas) 300,000

Total $2,399,375

A few companies in the United States are carrying out commercial re-
search and development in symbolic computation. The largest group is at
the IBM Research Center in Yorktown Heights, New York. Research and
development is also being done at Franz, Inc., in Berkeley, California; at the
Soft Warehouse in Honolulu; at Symbolics, Inc., in Cambridge, Massachu-
setts; at Tektronix Computer Research Laboratory in Beaverton, Oregon; at
Wolfram Research in Champaign, Illinois; and at Xerox PARC in Palo Alto,
California.

A tabulation of the total expenditures by these companies for research
and development efforts in symbolic computation is not available, but based
on the number of persons involved, it is almost surely less than $5 million
per year, but is increasing.

2.6 Current Problems

In a discussion of the current status of symbolic and algebraic computation,
several problems become apparent. In broad terms, these can be categorized
as research, education, and technical problems.

Research. Many research problems need attention, but a serious prob-
lem facing the advancement of this area in the United States is the lack of

Current Status 35

human resources. There are few researchers working in this area and few
programs to educate new persons in the field. This is a chicken and egg prob-
lem. It is difficult to develop a body of researchers in symbolic and algebraic
computation without adequate undergraduate and graduate education in the
area. It is equally difficult to implement an effective educational program
in symbolic computation without the critical mass of researchers to develop
the curriculum and teach the courses.

Symbolic computation faces the special problems within academia and
within potential funding agencies that confront all interdisciplinary research.
The interdisciplinary nature of symbolic and algebraic computation is an im-
pediment to advancing research, training people, and promoting applications
of this technology. Symbolic computation research involves, at the minimum,
a knowledge of mathematics and computer science and often involves other
sciences and engineering. Consequently, there is much to assimilate to reach
the frontiers of research and much material on which to remain current.
At present, computer science researchers in symbolic and algebraic compu-
tation would benefit from a better understanding of the relevant progress
in mathematics. On the other hand, too few academic mathematicians in
the United States have become involved in symbolic computation research.
This has both hurt the research effort in the United States and delayed the
introduction of symbolic computation into mathematical education.

Education. There are three facets to the educational problems in sym-
bolic computation:

• educating the scientific and engineering communities about the capa-
bilities and use of symbolic computation systems

• educating potential researchers in this field

• using symbolic computation in general scientific education

Knowledge of what is possible with symbolic computation and the distinc-
tions between the various symbolic packages is not widespread. One person
who regularly gives talks about symbolic computation to the science and
engineering communities estimates that 80% to 90% of the attendees at his
talks have never heard of symbolic computation. Furthermore, those who
do use symbolic computation systems have significant difficulty using them
effectively. A better awareness of these systems and how to use them in the
scientific and engineering communities is needed.

The education of potential symbolic computation researchers in the United
States is essentially nonexistent. At present, there is no generally established
curriculum in this country for graduate students who wish to work in this
area. At the overwhelming majority of American institutions with graduate

36 Symbolic Computation

mathematics and computer science programs, it would be difficult to write
a Ph.D. thesis in symbolic and algebraic computation because of a lack of
relevant courses and knowledgeable advisers. A graduate student wishing to
pursue such studies has only a few choices of institutions and departments.

It is well accepted that symbolic computation systems will eventually
become a standard part of the curriculum in calculus and other undergrad-
uate education courses. The integration of symbolic computation into these
courses, however, is hampered by the lack of awareness in the scientific com-
munity.

Technical problems. Numerous technical problems impede the acces-
sibility of symbolic computation systems to the community. The systems are
not necessarily user-friendly, and the documentation is often unintelligible.
Symbolic and algebraic computation systems are too difficult to use.

A multitude of symbolic computation systems is currently available.
However, they do not interact well, if at all. Reusable software components
are desperately needed so that new software developments do not have to
start from scratch. Better interfaces between symbolic computation soft-
ware and other software must be devised, especially for numeric software.
More software is needed to implement various approximation methods in
symbolic computation to complement exact, closed form solutions and to
make it possible to solve a wider range of applications problems.

In summary, the current software has many positive and negative at-
tributes. A significant improvement of the software platform could substan-
tially accelerate research on, and applications of, symbolic computation.

Technology transfer. The development and application of effective
symbolic computation methods and facilities involve a broad range of activ-
ities from fundamental research to commercial software development. The
roles of universities, funding agencies, and private enterprise must be worked
out for the mutual benefit of all. Some issues affecting the commercialization
of this technology are:

• Economies of scale are formidable since entry and enhancement costs
are large compared to the size of the market.

• The adoption of symbolic mathematics software technology in the low
and middle segments of the market is limited more by shortages of
resources for commercialization of technology that is already available
than by the need for new system design and algorithms.

• Efforts to increase ease of use through on-line and paper documentation
and through improved user interfaces primarily require development
resources and user-driven direction rather than more research effort.

Current Status 37

• Some improved algorithms, for example, for integration, solving differ-
ential equations, and factoring, developed in the 1980s have not been
implemented in many systems because resources have been focused on
porting, debugging, and improving ease of use.

A better dialogue between academic research and commercial efforts will
expedite the transfer of symbolic computation technology.

Funding. The level of funding for research in this area is low. The
funding level has remained low at a time when funding for scientific and
engineering computation has been increasing rapidly. Reasons for this are
not completely clear, but perhaps the increase in funding for numeric com-
putation has masked the low levels of funding for symbolic computation.
Furthermore, the small number of researchers in symbolic computation has
not put much demand on funding agencies.

38 Symbolic Computation

Chapter 3

Applications in Science and
Engineering

There are at least three characteristic ways in which symbolic computation
systems are used: (1) to do computations that could be carried out by hand,
but can be done more productively and accurately by a symbolic computa-
tion system, (2) to do computations that are beyond hand calculation but
can be done more or less routinely by machine, and (3) to do calculations
that require substantial effort to perform even when using a computer.

There are four principal advantages according to MacCallum.1

(i) it is exact. In particular most computer algebra systems provide
exact arithmetic on indefinitely large integers, and many provide ar-
bitrarily high precision floating point arithmetic. The calculations are
not usually of the sort requiring error analysis or studies of convergence
and stability.
(ii) it removes the tediousness of lengthy routine calculations. Two
well-known examples are the calculation of the orbit of the moon, which
took Delaunay 20 years, and has more recently [been] done by machine,
including writing the software from scratch, in about 9 months, and the
calculation of the curvature for the Bondi metric in general relativity,
which originally took about 6 months, but was done by ALAM in 1967
in 4 minutes and can be done now in as little as 8 seconds plus printing
time
(iii) it is accurate. In both the examples cited in the previous para-
graph, the machine version identified corrections needed in the hand
calculations.
(iv) (perhaps the most interesting) it enables previously unthinkable
calculations to be attempted. This may focus attention on aspects that

1M. A. H. MacCallum, Algebraic computing in relativity, in J. M. Centella (ed.), Proc.
of a Workshop on Dynamical Spacetimes and Numerical Relativity, Cambridge University
Press, New York (1986), pp. 411–445.

39

40 Symbolic Computation

cause a fundamental re-appraisal of the analytic approach. The result-
ing paper may in the end not even mention the brute force calculations
which suggested the more elegant final analysis (for some examples see
d’Inverno 19762).

Although symbolic computation is widely applicable, MacCallum noted
that many applications are never reported in the literature. Odlyzko3 rein-
forced this when he wrote:

Some of the most interesting applications of symbolic mathematics
are in mathematics itself. Areas of both pure and applied mathemat-
ics, including coding theory, cryptography, probability theory, analysis,
combinatorics, and number theory, have all gained from the availability
of the new symbolic manipulation tools. These tools have been used
to prove a number of results directly. Their main application, how-
ever, has been to obtain insight into behavior of various mathematical
objects, which then led to conventional proofs being constructed. . . .
My experience with symbolic mathematics goes back over ten years.
Most of this work was with Macsyma, although at various points I or
my collaborators have used other systems such as Altran, Maple,
and SMP. These systems were used in many fields of mathematics . . .
. Still, these extremely varied examples do not cover the full range of
applications that have been made, and are a reflection of my research
interests. . . . I see the main role of symbolic algebra systems as that of
helping to formulate hypotheses, search for examples and counterexam-
ples, and in general explore ramifications of mathematical models. In
other words, the main role of these systems is to obtain mathematical
insight. Once that insight is obtained, one can then go on and construct
canonical mathematical proofs, in which there might not even be any
traces of the use of computer algebra [editors’ emphasis].

This is the nature of symbolic computation—it is a tool that in-
creases scientific and engineering productivity.

2R. A. d’Inverno, Algebraic computing in general relativity, Gen. Rel. and Grav. 6
(1975), pp. 567–593.

3A. M. Odlyzko, Applications of symbolic mathematics to mathematics, in R. Pavelle
(ed.), Applications of Computer Algebra, Kluwer Academic Press, Boston (1985), pp. 95–
111.

Applications 41

A sampling of some of the problems to which symbolic computation has
been applied demonstrates the scope and importance of this mode of com-
putation. Areas to which symbolic computation has been applied include:

• Physics—astrophysics, quantum electro- and chromo-dynamics, gen-
eral relativity, optics, plasma physics, celestial mechanics, fluid me-
chanics, quantum mechanical perturbation theory, calculation of dis-
sociation energies for various atoms

• Chemistry—molecular electronic structure calculations, kinetic energy
operators for molecule based internal coordinates, solutions to first
order rate equations, steady state concentrations for complex reacting
systems, quantum mechanics of molecular pseudorotation

• Mathematics—numerical analysis, coding theory, cryptography, proba-
bility theory, analysis, combinatorics, number theory, real closed fields,
group theory, geometry, topology, commutative algebra, algebraic ge-
ometry, proof of the Macdonald-Morris conjecture, understanding of
Ramanujan’s mock theta functions

• Chemical engineering—column flow rate parameters in absorption pack-
ed beds and in chemical reactors

• Nuclear magnetic resonance—expansion of Wigner rotation matrix
term, examination of magic angle spinning expressions, computation
of expressions for the angular dependence of slow molecular motion
in solids, the calculation of the antisymmetric part of the chemical
shift tensor, computation of closed expressions for nuclear magnetic
resonance line shapes

• Engineering—electrical network analysis, turbine design, ship hull de-
sign, hydrodynamic lubrication, helicopter rotor design, control theory,
image and signal processing, antenna design

Descriptions of a few applications illustrate the breadth and relevance of
symbolic computation.

3.1 High Energy Physics

This is an area in which symbolic computation systems have been routinely
and extensively used since their early days, and probably more applica-
tion papers have been published on this topic than any other. High-energy
physics research has also provided an impetus for system development, since

42 Symbolic Computation

several systems for such calculations have evolved into general-purpose sys-
tems that are now widely used by engineers, mathematicians, and physicists,
besides prompting the development of a number of special-purpose systems
that are still in use today. As early as 1970, a computer algebra calculation
of the Lamb shift in hydrogen4 was considered one of the outstanding physics
results of that year.

In this field more than any other, computer algebra is an indispensable
tool for researchers. It is difficult, however, to describe the exact nature of
such calculations in simple terms. In essence, one computes the outcome
of a physical process in quantum electrodynamics or quantum chromody-
namics by means of a perturbation theory expressed in diagrammatic form.
These diagrams, normally called Feynman diagrams after their inventor, can
be transformed into an algebraic expression by applying the so-called Feyn-
man rules. This process is fairly straightforward, although there are systems
available for doing parts of this automatically. The algebraic expression that
results is a multidimensional integral that is almost impossible to evaluate
numerically because of the instabilities involved. However, if some of the
integrations can be done symbolically, the numerical calculation of the re-
maining integrals is much more manageable. The key problem is to do as
many of these integrals as possible analytically by computer. Since they
arise from the multidimensional integration of rational functions, they are
sufficiently well structured that special-purpose packages can be written for
this purpose. The sheer size of many of these calculations boggles the mind.
At times, several million terms are manipulated in such calculations, whereas
the final result is often quite small.

Modern mathematical methods in quantum field theories rely on alge-
braic techniques from algebraic topology and algebraic geometry, particu-
larly in superstring and supersymmetry. Applications of computer algebra
already appear in this area: see, for example, identities on elliptic curve char-
acteristic classes derived using computer algebra5 (Witten-Landweber-Stong
conjecture).

3.2 Celestial Mechanics

An elementary exercise like solving the main problem in the theory of artifi-
cial satellites requires only basic operations in a well-structured set of func-

4T. W. Appelquist and S. J. Brodsky, The order α2 electrodynamic corrections to the
Lamb shift, Phys. Rev. Letters 24 (1970), pp. 562–565.

5D. and G. Chudnovsky, Elliptic formal groups over Z and Fp, Applications to Number
Theory, Computer Science and Topology, Lect. Notes Math. 1326 (1988), pp. 11–54; ,
Elliptic modular functions and elliptic genra, Topology 27 (1988), pp. 163–170.

Applications 43

tions that are in part polynomials in several variables and in part trigonomet-
ric sums in several arguments. But these operations must be repeated many
times; moreover, as the calculation proceeds, the number of terms in the in-
termediate results and the size of their coefficients grow quasi-exponentially.
Astronomical calculations have been done on specially tailored systems that
can handle the complexity of these calculations. This has been the trend ever
since the late 1960s, when the grand schemes of Delaunay or Hill-Brown were
automated to solve the main problem of lunar theory. Perhaps the reason
is that from the beginning specialists in celestial mechanics felt that calcu-
lation automation would not work for them unless the traditional schemes
meant to speed up hand calculations were replaced by algorithms specially
designed for computers. Most significant in that regard has been the substi-
tution of explicit Lie transformations for the implicit algorithms elaborated
by Poincaré. As the software available grew in sophistication, specialists
in celestial mechanics kept refining their ad hoc programs for manipulating
what they call Poisson or d’Alembert series. This approach has produced
results that can be described unreservedly as sensational. It is now possible
to generate in less than half an hour on major computers the semianalytical
solution of Hill-Brown for the main problem of lunar theory; furthermore,
for the first time in the history of celestial mechanics, a complete semian-
alytical solution for the full theory, including the planetary perturbations,
has been produced to meet the precision of current observations. The same
has been done for all the planets in the solar system. The time is fast ap-
proaching when the traditional task of producing astronomical almanacs will
be entirely automated on any type of computer—small or large, on board a
satellite, or in the middle of an almanac office. The next job is to automate
the production of Fortran codes from analytical solutions in the theory
of artificial satellites. A preliminary model has already been realized, but
further progress has been hampered by difficulties caused by small divisors
and resonances.

André Deprit was awarded the James Craig Watson medal by the Na-
tional Academy of Sciences “for his resolution of the problem of lunar motion
around the earth through his adaption of modern computing machinery to
algebraic rather than arithmetic operations. . . .He has made it possible to
correct the theory differentially whenever small changes in the initial condi-
tions become necessary, without having to repeat the laborious analysis.”6

Now that the classical problems are well within their grasp, astronomers
have turned lately to awesome tasks like establishing the history of the ec-
centricity of the earth’s orbit and of the inclination of the equator over the
ecliptic for fifty to a hundred million years in the past and possibly for even

6Taken from the award documents, National Academy of Sciences, April 23, 1972.

44 Symbolic Computation

longer. Besides helping geologists in relating periods in the ice ages with
periods in the earth’s insolation, as conjectured by Milankovich, it would es-
tablish astronomical time scales over geological periods. It is not altogether
obvious that these problems have reached computational maturity. What is
certain, however, is that astronomers will not succeed unless they identify
the places where their private symbolic computation codes lend themselves
to massively parallel computing.

3.3 Group Theory

The mathematical concept of a group was introduced by Galois in the 1830s.
In the intervening 150 years, group theory has found application in many
fields, including mathematics itself, physics, and chemistry. The classifica-
tion of the finite simple groups is a major achievement of twentieth-century
mathematics. A famous paper by Feit and Thompson started a series of
events that led to the final classification: any finite simple group is an al-
ternating group, is a finite version of a simple Lie group, or is one of 26
exceptional groups. The latter, the 26 sporadic groups, do not fit naturally
into any of the infinite families of simple groups. The construction of several
of these sporadic groups involved extensive machine computation. For exam-
ple, the Lyons sporadic group was first constructed7 as a permutation group
on 8,835,156 points and more recently was found8 as a group of 111-by-111
matrices over the field of five elements.

The finite simple groups are the building blocks from which all finite
groups are constructed. To use the classification of simple groups to obtain
general theorems about finite groups, it is necessary to have a great deal
of information about the simple groups. Much has been learned, but much
remains to be done. The character table of a group describes the represen-
tations of the group by complex matrices. Conway et al.9 give the character
tables of all the sporadic groups along with the tables of some of the smaller
members of the infinite families. Most of these character tables were ob-
tained using machine computation. Moreover, the computer often provides
the best means for deducing additional properties of the groups from their
character tables.

When the characteristic of the field divides the order of the group, infor-
mation about the matrix representations of the simple groups is not nearly

7C. C. Sims, The existence and uniqueness of Lyons’ group, Finite Groups ’72. North-
Holland (1972), pp. 138–141.

8W. Meyer, W. Neutsch, and R. Parker, The minimal 5-representation of Lyons’ spo-
radic group, Math. Ann. 272 (1985), pp. 29–39.

9J. H. Conway, R. S. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of
Finite Groups. Clarendon Press, Oxford (1985).

Applications 45

as complete as it is for characteristic zero. The computer will undoubtedly
play a major role in exploring these modular representations. A basic tool
here is the “Meat-Axe,”10 an algorithm for deciding whether a matrix group
is irreducible.

Another use of computers in group theory has been in the study of Burn-
side groups. If r and n are positive integers, then the Burnside group B(r, n)
is the most general group generated by r elements that has the property that
the n-th power of every element in the group is the identity. The Burnside
groups are known to be infinite when r is at least 2 and n is divisible by a
large odd number. However, the groups are finite for some small values of
n, and it is not known whether they are finite or infinite when n is a large
power of 2.

If n = 4, then the Burnside groups are finite for all r, but the proof
of this general result gives extremely crude upper bounds for the order of
B(r, 4). It is not hard to show that the orders are 22 and 212 when r is 1
and 2, respectively. The orders |B(3, 4)| = 269 and |B(4, 4)| = 2422 were
obtained11 using implementations of the procedure known as the Nilpotent
Quotient Algorithm (NQA). Recently, with an improved version of the NQA,
M. F. Newman has obtained the upper bound 22728 for |B(5, 4)| and has
conjectured that this is the exact order. The Canberra NQA software has
also been used12 to show that the number of groups of order 256 is 56,092.

3.4 Chemistry

Although relatively new to chemistry, symbolic computation is rapidly be-
coming a standard tool in a wide variety of research areas. A typical com-
mon application involves predicting exactly how a molecule behaves in cer-
tain circumstances, such as when undergoing a chemical reaction. Complex
mathematical molecular models, either ab initio or empirical, are necessary
for this. In the more recently developed models, the required formulas and
optimized computer code were obtained using symbolic computation. This
is an important, if straightforward, application of symbolic computation in
chemistry. It allows otherwise precluded chemical problems, such as those

10R. A. Parker, The computer calculation of modular characters (the Meat-Axe), in M.
D. Atkinson (ed.), Computational Group Theory, Academic Press, London (1984), pp.
267–274.

11A. J. Bayes, J. Kautsky, and J. W. Wamsley, Computation in nilpotent groups (appli-
cation), Proc. Second Intl. Conf. Theory of Groups (Canberra, 1973). Lect. Notes Math.
372 (1974), pp. 82–89; W. A. Alford, G. Havas, and M. F. Newman, Groups of exponent
four. Notices Amer. Math. Soc. 22 (1975), p. A.301.

12E. A. O’Brien, The Groups of Order Dividing 256. Ph.D. Thesis, Australian National
University, 1988.

46 Symbolic Computation

appearing in the design of drugs, to be accurately studied. The motivation
for greatly increased use of symbolic computation in molecular modeling is
thus high.13

Symbolic computation is also used in some of the important macroscopic
problems in chemistry. The concentrations of certain chemicals in living sys-
tems often vary in time according to first order rate laws. A formal solution
to this problem is useful for obtaining and analyzing experimental rate con-
stants. Symbolic computation allows solutions to much more complicated
systems of this type than has been possible previously.14

Another recent and important application in macroscopic chemistry is
the determination of the steady state or equilibrium concentrations of species
in a complex reacting system.15 These are solutions to systems of (usually
low order) polynomials. Recently, systems of up to fifty species have been
solved on a Cray X-MP. The Buchberger algorithm is used to transform the
system to a Gröbner basis from which the solutions are directly obtained.

3.5 Numeric Computing

The mathematical library included with BSD 4.3 Unix is of considerable sig-
nificance, not only because Berkeley Unix is so widely used, but also because
this high-quality library has been widely copied to provide mathematical li-
braries on other systems. The function approximations used in this library
are particularly accurate, having been carefully chosen to take into account
IEEE standard arithmetic as well as the arithmetic of the VAX. The coeffi-
cients are optimal, given that they must be represented in the finite precision
of the floating point arithmetic.

Kahan, MacDonald, and Tang achieved this by solving a series of non-
standard optimal approximation problems. Each problem of the series re-
quired a combination of symbolic and numeric steps. The problems involved
choosing one coefficient whose optimal value had been determined in an
earlier problem, adjusting that coefficient to an appropriate representable
value, and solving the now nonstandard problem where the value of that co-
efficient is now fixed. Remes’ algorithm used to solve each problem required
the derivatives of the error to be accurately determined. The only practical

13M. McCourt and J. McIver, Symbolic algebra software, a useful tool for code devel-
opers, QCPE Bulletin 7 (1987), p. 69; P. Knowles and N. Handy, Projected unrestricted
Moller-Plesset second-order energies, J. Chem. Phys. 88 (1988), p. 6991.

14W. Kreye, P. Batra, and G. Skinner, Analytic solutions to sets of first-order rate
equations with up to six rate constants using a symbolic computer language SMP and
application to biochemical kinetics, J. Comp. Chem. 9 (1988), p. 674.

15H. Melenk, H. M. Möller, and W. Neun, Symbolic solution of large stationary chemical
kinetics problems, Impact of Computing in Sci. and Eng., 1 (1989), pp. 138–167.

Applications 47

method to do this was to differentiate symbolically the error function, pro-
ducing Fortran code that could be executed to yield numeric values. This
code was then used in the numeric iteration to find the optimal coefficient
values for that problem.

3.6 Robotics

The inverse robot kinematics problem is the problem of determining, for a
given robot and a desired gripper position and orientation, the angles of
the rotational joints and the translations of the prismatic joints that cause
the gripper to assume the desired position and orientation. Mathematically,
this problem reduces to the solution of systems of multivariate algebraic
equations. The exact structure of these systems depends on the type of
robot considered.

In the book of Paul,16 analytic solutions of the algebraic systems for the
inverse kinematics of the most important robot types are derived. Roughly,
these solutions are derived by some skillful substitutions and transformations
that are successful in the robot examples but, of course, cannot yield a gen-
eral methodology for the analytic solutions of systems of algebraic equations.
Using Paul’s book, an engineer who wants to study the inverse kinematics
problem for a specific robot has to look up the various types of algebraic
systems shown in this book, choose an appropriate one, try to find appropri-
ate substitutions that make the problem a special case of one solved in the
book, and apply the steps of the transformations until an analytic solution
formula for the robot is reached.

Hintenaus17 has implemented the implied procedures in Paul’s book as
a symbolic computation program. For this program the only input needed
is the traditional Denavit-Hartenberg representation of the robot. The pro-
gram produces the system of kinematic equations, attempts to find substi-
tutions by which the system can be handled as a special case of one treated
by Paul, and applies the appropriate analytic solution method.

Symbolic computation has also been used in the simulation of the dynam-
ics of a robot system. Hirschberg and Schramm18 use the special-purpose
program Neweul to generate symbolically the equations of motion, lin-
earized with respect to a nominal motion. These equations are coded in

16R. Paul, Robot Manipulators: Mathematics, Programming, and Control, MIT-Press,
Cambridge, Massachusetts (1981).

17P. Hintenaus, An inverse kinematics system in Macsyma, Tech. Report No. 87–18,
Research Institute for Symbolic Computation, University of Linz, Austria (1987).

18W. Hirschberg and D. Schramm, Application of Neweul in robot dynamics, J. of
Symbolic Comp. 7 (1989), pp. 199–204.

48 Symbolic Computation

Fortran and are therefore ready for further processing in a simulation pro-
gram.

3.7 Geometric Modeling

As R. N. Goldman19 has noted:

Geometric modeling is rapidly becoming an important tool in mod-
ern industrial design and manufacture. Computer models are replacing
physical models. They are cheaper to construct, easier to change, and
simpler to analyze. Computer simulations save both time and money,
and computer analyses of geometric models lead to better and cheaper
products. Stress analysis, interference checking, process planning, N.C.
verification, mass properties calculations, and a host of other applica-
tions either are already being performed today or will be performed in
the very near future directly from computer models. Architectural en-
gineering, electrical engineering, industrial engineering, and mechanical
engineering will all be revolutionized by this new technology.

In geometric modeling, the implicitization problem is the problem of
finding an implicit algebraic equation for a surface or curve from a given
parametric representation. This problem is important because problems for
geometric objects may be of very different degrees of difficulty for different
representations. For example, the decision about whether a given point is
inside or outside a geometric object is easy for implicitly given objects but
difficult for objects given by a parametric representation.

For many years, the implicitization problem has been deemed difficult
if not algorithmically unsolvable in the general case. However, using the
method of Gröbner bases and symbolic computation, it can be solved in
total generality. Although the problem of computing Gröbner bases has a
high intrinsic computational complexity, experience shows that parametric
representations occurring in practical examples are well amenable by the
preceding general method. This method has been proposed by Arnon and
Sederberg.20 The general method has been proved correct by Buchberger.21

19R. N. Goldman, The role of surfaces in solid modeling, in G. E. Farin (ed.),Geometric
Modeling: Algorithms and New Trends, SIAM, Philadelphia (1987), pp. 69–90.

20D. Arnon and T. W. Sederberg, Implicit equations for a parametric surface by Gröbner
basis, Proc. 1984 Macsyma User’s Conference, Schenectady, New York, pp. 431–436.

21B. Buchberger, Applications of Gröbner bases in nonlinear computational geometry,
IMA Volumes in Mathematics and Its Applications 14, Springer-Verlag, New York (1988).

Applications 49

3.8 Mathematical Biology

The somatic cells of higher animals have a nucleus containing the DNA in a
distinct compartment within the cytoplasm of the cell. Such cells are called
eucaryotic cells. A model of a eucaryotic cell viewed as two compartments
where reactions and diffusion occur according to the basic theory of feedback
repression of Jacob and Monod is considered in a paper of Busenberg and
Mahaffy.22

Previous models of this type considered the eucaryotic cell as two or
more well-mixed compartments. Hence, a fundamental question is whether
the bifurcations that help interpret the observed phenomenon of epigenic os-
cillations can be explained via the simpler, well-mixed compartment models
when the diffusion rates in the cytoplasm are very high. This question was
addressed by deriving a characteristic equation using a symbolic manipula-
tion program and then doing detailed asymptotic analysis on this equation.
The results confirmed the use of well-mixed compartment models when there
are no significant reactions on the cell wall membrane and showed that when
such reactions are important, well-mixed compartment models are not ad-
equate approximations. These results cannot be proved by any numeric
scheme, and the derivation of the characteristic equations was so involved
that it could not be done by hand. Hence, the use of a symbolic system was
necessary for this important aspect of the project.

3.9 Radar Design

Engineers design radar systems from a limited number of hardware elements
that are combined to produce various systems that meet desired specifica-
tions. Although it is physically possible to construct and test each proposed
system in a design, it is economically not feasible, and thus mathematical
models are used to evaluate the effectiveness of a proposed design. A pri-
mary design criterion for a radar system is the precision with which it detects
an object and its velocity. This can be determined analytically by studying
the so-called ambiguity function of the system that measures the correlation
between the received signal and an ideal response signal. Ideally, the design
engineers would like to have an easy way of analyzing the effects that various
parameters have on the ambiguity function of the system they are designing.
For this type of work, it is best to have a fast way of generating analytical
expressions for the ambiguity function in terms of the basic system param-
eters. The Pomona Division of General Dynamics Corporation sponsored a

22S. Busenberg and J. Mahaffy, Interaction of spatial diffusion and delays in models of
genetic control by repression, J. Math. Biol. 22 (1985), pp. 313–333.

50 Symbolic Computation

Mathematics Clinic project at Harvey Mudd College during the academic
year 1984–1985 to develop an automatic computer method of generating the
analytical expressions for the ambiguity functions of various radar systems.
The project used a symbolic manipulation program to solve this problem.
The results of this project are described in a report by di Franco et al.23

This work required the use of a computer algebra program and could not be
done by means of numeric computations.

3.10 Signal Processing and Coding

This topic concerns the processing of digital data for the purpose of trans-
mission or storage, through a physical medium referred to as the channel.
The channels are usually specified by their Fourier spectral characteristic
obtained as the Fourier transform of an impulse response; hence, they are
assumed to be linear (superposition principle holds). Furthermore, they are
noisy; that is, the data are perturbed by a disturbance modeled as a random
process. Signal processing amounts to matching the data to these channel
characteristics. The mathematical techniques required involve the computa-
tion of orthogonal bases derived from the channel characteristics. Symbolic
computation is a tool that can easily provide a variety of such families and
can furthermore be used to solve the linear algebra problems involved.

Another channel characterization is given in terms of linear and nonlin-
ear difference equations and is used to model “memory” or dependence on
past signals. Because the matching of data to these channels involves the
solution of recursions, continued fraction algorithms that are easily carried
out using a symbolic computation system are used. The data must be stored
or transmitted with a specific reliability. This requires algebraic redundancy
or the use of error correcting codes. These are signal processors that work
in finite field arithmetic. Computer algebra has been used to develop a va-
riety of low-complexity discrete Fourier transforms and short convolution
algorithms.24 These algorithms are parts of many digital signal processing
and fast Fourier transform packages and are embedded in silicon for digital
signal processing chips. Their design requires solution of linear congruences

23R. di Franco et al., Radar design using symbolic manipulation software, Harvey Mudd
College Mathematics Clinic report to General Dynamics, Pomona Division, June 1985,
Harvey Mudd College, Claremont, California.

24S. Winograd, Algebraic constructions for algorithms, in Proc. 1981 Symp. on Symbolic
and Algebraic Computation, ACM (1981), pp. 141–145; J. Cooley, Automated generation of
optimized convolution algorithms, in D. V. Chudnovsky and R. D. Jenks (eds.), Computer
Algebra, M. Dekker, New York (1989), pp. 183–198; L. Auslander, J. Cooley, and A.
Silberger, On the use of Scratchpad in the construction of convolution algorithms, ibid.,
pp. 151–182.

Applications 51

in a finite field. Padé approximations and continued fractions are the rele-
vant tools. All these operations can be supplied by computer algebra and
are used by researchers working in this area.

In this context algebraic geometry is useful for the construction of codes
on algebraic curves. These constructions require machine models of curves,
desingularization algorithms, divisor construction, and ultimately interpo-
lation algorithms in fields of algebraic functions in one or more variables.
Symbolic computation is the tool for these constructions. Algebraic curves
are used in computer algebra systems to construct algebraico-geometric and
Goppa codes25 and to develop polynomial multiplication algorithms with
low complexity.26

3.11 Control Theory

The problem of maneuvering flexible space structures by feedback control
of certain elements of the stiffness matrix is examined in a paper by Moon
and Rand.27 The method is a mechanical analogue to nature’s manage-
ment of animal structural configuration, namely, active control of internal
stress of muscles. In a man-made structure this can be done by applying a
self-equilibrated internal stress state through the use of cables or hydraulic
actuators. The tension in cables can be controlled by direct current servo-
motors and gear reducers. From elementary structural theory it is known
that the initial stress state can change the elastic stiffness matrix. The au-
thors propose to use feedback to control elements of the stiffness matrix
by controlling the internal stress. The method leads to nonlinear control
equations. Nonlinear analysis using center manifold theory and normal form
theory determines criteria on the nonlinear control gains for stable or un-
stable operation. The analysis was made possible by the use of computer
algebra.

3.12 Geostatistics

Kriging is an established tool in geostatistics used to estimate the average
grade of an in-ground mineral. Kriging consists of computing the best linear

25M. Hassner, W. Burge, and S. Watt, Construction of algebraic ECC on the elliptic
Riemann surface, Scratchpad Newsletter 2 (1987), pp. 5–8.

26D. and G. Chudnovsky, Algebraic complexities and algebraic curves over finite fields,
Proc. Natl. Acad. Sci. 84 (1987), pp. 1739–1743.

27F. C. Moon and R. H. Rand, Parametric stiffness control of flexible structures, in Proc.
of the Workshop on Identification and Control of Flexible Space Structures, Vol II, pp.
329–342, Jet Propulsion Laboratory Publication 85–29, California Institute of Technology,
Pasadena (1985).

52 Symbolic Computation

unbiased estimator of a random function associated with the grade of the
mineral over a specified block. Typically, the local estimation in a mining
deposit can involve the Kriging of 10,000 blocks, each of them being esti-
mated by using 10 to more than 20 neighboring data points. A model is
chosen to best fit the experimental variogram obtained from the data. The
number of models used for the variogram is limited (< 10), and the geome-
tries of the blocks are often the same. Therefore, solving the Kriging system
involves integrating the same functions on domains that differ only by their
dimensions. This makes the finding of closed formulas for these integrals
plausible and potentially useful.

Closed formulas have already been found for integrals of the Kriging
system for the linear and spherical models where the block is a rectangle.
The result for the spherical model can be found in a paper by Guibal.28

These results have been used in Bluepak, a large geostatistical system. J.
H. and J-P. Marbeau29 derive closed formulas for these integrals using the
spherical and linear models, where the block is chosen to be a parallelopiped
with rectangular edges.

The traditional means of solving a Kriging system is by numerical inte-
gration. A comparison of the numeric approach and the closed form approach
is dependent on the number of discretization points. For a small number of
points, the numeric approach was faster. However, the closed form solution
proved to be faster for larger numbers of points. As would be expected,
the accuracy for the numeric approach improves as the number of points
increases. The closed form approach is accurate for small numbers of points.
Unfortunately, the closed formula approach involves matrix inversion, and
consequently, as the number of points increases, there is a problem with
insufficient memory to compute the necessary inverse matrix.

As noted in Geostatistics,30 the specific applications of symbolic com-
putation presented by Marbeau will not change immediately the practice of
geostatistics. However, this work is considered to be an important pioneering
effort into territory that will have a dramatic influence in the future.

28D. Guibal, Les fonctions auxiliaries a deux dimensions pour le schema spherique,
Centre de Geostatistique, Fontainebleau, France (1973).

29J. H. Marbeau, Towards Symbolic Kriging with the Help of Macsyma, M.S. Thesis,
University of Denver, June 1987; J. H. Marbeau and J-P. E. Marbeau, Formal computation
of integrals for 3-d kriging, Geostatistics 2 (1989), pp. 773–784.

30Geostatistics 1 (1987), p. 6, R. Barnes (ed.) North American Council on Geostatistics,
Minneapolis.

Applications 53

3.13 Algebraic Geometry

A relationship between the geometry of a projective curve and the algebra
of its defining ideal (the defining equations) has been studied by Eisenbud,
Koh, and Stillman.31 The defining equations are given by the two-by-two
minors of a matrix of linear forms for projective curves satisfying suitable
conditions. Their theorem extends a theorem of Castelnuovo.32 It is a
result in the spirit of classical algebraic geometry that was missed by the
classical geometers. The new research was strongly influenced by use of the
computer algebra system Macaulay. Eisenbud, Koh, and Stillman were led
to formulate and prove their main theorem after studying examples produced
by Macaulay.33

3.14 Number Theory

The remarkable identities left by S. Ramanujan34 have been subject to exten-
sive developments using computer algebra.35 In particular, the mock theta
functions are now much better understood,36 and stunning interactions be-
tween classical additive number theory and algebraic number theory have
been discovered.37 In addition, a new nonalgebraic proof of Gauss’ famous
theorem that each integer is a sum of at most three triangular numbers has
been found.38 All these developments would have been impossible without
the intuition gained from the construction of Bailey pairs and Bailey chains
using computer algebra.39

Number theory has always been a prime target of applications of com-

31D. Eisenbud, J. Koh, and M. Stillman, Determinantal equations for curves of high
degree, Amer. J. Math. (in press).

32G. Castelnuovo, Sui multipli di una serie lineare di gruppi di punti appartenente ad
una curva algebrica, Rend. Circ. Mat. Palermo 7 (1893), pp. 89–110.

33D. Bayer and M. Stillman, The design of Macaulay: a system for computing in
algebraic geometry and commutative algebra, in Proc. 1986 Symp. on Symbolic and
Algebraic Computation, ACM (1986), pp. 157–162.

34S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing
House, New Delhi (1988).

35G. E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math
Soc. 293 (1986), pp. 113–134.

36D. R. Hickerson, A proof of the mock theta conjectures, Inventiones Math. 94 (1988),
pp. 639–660.

37G. E. Andrews, F. J. Dyson, and D. R. Hickerson, Partitions and indefinite quadratic
forms, Inventiones Math. 91 (1988), pp. 391–407; H. Cohen, q-identities for Maass wave-
forms, Inventiones Math. 91 (1988), pp. 409–422.

38G. E. Andrews, EΥPHKA! num = 4 + 4 + 4, J. Number Th. 23 (1986), pp.
285–293.

39Ibid.

54 Symbolic Computation

puter algebra. A large volume of outstanding calculations probe the way
to conjectures and, eventually, solutions to classical problems, for example,
the pioneering Birch-Swinnerton-Dyer computations and their extensions.40

Number-theoretic techniques developed in computer algebra have been ap-
plied to diophantine problems.41 Solution of diophantine and differential
equations is one target of computer algebra computations.42 One exam-
ple is the help of symbolic differential calculus in the solution of Kolchin’s
problem.43

3.15 Applied Mathematics

The problem considered in a paper by Dangelmayr and Guckenheimer44 is
the determination of phase portraits that occur in a specific four-parameter
family of vector fields on the plane. Computer algebra is used to do two
things. First, systems of algebraic equations that determine the parameters
at which various types of bifurcations of equilibrium solutions occur are com-
puted. Second, using an averaging argument that involves the calculation
and reduction of elliptic integrals, the location of periodic orbits and their
bifurcations is determined. The algebra, including the reduction of elliptic
integrals, is routine but lengthy and tedious.

In a recent paper45 Guckenheimer, Rand, and Schlomiuk report on a
calculation that is related to one of Hilbert’s famous unsolved problems, the
16th, about limit cycles for polynomial vector fields. It addresses the ques-
tion of how many limit cycles can collapse simultaneously into a homoclinic
orbit of a divergence free quadratic vector field. The calculation uses the
same type of techniques as the Dangelmayr and Guckenheimer paper, but
the crux of the argument depends on the symbolic computation of the in-
tegral of a rational function of degree 18. The result of this computation is
a large expression, requiring thousands of bytes of storage, that would be
impossible to compute by other means. More elliptic integral calculations

40B. Birch and H. P. S. Swinnerton-Dyer, Numerical tables on elliptic curves, Lect. Notes
Math. 476 (1975), pp. 81–144.

41J. H. Davenport, Y. Siret, and E. Tournier, Computer Algebra—Systems and Algo-
rithms for Algebraic Computation, Academic Press, London (1988).

42D. and G. Chudnovsky, Padé and rational approximations to systems of functions and
their arithmetic applications, Lect. Notes Math. 1052 (1984), pp. 37–84.

43D. and G. Chudnovsky, The Wronskian formalism for linear differential equations and
Padé approximations, Advances in Math. 52 (1984), pp. 111–138.

44G. Dangelmayr and J. Guckenheimer, On a four parameter family of planar vector
fields, Arch. Rat. Mech. Anal. 97 (1987), pp. 321–352.

45J. Guckenheimer, R. H. Rand, and D. Schlomiuk, Degenerate homoclinic cycles in
perturbations of quadratic Hamiltonian systems, Cornell University MSI Technical Report
No. ’87–45.

Applications 55

appear in another paper by Armbruster, Guckenheimer, and Holmes46 for
a bifurcation problem with a higher dimensional phase space. The calcula-
tions could have been performed by hand, but computer algebra was used
and helped speed the process.

A paper by Guckenheimer and Johnson47 gives a systematic approach
to locally measuring the deviation of iterates of a one-dimensional mapping
from a quadratic or a linear function. The arguments involve a complicated
construction of a sequence of “box maps” and estimates on their distortion
and relative sizes. Throughout the argument there are calculations involving
compositions of quadratic functions and fractional linear transformations.
Both the details of the final proof and the development of its strategy were
greatly aided by the systematic use of computer algebra.

Computer algebra has played a significant role in extending the work on
exactly solved models in statistical mechanics. Building on Baxter’s original
solution of the hard hexagon model,48 Andrews, Baxter, and Forrester49 pro-
duced an infinite family of solved models. The main mathematical technique
was based on empirical methods implemented in computer algebra. Subse-
quently, computer algebra played an even more powerful role in extending
these models.50

In another area, F. A. Grünbaum and his students at Berkeley have
worked on determining explicit solutions of the Kadomtsev-Petviashvili equa-
tion and related “soliton” completely integrable nonlinear partial differential
equations of mathematical physics. The period from 1965 to 1975 was an
important one in the area of nonlinear partial differential equations. First, a
number of equations like the Korteweg-deVries, the nonlinear Schroedinger,
and the Toda lattice were found to be completely integrable by using inverse
scattering techniques. Second, some new equations, most notably the KP
equation (after the Soviet physicists Kadomtsev and Petviashvili), were pro-
posed as a model for plasma waves and shallow water wave propagation in
two dimensions. Then the KP equation was found to be a “universal equa-
tion” resulting from a delicate balance of nonlinearity, dispersion, and some
weak transversal dependence. Third, a nonlinear superposition principle for
“cnoidal waves” was uncovered in the Soviet Union. This work brought to

46D. Armbruster, J. Guckenheimer, and P. J. Holmes, Heteroclinic and modulated trav-
elling waves in systems with O(2) symmetry, Physica D29 (1988), pp. 257–282.

47J. Guckenheimer and S. Johnson, Distortion of S-unimodal maps, authors’ preprint.
48R. J. Baxter, Hard hexagons: exact solutions, J. Phys. A. 13 (1980), pp. L61–L70.
49G. E. Andrews, R. J. Baxter, and P. J. Forrester, Eight-vertex SOS model and gener-

alized Rogers-Ramanujan type identities, J. Statist. Phys. 35 (1984), pp. 193–266.
50G. E. Andrews and R. J. Baxter, Lattice gas generalization of the hard hexagon model.

III. q-trinomial coefficients, J. Statist. Phys. 47 (1987), pp. 297–330; G. E. Andrews and
R. J. Baxter, Scratchpad explorations for elliptic theta functions, in Proc. of Computers
and Mathematics Conf. 1986, (in press).

56 Symbolic Computation

the fore the theory of compact Riemann surfaces, making it possible to ex-
hibit some explicit solutions in terms of the Riemann theta function of such
an algebraic curve. These were the only ones known before 1987. Fourth,
by exploiting formal pseudodifferential operators and previous work of Hi-
rota in Japan, the Kyoto group of M. Sato showed that the KP hierarchy
of equations is the way to understand scores of nonlinear partial differential
equations that can be put into Lax-Zakharov-Shabat form. This led to fur-
ther connections, in particular with Kac-Moody Lie algebras. Fifth, in an
attempt to produce new classes of explicit solutions of the KP equation, S.
Novikov and I. Krichever in the Soviet Union brought in the powerful tools
of algebraic geometry in the form of vector bundles over algebraic curves.
These solutions could reveal new phenomena and, like the “pure N soliton
solutions,” bring new life into this field. However, their methods have never
been implemented, and no new solutions have emerged out of this rather
“high brow” approach.

Recently, Grünbaum embarked on an effort to reinterpret the program
of Novikov and Krichever in terms of “down to earth analysis” and a use of
symbolic computation. Grünbaum has now produced the first new solutions
corresponding to “rank two bundles” over a curve of genus one. This much
already makes clear the power of the new approach.

3.16 Other Surveys

More extensive surveys on applications of symbolic computation can be
found elsewhere. Calmet and van Hulzen51 discuss applications in biology,
chemistry, physics, mathematics, and computer science. They also refer to
several other survey papers. MacCallum52 gives a more specialized review
of the use of symbolic computation in relativity. However, the number of
applications of symbolic computation appears to be increasing substantially
so that survey papers published as recently as the early 1980s are likely to
be out of date. An indication of this is the fact that the 1986 version of
the Bibliography of Publications Referencing Macsyma lists more than 600
publications over a wide range of scientific disciplines, but even this exten-
sive listing is incomplete. A recent book53 contains papers on applications
in chaotic systems, fluid dynamics, nonlinear control systems, and robotics.

51J. Calmet and J. A. van Hulzen, Computer algebra applications, in B. Buchberger,
G. E. Collins, and R. Loos (eds.), Computer Algebra—Symbolic and Algebraic Computa-
tion, 2nd ed. Springer-Verlag, Vienna (1982), pp. 245–258.

52M. A. H. MacCallum, op. cit.
53R. Grossman (ed.), Symbolic Computation: Applications to Scientific Computing,

Frontiers in Applied Mathematics 5, Soc. for Industrial and Applied Mathematics,
Philadelphia (1989).

Chapter 4

Future Directions

Speculation about future directions usually proceeds from relatively safe ex-
trapolations from the recent past or from more risky leaps from various other
less reliable trends and possibilities. Predicting the future in symbolic com-
putation is especially difficult because its future will be shaped by advances
in computer science, computing technology, mathematics, and a growing
commercial market. Computing is a fast-changing field that has helped to
reshape the face of science and engineering in the last half of this century.
Mathematics is a mature and distinguished discipline with a history of unan-
ticipated advances of great practical importance. The commercial sector is
aggressively enlarging the market for symbolic computation products, bring-
ing them to more scientists, engineers, and students. A richer mixture of
these dynamics can lead to an environment explosive with possibilities. The
sketches of applications in Chapter 3 indicate the breadth of possibilities. In
this section selective scenarios of the future are described.

There are reasons to be concerned about the future of this field, as well
as reasons to be optimistic. In the United States, applications are still ben-
efiting from research and development that is often fifteen years old and
from times when federal support was stimulating a small but growing and
productive research community. On the other hand, every NeXT computer
will come with a copy of Mathematica. In addition, Mathematica will
be marketed by Ardent Computer Corporation, IBM, Silicon Graphics, Stel-
lar Computer, Inc., and other companies. This may indicate that computer
companies are beginning to take symbolic computation software seriously.
Furthermore, there is an awakening in the scientific community to the po-
tential of this form of computation that bodes well for the future.

57

58 Symbolic Computation

4.1 Computing Technology

Advances are being made in computer hardware that hold the potential for
a considerable impact on symbolic computation. By the mid-1990s every
serious scientist should have access to a personal workstation with a proces-
sor capable of 20 to 50 million instructions per second, 16 to 32 megabytes
of memory, at least 1 gigabyte of random access secondary storage, and a
connection to high-resolution graphics and printing capabilities. Future sym-
bolic computation systems must take into account these hardware trends.

Symbolic computation systems as such will expand into scientific and
engineering computational environments that incorporate symbolic capabil-
ities. Numeric, graphic, and text processing will be important components
of the new environments. These components will interact in novel ways, for
example, like the notebook concept in Mathematica that combines text
and “live” code that can be executed to illustrate and extend the text. The
software design will further exploit the natural structures and abstractions
found in the underlying mathematical domains as is exemplified by the re-
cent research1 using object-oriented styles of programming. This will be a
part of software design that puts more stress on modularity and reusability.
These general mathematical computation systems will become increasingly
important day-to-day tools of scientists, engineers, and students.

To solve especially difficult problems, special-purpose systems to support
various applications research will increase in importance, often using super-
computers, with the emphasis being on the science or engineering that was
made possible and not on the tool itself. The rate of development of special-
purpose systems will be substantially affected by success, or lack thereof, in
developing more modular, reusable software.

New algorithm design will be driven by new architecture and system
designs. If custom chip design and manufacture become as easy as mak-
ing photographic copies, special chips for important kernel components of
symbolic computation may be justified. There will be a continuing need for
more cross-fertilization between those using symbolic computation and those
designing the tools.

Just as every researcher will have powerful personal machines by the mid-
1990s, every high school student will have access to a personal computer with
at least one megabyte of memory, 100 megabytes of secondary storage, and a

1S. K. Abdali, G. W. Cherry, and N. Soiffer, An object oriented approach to algebra
system design, in Proc. 1986 Symp. on Symbolic and Algebraic Computation, ACM (1986),
pp. 24–30; J. Foderaro, The Design of a Language for Algebraic Computation Systems,
Ph.D. Thesis, University of California–Berkeley, 1983; R. D. Jenks, A primer: 11 keys
to new Scratchpad, Proc. EUROSAM ’84. Lect. Notes Comp. Sci. 174 (1984), pp.
123–147.

Future Directions 59

bit-mapped display. This presents a huge potential for symbolic computation
as a part of a larger computer-aided instruction environment.

4.2 Nonlinearity

Recently, much progress has been made in handling nonlinear problems,
problems that are often of major importance in a wide range of applications.
As the David report2 pointed out,

In chemistry and biology . . . reaction-diffusion mechanism study
. . . has involved the nonlinear generation of wave patterns, pulses, and
shock fronts which are phenomenologically new and require new modes
of analysis. In geophysical-physical sciences, analytical approximation
to atmospheric, oceanic, and elastic wave motions has produced new
interpretations with which to forecast weather and predict earthquakes.

In all these fields, considerable interest focuses on the new, nonlin-
ear phenomena associated with strong force and energy interactions,
discrete-continuous interactions, or the more subtle low-energy nonlin-
earities of the biological world, phenomena which will dominate much
of the mathematics of science from now on. We already see this in
the fascination with solitons, chaos, and bifurcation and singularity
theories.

Computing has been an important tool in studies involving nonlinearity.
In turn, the study of nonlinear problems strains even the largest of current
computers and the best of current algorithms.

Recently, important progress, based on the work of Buchberger and
Collins with contributions by many others, has been made on new algo-
rithms for dealing with nonlinear algebraic problems. This progress has
been brought about by a partnership between symbolic computation and
algebraic geometry. The work on nonlinearity in symbolic computation has
been of a different nature than that discussed in the David report, but this
fledgling effort has already brought important gains and seems destined to
be an important research area in symbolic computation as well as other areas
for the foreseeable future.

2Renewing U.S. Mathematics—Critical Resource for the Future, Report of the Ad Hoc
Committee on Resources for the Mathematical Sciences, E. E. David, Jr., Chairman,
National Academy Press, Washington (1984).

60 Symbolic Computation

4.3 Breaking the Deterministic Complexity
Barriers

A central problem in all computing, and especially in symbolic computation,
is that as the size of the computational problem grows the computational
resources, that is, time and space, needed to solve the problem often grow
much faster. For some fundamental problems it has been determined that
any possible deterministic algorithm will require time and/or space that
is exponential in the size of the problem. The implication of these deter-
ministic complexity results is that the solution of problems above a certain
size will never be possible with conventional computational methods. The
computational complexity barriers clearly delineate the difficulties in solv-
ing certain problems by computational methods, indicate paths of research
that are unlikely to be successful, and help guide research on overcoming the
difficulties.

One of the most promising developments for breaking through these de-
terministic complexity barriers has been the astonishing discovery that com-
putations that rely on chance often can be far more effective than following
any possible predetermined algorithm. The classic example is the Monte
Carlo method for numerical integration. More recently, randomness has
been shown to be a powerful tool for algebraic problems.

One of the main probabilistic results to date in symbolic computation
is an algorithm for showing that a multivariate polynomial presented by a
computation (that is, a straight-line program or even a black box) is nonzero.
This result, given by Schwartz,3 has a host of applications. Among them are
the effective versions of the Hilbert Irreducibility Theorem4 that are crucial
for the fast sparse polynomial factorization algorithms, randomizations in
algebra such as testing a Tutte matrix for a matching,5 solving a sparse
linear system over finite fields,6 and work on parallelizing the Smith normal
form construction.7 This is an area in which results have just begun to

3J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities,
JACM 27 (1980), pp. 701–717.

4J. Heintz and M. Sieveking, Absolute primality of polynomials is decidable in random
polynomial-time in the number of variables, Proc. ICALP ’81, Lect. Notes Comput. Sci.
115 (1981), pp. 16–28; J. von zur Gathen, Irreducibility of multivariate polynomials, J.
Comput. Syst. Sci. 31 (1985), pp. 225–264; E. Kaltofen, Effective Hilbert irreducibility,
Inform. Control 66 (1985), pp. 123–137.

5L. Lovász, On determinants, matchings, and random algorithms, in L. Budach (ed.),
Fundamentals of Computing Theory, Akademia Verlag, Berlin (1979).

6D. Wiedmann, Solving sparse linear equations over finite fields, IEEE Trans. Inform.
Theory IT-32 (1986), pp. 54–62.

7E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders, Fast parallel computation of
Hermite and Smith forms of polynomial matrices, SIAM J. Alg. Discrete Math. 8 (1987),

Future Directions 61

appear. Many important new algorithms using randomization are likely in
the future.

Another method for skirting the complexity barriers is to identify impor-
tant subproblems that, by avoiding the full generality of a given problem,
become amenable to more effective solutions. This has been done, for exam-
ple, by Melenk, Möller, and Neun8 in their work on large stationary chemical
kinetics problems. They modified the Buchberger algorithm for computing
Gröbner bases of nonlinear algebraic equations to exploit the special struc-
ture of equations derived from the nonlinear ordinary differential equations
for reaction systems. Consequently, they were able to handle larger systems
of equations.

pp. 683–690.
8M. Melenk, H. M. Möller, and W. Neun, On Gröbner bases computation on a su-

percomputer using Reduce, Preprint SC 88–2 (Jan. 1988), Konrad-Zuse-Zentrum für
Informationstechnik–Berlin.

62 Symbolic Computation

Chapter 5

Findings and
Recommendations

To realize the potential contributions of symbolic computation, individuals,
academia, industry, and government must work together. We must continue
the dialogue as we search for solutions and answers to the challenges set
forth in this report.

5.1 Findings

Symbolic computation is a field of accomplishment, a field of promise, and a
field of contrasts. It faces educational, technological, research, and commu-
nications challenges that arise from its diversity, richness, wide applicability,
and immaturity. We have demonstrated that symbolic computation has
wide applicability and substantially under-utilized potential. The field is at
a turning point of possibilities brought forth by improvements in computer
hardware, new algorithms, and new software. But there are still important
impediments. Better algorithms are needed, especially for applications. The
study and use of symbolic computation is not ubiquitous; there are too few
centers of activity. Better user interfaces are needed. The separation be-
tween symbolic and numeric computation is too large. A central challenge
is to increase the number of users, which will bring symbolic computation
more into the main stream of science and engineering. Many of the prob-
lems of this field would be ameliorated by an order of magnitude increase
in the number of users of symbolic computation. More users would create
an increased pool of scientists and engineers knowledgable about symbolic
computation. This would help with the human resource problems and their
feedback would serve as a forcing function for more action on all fronts. This
is depicted schematically in Figure 5.1.

63

64 Symbolic Computation

10× ||users||

Better algorithms
for more effective
problem solving

?

Better user interfaces,
integrated numeric/symbolic
facilities S

S
SSw

Better documentation and
other educational materials

�
�
�
�7

Cheaper, high-
performance, large-
memory computers

6

-Increased pool
of human
resources

Figure 5.1: A Key Issue

The prerequisites for more users are:

• Better software platforms that include the key ingredients of improved
user interfaces and well integrated symbolic and numeric capabilities

• Better documentation and other educational materials for users

• More effective methods and algorithms for solving important scientific
and engineering problems

• The increased availability of cheap, high-performance, large-memory
computers that are capable of serving as adequate hardware platforms
for symbolic computation systems

Other key findings are:

• Symbolic computation is a part of a key technology, namely, scientific
and engineering computation, that is becoming increasingly important
to science, technology, and society

• Symbolic computation enhances scientific and engineering productivity

• Symbolic computation has made important progress in developing soft-
ware and in discovering new algorithms since the mid-1960s

Findings and Recommendations 65

• The opportunities for substantial progress in symbolic computation are
significant

There are many aspects to this multi-faceted field.

• Mathematics and computer science are the main fields that contribute
to basic research. Applications occur throughout science and engineer-
ing. The interplay between fundamental results and technology is an
important aspect of the field.

• A broad range of mathematics is relevant to symbolic computation re-
search and vice-versa. To date algebra, algebraic geometry, logic, group
theory,number theory, combinatorics, complex variables and analysis,
among others, have played important roles in fundamental research on
symbolic computation. Conversely, symbolic computation is a poten-
tial research tool for all areas of mathematics.

• In computer science complex data Structures, object-oriented program-
ming, and other advanced programming tools are important. User
interfaces are particularly important. Both heuristic and algorithmic
methods are necessary for successful applications. There are important
interactions with scientific text processing, graphics, and numerical
computing.

Symbolic computation software reflects many of the successes and prob-
lems of the field.

• Symbolic computation software is typically large, sophisticated, and
error prone. All the problems associated with the design and engineer-
ing of large software systems are present here.

• Implementation of new results is lagging; many new algorithms that
have been discovered over the past decade have been implemented in
few, if any, systems.

• Software development is lagging behind new hardware technology, es-
pecially in the use of new display hardware and in the use of new
architectures, including supercomputers.

• More modular, reusable, high-quality, library-style software needs to
be developed. The lack of such publicly available software inhibits
researchers from building on the work of others and impedes the de-
velopment of special systems for applications.

The theory and algorithms base has been substantially improved in recent
years, but there is much still to be done.

66 Symbolic Computation

• The algorithm base contains gaping holes in fundamental areas such as
symbolic linear algebra, symbolic approximations, and complex vari-
ables.

• Little research has been done on parallel symbolic algorithms.

• More research is needed on large scale and special purpose algorithms.

Educational matters are particularly crucial at this time.

• Nonspecialists have little knowledge about the capabilities and limita-
tions of symbolic computation.

• The pool of human resources for research in symbolic computation is
small.

• Educating new researchers and attracting new users are keys to the fu-
ture development of the field of symbolic computation. In the United
States, education in this area is almost nonexistent. Currently, estab-
lished curricula do not exist for graduate students who wish to work in
this area. At most American institutions with graduate mathematics
and computer science programs, graduate students have no opportu-
nity to study this area, no faculty are doing research in the area, and
few courses are directly relevant.

5.2 Recommendations

The most important recommendations are concerned with increasing the
number of applications and users of symbolic computation. Other recom-
mendations will help to build a critical mass of researchers in this area.
Improvements to the software platform are also needed to accelerate and to
speed applications. These recommendations should be given priority.

Many of the recommendations are couched in terms of funding initia-
tives, but much can be accomplished by the academic and industrial sec-
tors independent of any new funding. Universities can immediately begin
to teach more in this area and in other ways begin to focus on improving
the flow of information about symbolic computation. Industry can continue
its fledgling steps to take software needs in this area seriously. However,
to make substantial progress will require serious government action. Gov-
ernment funding for upstream research developments, university efforts in
research and in increasing the human resource pool, and both coupled with
commercial efficiencies and focus on downstream implementation should be
an effective outline for progress.

Findings and Recommendations 67

New initiatives are needed by the funding agencies to increase signifi-
cantly the levels of research on and applications of symbolic computation.
Reacting to the normal flow of proposals is likely to be insufficient since a
critical mass has not been obtained in this field. The following actions are
recommended.

Priority Recommendations

To the Funding Agencies

• Substantially improve the software platform for research and applica-
tions by:

– Funding research on high-quality, reusable user interfaces

– Funding software acquisition, development, and maintenance need-
ed to capitalize the instrumentation for symbolic computation re-
search and applications

– Funding establishment of high-quality libraries of symbolic algo-
rithms and methods

– Funding research on interface protocols between various software
packages and systems

– Encouraging joint university and industry research

– Supporting summer sessions and special years to support tool
building and experimental aspects of the field

• Stimulate developments at the interface of symbolic and numeric com-
putation by:

– Funding research in defining the interface and on algorithms that
employ both symbolic and numeric methods

– Funding course development that incorporates symbolic and nu-
meric computing

– Funding workshops to attack a particular problem using symbolic
and numeric methods

• Improve the basic mathematics and algorithms underlying symbolic
computation by:

– Accelerating research on symbolic methods that are especially rel-
evant to applications such as approximation methods and meth-
ods for solving ordinary and partial differential equations

68 Symbolic Computation

– Funding further research on algorithms for fundamental compu-
tations in areas like symbolic linear algebra, nonlinear algebra,
and complex variables

– Funding research on symbolic algorithms to take advantage of
new computer architectures, including supercomputers

– Encouraging more research on ways to deal with complexity prob-
lems in symbolic computations such as the use of probabilistic
algorithms

• Address education for users and new researchers by:

– Funding research on incorporating symbolic computation in math-
ematics, science, and engineering curricula

– Supporting the development of educational materials on symbolic
computation

To the Universities

• Provide adequate computing facilities for symbolic computation, in-
cluding appropriate software.

• Include more material relevant to symbolic computation in university
curricula. This can be done in a variety of ways:

– Introduce symbolic computation as a tool into existing courses,
especially ones covering aspects of applied mathematics.

– Introduce new courses that contain material on the various as-
pects of symbolic computation, including applications.

– Put more emphasis on constructive techniques in current mathe-
matics courses, especially courses in algebra, algebraic geometry,
and number theory.

– Use more examples from symbolic computation in computer sci-
ence courses dealing with software engineering, graphics, and al-
gorithms. An increased emphasis on ideas from category theory
and universal algebra in software design would be particularly
applicable to symbolic computation software.

– Develop special education and research programs in which sym-
bolic computation plays a key role. A curriculum that combines
mathematics and computation provides a good fundamental ed-
ucation for future scientists and engineers. One such curriculum
is given in Appendix B.

Findings and Recommendations 69

To the Professional Community

• Produce more and better educational materials. A lack of textbooks is
an especially pressing problem. These needs have been cited on several
occasions and improvements are slowly occurring, but continued efforts
are still needed.

Additional Recommendations

Additional important recommendations are:

To the Professional Community

• Increase efforts to improve and increase interactions among the vari-
ous components of the scientific computation community. More inter-
actions are desirable between mathematicians and computer scientists
interested in symbolic computation, between researchers in numerical
and symbolic computing, and between software builders and users.

• Resolve the conflict over the commercial requirements to protect prod-
ucts and the academic requirements to exchange information freely. A
solution to this problem may be found through the use of proprietary
software kernels with publicly available source code built on top. For
this model to serve science successfully, the mathematical algorithms
must be in the public domain. Several producers of symbolic software
have already adopted this model.

To the Commercial Sector

• Continue the initial steps to take symbolic computation software seri-
ously.

To the Funding Agencies

Address the interdisciplinary nature of the field by:

• Establishing mini-centers for symbolic and algebraic computation

– that span science and engineering with a users of point of view

– that cut-across computer science and mathematics from a system
development point of view

• Funding workshops and special years devoted to symbolic computation
and its applications

70 Symbolic Computation

• Supporting summer session programs with a regional or national scope
on the use and development of symbolic computation systems

Mini-centers

Why are SAC mini-centers needed? By its very nature symbolic and al-
gebraic computation is interdisciplinary and is best done by teams of re-
searchers representing a variety of expertise. In the United States a rela-
tively high proportion of symbolic computation research takes place in in-
dustry since, among other reasons, this is where there is a critical mass of
investigators. In academia, symbolic computation researchers tend to be iso-
lated in number and segregated by departments. The natural home for this
type of research would be somewhere in mathematics, computer science, and
engineering. Since it does not fit easily into the usual university structure,
the difficulties are further compounded.

The demographics of researchers contribute in many ways to the prob-
lems in symbolic computation in the United States. The lack of critical mass
at most universities makes the scenario of a cadre of researchers with diverse
backgrounds impossible. In addition, this lack of concentration contributes
to the difficulties in educating and training people in symbolic computation.
It is difficult to have a graduate program or many undergraduate courses
based on the interests of one or two people.

Many of the problems that have been identified could be addressed by the
formation of research groups in symbolic and algebraic computation. They
will be referred to as SAC centers. A SAC center would be composed of at
least five researchers representing several aspects of symbolic computation.
This would provide the necessary critical mass. In addition, there would be
an active visitor program both to supplement the basic research staff and to
disseminate information. These centers would also have the responsibility
for education on many levels as well as serve as a repository for information
on symbolic computation.

An active visitor program serves several purposes. Visitors from industry
would provide a link with the activities and needs in this sector. Often
this information is not readily accessible since publication in industry is
not required to the extent that it is in academia. Visitors from academia
and industry serve the usual purpose of dissemination of information and
increased opportunity for joint research. At the present stage of research on
symbolic computation in the United States, researchers tend to be isolated.
An active visitor program would provide contact for isolated researchers,
helping to maintain their interest and activity. There should also be some
provision for visitors who wish to learn about what exists and what can be
done with symbolic computation.

Findings and Recommendations 71

SAC centers could act as central consultants and repositories for infor-
mation about symbolic computation systems. These services would be effec-
tively advertised. In addition, they could offer seminars and short courses
on symbolic and algebraic computation.

SAC centers would be active in symbolic and algebraic computation ed-
ucation on many levels. They would provide undergraduate, graduate, and
research-level courses and seminars. They would develop symbolic compu-
tation courses to be taught at other institutions and conduct workshops to
teach educators from both high school and college.

The preceding goals are ambitious and yet appear to be attainable if the
SAC centers are properly organized. The consensus at the workshop was
that several smaller centers would be more effective than a single monolithic
center. They would be more accessible to the community and would provide
a better atmosphere for interaction.

72 Symbolic Computation

Appendix A

Workshop Participants and
Observers

A group of scientists representing a broad range of interests was invited to
the workshop as participants. Programs officers from a variety of government
funding agencies were invited to attend and participate as they saw fit. They
are listed in the following as observers.

A.1 Participants

Anthony C. Hearn, RAND Corporation, Workshop Chair
B. F. Caviness, Coordinator, National Science Foundation and University of
Delaware1

Subpanel on Applications

André Deprit, National Bureau of Standards,2 Chair
John Fitch, Department of Computer Science, University of Bath,

United Kingdom
Gerald Guralnik, Department of Physics, Brown University
Michael Levine, Pittsburgh Supercomputer Center and Physics

Department, Carnegie-Mellon University
James McIver, Department of Chemistry, SUNY Buffalo
Anil Nerode, Mathematical Sciences Institute, Cornell University

Subpanel on Software and Systems Design

Richard Jenks, IBM Watson Research Center, Chair
1Given affiliations were the ones in effect at the time of the workshop.
2The name of the NBS has been changed to the National Institute of Standards and

Technology.

73

74 Symbolic Computation

Richard Fateman, Division of Computer Science, University of
California–Berkeley

Gaston Gonnet, Computer Science Department, University of
Waterloo

Alan Perlis, Department of Computer Science, Yale University

Subpanel on Algorithms and Theory

Moss Sweedler, Department of Mathematics, Cornell University,
Chair

Shreeram Abhyankar, Departments of Mathematics and Indus-
trial Engineering, Purdue University

Bruno Buchberger, Research Institute for Symbolic Computa-
tion, Johannes Kepler University, Linz, Austria

David Chudnovsky, Department of Mathematics, Columbia Uni-
versity

William F. Schelter, Department of Mathematics, University of
Texas

Peter Weinberger, AT&T Bell Laboratories

Subpanel on Symbolic/Numeric Interfaces

Morven Gentleman, Division of Electrical Engineering, National
Research Council of Canada, Chair

Richard Askey, Department of Mathematics, University of Wis-
consin

John Rice, Department of Computer Science, Purdue University
Phil Smith, IMSL, Houston
Paul Wang, Department of Mathematical Sciences, Kent State

University

A steering committee consisting of B. F. Caviness, André Deprit, Mor-
ven Gentleman, Anthony C. Hearn, Richard Jenks, Anil Nerode, and Moss
Sweedler was in charge of the organization of the workshop. The steering
committee was expertly assisted on administrative matters by Wilson Kone
from the Mathematical Sciences Institute at Cornell University.

A.2 Observers

William Adams, Program Director, Algebra and Number Theory,
NSF

Peter Bates, Program Director, Applied Mathematics, NSF
Ann Boyle, Program Director, Algebra and Number Theory, NSF

Participants and Observers 75

Charles Brownstein, Acting Assistant Director, Directorate of
Computer and Information Sciences and Engineering, NSF

Jagdish Chandra, Director, Mathematical Sciences Division, Army
Research Office

Raymond Chin, Program Director, Computational Mathematics,
NSF

Melvyn Ciment, Acting Division Director, Advanced Scientific
Computing, NSF

David Elliott, Program Director, Systems Theory and Opera-
tions Research, NSF

Peter Freeman, Division Director, Computer and Computation
Research, NSF

Harry Hedges, Program Director, Institutional Infrastructure Pro-
gram, NSF

Richard Hirsh, Program Director, New Technologies/Computa-
tional Science and Engineering, NSF

William Lakin, Program Director, Applied Mathematics, NSF
George Lea, Program Director, Computational Engineering, NSF
Nathaniel Macon, Program Director, Software Systems, NSF
Andrzej Manitius, Deputy Division Director, Mathematical Sci-

ences, NSF
Louise Raphael, Program Director, Course and Curriculum Pro-

gram, NSF
John V. Ryff, Program Director, Classical Analysis, NSF
Judith Sunley, Division Director, Mathematical Sciences, NSF
Alvin Thaler, Program Director, CISE Instrumentation, NSF
Ralph Wachter, Program Director, Software Research, Office of

Naval Research
Elbert Walker, Program Director, Special Projects in Mathemat-

ical Sciences, NSF
Yechezkel Zalcstein, Program Director, Computer Systems Ar-

chitecture, NSF

76 Symbolic Computation

Appendix B

A Sample Curriculum for
Education in Symbolic
Computation

The following discussion describes the way that one institution has set up
an extensive educational program in symbolic computation. RISC-LINZ
(Research Institute for Symbolic Computation at the Johannes Kepler Uni-
versity in Linz, Austria, Europe) is an institute that specializes in research,
graduate education, and industrial cooperation in symbolic computation.

RISC is embedded into the two departments of mathematics and com-
puter science, which together have a faculty of about 40 professors (13 of
them full professors). However, RISC-LINZ organizationally is independent
of these two departments. In the spring of 1988, seven faculty members
were exclusively working for RISC-LINZ. In the fall of 1988, this number in-
creased to nine (one full professor, a second full professorship for RISC-LINZ
has been created and a search for suitable candidates started).

At RISC-LINZ, symbolic computation is understood in the broad sense
defined in the Journal of Symbolic Computation; that is, it encompasses
algorithmic problem solving in all symbolic object domains. Notably, it en-
compasses computational logic, computer algebra, computer analysis, com-
puter geometry, and computer-aided programming. Also, all three aspects
of symbolic computation, namely, theoretical foundations of symbolic al-
gorithms, symbolic computation software, and applications, are pursued at
RISC-LINZ.

Research topics at RISC-LINZ are determined by and vary with the
faculty. At present, there is a definite emphasis in algebraic and geometric
algorithms.

RISC-LINZ graduate education is organized as a special curriculum in

77

78 Symbolic Computation

symbolic computation. Roughly, it includes 30 courses (each 2 credit hours)
that cover the whole range of symbolic computation and its aspects.

• Preparatory courses

– Preparation I (training in proving and algorithmic problem solv-
ing)

– Preparation II (introduction to scientific work in symbolic com-
putation)

– Preparation III (survey on symbolic computation)

• Core courses

– Computational Logic I (resolution theorem proving)

– Computational Logic II (special techniques in resolution theorem
proving)

– Computational Logic III (decision algorithms for special logical
theories)

– Computer Algebra I (algorithms in basic algebraic domains)

– Computer Algebra II (advanced topics, for example, algorithmic
polynomial ideal theory)

– Computer Analysis (analytic integration and related topics)

– Computational Geometry I (combinatorial geometrical algorithms)

– Computational Geometry II (algebraic algorithms in geometry)

– Computational Geometry III (geometric modeling)

– Computer-Aided Program Verification

– Computer-Aided Program Synthesis

• Foundation courses

– Logic I (syntax and semantics of predicate logic)

– Logic II (model theory of predicate logic)

– Logic III (limitations of the algorithmization of logics)

– Algorithm Theory I (design and analysis of algorithms)

– Algorithm Theory II (fundamental concepts of computability)

– Algorithm Theory III (complexity classes)

– Semantics I (lambda-calculus and related systems)

Sample Curriculum 79

– Semantics II (universal algebra and abstract data types)

– Semantics III (methods for describing semantics)

• Software courses

– SC Software I (functional programming, LISP)

– SC Software II (logical programming, PROLOG)

– SC Software III (computer algebra systems)

– SC Software IV (systems for theorem proving and automatic pro-
gramming)

• Application courses

– Expert Systems

– CAD/CAM Systems

– Robot Programming (kinematics and dynamics)

– Others (according to the special interests of the permanent and
visiting faculty)

• Special courses and seminars

Chosen according to the special interests of faculty and visiting faculty

Before participating in the courses of the special symbolic computation
curriculum, students having a bachelor’s degree in mathematics are sup-
posed to pass certain core courses of the computer science curriculum (as-
sembler, compilers, several high-level programming languages, operating sys-
tems, software technology). Conversely, students having a bachelor’s degree
in computer science are supposed to pass certain courses of the mathematics
curriculum (numerical mathematics, algebra). It is important to note that
both students of computer science and students of mathematics are admit-
ted to the RISC-LINZ special curriculum of symbolic computation and that
the explicit goal of this curriculum is to produce students who master the
mathematical and computer science aspects of symbolic computation equally
well.

Both the diploma (that is, master’s degree) and the Ph.D. degree can be
obtained in the frame of the RISC-LINZ special curriculum. Diploma and
Ph.D. theses typically are written in the frame of research projects. Some
of them are motivated by problems arising from cooperation with industrial
companies. Typically, also, theses consist of a mathematical part and a
computer science part.

80 Symbolic Computation

After the bachelor’s degree, usually three years are needed for the di-
ploma degree and another three years for the Ph.D. The sequence of courses
in the special curriculum is repeated every three semesters (1 1/2 years)
such that students can enter the curriculum at virtually any time. In the
spring of 1988, nine students were working on Ph.D. theses, ten students
were working on a diploma thesis, and another 15 to 20 students were doing
course work in preparation for the diploma thesis.

Appendix C

Textbooks and Other
Instructional Materials for
Symbolic Computation

A. G. Akritas, Elements of Computer Algebra with Applications, John Wi-
ley & Sons, New York (1989).

M. D. Atkinson, Computational group theory, Proceedings of the London
Mathematical Society Symposium on Computational Group Theory,
Academic Press, San Diego (1984).

B. Buchberger, G. E. Collins, and R. G. K. Loos (eds.), Computer Algebra—
Symbolic and Algebraic Computation, 2nd ed., Springer-Verlag, Vienna
(1983).

B. W. Char, K. O. Geddes, G. H. Gonnet, and S. M. Watt, First leaves: a
tutorial introduction to Maple, in Maple User’s Guide, WATCOM
Publications Ltd., Waterloo, Ontario (1985).

J. H. Davenport, Y. Siret, and E. Tournier, Computer Algebra—Systems
and Algorithms for Algebraic Computation, Academic Press, San Diego
(1988).

J. C. Howard, Practical Applications of Symbolic Computations, IPC Sci-
ence and Technology Press, Guildford, England (1979).

D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-Numerical
Algorithms, 2nd ed., Addison-Wesley, Reading, Massachusetts (1981).

J. D. Lipson, Algebra and Algebraic Computing, Addison-Wesley, Reading,
Massachusetts (1981).

81

82 Symbolic Computation

Macsyma User’s Guide, Symbolics, Inc., Cambridge, Massachusetts (1987).

M. Mignotte, Mathématiques pour le calcul formel, Presses Universitaires
de France, Paris (1989).

R. Pavelle (ed.), Applications of Computer Algebra, Kluwer Academic Pub-
lishers, Boston (1985).

R. H. Rand, Computer Algebra in Applied Mathematics: An Introduction to
Macsyma, Pitman Publishing Inc., Marshfield, Massachusetts (1984).

R. H. Rand and D. Armbruster, Perturbation methods, bifurcation theory
and computer algebra, Applied Mathematical Sciences 65, Springer-
Verlag, New York (1987).

G. Rayna, Reduce—Software for Algebraic Computation, Springer-Verlag,
New York (1987).

J. R. Rice, Mathematical aspects of scientific software, IMA Volumes in
Mathematics and Its Applications 14, Springer-Verlag, New York (1988).

C. C. Sims, Abstract Algebra: A Computational Approach, John Wiley &
Sons, New York (1984).

D. Stauffer, F. W. Hehl, V. Winkelmann, and J. G. Zabolitzky, Computer
Simulation and Computer Algebra—Lectures for Beginners, Springer-
Verlag, New York (1988).

S. Wolfram, Mathematica—A System for Doing Mathematics by Com-
puter, Addison-Wesley, Redwood City, California (1988).

C. Wooff and D. Hodgkinson, muMath: A Microcomputer Algebra System,
Academic Press, San Diego (1987).

H.G. Zimmer, Computational problems, methods, and results in algebraic
number theory, Lect. Notes Math. 268, Springer-Verlag, New York
(1972).

Appendix D

The Scholarly Community

This appendix presents an overview of some professional activities in sym-
bolic computation.

D.1 Professional Societies

Since the late 1960s many research activities in symbolic computation have
been coordinated by ACM SIGSAM (the Association for Computing Ma-
chinery Special Interest Group on Symbolic and Algebraic Manipulation).
SIGSAM publishes the quarterly SIGSAM Bulletin and in 1988 had approx-
imately 1300 members. In Europe there are a number of national profes-
sional groups whose main interest is symbolic computation. These groups
have been loosely coordinated by the umbrella organization SAME (Sym-
bolic and Algebraic Manipulation in Europe). In Japan, the Research Insti-
tute for Mathematical Sciences at Kyoto University has organized a series
of meetings on symbolic computation, and in the Soviet Union, the Joint
Institute for Nuclear Research in Dubna has also organized a series of such
meetings.

These meetings have evolved into the annual ISSAC (International Sym-
posium on Symbolic and Algebraic Computation) meeting. Recent meetings
in this series have attracted 150 to 200 attendees in North America and ap-
proximately 400 when held in Europe. The 1988 meeting was held in Rome;
the 1989 meeting in Portland, Oregon, and the 1990 meeting in Japan.

In the United States, SIAM (the Society for Industrial and Applied Math-
ematics) has had a series of special sessions on this subject at its regularly
scheduled meetings, as have other societies like AMS (American Mathemati-
cal Society), AAAS (American Association for the Advancement of Science),
ACS (American Chemical Society), and APS (American Physical Society).
The computational group theory community has organized several meetings

83

84 Symbolic Computation

devoted to their particular interests. Richard Jenks and David Chudnovsky
have organized a highly successful series of meetings entitled Computers and
Mathematics that have brought together a broad spectrum of persons. Sym-
bolic computation has been the unifying theme.

D.2 Publications

The proceedings of the various international meetings on symbolic computa-
tion have been primarily published by Springer-Verlag in the series entitled
Lecture Notes in Computer Science and by ACM. The primary journal in
symbolic computation is the Journal of Symbolic Computation, which was
started in 1985. It has been quite successful in its short existence, expanding
from its initial four issues a year to six in 1987 and to twelve issues in 1989.
Other important outlets for papers in this area are the SIAM Journal on
Computing and the ACM Transactions on Mathematical Software. Many
other journals have also published papers in this area.

D.3 Places with Educational, Research, or Soft-
ware Development Activities in Symbolic
Computation

The following is a partial list of organizations that have significant research,
educational, or software development activities in symbolic computation:1

Academia Sinica, Beijing, China
Australian National University
Cambridge University, UK
Columbia University
Concordia University, Canada
Cornell University
Franz, Inc., Berkeley, California
General Electric Corporate Research and Development Center
Gesellschaft fuer Mathematik und Datenverarbeitung, Bonn, FRG
IBM T. J. Watson Research Center
The Institute of Physical and Chemical Research, Saitama, Japan
Johannes Kepler University, Austria
Joint Institute for Nuclear Research, Dubna, USSR
Kent State University
Massachusetts Institute of Technology

1This list has been compiled by an informal poll.

The Scholarly Community 85

Moscow State University, Moscow, USSR
National Bureau of Standards
New York University
North Carolina State University
Ohio State University
Polish Academy of Sciences, Warsaw
Purdue University
Queen Mary College, University of London
The RAND Corporation
Rensselaer Polytechnic Institute
Rutgers University
The Soft Warehouse, Honolulu, Hawaii
Southern Methodist University
State University of New York---Albany
Steklov Institute of Mathematics, Leningrad, USSR
Swiss Federal Institute of Technology---Zurich
Symbolics, Inc., Cambridge, Massachusetts
Technische Hochschule Aachen, FRG
Tektronix Computer Research Laboratory
Twente University of Technology, Enschede, The Netherlands
Universitaet des Saarlandes, FRG
University of Bath, UK
University of California at Berkeley
University of Delaware
University of Denver
University of Duesseldorf, FRG
University of Essen, FRG
University of Genova, Italy
University of Grenoble, France
University of Hawaii
University of Illinois, Champaign-Urbana
University of Illinois, Chicago
University of Karlsruhe, FRG
University of Leipzig, GDR
University of New Mexico
University of Paris VI, France
University of Saskatchewan, Canada
University of St. Andrews, Scotland
University of Stockholm, Sweden
University of Strasbourg, France
University of Sydney, Australia

86 Symbolic Computation

University of Texas---Austin
University of Toronto
University of Tuebingen, FRG
University of Warwick, UK
University of Waterloo, Canada
Wolfram Research Inc., Champaign, Illinois
Xerox Palo Alto Research Center

