

Intel
PRESS

Multi-Core Programming
Increasing Performance through Software
Multi-threading

Shameem Akhter
Jason Roberts

These pages were excerpted from Chapter 3 of Multi-Core Programming by
Shameem Akhter and Jason Roberts.

Visit Intel Press on the web at www.intel.com/intelpress to learn more about this
book.

This excerpt illustrates how a seemingly sequential problem, error diffusion, can
be transformed into an efficient parallel implementation suitable for parallel
processors.

Copyright © 2006 Intel Corporation. All rights reserved.

ISBN 0-9764832-4-6

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission
should be addressed to the Publisher, Intel Press, Intel Corporation, 2111 NE 25th Avenue, JF3-
330, Hillsboro, OR 97124-5961. E-mail: intelpress@intel.com.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is not engaged in
professional services. If professional advice or other expert assistance is required, the services
of a competent professional person should be sought.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or
other intellectual property rights that relate to the presented subject matter. The furnishing of
documents and other materials and information does not provide any license, express or
implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other
intellectual property rights.

Intel may make changes to specifications, product descriptions, and plans at any time, without
notice.

Fictitious names of companies, products, people, characters, and/or data mentioned herein are
not intended to represent any real individual, company, product, or event.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or
safety systems, or in nuclear facility applications.

Intel, the Intel logo, Celeron, Intel Centrino, Intel NetBurst, Intel Xeon, Itanium, Pentium, MMX,
and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.
†
Other names and brands may be claimed as the property of others.

 A Motivating Problem: Error Diffusion

To see how you might apply the aforementioned methods to a practical
computing problem, consider the error diffusion algorithm that is used in
many computer graphics and image processing programs. Originally
proposed by Floyd and Steinberg (Floyd 1975), error diffusion is a
technique for displaying continuous-tone digital images on devices that
have limited color (tone) range. Printing an 8-bit grayscale image to a
black-and-white printer is problematic. The printer, being a bi-level
device, cannot print the 8-bit image natively. It must simulate multiple
shades of gray by using an approximation technique. An example of an
image before and after the error diffusion process is shown in Figure 3.2.
The original image, composed of 8-bit grayscale pixels, is shown on the
left, and the result of the image that has been processed using the error
diffusion algorithm is shown on the right. The output image is composed
of pixels of only two colors: black and white.

Original 8-bit image on the left, resultant 2-bit image on the right. At the resolution
of this printing, they look similar.

The same images as above but zoomed to 400 percent and cropped to 25 percent
to show pixel detail. Now you can clearly see the 2-bit black-white rendering on the
right and 8-bit gray-scale on the left.

Figure 3.2 Error Diffusion Algorithm Output

46 Multi-Core Programming

The basic error diffusion algorithm does its work in a simple three-
step process:

1. Determine the output value given the input value of the current
pixel. This step often uses quantization, or in the binary case,
thresholding. For an 8-bit grayscale image that is displayed on a 1-bit
output device, all input values in the range [0, 127] are to be
displayed as a 0 and all input values between [128, 255] are to
be displayed as a 1 on the output device.

2. Once the output value is determined, the code computes the
error between what should be displayed on the output device
and what is actually displayed. As an example, assume that the
current input pixel value is 168. Given that it is greater than our
threshold value (128), we determine that the output value will be
a 1. This value is stored in the output array. To compute the
error, the program must normalize output first, so it is in the
same scale as the input value. That is, for the purposes of
computing the display error, the output pixel must be 0 if the
output pixel is 0 or 255 if the output pixel is 1. In this case, the
display error is the difference between the actual value that
should have been displayed (168) and the output value (255),
which is –87.

3. Finally, the error value is distributed on a fractional basis to the
neighboring pixels in the region, as shown in Figure 3.3.

Figure 3.3 Distributing Error Values to Neighboring Pixels

This example uses the Floyd-Steinberg error weights to propagate
errors to neighboring pixels. 7/16ths of the error is computed and added

Chapter 3: Fundamental Concepts of Parallel Programming 47

to the pixel to the right of the current pixel that is being processed.
5/16ths of the error is added to the pixel in the next row, directly below
the current pixel. The remaining errors propagate in a similar fashion.
While you can use other error weighting schemes, all error diffusion
algorithms follow this general method.

The three-step process is applied to all pixels in the image. Listing 3.1
shows a simple C implementation of the error diffusion algorithm, using
Floyd-Steinberg error weights.

/**************************************
* Initial implementation of the error diffusion algorithm.
***************************************/

void error_diffusion(unsigned int width,
 unsigned int height,
 unsigned short **InputImage,
 unsigned short **OutputImage)
{
 for (unsigned int i = 0; i < height; i++)
 {
 for (unsigned int j = 0; j < width; j++)
 {
 /* 1. Compute the value of the output pixel*/
 if (InputImage[i][j] < 128)
 OutputImage[i][j] = 0;
 else
 OutputImage[i][j] = 1;

 /* 2. Compute the error value */
 int err = InputImage[i][j] - 255*OutputImage[i][j];

 /* 3. Distribute the error */
 InputImage[i][j+1] += err * 7/16;
 InputImage[i+1][j-1] += err * 3/16;
 InputImage[i+1][j] += err * 5/16;
 InputImage[i+1][j+1] += err * 1/16;
 }
 }

}

Listing 3.1 C-language Implementation of the Error Diffusion Algorithm

48 Multi-Core Programming

Analysis of the Error Diffusion Algorithm

At first glance, one might think that the error diffusion algorithm is an
inherently serial process. The conventional approach distributes errors to
neighboring pixels as they are computed. As a result, the previous pixel’s
error must be known in order to compute the value of the next pixel.
This interdependency implies that the code can only process one pixel at
a time. It’s not that difficult, however, to approach this problem in a way
that is more suitable to a multithreaded approach.

An Alternate Approach: Parallel Error Diffusion

To transform the conventional error diffusion algorithm into an approach
that is more conducive to a parallel solution, consider the different
decomposition that were covered previously in this chapter. Which
would be appropriate in this case? As a hint, consider Figure 3.4, which
revisits the error distribution illustrated in Figure 3.3, from a slightly
different perspective.

Figure 3.4 Error-Diffusion Error Computation from the Receiving Pixel’s
Perspective

Given that a pixel may not be processed until its spatial predecessors
have been processed, the problem appears to lend itself to an approach
where we have a producer—or in this case, multiple producers—
producing data (error values) which a consumer (the current pixel) will
use to compute the proper output pixel. The flow of error data to the
current pixel is critical. Therefore, the problem seems to break down
into a data-flow decomposition.

Chapter 3: Fundamental Concepts of Parallel Programming 49

Now that we identified the approach, the next step is to determine the
best pattern that can be applied to this particular problem. Each
independent thread of execution should process an equal amount of work
(load balancing). How should the work be partitioned? One way, based on
the algorithm presented in the previous section, would be to have a thread
that processed the even pixels in a given row, and another thread that
processed the odd pixels in the same row. This approach is ineffective
however; each thread will be blocked waiting for the other to complete,
and the performance could be worse than in the sequential case.

To effectively subdivide the work among threads, we need a way to
reduce (or ideally eliminate) the dependency between pixels. Figure 3.4
illustrates an important point that's not obvious in Figure 3.3—that in
order for a pixel to be able to be processed, it must have three error
values (labeled eA, eB, and eC1 in Figure 3.3) from the previous row, and
one error value from the pixel immediately to the left on the current
row. Thus, once these pixels are processed, the current pixel may
complete its processing. This ordering suggests an implementation
where each thread processes a row of data. Once a row has completed
processing of the first few pixels, the thread responsible for the next row
may begin its processing. Figure 3.5 shows this sequence.

Multiple threads are able to process multiple rows simultaneously.

Figure 3.5 Parallel Error Diffusion for Multi-thread, Multi-row Situation

1 We assume eA = eD = 0 at the left edge of the page (for pixels in column 0); and that eC = 0 at the

right edge of the page (for pixels in column W-1, where W = the number of pixels in the image).

50 Multi-Core Programming

Notice that a small latency occurs at the start of each row. This
latency is due to the fact that the previous row’s error data must be
calculated before the current row can be processed. These types of
latency are generally unavoidable in producer-consumer implementations;
however, you can minimize the impact of the latency as illustrated here.
The trick is to derive the proper workload partitioning so that each
thread of execution works as efficiently as possible. In this case, you
incur a two-pixel latency before processing of the next thread can begin.
An 8.5" X 11" page, assuming 1,200 dots per inch (dpi), would have
10,200 pixels per row. The two-pixel latency is insignificant here.

The sequence in Figure 3.5 illustrates the data flow common to the
wavefront pattern.

