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Abstract

Today’s compilers have a plethora of optimizations to choose
from, and the correct choice of optimizations can have a sig-
nificant impact on the performance of the code being opti-
mized. Furthermore, choosing the correct order in which to
apply those optimizations has been a long standing problem
in compilation research. Each of these optimizations inter-
acts with the code and in turn with all other optimizations in
complicated ways. Traditional compilers typically apply the
same set of optimization in a fixed order to all functions in a
program, without regard the code being optimized.

Understanding the interactions of optimizations is very
important in determining a good solution to the phase-
ordering problem. This paper develops a new approach that
automatically selects good optimization orderings on a per
method basis within a dynamic compiler. Our approach for-
mulates the phase-ordering problem as a Markov process
and uses a characterization of the current state of the code
being optimized to creating a better solution to the phase
ordering problem. Our technique uses neuro-evolution to
construct an artificial neural network that is capable of pre-
dicting beneficial optimization ordering for a piece of code
that is being optimized. We implemented our technique in
Jikes RVM and achieved significant improvements on a set
of standard Java benchmarks over a well-engineered fixed
order.

General Terms Performance, Compilation, Compiler Op-
timization

Keywords Phase Ordering, Compiler optimization, Ma-

chine learning, Neural Networks, Java, Jikes RVM, Code
Feature Generation
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1. Introduction

Selecting the best ordering of compiler optimizations for a
program has been an open problem in compilation research
for decades. Compiler writers typically use a combination of
experience and insight to construct the sequence of optimiza-
tions found in compilers. In this approach, compromises
must be made, e.g., should optimizations be included in a
default fixed sequence if those optimizations improve per-
formance of some benchmarks, while degrading the perfor-
mance of others. For example, GCC has around 250 “passes”
that can be used, and most of these are turned off by default.
The developers of GCC have given up in trying to include all
optimizations and hope that a programmer will know which
optimizations will benefit their code.

In optimizing compilers, it is standard practice to apply
the same set of optimizations phases in a fixed order on
each method of a program. However, several researchers [2,
3, 15], have shown that the best ordering of optimizations
varies within a program, i.e., it is function-specific. Thus,
we would like a technique that selects the best ordering of
optimizations for individual portions of the program, rather
than applying the same fixed set of optimizations for the
whole program.

This paper develops a new method-specific technique that
automatically selects the predicted best ordering of opti-
mizations for different methods of a program. We develop
this technique within the Jikes RVM Java JIT compiler and
automatically determine good phase-orderings of optimiza-
tions on a per method basis. Rather than developing a hand-
crafted technique to achieve this, we make use of an artifi-
cial neural network (ANN) to predict the optimization order
likely to be most beneficial for a method. Our ANNs were
automatically induced using Neuro-Evolution for Augment-
ing Topologies (NEAT) [23].

A trained ANN uses input properties (i.e., features) of
each method to represent the current optimized state of the
method and given this input, the ANN outputs the opti-
mization predicted to be most beneficial to the method at
that state. Each time an optimization is applied, it poten-
tially changes the properties of the method. Therefore, af-
ter each optimization is applied, we generate new features of
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Figure 1. We used genetic algorithms to find “tuned” optimization sequence for benchmarks in the SPECjvm98 and Java
Grande benchmark suites. In a first experiment, we obtained an optimization ordering that performed well over all the
benchmarks by using the running time of all the benchmarks as a fitness function. In a second experiment, we used running
time of each individual benchmark to “evolve” the best optimization ordering for each benchmark.

the method to use as input to the ANN. The ANN then pre-
dicts the next optimization to apply based on the current op-
timized state of the method. This technique solves the phase-
ordering problem by taking advantage of the Markov prop-
erty of the optimization problem. That is, the current state of
the method represents all the information required to choose
an optimization to be most beneficial at that decision point.
We discuss the Markov property and our approach in more
detail in Section 3.

The application of machine learning to compilation has
received a lot of attention. However, there has been little ef-
fort to “learn” the effect that each optimization has on the
code and to use that knowledge to choose the most appro-
priate optimization to apply. To the best of our knowledge,
the technique described in this paper is the first to automati-
cally induce a heuristic that can predict an overall optimiza-
tion ordering to individual portions of a program. Our tech-
nique learns what order to apply optimizations rather than
tuning local heuristics, and it does this in a dynamic compila-
tion setting.! Furthermore, we show significant performance
improvement over an existing well-engineered compilation
system. We make the following contributions:

e We present a method of evolving an ANN to be used
for phase-ordering, which, to the best of our knowledge,
is the first technique that “learns” from characteristics
of code being optimized what is the best ordering of
optimizations to apply.

e We show that our phase-ordering technique can achieve
significant speedup over the traditional approach of ap-
plying a fixed optimization sequence.

' The same technique can be applied in a static compilation setting in a
straight-forward manner.

® We compare our ANN-based phase-ordering technique to
the current state-of-the-art phase-ordering technique, i.e.,
using genetic algorithms (GAs). Moreover, we show that
our technique is much more practical for phase-ordering
than using GAs.

e We present results optimizing several Java benchmark
programs to illustrate that optimization order is impor-
tant.

® We show that our trained ANN generates a customized
phase-ordering for a variety of different methods in var-
ious SPECjvm2008 and DaCapo benchmarks to create a
truly method-specific phase-ordering compiler.

2. Overview

Compiler optimizations transform the code being optimized,
thus the application of each optimization potentially affects
the benefit of downstream optimizations. One of the most
prominent examples of this is the phase-ordering problem
between register allocation and instruction scheduling. How-
ever, any set of optimizations can potentially interact with
each other and can therefore participate in a phase-ordering
problem. These code interactions are an integral part of com-
piler optimizations, so it is important to understand the ef-
fects of the optimizations in order to arrange them in a way
that can deliver the most benefit.

2.1 Phase-Ordering with Genetic Algorithms

Most compilers apply optimizations based on a fixed order
that was determined to be best when the compiler was being
developed and tuned. However, programs require a specific
ordering of optimizations to obtain the best performance. To
demonstrate our point, we use genetic algorithms (GAs), the
current state-of-the-art in phase-ordering optimizations [3,
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6-9, 14, 16, 16, 17], to show that selecting the best ordering
of optimizations has the potential to significantly improve
the running time of dynamically-compiled programs.

We used GAs to construct a custom ordering of optimiza-
tions for each of the Java Grande [22] and SPEC JVM 98
benchmarks.? In this GA approach, we create a population
of strings (called chromosomes), where each chromosome
corresponds to an optimization sequence. Each position (or
gene) in the chromosome corresponds to a specific optimiza-
tion from Table 2, and each optimization can appear multi-
ple times in a chromosome. For each of the experiments be-
low, we configured our GAs to create 50 chromosomes (i.e.,
50 optimization sequences) per generation and to run for 20
generations.

We ran two different experiments using GAs. The first
experiment consisted of finding the best optimization se-
quence across our benchmarks. Thus, we evaluated each op-
timization sequence (i.e., chromosome) by compiling all our
benchmarks with each sequence. We recorded their execu-
tion times and calculated their speedup by normalizing their
running times with the running time observed by compiling
the benchmarks at the O3 level. That is, we used average
speedup of our benchmarks (normalized to opt level O3) as
our fitness function for each chromosome. This result corre-
sponds to the “Best Overall Sequence” bars in Figure 1. The
purpose of this experiment was to discover the optimization
ordering that worked best on average for all our benchmarks.

The second experiment consisted of finding the best op-
timization ordering for each benchmark. Here, the fitness
function for each chromosome was the speedup of that opti-
mization sequence over O3 for one specific benchmark. This
result corresponds to the “Best Sequence per Benchmark”
bars in Figure 1. This represents the performance that we
can get by customizing an optimization ordering for each
benchmark individually.

The results of these experiments confirm two hypothe-
ses. First, significant performance improvements can be ob-
tained by finding good optimization orders versus the well-
engineered fixed order in Jikes RVM. The best order of op-
timizations per benchmark gave us up to a 20% speedup
(FFT) and on average 8% speedup over optimization level
03. Second, as shown in previous work, each of our bench-
marks requires a different optimization sequence to obtain
the best performance. One ordering of optimizations for the
entire set of programs achieves decent performance speedup
compared to O3. However, the “Best Overall Sequence”
degrades the performance of three benchmarks (LUFact,
Series, and Crypt) compared to O3. In contrast, search-
ing for the best custom optimization sequence for each
benchmark, “Best Sequence for Benchmark”, allows us to
outperform both O3 and the best overall sequence.

2We choose these benchmarks because they run for a short time. This
allowed us to evaluate thousands of different optimization sequences using
GAs.

2.2 Issues with Current State-of-the-Art

Using genetic algorithms is the current state-of-the-art in
obtaining good optimization orderings, and they can bring
significant performance improvements for some programs.
However, using GAs has several issues that impede their
widespread adoption in traditional compilers.

Expensive Search: GAs and other search techniques are
inherently expensive because they need to evaluate a variety
(typically hundreds) of different optimization orders for each
program and are therefore only applicable when compilation
time is not an issue, e.g., in an iterative compilation scenario.
And, because there is no transfer of knowledge, the search
space corresponding to the potential optimization orders has
to be explored anew for each new benchmark or benchmark
suite. We show empirical results in Section 7 describing the
time it took to for GAs to construct optimization orderings.

Method-specific difficulty: Using GAs to find custom or-
derings of optimizations for specific code segments within
a program (e.g., for each method) is non-trivial. An or-
der of optimization specific to each piece of code requires
a separate exploration of the optimization ordering space
for that code. This requires obtaining fine-grained execu-
tion times for each piece of code after it is optimized with a
specific phase-ordering. Fine-grained timers produce notori-
ously noisy information and can be difficult to implement. 3

Note that exhaustive exploration to find the optimal order
of optimizations is not practical. For example, if we consider
15 optimizations and an optimization sequence length of
20, the number of unique sequences exhaustive exploration
that would have to be evaluated is enormous (152°). Thus,
the current state-of-the-art is to intelligently explore a small
fraction of this space using genetic algorithms or some other
search algorithm.

2.3 Proposed Solution

Instead of using expensive search techniques to solve the
phase-ordering problem, we propose to use a machine-
learning based approach which automatically learns a good
heuristic for phase-ordering. This approach incurs a “one-
time” expensive training process, but is inexpensive to use
when being applied to new programs. There are two poten-
tial techniques we could use to predict good optimization
orders for code being optimized.

1. Predict the complete sequence: This technique requires a
model to predict the complete sequence of optimizations
that needs to be applied to the code just by looking at
characteristics of the initial code to be optimized. This
is a difficult learning task as the model would need to

3 Evaluating optimization orders for a method outside of an application con-
text [19] can simplify fine-grained timing, but has the potential to identify
optimization sequences that do not perform well when the method is used
in its original context.
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Figure 2. The figure above represents the framework used
to evolve a neural network using NEAT to guide the compi-
lation of a given method. The Figure 4 describes the way the
neural network was used to guide the compilation process.

understand the complex interactions of each optimization
in the sequence.

2. Predict the current best optimization: This method would
use a model to predict the best single optimization (from
a given set of optimizations) that should be applied based
on the characteristics of code in its present state. Once an
optimization is applied, we would reevaluate characteris-
tics of the code and again predict the best optimization to
apply given this new state of the code.

In this paper we choose the second approach, which we
believe is an easier learning problem to solve.

We used a technique called Neuro-Evolution for Aug-
menting Topologies to automatically construct a heuristic
that can generate customized optimization orderings for each
method in a program. The process of developing this heuris-
tic is depicted in Figure 2 and described in detail in Sec-
tion 3. This approach involves continually interrogating a
neural network to predict which optimization would produce
the best results as a method is being optimized. Our network
uses as input features characterizing the current state of the
code being optimized and correlates those features with the
best optimization to use at particular point in the optimiza-
tion process. As we are considering dynamic JIT compila-
tion, the neural network and feature generator must incur a
small overhead, otherwise the cost of applying the network
to perform phase-ordering might outweigh any benefits of
the improved optimization orders.

1. NEAT constructs an ANN
(a) Integrate the ANN into Jikes RVM'’s optimization driver
2. Evaluate ANN at the task of phase-ordering optimizations
(a) For each method dynamically compiled, repeat the follow-
ing two steps
i. Generate a feature vector of current method’s state
ii. Use ANN to predict the best optimization to apply
3. Run benchmarks and obtain feedback for NEAT

(a) Record execution time for each benchmark optimized using
the ANN

(b) Obtain speedup by normalizing each benchmark’s running
time to running time using default optimization heuristic
(e.g., opt level O3)

Figure 3. NEAT performs neuro-evolution to construct a
neural network to be used for phase-ordering. The above
steps describe the process of evaluating an ANN as part of
neuro-evolution.

Another approach would be to handcraft a heuristic based
on experimentation and analysis. This is undesirable because
it is an arduous task and specific to a compiler, and if the
platform were to change, the entire tuning process of the
heuristic would have to be repeated.

3. Approach

This section gives a detailed overview of how neuro-
evolution based machine learning is used to construct a
good optimization phase-ordering heuristic for the optimizer
within Jikes RVM. The first section outlines the different ac-
tivities that take place when training and deploying a phase-
ordering heuristic. This is followed by sections describing
how we use NEAT to construct an ANN, how we extract
features from methods, and how these features and ANNs
allow us to learn a heuristic that determines the order of
optimizations to apply. Figure 3 outlines our technique.

3.1 Overview of Training and Deployment

There are two distinct phases, training and deployment.
Training occurs once, off-line, “at the factory” and is equiv-
alent to the time spent by compiler writers designing and
implementing their optimization heuristics. Deployment is
the act of applying the heuristic at dynamic compilation time
to new “unseen” programs.

As part of the training phase, NEAT generates an ANN
that is used to control the order of optimizations within Jikes
RVM. The ANN is evaluated by applying different optimiza-
tion orderings to each method within each training program
and recording the performance of the optimized program.
The ANN takes as input a characterization (called a feature
vector) of current state of the method being optimized and
outputs a set of probabilities corresponding to the benefit of
applying each optimization. The optimization with the high-
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est probability is applied to the method. After an optimiza-
tion is applied, the feature vector of the method is updated
and fed into the network for another round of optimization.
One output of the network corresponds to “stop optimizing,”
and the optimization process continues until this output has
the highest probability.

Once the best ANN is evolved, it is installed into the
Jikes RVM compiler and used at runtime as an optimization
heuristic. The next sections describe these stages in more
detail.

3.2 Markov Property

Most compilers apply optimizations in a fixed order, and this
order is tuned for a particular set of benchmarks. This tuning
process is performed manually and is tedious and relatively
brittle. Also, the tuning procedure needs to be repeated each
time the compiler is modified for a new platform or when
a new optimization is added to the compiler. Most impor-
tantly, we have empirical evidence that each method within
a program requires the application of a specific order of op-
timizations to achieve the best performance. In this paper,
we propose to use machine learning to mitigate the compiler
optimization phase-ordering problem.

Determining the correct phase ordering of optimizations
in a compiler is a difficult problem to solve. In the absence of
an oracle to determine the correct ordering of optimizations,
we must use a heuristic to predict the best optimization to
use. We formulate the phase-ordering problem as a Markov
Process. In a Markov Process, the heuristic makes a decision
on what action to perform (i.e., optimization to apply) based
on the current state of the environment (i.e., the method
being optimized). In order to perform learning, the state must
conform to the Markov Property, which means that the state
must represent all the information needed to make a decision
of what action to perform at that decision point. In our
framework, the current state of the method being optimized
serves as our Markov state because it succinctly summarizes
the important information about the complete sequence of
optimizations that led to it.

3.3 Neuro-Evolution Overview

In the this paper, we use Neuro-Evolution of Augmenting
Topologies (NEAT) to construct our neural networks to be
used for phase-ordering. NEAT uses a process of natural
selection to construct an effective neural network to solve
a particular task. This process starts by randomly generating
an initial population (or generation) of neural networks and
evaluating the performance of each network at solving the
specific task at hand.

The number of neural networks present in each genera-
tion is set to 60 for our experiments. Each of these 60 neural
networks is evaluated by using them to optimize the bench-
marks in the training set. A fitness is associated with each
network as described in Section 3.5.3. Once the initial set of
generated neural networks are evaluated, the 10 best neural
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Figure 4. This figure represents the phase-ordering process.
The process starts when the Jikes RVM optimizer receives
a method to optimize. We iterate over the instructions of
the method to generate the features, and then provide these
features to the neural network. The neural network then
provides a set of outputs, which represent the probabilities
of each optimization being beneficial. The optimization with
the highest probability is applied to the code. One of the
outputs of the network corresponds to “stop optimizing.”
When the probability of this output is highest, the optimizer
stops applying optimizations to the method.

networks from this set are propagated to the next generation
and are also used to produce new neural networks in this
generation.

This process continues and each successive generation
of neural networks produces networks that performs better
than the networks from the previous generation. New net-
works are created using mutation and crossover of the best
networks from the previous generation. During the process
of constructing new networks, we mutate the topology of a
progenitor network. Mutation can involve adding a neuron
to an existing edge in a network’s hidden layer. We set the
probability of adding a neuron to a low value (.1%) to keep
our networks small and efficient. Mutation can also involve
adding a new edge (probability .5%) or deleting an exist-
ing edge (probability .9%). These probabilties are within the
ranges suggested by the authors of NEAT. Neurons are re-
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Feature Meaning ‘

bytecodes Number of bytecodes in the
method

locals space Number of words allocated
for locals

synch Method is synchronized

exceptions Method has exception han-
dling code

leaf Method is a leaf (contains no
calls)

final Method is declared final

private Method is declared private

static Method is declared static

Category ‘ Fraction of bytecodes that ... ‘

aload, astore
primitive, long

are Array Loads and Stores
are Primitive or Long compu-
tations (e.g., iadd, fadd)

compare are Compares (e.g., lcmp,
dempl)

branch are Branches (forward/back-
ward/cond/uncond)

jsr are a JSR

switch are a SWITCH

put/get are a PUT or GET

invoke are an INVOKE

new are a NEW

arraylength are an ArrayLength

are an Athrow, checkcast, or
monitor

are a Multi Newarray

are a Simple,Long, or Real
Conversions

athrow,checkcast,monitor

multi_newarray
simple, long, real

Table 1. Method features being collected. To reduce the
length of the table several (different) features have been
placed in logical groups.

moved when the last edge to or from that neuron is removed.
The mutation probabilities were manually-tuned for our spe-
cific task. For our present experiments, we stopped after 300
generations, which was when the performance of the net-
works no longer improved at the task of phase-ordering for
our training benchmarks. Figure 2 depicts the process of
constructing a neural network using NEAT to replace the op-
timization heuristic in Jikes RVM.

3.4 Feature Extraction

Determining the properties of a method that predict an opti-
mization improvement is a difficult task. As we are operating
in a dynamic compilation environment, we chose features
that are efficient to calculate and which we thought were rel-
evant. Computing these features requires a single pass over
the instructions of the method. Table 1 shows the 26 features
used to describe the current state of each method being op-
timized. The values of each feature will be an entry in the

26—element feature vector x associated with each method.
The first 2 entries are integer values defining the size of the
code and data of the method. The next 6 are simple boolean
properties (represented using O or 1) of the method. The re-
maining features are simply the percentage of bytecodes be-
longing to a particular category (e.g., 30% loads, 22% float-
ing point, 5% yield points, etc.).

3.5 Applying NEAT

There are many characteristics (i.e., features) that can influ-
ence the phase-ordering decision, and these factors may have
complex interdependencies between them. In order to effec-
tively model the non-linear behavior of these features, our
neural networks are multilayer perceptrons.

3.5.1 Why NEAT?

NEAT can be used to solve challenging tasks because it can
evolve networks of unbounded complexity from a minimal
starting point. This method has been shown to outperform
the best fixed-topology method on challenging reinforce-
ment learning tasks [23] The reason that NEAT is faster and
better than typical reinforcement learning is three-fold: 1) it
incrementally grows networks from a minimal structure, 2)
it protects structural innovation using natural selection, and
3) it employs a principled method of crossover of different
topologies.

Neural networks are traditionally trained using super-
vised learning algorithms, which require a labeled training
set. The labeled training set consists of a feature vector that is
used as input, which characterizes a particular decision point
and the correct label or desired output the network should
produce when given this input. In the case of the phase order-
ing problem, we would need a feature vector corresponding
to the code being optimized and the desired output would be
the sequence of optimizations to apply to that code. Generat-
ing this labeled dataset requires knowing the right sequence
of optimizations to apply to a method is difficult as discussed
in Section 2.3.

3.5.2 Structure of the network

In our neural networks, each feature or characteristic of the
method is fed to an input node, and the layers of the network
can represent complex “nonlinear” interaction between the
features. Each output node of the network controls a particu-
lar optimization that could be applied. The outputs are num-
bers between 0 or 1 depending on whether the optimization
is predicted to be beneficial to the state of the code currently
being optimized. We apply the optimization pertaining to the
output that is closest to 1 indicating the optimization that the
network predicts will be most beneficial. One of the outputs
of the ANN tells the optimizer to stop optimizing. When the
probability of this output is highest, the optimizer stops ap-
plying optimizations to the method. Figure 4 shows the pro-
cess of phase-ordering.
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3.5.3 Fitness Functions

The fitness value we used for the NEAT algorithm is the
arithmetic mean of the performance of the benchmarks in
the training set. That is, the fitness value for a particular
performance metric is:
Fitness(S) = Lses Speedup(s)
N

where S is the benchmark training suite and Speedup(s) is
the metric to minimize for a particular benchmark s, which in
our case is the run time (i.e., running time of the benchmark
without compile time).

Speedup(s) = Runtime(sqcy)/Runtime(s)

where s4.r is a run of benchmark s using the default
optimization order of optimization level O3. The goal of the
learning process is to create a heuristic that determines the
correct order of optimizations to apply to a particular method
thereby reducing the running time of the suite of benchmarks
in the training set.

4. Infrastructure + Methodology

In this section we describe the platform, the benchmarks, and
the methodology employed in our experiments.

4.1 Platform

For our experiments in this paper, we modified version 3.1.1
of the Jikes Research Virtual Machine [4]. The VM was
run on an Intel x86 based machine, supporting two AMD
Opteron 2216 dual core processors running at 2.6GHz with
an L1 and L2 cache and RAM of 128K, 1M and 8GB, re-
spectively. The operating system on the machine was Linux,
running kernel 2.6.32. We used the FastAdaptiveGenMS
configuration of Jikes RVM, indicating that the core vir-
tual machine was compiled by the optimizing compiler at
the most aggressive optimization level and the generational
mark-sweep garbage collector was used.

4.2 Benchmarks

For the present set of experiments we used four benchmark
suites. For our training set, we used seven benchmarks from
the Java Grande benchmark suite [29]. These benchmarks
were used for training primarily due to their short execution
times.

For the test set, we used the SPECjvm98 [28], the
SPECjvm2008 [27], and the DaCapo benchmark [1] suites.
We used all the benchmarks from SPECjvm98 and the sub-
set of benchmarks from SPECjvm2008 and DaCapo that
we could correctly compile with Jikes RVM. We used the
largest inputs for all benchmarks. * The SPEC JVM bench-
marks have been designed to measure the performance of

4Note that for the benchmark FFT in SPECjvm2008, we used the small
input size because the large input size required more memory than was
available on our experimental platform.

OptKey | Meaning

Optimization Level O0
CSE Local common sub expression elimination
CNST | Local constant propagation
CPY Local copy propagation

SA CFG Structural Analysis

ET Escape Transformations

FA Field Analysis

BB Basic block frequency estimation

Optimization Level O1
BRO Branch optimizations

TRE Tail recursion elimination

SS Basic block static splitting

SO Simple optimizations like Type prop,
Bounds check elim, dead-code elim, etc.

Optimization Level O2

LN Loop normalization

LU Loop unrolling

CM Coalesce Moves

Table 2. The set of optimizations that were used to perform
phase ordering in our experiments.

the Java Runtime Environment (JRE) and focus on core Java
functionality. The DaCapo benchmark suite is a collection
of programs that were designed for various different Java
performance studies. The results in Section 5 come from the
benchmarks in our test set.

4.3 Optimization Levels

We ran our experiments in two scenarios, first using only the
optimizing compiler in a non-adaptive scenario and second
using the adaptive compilation mode. In the optimizing com-
pilation scenario, we set the initial compiler to be the opti-
mizing compiler and disable any recompilation. This forces
the compiler to compile all the loaded methods at the high-
est optimization level. Under the adaptive scenario, all dy-
namically loaded methods are first compiled by the baseline
compiler that converts bytecodes straight to machine code
without performing any optimizations. The resultant code is
slow, but the compilation times are fast. The adaptive opti-
mization system then uses online profiling to discover the
subset of methods where a significant amount of the pro-
gram’s running time is being spent. These “hot” methods
are then recompiled using the optimizing compiler. During
this process these methods are first compiled at optimization
level OO, but if they continue to be important they are re-
compiled at level Ol, and finally at level O2 if warranted.
Available optimizations are divided into different optimiza-
tion levels based on their complexity and aggressiveness.
When using the neural network in the adaptive scenario, we
disabled the optimizations that belonged to a higher level
than the present optimization level being used.
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4.4 Measurement

In a dynamic compiler like Jikes RVM, there are two types
of execution times that are of interest, total time and run-
ning time. The total time of a program is the time that the
dynamic compiler takes to compile the code from bytecodes
to machine code, and then to actually run the machine code.
The running time of a program is considered to be just the
time taken to run the machine code after it has been com-
piled by the dynamic compiler during a previous invocation.
For programs with short running times the total time is of
interest, as the compilation process itself is the larger chunk
of the execution time. However for programs that are likely
to run for longer durations, e.g. programs that perform heavy
computation or server programs that are initialized once and
remain running for a longer period of time, it is important to
highly optimize the machine code being generated. This is
true even at the expense of potentially greater compile time,
as the compilation time is likely to be overshadowed by the
execution of the machine code that has been generated by
the dynamic compiler. The time taken to execute the bench-
mark for the first invocation is taken as the total time. This
time includes the time taken by the compiler to compile the
bytecodes into machine code and the running of the machine
code itself. The running time is measured by running the
benchmark over five iterations and taking the average of the
last three execution times, this ensures that all the required
methods and classes had been preloaded and compiled. To
compare our performance we normalize our running times
and total times with the default optimization setting. This
default compilation scenario acts as our baseline, which is
the average of twenty running times and twenty total times
for each benchmark. The noise for all benchmarks in this
paper was less that 1.2% and the average noise was 0.7%.

4.5 Evaluation Methodology

As is standard practice, we evolve our neural network over
one suite of benchmarks, commonly referred to in the ma-
chine learning literature as the training set. We then test
the performance of our evolved neural network over another
“unseen” suite of benchmarks, that we have not trained on,
referred to as the fest set.

5. Results

In this section, we present our results of using the neural net-
work that performed best on the training set. We used this
network to determine good optimization orders for methods
in programs from the SPECjvm98, SPECjvm2008, and Da-
Capo benchmark suites in both an adaptive and optimizing
compilation scenario.

5.1 Adaptive Compiler

In the adaptive compilation scenario, we allowed the adap-
tive compiler to decide the level of optimization to be used
to optimize methods as described in Section 4.3. However, at

each optimization level we used the induced neural network
to decide to order of optimizations to apply at that level. In
this scenario, we obtained an average speedup of 8% in run-
ning time and 4% improvement in the total execution time
over all the benchmarks versus the default adaptive mode in
Jikes RVM

SPECjvm98 Running time Using our neural network for
phase-ordering, we were able to obtain an average speedup
of 10% across the seven benchmarks of the SPECjvm98
benchmark suite on the running time. We got significant
improvements over default on mpegaudio (20%), compress
(14%), and javac (11%).

Total time We observed a modest increase in performance
of 3% on average on the SPECjvm98 benchmarks. However,
it is important to note that we achieved these speedups de-
spite of the overhead of feature extraction and the execution
of the neural network. The javac program gave us the best
total time speedup at around 7%.

5.1.1 SPECjvm2008

Running Time We achieved an average running time
speedup of 6.4% on the SPECjvm2008 benchmarks. The
fft benchmark did give us a slowdown of a little less
than 5%. Interestingly, we discovered that the neural net-
work used very short optimization sequences to optimize
that benchmark. This helps to explain the improvement in
the total time for this benchmark as described in the next
section.

Total Time Our average performance improvement over
all five SPECjvm2008 benchmarks was around 4%. We
achieved a performance improvement of up to 7% on the
benchmark sor with our ANNS.

5.1.2 DaCapo

The running time performance improvement of the programs
in the DaCapo benchmark suite (at 6.8%) was not as high as
the other two benchmark suites, but their performance on
the total time of 6% was much better than the average of the
other two SPECjvm benchmark suites.

5.2 Optimizing Compiler

When running Jikes RVM in a non-adaptive mode, all the
methods are compiled directly at the highest optimization
level. The average speedup when just measuring running
time was 8.2%, and we improved the total time by over 6%.

52.1 SPECjvm98

Running time In SPECjvm98, we achieve up to a speedup
of 24% on mpegaudio. On average, we improved the run-
ning time performance of this benchmark suite by 10%,
which is a significant improvement.

Total time When measuring total time, we observed a
modest increase in performance of around 3.4%. The best
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Figure 5. Adaptive: The graph above represents the speedup achieved by using NEAT when used by Jikes RVM in adaptive
mode to optimize each benchmark in the test set. We compare our result with the performance of each of the benchmarks when
using the default adaptive compilation scenario.
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Figure 6. Optimization Level O3: The graph above represents the speedup achieved by using NEAT when used in the non-
adaptive mode in Jikes RVM to optimize each benchmark in the test set. We compare our result with the performance of each
of the benchmarks when using the default non-adaptive compilation scenario.

performing benchmark was again mpegaudio at 11% Total Time An interesting observation here is the perfor-
speedup. mance of the £ £t benchmark. In all other cases this bench-
. mark had a minor slowdown. We realized that the average
522 SPECjvm2008 optimization sequence length suggested by the neural net-
Running Time We achieved an average running time work was 11. This is very short compared to the default fixed
speedup of 7% over all the five benchmarks of the SPECjvm2008 order sequence length of 23. This reduction in the sequence
benchmark suite. The best performing benchmark from the
SPECjvm2008 suite was sor with a speedup of almost 12%.
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factor ()

for (...) {
arithematic operation over an array
for (...) {
arithematic operation over an array
}
}

if (.0
for (...) {
arithematic operation over an array
}
}
if (...0){
for (...) {
for (...) {
arithematic operation over an array
}

}
}

}

Listing 1. Pseudo-code for scimark.lu.LU.factor, the hottest

method for the SPEC2008 Iu benchmark

LABELI1
in_ifcmp <CONDITION> GOTO LABEL2

GOTO LABELL1
LABEL2

Listing 2. Slow Code (SA applied before BRO): The
following code corresponds to a while loop, where n
iterations of the loop require n conditional jumps and n
unconditional jumps. This is the code produced by using
optimization level O3.

in_ifcmp <!CONDITION> GOTO LABEL2
LABEL1

in_ifcmp <CONDITION> GOTO LABELI
LABEL2

Listing 3. Fast Code (BRO applied before SA): The fol-
lowing code corresponds to a do-while loop, where n it-
erations of the loop would require n+/ conditional jumps
but no unconditional jumps, this improves the perfor-
mance. This is the code produced using the optimization
ordering produced using our neural network.

Figure 7. Listing 1 shows the pseudo code of the scimark.lu.LU.factor method that is compiled by the optimizing compiler.
The two HIRs generated for scimark.lu.LU.factor by the two different optimization orderings are shown in Listing 2 and
Listing 3. Changing the order that the transformations are applied changes the running time by almost 7%

length helped to reduce the amount of compilation required,
and thus improves total time performance.

5.2.3 DaCapo

Running Time Using the Jikes RVM in a non-adaptive
mode, we were able to get some significant speedups of 17%
for pmd and 10.6% for 1lusearch. There were no signif-
icant slowdowns and on average we observed a speedup of
7.3% on the DaCapo benchmark suite.

Total Time We saw significant speedups across DaCapo
with 14% speedups on xalan, luindex and lusearch,
and speedups of 5%, 8%, and 9% on the three other pro-
grams. On average, we had an improvement 11%.

6. Exploration of Phase ordering benefit

In this section, we tried to analyze the optimization orderings
that our neural network came up with. We ran the bench-
marks and collected the profiling runs, which gave us an
idea of which methods were most important. Looking at the
neural network does not typically give any intuition of the
phase-ordering heuristic, however it may help to understand
the rough complexity of the final solution.

The neural network found interesting combinations of
transformations that helped in improving the performance
of some of the benchmarks. For example, the code shown in
Figure 4 is the hottest method in the scimark.lu.small bench-

mark. The figure also shows code after applying Branch Op-
timization before CFG Structural Analysis (i.e., the ordering
obtained from the default optimization level) and the code
when applying these two optimizations in the reverse order
(i.e., the ordering obtained from our neural network). We
looked at the machine code being generated in both cases
and realized that when CFG Structural Analysis was applied
before Branch Optimization, the code that was generated had
more branch statements. A snippet of representative code is
shown in Figure 7. In the slower code, the loops are rep-
resented as while loops, and the code that worked best had
loops that are represented as do-while loops. This small dif-
ference in the machine code gave an improvement of ap-
proximately 8% in the running time of the scimark.lu
benchmark. Because the original code had a large fraction
of unconditional branch statements, it triggered the neural
network to apply CFG Structural Analysis. This kind of
fine-grained optimization can be achieved when using a our
method of phase ordering.

Analyzing another benchmark, scimark . sparse, which
performs sparse matrix multiplication, we see another simi-

lar phenomena. We looked at the sparse.SparseCompRow.matmul

method, which is the hottest method in the benchmark and
has multiple nested loops as represented in Figure 8. Consid-
ering the number of nested loops in this method,Loop Un-
rolling could potentially be an optimization to this method.
Howere we realized that our neural network applied CFG
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LABEL1
int_ifcmp <CONDITION> GOTO LABEL3
goto LABEL2
LABEL2
goto LABEL4
LABEL3
matmul () goto LABEL1
LABEL4
for (...) { -
arithematic operation over an array Listing 5. Slow Code (LU applied before SA): Here the num-
for (...) { ber. of unconditional statements are unnecessary, and hampers
for (.. { . the performance of the code. This is the code produced by using
arithematic operation over an array R
} optimization level O3.
}
} LABELI
if (..0){ int_ifcmp <CONDITION> GOTO LABELI
for (...) {
) arithematic operation over an array Listing 6. Fast Code (SA applied before LU): During compi-
} lation, CFG Structural Analysis was applied before Loop Un-
} rolling, which gave the compiler a chance to clean up the code

Listing 4. Pseudo-code for matmult, the hottest

method for the SPEC2008 sparse benchmark. work.

before the loop unrolling was applied. This is the code produced
using the optimization ordering produced using our neural net-

Figure 8. The final HIR generated for sparse.SparseCompRow.matmult by the two different optimization orderings. The code
generated by applying CFG Structural Analysis before Loop Unrolling shown in Listing 6 performs better in terms of running
time and achieved a speedup of almost 14%.. When looking at the other characteristics, the number of unconditional jumps
were reduced by 33% and there was a 10% reduction in the number of basic blocks.

Structural Analysis before it applied Loop Unrolling. This
ordering helped in improving the quality of the code, im-
proving the total running time by almost 14%. Again, this
particular ordering is not present in the default ordering
present in the JikesRVM compiler. There were some dif-
ferences in the machine code that were generated. The exact
change in the machine that caused this huge speedup cannot
be pinpointed, however we found a few instances of ma-
chine code that were less than optimum. Figure 8 shows a
piece of machine code that is less than otimal. When looking
at this particular instance we quickly relaized that the code
placement was needlessly complex. For example, if only
the target of the first conditional jump was set to LABELI,
we would not need the last three unconditional jumps. In-
tuitively, a compiler writer would try to fix the problem by
applying another optimization like Branch Optimization or
applying CFG Structural Analysis once more. But, in this
particular case repeating CFG Structural Analysis or apply-
ing another instance of Branch optimization did not improve
the performance of the code.

7. Training Time

Training our machine learning heuristic requires us to pro-
vide fitness values to each of the heuristics being tested. In
our neuro-evolution scenario, the fitness of the heuristic can

only be measured in terms of the performance of the bench-
mark when this heuristic is applied.

This makes the execution time of the benchmark the bot-
tleneck in our experiments. In order to give a clearer picture
we calculated the rough training time that was required to
train a phase-ordering sequence for each benchmark indi-
vidually when using genetic algorithm. This is shown in the
Table 5. Given the number of days that it can take to train
each benchmark we feel that is is impractical to use GA’s
for phase-ordering, especially within a dynamic compilation
scenario.

8. Discussion

In this section, we briefly describe the neural network that
we used for the experiments and discuss some observations
(e.g., the reduction in the optimization sequence length, a
case of repeated optimizations, and handling of relatively flat
profiles.)

Neural Network We used one neural network for all the
results shown in Table 4 and Figures 5 and 6. This network
had 30 inputs, 14 outputs, 24 hidden nodes, and 503 total
connections.

Reduction of optimization sequence length From our ex-
periments, we were able to demonstrate two achievements.
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Avg. Seq.

Program Avglgé:getc{l Program length
SPECivm98 SPECjvm2008 contd.

javac J 18 sparse 20
1

mpegaudio 19 |L3°F 6

jess 16 DaCapo

compress 19 aVJIfora 19

raytrace 18 || luindex 16

jack 17 lusearch 16

SPECjvm2008 pmd 18

FFL 11 sunflow 16

1 18 xalan 17

mznte carlo 17 Average 17

- Default 23

Table 3. The average number of optimizations that were
applied by the neural network.

Intelligent ordering of the sequences provided us with sig-
nificant speedups. We also show that intelligently applying
the right optimizations helps in improving the compile time
by not having to apply optimizations that have little impact
on a method’s performance. This would reduce the compila-
tion burden on the system, and directly improve the system
performance in terms of total execution time.

A detailed analysis of the phase orderings suggested by
the ANN is shown in the Table 4. We typically applied 16-20
optimizations while the default optimizing compiler applied
23. We believe that this is significant. That is, we were able
to apply the right optimizations and thus more effectively
utilize the optimization resources available to us.

Repeating optimizations In some cases the optimizations
get repeated back to back. For example, the sequence shown
in the fourth row of Table 4, the network predicted to ap-
ply Static Splitting twice in succession. This situation arises
when applying a particular optimization does not change the
feature vector. We could potentially be stuck in an infinite
loop where the feature vector remains the same, thus inad-
vertently causing the neural network to apply the same opti-
mization, which causes an infinite loop. In order to overcome
this situation, if the network predicts that applying the same
optimization again would be beneficial, we allow for a maxi-
mum of 5 such repetitions, and then instead apply the second
best optimization.

Improvements from present state of art At present the best
way to tune phase ordering is to use GA to optimize in the
search. There are a few problems with this approach, each
benchmark has to be tuned individually, if we use a training
set and a test set, the results are not as good as shown in
Figure 9. Figure 9 compares the present state of the part in
phase ordering with our approach. The first bar is by training
GA on a training set and testing it on the test set, similar to
the second bar where we used NEAT. The last bar is when

Speedups vs Method importance
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Figure 10. Speedup based on method importance: The
plot above represents the speedup achieved by evolving an
optimization sequence using genetic algorithm per bench-
mark and NEAT. Each data point in the plot corresponds to a
benchmark, and the plot depicts the number of methods that
constitute 60% of the running time for a particular bench-
mark versus the speedup obtained for that benchmark.

we individually searched for the best phase ordering using
GA for each benchmark. Even with the advantage of being
trained on each benchmark individually, the performance
GA per benchmark is not much better than using NEAT,
which does not require individual training runs.

Flat-profiled benchmarks For some benchmarks, the run-
ning time of the benchmark is equally divided among mul-
tiple methods (i.e., a flat profile), while other benchmarks
have the majority of the execution time is spent in just one
or a few methods. Finding a good phase ordering in case
of benchmarks with one single “hot” method is relatively
straight-forward. We would simply be searching for an op-
timization sequence that was beneficial for the one impor-
tant method of the benchmark. Since the execution time is
dominated by a single method, we would see an overall im-
provement in the performance of the benchmark even if the
method-specific phase ordering negatively affects the perfor-
mance of the other methods.

In order to demonstrate our point, we conducted an exper-
iment where we allowed the genetic algorithm to search for
the best optimization sequence to be applied to each bench-
mark. This was the method proposed by Cooper et al. [6] and
was shown to find good optimization sequences for a pro-
gram. Figure 10 shows the speedup achieved by both GAs
and neural networks on each benchmark as it relates to the
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Genetic Algorithm vs Neural Network
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Figure 9. Genetic Algorithm versus Neural Network: The graph above represents the speedup achieved by the best
optimization sequence found by the genetic algorithm for all the benchmarks in the training set, when applied to the test
set (JikesRVM in non-adaptive mode). We compare our result with the performance of each of the benchmarks when using the

default non-adaptive compilation scenario.

Hot Percent of . Optimization
Benchmark method Total Calls Size Sequence
SPECjvm 2008
fft(small) FFT.transform_internal() 86.93% 390 | CNST,CPY,CPY,LU,BB,SS,BB,CSE,LN,CNST,LN
TRE,CNST,CPY,SS,SS,BRO,SAET,SO,
lu LU factor() 72:39% | 277 ET,LU,SS,LU,TRE,SS,SS,SO,CNST,FA FA
. BB,CPY,BB,TRE,CNST,BB,CSE,
monte_carlo MonteCarlo.integrate() 25.31% 68 CSE.LU.CSE.SS.SA.LU.FA
sparse SparseCompRow. 80.79% 161 SO,BB,LU,CNST, TRE,LN,CPY,TRE,SS,CPY,
P matmult() I S0O,S0O,SS,FA,BB,CNST,CPY, TRE,CNST
S0O,S0,BB,SO0,SS,CPY.ET,TRE,CPY,LN,CSE,
sor SOR.execute() 86.51% 184 CSE.SO.LN.SA.SA.SA.BB.TRE.CNST

Table 4. This table gives information about the hottest methods in SPECjvm2008 and the optimization sequences obtained
from our neural network for each of these methods. The abbreviations used to described the sequences are explained in Table 2.

number of “hot” methods that constitute 60% of the running
time for a particular benchmark. In this figure, we see that
the GA is better at finding good speedups when the 60% of
the execution time is concentrated in just one method. How-
ever, our NEAT-evolved networks are able to achieve good
speedup when the execution time is distributed over multiple
methods. Another set of results that reaffirm this conclusion
is in Figure 9, if you look at the results for javac and mpe-
gaudio, both benchmarks have relatively flat profiles, and in
both cases the individually training GA phase ordering did
not do as well as the Neural network.

9. Related Work

Auto-tuning: An area that is closely related to this paper
is the study of automatic code generation and optimization
for different computer architectures (auto-tuning), which has
been explored in many existing studies for many different
applications. A number of library generators automatically
produce high-performance kernel routines [21, 26, 30]. Re-
cent research efforts [12, 18] expand automatic code genera-
tion to routines whose performance depends not only on ar-
chitectural features, but also on input characteristics. These
systems are a significant step toward automatically opti-
mizing code for different computer architectures. Recently,
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Program Training Program Training
time (Days) time (Days)
SPECjvm98 SPECjvm2008 contd.
Jjavac 2.2 || sparse
mpegaudio 0.8 || sor 5.1
jess 1.3 DaCapo
compress 1.1 || 3vrora 73
raytrace 9 || 1uindex 3.1
jack 1.6 || 1usearch 3.3
SPECjvm2008 pmd 3.6
fft 10.4 || sunflow 3.1
lu 5 || xalan 5.6
monte 3 Average 39
_carlo Total 70

Table 5. This table shows the average time that we have
taken if we evolved an optimization ordering using GA for
each benchmark individually.

’ Program \ GA \ NEAT ‘
Java Grande 4.4 491
Jolden 7 8.3

] Total \ 114 \ 13.2 ‘

Table 6. Time taken in days to train the training set, to
provide the reults in Figure 9

Ganapathi [11] ef al. presented some preliminary results on
the application of machine learning to auto-tuning for multi-
cores. They showed that auto-tuning of stencil codes, with
the assistance of machine learning, was able to surpass per-
formance of tuning by a domain expert. This research dis-
plays the great potential for machine learning and search
in an auto-tuning environment. However, these prior works
have all been largely focused on small domain-specific ker-
nels and still neglect exploring the benefits of learning from
a knowledge base of previously explored applications and
architectures.

Machine learning applied to Compilation: Machine learn-
ing and search techniques applied to compilation has been
studied in many recent projects [5, 8, 9, 14, 20, 24, 25, 31].
These previous studies have developed machine learning-
based algorithms to efficiently search for the optimal se-
lection of optimizing transformations, the best values for the
transformation parameters, or the optimal sequences of com-
piler optimizations. Generally, these studies customize op-
timizations for each program or local code segments, some
based on code characteristics. The proposed research in this
paper is motivated by these studies and makes a significant
step forward: the compiler will not only use program char-
acteristics, but will also learning to decide the right ordering
of optimizations.

Several researchers have looked at searching for the
best sequence of optimizations for a particular program [6—
8, 13, 16, 17], for example the work by Cooper et al. [6] used
genetic algorithms to solve the compilation phase ordering
problem. They were concerned with finding “good” com-
piler optimization sequences that reduced code size. Their
technique was successful at reducing code size by as much
as 40%. Unfortunately, their technique was application-
specific, i.e., a genetic algorithm had to be retrained to find
the best optimization sequence for each new program. Also,
Cooper et al. [8] propose a technique called virtual execu-
tion to reduce the cost of evaluating different optimization
orderings. Virtual execution consists of running the program
one time and predicting the performance of different opti-
mization sequences without running the code again. These
approaches give impressive performance improvements, but
has to be performed each time a new application is compiled.
While this is acceptable in embedded environments, it is not
suitable for typical compilation.

Kulkarni ef al. [17] exhaustively enumerated all distinct
function instances for a set of programs that would be pro-
duced from different phase-orderings of 15 optimizations.
This exhaustive enumeration allowed them to construct
probabilities of enabling/disabling interactions between dif-
ferent optimization passes in general and not specific to any
program. In contrast, the techniques in this paper charac-
terized methods being optimized; therefore, the techniques
described here learn which optimizations are beneficial to
apply to “unseen” methods with similar characteristics.

Many researchers have also looked at using machine
learning to construct heuristics that control compiler op-
timizations. Cavazos et al. [5] used logistic regression to
control what optimizations to apply in JikesRVM. However,
they do not attempt to control the order of optimizations
and instead only turn on and off optimizations given the
hand-tuned fixed order of optimizations. For the SPECjvm98
benchmarks, they were not able to achieve significant im-
provements for running time under both non-adaptive and
adaptive scenarios likely because the fixed-order of opti-
mizations in Jikes RVM had been highly tuned and there
was little room for improvement on top of this ordering by
simply turning optimizations on and off. In contrast, we
achieve good improvements on SPECjvm98 benchmarks by
applying method-specific optimization orderings.

Stephenson et al. [25] used genetic programming to tune
heuristic priority functions for three compiler optimizations
within the Trimaran’s IMPACT compiler. For one of the opti-
mizations, register allocation, they were only able to achieve
on average a 2% increase over the manually tuned heuristic.
Monsifrot et al. [20] used a classifier based on decision tree
learning to determine which loops to unroll showing a few
percent improvement on two different machines. The results
in these papers highlight the diminishing results obtained
when only controlling a single optimization. In contrast, this
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research will control numerous optimizations available in
the compiler.

Agakov et al. [2] describe two models to improve the
search for good optimization orders to apply to programs.
The first model, called the independent identically dis-
tributed model, produces a probability vector correspond-
ing to probability that a transformation occurs in a good
sequence for a particular program. When optimizing a new
program, a nearest neighbor algorithm is used to choose the
probability vector of the program in the training set closest
to the program to be optimized. This probability vector is
then used to choose optimizations for the new program. The
second model, called the Markov model simply creates a
probability matrix where the probability of an optimization
being beneficial depends upon the optimizations that have
been previously applied. These models were developed to
focus the search for good optimization orderings during iter-
ative compilation. Therefore, these techniques suffers from
the same limitations as described in Section 2.1. Addition-
ally, these models use simple nearest neighbor algorithms
using the characteristics of the original unoptimized code.
Therefore, these models do not take advantage of important
characteristics of the code as it is being optimized.

Fursin et al. [10] (as part of the MILEPOST project) have
integrated machine learning algorithms in GCC to control
these optimizations applied. They show good results on three
different architectures, compared to random search of opti-
mizations sequences. However, the machine learning algo-
rithms in MILEPOST do not learn good optimization order-
ings because as the authors state “this requires detailed in-
formation about dependencies between passes to detect legal
orders”.

10. Conclusion

This paper has shown that method-specific optimization
orderings can give significant performance improvements
within the Jikes RVM JIT compiler. It has also demonstrated
that a technique of neuro-evolution can automatically de-
rive a neural network that gives significant performance
improvements over a well-engineered optimization order-
ing. We show total execution time improvements of up to
20%. To the best of our knowledge, this is the first paper to
demonstrate that machine-learning models can be success-
fully used to choose optimization orders for methods within
a compiler. The present study is promising as it provides a
fresh prospective to the problem of phase ordering which has
been studied for decades. The amount of improvement that
can be found from this method has not yet reached its full
potential, and we propose to improve the machine learning
algorithm to provide better improvements.

For future work, we would like to implement similar
phase-ordering techniques in a static compiler, in order to
understand the behavior of other environments on our setup.
There is nothing about the technique that makes it specific

to dynamic compilation. In addition, we would also like to
incorporate profile information into the feature set, which
allow us to improve our predictions.
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