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SUMMARY

This paper is about using the existing Monte Carlo approach for pricing European and American contracts
on a state-of-the-art graphics processing unit (GPU) architecture. First, we adapt on a cluster of GPUs two
different suitable paradigms of parallelizing random number generators, which were developed for CPU
clusters. Because in financial applications, we request results within seconds of simulation, the sufficiently
large computations should be implemented on a cluster of machines. Thus, we make the European contract
comparison between CPUs and GPUs using from one up to 16 nodes of a CPU/GPU cluster. We show that
using GPUs for European contracts reduces the execution time by ~ 40 and diminishes the energy consumed
by ~ 50 during the simulation. In the second set of experiments, we investigate the benefits of using GPUs’
parallelization for pricing American options that require solving an optimal stopping problem and which we
implement using the Longstaff and Schwartz regression method. The speedup result obtained for American
options varies between two and 10 according to the number of generated paths, the dimensions, and the time
discretization. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND OBJECTIVES

Monte Carlo (MC) simulation, the most widely used method in transport problems, owes its pop-
ularity in the scientific community to its three features: (1) the possibility to use MC for complex
transport problems that cannot be interpreted in deterministic language; (2) the ease of implemen-
tation and parallelization; and (3) contrary to deterministic methods such as finite element or finite
difference methods, MC remains efficient in a dimension greater than four, which is appropriate for
systems requiring high DOFs.

In this article, it is shown that although MC is theoretically very efficient for multi-core architec-
tures, the methods based on MC vary according to their effectiveness on these architectures. In this
work, we will present the practical point of view of the pricing methods based on Monte Carlo and
implemented on graphics processing units (GPUs). This practical study will provide the comparison
between CPUs and GPUs on pricing the two major derivative classes found in the financial field,
which are European contracts (ECs) and American contracts (ACs). As in practice, one multi-core
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card is generally insufficient for the execution of high-dimensional applications within seconds; we
will compare, on the same cluster, multi-core GPUs with four-core CPUs for pricing ECs. Moreover,
we will explain how we can generalize this kind of cluster comparison for pricing ACs.

After the introduction of MC and its applications for pricing ECs and ACs in Section 2, in
Section 3, we present two different methods of parallelizing random number generation that aim
at the highest adaptability on GPUs, and we give an example for each method. In Section 4, we
give details on the implementation of a typical multidimensional EC on a multi-core CPU/GPU
cluster. Section 5 presents a detailed study of the accuracy of the results, the speedups and the
energy consumed during the simulation of ECs. Once the concept of pricing parallelization on ECs
is understood through Sections 4 and 5, we devote the final sections to pricing ACs, which is known
as one of the most challenging problems in financial applications. Thus, in Sections 6 and 7, we
aim at reducing the running time of ACs simulation using GPUs, and we will propose means of
parallelizing it on a cluster of machines.

Before going into the detail of this work, the main specifications of the machines on which we
implement our benchmark applications are as follows:

M1: is the XPS M1730 laptop composed of Intel Duo Core CPU with a clock rate of 2.50 GHz and
contains 2 nVIDIA 8800 M GTX connected with SLIL.

M?2: is a cluster of 16 nodes. Each node is a PC composed of an Intel Nehalem CPU, with four
hyperthreaded cores at 2.67 GHz, and a nVIDIA GTX285 GPU with 1 GB of memory. This
cluster has a Gigabit Ethernet interconnection network built around a small DELL Power
Object 5324 switch (with 24 ports). Energy consumption of each node is monitored by a
Raritan DPXS20A-16 device that continuously measures the electric power consumption
(in Watts) up to 20 nodes (in Watts). Then a Perl script samples these values and computes the
energy (Joules or WattHours) consumed by the computation on each node and on the complete
cluster (including the interconnection switch).

2. MONTE CARLO AND MULTI-CORE PROGRAMMING

This section is divided into two parts: the first part goes over the general aspects of parallelizing MC
simulations and the benchmark model used. The second part gives some details on pricing ECs and
ACs. Indeed, in Markovian models, pricing ACs basically adds one step to the pricing algorithm.
Thus, based on what is known on ECs, we will present the problem of pricing ACs.

2.1. An introduction to Monte Carlo methods

The general MC method is articulated by two theorems that constitute the two pillars of the prob-
ability theory [1]. The first one is the Strong Law of Large Numbers (SLLN) that announces the
convergence of a certain series of independent random variables that have the same distribution to
a value of an integral. The second one is the Central Limit Theorem (CLT), which determines the
speed of the convergence revealed by SLLN. These two classic theorems can be found, for instance,
in [2].

The assumption that makes MC more attractive than other methods for GPU is the independence
of the random variables. The main concern of using MC on GPUs is how to spread this indepen-
dence on the stream processor units. Unlike pricing ACs, pricing ECs with MC is no more than
using the result of SLLN and CLT on random functions such as those presented in Table I. In
Table I, (x)4+ = max(x,0) and maxz, meanr, respectively stand for the maximum value and the
average value on the trajectory of the stock S;(¢) on the time interval [0, T']. On the one hand, in
this article, we suppose that ¢ = (81, e, sd) is a Gaussian vector and the coordinates ¢!, . . ., &9 are
independent. On the other hand, we denote by S; the price of a basket of stocks St ..., Std and to
describe the behavior of each stock, we will use the following standard geometric Brownian motion:

2 i i
. . o
St’=S(’)exp|:(ri—di—712pi2k)t+0iZPikWtk:| (D)
k=1 k=1
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Table I. Contracts and associated payoffs.

Name of contracts Payoffs

Put (K —St()+

Call (ST(e)—K)+

Lookback (max7 St (e) — S (8))

Up and out barrier (f(ST () Imaxs S, (e)<L)
Floating Asian put (mean7 St (e) — St (¢))+

which is equal in density to

2 1 i
. . (o
S,’ = S{)exp {(n —d; — 7[];'0’2") t +Uil;pik\/;8k:|

where:

Sé is the initial price of the asset i,

7 is the rate of the asset i,

d; is the dividend of the asset 7,

Iof is the volatility of the asset i,

Jiek simulates the Brownian motion distribution W},

(pik)1<ik<aq 1sa given matrix correlating the assets.

Thus, the first stage of using MC is to simulate the Gaussian distribution of ¢ through a set of
samples &;. For a detailed presentation on MC in financial applications, we refer the reader to [1].
In order to parallelize pricing ECs, we implement algorithms that can be executed similarly on all
the trajectories at the same time. With MC methods, the best way to perform this similarity task is
to discretize the time interval then run the same tasks sequentially for the whole current trajectories
at the same step of the discretization. For instance, we can simulate the log-normal evolution of the
stock S/ () at each time # € [0, T'] using the two following steps:

(1) The simulation of normal distribution variable ¢, associated with the trajectory ¢.
(2) The actualization of the stock value using the recurrence relation

Si =857 exp(f(eq))

where f is an affine function.

In the example demonstrated in Figure 1, we carry out the two steps sequentially. The paralleliza-
tion takes part in performing the same step on different trajectories. Thus, a subset of the whole set
of trajectories can be associated with one processor unit and carry out each step independently from
the other subsets. Moreover, parallelizing the simulation on a cluster of multi-cores CPUs/GPUs
is no more than parallelizing or enlarging the set of trajectories to add all the contributions of the
different machines.

2.2. Pricing European and American options

An EC is one that can be exercised only on the maturity 7', unlike AC, which can be exercised any-
time before the maturity 7. Among ECs and ACs, the ‘options’ contracts are those that are the most
studied. The option payoft is generally given using the function (x)4+ = max(x, 0) which expresses
the fact that options are contracts, which ‘allow, without obligation’, to buy or to sell an asset at a
fixed price. For example, the put and call contracts given in Table I are options.

If r is the risk neutral rate and ®(S;) the payoff of a given contract, the price of a European
version of this contract, at each time ¢ € [0, T'], is defined by the following expression:

P () = Epx (7T 0(ST)) @)
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Figure 1. Parallelizing the same task on different trajectories.

where [E; . is the expectation associated to the risk neutral probability knowing that S; = x.
Using the previous notations, ACs can be exercised at any trading date until maturity and their
prices are given, at each time 7, by

PA(x) = sup Er (e O00(Sp)). 3)
967’[,7'

where 7; 7 is the set of stopping times in the time interval [¢, T'].

To simulate (3), we first need to approach stopping times in 7; 7 with stopping times taking values
in the finite set f =ty < < ... <t, = T. When we do this approximation and use the dynamic
programming principle [1], we obtain the following induction for each simulated path:

PAme(Sr) = &(Sr), Vke{n—1,...,0}, )
PR (S, ) = max{®(Sy, ), C(Sy, )}

C(S;,) in (4) represents the continuation value and is given by

C(Sy) = E (e @170 Py (S5, [S0c) )

Thus, to evaluate the price of (3), we need to estimate C(S;, ). Longstaff and Schwartz consider the
stopping times formulation of (4), which allows them to reduce the bias by using the actual real-
ized cash flows. We refer the reader to [3] for a formal presentation of the Longstaff and Schwartz
Regression (LSR) algorithm.

Algorithms devoted to American pricing and based on MC, differ essentially on the way they
estimate and use the continuation value (5). For example, the authors of [4] perform a regression to
estimate the continuation value, but unlike [5], they use C(S;, ) instead of the actual realized cash
flows to update the price. Other methods use Malliavin Calculus [6] or quantization methods [7] for
C(S;, ) estimation. In addition to these methods based on MC, there is a profusion of algorithms
for American option pricing. However, the one that is gaining widespread adoption in the financial
industry is the LSR method. This widespread adoption and the fact that LSR is based on Monte
Carlo simulation leads us to choose LSR implementation on GPU.

The LSR method approximates the continuation value by projecting the cash flow Py, (S, ),
generated at 7 4 1, on a set of functions v/ (S, ) that depend only on the asset price at time ;.. How-
ever, contrary to an ordinary regression method, the LSR uses the drawings satisfying ®(S;, ) > 0,
the ‘in the money’ drawings. Even if Longstaff and Schwartz give partial convergence results in
their original paper [5], the authors of [3] proved the convergence and analyzed the speed of this
convergence according to the number of simulated paths. This convergence analysis has been refined
in [8] by studying the problems due to the degree of regression.
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Strictly speaking, if we consider the regression vector 4 and we denote by C(Sy, ) = A’ Y (Sy)
the estimated continuation value, one must find the vector A that minimizes the quadratic error

||P’k+1(Stk+l)_g(S’k)HLz' (6)
We can easily check that the regression vector that minimizes (6) is given by
A=VT'E (Ptk+1 (Slk+1)W(Stk)) ’ )

where W = E(y/ (S;,) " (Sy,)).

Consequently, once we approximate the expectations in (7) by an arithmetic average using MC,
we must invert the matrix W. One of the most used and most stable methods of inversion is the one
based on a singular value decomposition [9]. However, this method and other methods of inver-
sion are not efficient to parallelize on GPUs for relatively small and not sparse matrices. In the
sixth section, we will explain how the GPU implementation can be used to slightly (x1.2 to x1.4)
accelerate this part of the algorithm.

Without loss of generality, we use the basis ¥ (S;, ) of monomial functions to perform our regres-
sion. Also, in the case of geometric Brownian motion, the convergence study given in [8] shows
that the number of polynomials K = K for which accurate estimation is possible from N paths is
O(4/log(N)). Consequently, we use monomials of degrees less than or equal to 2 for one dimen-
sion and we will use affine regression in the multidimensional simulation. Finally, we subdivide the
algorithm of pricing ACs in three parts as in [10]:

(1) Paths generation (PG) phase.
(2) Regression (REG) phase.
(3) Pricing (PRC) phase.

As the ‘calibration phase’ [10] can be a source of confusion with the model calibration activity in
finance, we preferred to rename it by the Regression phase’.

3. PARALLEL RANDOM NUMBER GENERATION FOR SINGLE INSTRUCTION
MULTIPLE DATA ARCHITECTURE

The parallelization on the GPU of random number generation (RNG) is essential in GPU implemen-
tation of MC. As a matter of fact, the GPU programmer must reduce the CPU/GPU communication
if he aims at a good speedup. Indeed, although we can simulate random numbers on the CPU par-
allel to executing other tasks on the GPU, the communication time CPU/GPU makes this solution
less efficient. We also have the same communication time problem when using true random number
generators (TRNG), this is why we adopt the traditional solution of using pseudo random number
generators as RNGs instead of using TRNGs.

In RNG literature, we find considerable work on sequential RNGs, but much less on parallel
RNGs. The authors of [11] use the Mersenne Twister (MT) generator [12] even though this genera-
tor is relatively slow on GPUs. Indeed, as it is already mentioned in [13], because the cache memory
does not exist on the GPU¥, MT presents problems caused by the multiple accesses per generator
and thus per thread to the global RAM in order to serially update the large state needed by MT.
The two paradigms of generating random numbers that we are going to use are suited to the GPU
architecture and generally to architectures that do not possess a large cache memory. The first one
is based on period splitting, and the second one is based on parametrization, which is used in the
scalable parallel pseudo random number generators [14] library and which is also recommended by
the authors of MT in [15]. For each parallelization method, we will give an example, and we will
compare, at the end of the second subsection, these two examples to the optimized implementa-
tion of MT and the Niederreiter Quasirandom (NQ) generator given in [16]. Because our work was
implemented on GPU cards that basically compute in single precision, the two examples of ran-
dom generators that we are going to present in the next subsections are based on single precision.
However the reader can easily extend our constructions to the double precision cards.

“This work was done before the Fermi architecture that includes a cache memory.
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Our first goal is to have an efficient random number generator for GPU architecture, which
also provides sufficient good results. Thus, in the following, two methods that are proven to be
sufficiently good on CPU clusters are adapted on GPU and GPU clusters.

3.1. Parallel-random number generation from period splitting of one random number generation

The simplest theoretical solution to parallelizing RNG is to split the period of a good sequential one
into different random number streams. On the one hand, although we are going to split the whole
period, we need to have a long one to split. For example, we cannot split a period of a standard ~ 23!
linear congruential generator (LCG) because it considerably reduces the period of each stream. On
the other hand, although we use the RAM memory of the GPU, we should limit the parameters of
the RNG in order to reduce the access of each thread to this memory. To explain the method of
period splitting, we are going to take the example of an RNG whose random behavior had already
been studied in [17], that has a long period to split and relatively few parameters. This RNG is the
combined multiple recursive generator (CMRG) given in example 4 of [17], and it is obtained from
a judicious combination of two MRGs, and each MRG has the following general expression:

Xpn = a1 Xp—1 + A2Xp—2 + azxp—3mod(M)

The main goal of combining two MRGs is to reduce the memory storage of the past values without
really compromising the quality of the random numbers. To define the different streams of CMRG,
we determine the number of these streams®, then we compute the power of the companion matri-
ces associated to the recurrence of CMRG, which allows us to initialize the different streams at the
different points of the period. Also, the length of the streams should be chosen carefully so that a
vector formed by the first number from each stream, for example, should have relatively independent
coordinates. For further details, we refer the reader to [18].

Because splitting the period of CMRG implies the computation of huge! powers of 3 x 3 matrices,
the operation of launching MC on an increasing number of machines can consume a considerable
amount of time. As a result, even though computing the powers of matrices uses the efficient divide-
and-conquer algorithm [19], we should precompute the jump-ahead matrices once and for all. Thus,
the best way of implementing CMRG is as follows:

o to fix the maximum of streams associated with the maximum of multi-cores used,
e then compute the matrices of transition between streams only once before launching the
application.

For instance, let us consider the companion matrices of the CMRG given in example 4 of [17].
Each matrix is associated with one MRG from the combination:

0 1 0 0 10
A = 0 0 1 Ay = 0 0 1
—183326 63308 0 —539608 0 86098

The period of the matrix A; is p; = m} — 1 and the period of the matrix A4 is p» = m3 — 1,
which means:

p1+1 p2+1
Al A2

modm; = Aymodm, modmy = Aymodm,

For example, if we want

e to associate an RNG stream with each trajectory;
e to perform the evolution of about 2!® trajectories by each multi-core GPU; and
e to use a maximum of 16 GPUs.

$Which is for instance equal to the number of trajectories simulated or to the number of processors involved in GPUs.
IProportional to the length of the period.
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We divide the total period of the CMRG (p; x p3)/2 ~ 22%5 by 218 x 16 = 222 to obtain

InitPower = 220 /222 = 2183 and perform the powers:
Ailnit — AI]nitPowcrmOdml, Aiznit — AIznitPowcrn,lodl,n2

As shown in Figure 2, if we initialize the stream O with the seed vectors: X{ = (x},x2,x3)7T
for the first MRG and X = (x},x3,x3)" for the second MRG of the combination, the seed
values associated to the ith stream are: X| = (AP")" x X 9modm; for the first MRG and
X: = (AP x Xdmodm, for the second MRG of the combination. Finally, the algorithm of
the CMRG on a single precision architecture is detailed in full in Figure 1, page 12 of [17].

3.2. Parallel-random number generation from parameterization of random number generations

As mentioned by the authors of the Mersenne Twister RNG in [15], an acceptable way to par-
allelize RNGs is to parameterize them. Besides, if we consider the seeds of the RNGs as the
parameters of RNGs, the method based on period splitting can also be regarded as a parametriza-
tion of these RNGs. In this article, we prefer to separate the two methods and to concentrate on
the parameterizations given in [14]. One of the generators that is really efficient in implementing
on double precision GPUs is the parameterized prime modulus LCG (2°! — 1) that allows us to
specify each RNG with only one parameter, which is the multiplier a of (8). According to [14], this
parameterization provides about 2°® streams. The prime modulus LCG (26! — 1) is based on the
following relation:

Xn = axp—1mod(2%! — 1) (8)

In [20], we use a parameterized prime modulus LCG (23! — 1), which is a single precision version
of (8), and we implement it on single precision GPUs to compare two clusters of GPUs and CPUs.
Because of its short period and its random behavior, the LCG (23! — 1) should be taken as a bench-
mark and not used for standardized applications. In Table II, we compare the effectiveness of an
optimized implementation of MT and NQ given in [16] with our sufficiently optimized implementa-
tion of the CMRG detailed in the previous subsection and the parameterized LCG (PLCG) (23! —1).
The results presented in Table II are obtained by averaging on various simulations performed on the
GPU of M1.

Even if NQ is not an RNG, but a quasi-random generator, which is based on a different theory
from the RNG one, we consider it interesting to compare its effectiveness with RNGs. According
to Table II, we remark that CMRG is about 1.8 times faster than MT, and that PLCG is about five
times faster than CMRG. Nevertheless, in order to be more confident about the quality of the random
numbers, we will use the CMRG in our next applications.

(Ainit)i

Figure 2. Splitting the period of combined multiple recursive generator.

Table II. Comparison of the effectiveness of random number
generations on M1.

Name of the RNG PLCG CMRG MT NQ

Mega samples generated per second 16.33 3.30 1.86 1.21

RNG, random number generation; PLCG, parameterized linear congruential
generator; CMRG, combined multiple recursive generator; MT, Mersenne
Twister generator; NQ, Niederreiter Quasirandom generator.
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4. MULTI-PARADIGM PARALLEL ALGORITHM AND IMPLEMENTATION

4.1. Support application

In order to explore the effectiveness of pricing ECs on a cluster of GPUs, we are going to process a
typical high dimensional EC whose price depends on the whole simulation of the trajectories of the
stocks’ prices (path-dependent contracts). Here, we take the example of a homogenous Asian option
in 40 dimensions; this means that our contract is an Asian option on a homogenous weighting basket
of 40 stocks. We can find this kind of contract, for instance, when managing the CAC 40 index. In
the financial markets, we can find other contracts on high-dimensional indices such as S&P 500,
DAX 30, FTSE 100. The procedure that we are going to illustrate can be easily generalized for all
European path-dependent contracts like the look back or barrier options whose payoffs are given
in Table L.

The Asian option is a contract whose price depends on the trajectory average. We compute the
price of a floating Asian call option using:

E[e7"(Sr(e) = S1)+] ©)

S7 = meang</<7 St (¢) (10)

In expressions (9) and (10), St represents the price of a homogenous weighting basket of 40

stocks at maturity 7: St = %. Z?il S%. Each stock has the log-normal distribution given in (1).

Besides, according to (10) St represents the average price of S during the life time of the con-
tract. The third step of Algorithm 1 introduces a recursive method for computing this average price.
In Algorithm 1, the exterior time loop is used for time discretization, and in our application, we
take 8 = T'/100. Inside the time loop, we put another loop associated to the number of stocks S’
that take part in the pricing problem. The loops on trajectories are those that we parallelize on the
different stream processor units.

The third step of Algorithm 1 uses the well-known rectangle approximation of an integral. How-
ever, in order to have a faster convergence, we use in the implemented version the trapezoidal
approximation, which is presented in [21] and characterized by the same implementation ease as
the rectangular one.

In order to take advantage of various and heterogeneous architectures such as multi-core CPUs,
GPUs, CPUs cluster and GPUs cluster, we have designed a multi-paradigm parallelization of our
option pricer. First, a coarse-grained parallelization splits the problem in Py big tasks (one per pro-
cessing node), communicating by message-passing. Second, a fine grained parallelization splits each
big task into some threads on a multi-core CPU, or in many light-threads on a GPU, communicating
through a shared memory.

Input data files are read on processing node 0, and input data are broadcast to all other nodes.
Then, each node locally achieves its initializations, function of the common input data and its node
number. Some of these initializations have been parallelized at fine-grained level, and the parallel
CMRG RNG is initialized on each node according to the specifications of Section 3.

Afterwards, each node processes its subset of MC trajectories, using its fine-grained level of par-
allelism. This is an embarrassingly parallel computing step, without any communications. Then,
each node computes the sum of its computed prices and the sum of its square prices. All nodes
participate in a global reduction of these Py pairs of results: at the end of this step, the global sum
of prices and global sum of square prices are available on node 0. Finally, node 0 computes the final
price of the option and the associated error, and prints these results.

Broadcast and reduction are classic communication routines, efficiently implemented in the stan-
dard message passing interface (MPI) communication library [22] that we used. Conversely, reading
some input files concurrently from many nodes is not always supported by a file system. So, we pre-
fer to read input files from node 0 and to broadcast data to other nodes using an MPI routine. This
strategy is highly portable and scalable.
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Input: Model parameters and CMRG initialization
Output: Callasian =E (e (Sr(e) — St(€))+)

for t € {6t,26t,...,T} do
for i e {1,...40} do
for each trajectory k € {1,2,..., N} do
/* First step: generating a normal distributed
variable using CMRG and a distribution
transformation as a Box-Muller one */
u, «— CMRG,
e «— Box — Muller(uy);
end
for each trajectory k € {1,2,..., N} do
/* Second step: price actualization during the
discretized time interval [0,7] */

9 i i
i i g
Si(ex) =S, _giexp || r—d; — o kz; P | 0t + oy ; pincrV ot

end

for each trajectory k € {1,2,..., N} do

/* Third step: recursive implementation of the
trajectory average using rectangle

approximation */
Sylen) +— (¢ = 61)/1)S,_g(ex) + (1/6)Si(en) ;
end
end
end
for each trajectory k € {1,2,..., N} do

/* Fourth step: a homogeneous weighing of 40 stocks */
g 1 40 gt :
St(er) = 0° Zizl St(er);

St(er) = 35- S Sin(en);
end

Clall guson — % S (e T(Sr(zk) — Srlen))s)

k=1

Algorithm 1: 40 Dimension Floating Asian Call

4.2. Fine-grained parallelization on the central processing unit and the graphics processing unit

The implementation on multi-core CPU clusters M2 has been achieved using both MPI, to create
one process per node and to insure the few inter-node communications, and OpenMP to create sev-
eral threads per core and take advantage of each available core. The OpenMP parallelization has
been optimized to create the required threads (inside a large parallel region) only once, and to load
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balance the work among these threads. Inside each thread, data storage and data accesses are imple-
mented in order to optimize cache memory usage. GPU implementation: Again, MPI is used to
create one process per node, to distribute data and computations on the cluster and to collect results,
whereas compute unified device architecture (CUDA) is used to send data and MC trajectory com-
putations on the GPU of each node. In order to avoid frequent data transfers between CPU and
GPU, we have ported our RNG on the GPU: each CUDA thread computes random numbers and
all node computations are executed on the GPU. Moreover, we have minimized the accesses to the
global memory of the GPU, each GPU thread uses mainly fast GPU registers. This strategy leads to
a very efficient usage of the GPUs, and achieves a high speedup on GPU clusters compared with a
multicore CPU cluster.

To develop the CPU cluster version, we used g++ 4 .1.2 compiler and its native and included
OpenMP library, and the OpenMPI 1.2.4 library. To develop the GPU cluster version, we
used the nvec 1.1 CUDA compiler and the OpenMPI 1.2 .4 library. All these development
environments appeared compatible.

Our GPU version is composed of .h and . cu files, compiled with the following commands:

nvcc --host-compilation C++
-03 -I/opt/openmpi/include
-DOMPI_SKIP_MPICXX -c X.cu

nvcc -03 -L/opt/openmpi/lib
-o pricer X.o Y.o .... -lmpi -1m

On our machines, the OpenMPI library is installed in the /opt/openmpi/ directory. The
-DOMPI_SKIP MPICXX flag allows us to avoid the exception mechanisms implemented in the
OpenMPI library (according to the MPI 2 standard), which are not supported by the nvecc' com-
piler. The -host-compilation C++ flag helps nvcce to understand the C++ code of the non-
kernel routines.

5. CLUSTER COMPARISON FOR PRICING EUROPEAN CONTRACTS

The following subsections introduce results of three benchmark programs, implementing Algorithm
1 and computing ~ 0.25, ~ 0.5 and ~ 1 million MC trajectories (corresponding to different pricing
accuracies).

5.1. The accuracy of the result

Table III represents the results of the same simulation using an increasing number of trajecto-
ries. Each one of these simulations is either done on a CPU cluster or a GPU cluster. ‘Value’
is the price of our Asian option and € measures the accuracy of the results using 95% CI. €
is related to the standard deviation ‘std’ of the simulation with the following relation: € =
1.96 x std/+/Numberoftrajectories. We notice very slight differences between CPU and GPU
simulations. The differences between GPU and CPU results are included in the 95% CI. Although
we repeated the experiments with different parameters, we obtain the same similarity between GPU
pricing and CPU pricing. This fact demonstrates that the single precision on GPUs does not affect
the results of our simulations.

The parameters of the simulations are the following: Maturity 7 = 1, the time discretization
5t = 0.01, Sé = 100, r; = r = 0.01, d; = 0, 0; = 0.2 and the 40 x 40 correlating matrix
(pik)1<ik<ao is equal to the square root of a matrix (in the sense of Cholesky factorization) that is
filled by 0.5 except on its diagonal which contains ones.

"Next versions of nvce are more compatible with OpenMPI.
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Table III. Pricing results: central processing unit versus graphics
processing unit.

Number of CPU pricing GPU pricing
trajectories Value € Value €
218 5.8614 0.0258 5.8616 0.0257
219 5.8835 0.0183 5.8836 0.0183
220 5.8761 0.0129 5.8763 0.0129

CPU, central processing unit; GPU, graphics processing unit.

5.2. Computing efficiency

Effectiveness and speedup scaling:
Figure 3 shows that the execution times of the three benchmarks on each testbed decrease very
regularly: using 10 times more nodes divides the execution time by ~ 10. This result is due to the
embarrassingly parallel feature of our algorithm, (communications are limited to input data broad-
cast and result reduction). So, Figure 3 shows our parallelization scales and efficiently uses the
CPUs and GPUs of the cluster M2.

We process our largest benchmark (one million MC trajectories) in 213.8 s on 16 multi-core
CPUs, whereas it requires 61.3 s on one GPU and 4.9 s on 16 GPUs. Figure 3 shows N GPUs run
about 45 times faster than N CPUs, so the speedup of our GPUs compared with our multi-core
CPUs is close to 50. This speedup becomes close to 200 if we use only one CPU core, but using
only one core of a CPU has no real sense. Also, according to Figure 3, when running the smallest
benchmark of of 0.25 million trajectories on 16 GPUs, the computation time is 1.9 s, where it takes
53.0 s to run this simulation using 16 CPUs. The speedup on 16 GPUs of the 0.25 trajectories bench-
mark is small when compared with the one million trajectories benchmark, so the initialization time
becomes significant and limits the global processing performance.

5.3. Energy efficiency

We only consider the energy consumption of the nodes that are actually used during the computa-
tion, as it is easy to remotely switch off unused nodes of our GPU cluster. However, it is not possible
to switch off the GPU of one node when using only its CPU, and we have not yet tried to reduce the
frequency and the energy consumption of the CPU when using mainly the GPU. Besides, we have
not included the air conditioning energy consumption because the energy consumed depends on the
type of air conditioning facility.
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CPU-OM25 - - K- -

= GPU-IM00 -+
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£ X GPU-OM25 - -© —-
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Figure 3. The execution time of pricing European options.
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Effectiveness of computing energy:

The cluster switch consumption of M2 remains constantly independent of the number of nodes
used. Figure 4 shows that the GPU computations of M2 consume on average 0.0046 kW.h to run our
largest benchmark on 1 to 16 nodes, whereas the CPU computations consume on average 0.228 kW.h
to run the same option pricing on 1 to 16 nodes.

Complete balance sheet:

Finally, using 16 GPU nodes, we run our largest benchmark in 4.9 s consuming 0.004 kW.h, in
place of 213.8 s and 0.211 kW.h on 16 CPUs of the same M2 cluster. It means we can perform our
computation 43 times faster and consume 53 times less energy on our GPU cluster than on our CPU
cluster. If we roughly consider the product of the speedup per the energy efficiency improvement,
our GPU solution is globally 43 x 53 ~ 2279 times better than our CPU solution. As far as the
smallest benchmark is concerned, we obtain a GPU solution, which computes 27 times faster and
consumes 53 times less energy.

6. THE PARALLEL IMPLEMENTATION OF LONGSTAFF AND SCHWARTZ ON
GRAPHICS PROCESSING UNIT

Although a lot of work has been done in variance reduction techniques, here, we prefer the imple-
mentation of a basic LSR, which will help a better understanding of the CPU/GPU comparison.
In more standard applications, one can also implement the importance sampling method [23] or a
European price as a control variable to accelerate the convergence. First of all, we detail the different
steps of LSR in Algorithm 2. Afterwards, we are going to present the GPU version of Algorithm 2
in Algorithm 3. In Algorithms 2 and 3, we use the parameter / as a path index and i as a dimension
index; we also denote n as the number of simulated paths, m as the total dimension and 8¢ the time
discretization. In addition, we use the set I'; = {E(St(l)) < @(S,(l))} that tests the continuation for
each trajectory / using the indicator application 1.

6.1. Parallel path generation on graphics processing unit

This part of the algorithm depends on whether the random number generator can be parallelized
or not. But, as presented in Section 3.1, we use the CMRG that is parallelized by period splitting.
Consequently, the PG phase is an embarrassingly parallel part of the simulation, and we generate
independently the random numbers for each path, then we use the Brownian bridge technique [1] to
generate the Brownian motions and the asset prices at each time step according to (1).

1E3 T T
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_%,%HH CPU-OM50 ——X--
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':. _,Tx—,:r === —
2L %;;: X GPU-IMOO -
s K GPU-oMS0 —- -
g : GPU-OM25 —-© -
2 IEl = """"" -
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Number of nodes
Figure 4. Energetic consumption.
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Input: Model parameters and CMRG initialization.
Output: Py (S))
for t € {T,...,20t,0t} do
/* Computations performed during the PG phase */
foriec {1,...m} do
for [ € {1,...n} do
e Draw W/ 0 using CMRG and the Brownian bridge induction
e Use (1) to update the asset price Si0
end
end
if (t<T) andle {®(S") >0} then
/* Computations performed during the REG phase */
e Approach the expectations: (12) and (13)
o A=VE (Pysi(Sisar)t(Sr))

/* Computations performed during the PRC phase x/
for [ € {1,...n} do

o C(s) = Atu(s?)

e Compute the payoff @(St(l))

o P(S") =1r,®(S\") + 1rse " Prysn(Ss,)

end
if (¢t = dt) then
/* Py(Sp) is the price of the option */
Fo(So) = max (©(S5), <5 X1 PalSE))
end
end
else
/* Computations performed during the PRC phase */

forl € {1,...n} do
‘ Pt(St(l)) = 1t:T(I)(S¥)) + 1¢(St<1))§06_r6tpt+5t(St(fgét)
end
/* We have, of course, Vi€ {l,...n} PTH;t(SéQr&) =0 x/
end

end
Algorithm 2: LSR algorithm for an American put option

6.2. The regression phase on graphics processing unit + central processing unit

As mentioned previously, the convergence study given in [8] shows that the number of trajectories
needed to approximate the expectation (13) is more than exponentially proportional to the degree
of regression. Thus, for the REG phase we use monomials of degrees less than or equal to two for
one dimension, and we will use affine regression in the multidimensional simulation. We do not
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use monomials of degrees up to 2 in the multidimensional simulation because it does not improve
significantly the numerical results either.

Besides, the inversion of matrices cannot be done in parallel. Subsequently we need to transfer
all the following values for each path /, from GPU to CPU:

Pior (S0 ) v (S5) and v () v (s) (an

where / is the path index.
When the values of (11) are in the CPU memory, we approach expectations (12) and (13) with an
arithmetic average, then we perform the singular value decomposition) method according to [9].

1 n
E (Pyyy (Sna W (Si0) ~ = 3 Py (S, ) v (S80) (12)
=1
E (W Sv 50) ~ - v (59) v (s2) (13)
=1

with n representing the number of paths.
In this simulation phase, the GPU plays a role in the computation of the different products. For

example in the case of three assets (St(]f)) = (1, S,t(l), Stzk’(l), S,i’(l)), one has to compute on

GPU the following products associated to each path /:
2 2 2
1,(/ 2,1 3,( 1.(0) o2.( 1.(0) o3.( 2,(1) o3.(
(Szk( )) , (Szk( )) ’ (Stk( )) ’Szk( )Szk( ), Stk( )Stk( )’ Stk( )Stk( )

) L) @ 2,(D) @) 3.(D)
(P’k+1 (Stk+1> Stk ’ P’k+1 (Stk+1) Stk > Ptk+1 (Stk+1) Stk ’)

As will be demonstrated in Section 7.1, performing these computations on the GPU compensates
for the loss caused by the data transfer between GPU and CPU.

(14)

6.3. The parallel pricing on graphics processing unit

Once we compute the regression vector A, the backward induction (4) can be done independently
for each path of the simulation. At the final step time, we transfer the different price values from
GPU to CPU and estimate the expectation using the arithmetic average of all prices.

7. PRICING AMERICAN CONTRACTS USING GRAPHICS PROCESSING UNITS

In this work, we were not able to directly compare our results with those presented in [10] as the
authors do not give precise enough information on the digital procedure. Note that we also study
here the running time of a multidimensional case, which is more representative of real American
option challenges. The results presented in this section are evaluated by computing an average value
of the different simulation times

We divide this section in three parts. The first part includes the comparison between our GPU
implementation on M/ using the NVIDIA Cg Toolkit and the QuantLib open-source library [24]
implementation on the same machine as the Longstaff and Schwartz algorithm. The second part
studies the dependance of the running time on M/ of a multidimensional American option accord-
ing to the number of paths simulated and the dimension of the contract. Using the results of the
previous subsections, in the last subsection, we discuss a possible parallelization of pricing ACs on
a cluster and which introduces one prospective work related to this article.

7.1. The running time comparison between graphics processing unit and central processing unit

The QuantLib open-source library is a highly object-oriented library. In order to make a fair com-
parison between the GPU and the CPU, we need to avoid overheads, which are unrelated to
our algorithm. Thus, we only concentrate on the execution time of the main three phases of the
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Table IV. Running time (s): central processing unit versus graphics processing unit.

. . 50 time steps 100 time steps 300 time steps
Simulation
phases CPU GPU CPU GPU CPU GPU
PG 0.671 0.047 1.278 0.079 4.386 0.162
PRC 0.484 0.064 1.315 0.116 8.864 0.359
REG 0.266 0.222 0.557 0.447 1.919 1.324

CPU, central processing unit; GPU, graphics processing unit; PG, paths generation phase;
PRC, pricing phase ; REG, regression phase.

simulation. Moreover, we only consider the original one-core implementation of QuantLib imple-
mentation, and we do not parallelize the simulation on the two cores of M. In Table IV, we compare
the execution time between our GPU implementation and the QuantLib one-core CPU implementa-
tion of ACs for an increasing number of time steps. We perform the simulation of one-dimensional
American put on 2'% = 16,384 trajectories. According to Table IV, the REG phase is faster on
the GPU than it is on the CPU. The two other phases are significantly improved when using the
GPU, which reduces the total time of the simulation. It is also noticeable that when we increase the
number of time steps, we make the simulation more complex, and this provides a higher speedup.

Input: The same as in Algorithm 2
Output: P (S))
GPU initialization.
for t € {T,...,20t,0t} do
/* Computations performed during the PG phase */
Distribute the n trajectories on stream processors + Perform the
same operations as Algorithm 2.
if (t<T) andle {®(S")> 0} then
/* Computations performed during the REG phase */
e Perform the products (14) on GPU.
e Transfer (11) from GPU to CPU.

e Same operations as Algorithm 2.

/* Computations performed during the PRC phase */
Distribute + Perform the same operations as Algorithm 2.
if (¢t = dt) then

e Transfer from GPU to CPU: (Pgt(Séi)))l

e Compute the price of the option Py(Sp) as in Algorithm 2.

end
nd
else
/* Computations performed during the PRC phase */

Distribute + Perform the same operations as Algorithm 2.
end

@

end
Algorithm 3: GPU version of LSR algorithm for an American put option
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Table V. Increasing dimensions and trajectories on graphics processing unit
(time in seconds)

Simulation 1 asset 21%) 4 assets (21%) 4 assets (210) 4 assets (218)

Total 1.092 1.591 2.605 7,360
PG 0.047 0.146 0.159 0.171
PRC 0.064 0.114 0.303 1.090
REG 0.222 0.588 1.400 5.387

PG, paths generation phase; PRC, pricing phase ; REG, regression phase.

7.2. Multidimensional American option

In this part, we compare the running times of one-dimensional American put (2!4 = 16, 384 trajec-
tories and 50 time steps) with the running times of four assets American put (using 50 time steps)
that has the following payoff ®(S7):

4
O(S7) = (K—H(S%)”“) (15)
+

i=1

We study this multidimensional payoff because it is easier to check the prices coherence. Indeed,
the American put on a geometric average of stocks can be approximated very well when using
the one-dimensional equivalence and a tree method. Besides, unlike [25], to reduce the complexity
of the REG phase, we restrict ourselves to the constant and linear monomials regression for the
multidimensional benchmark.

In Table V, the first line provides the total running time that includes initialization and CPU/GPU
data transfer™. The three columns on the right show the running times of the four assets American
put associated to an increasing number of trajectories: 2!4, 216, 218,

According to Table V, the running time of the PG phase increases linearly with the number of
assets and is slightly modified when we increase the number of trajectories. Conversely, the PRC
phase is rather sensitive to the number of trajectories. Like the PRC phase, the running time of REG
is approximately linear with the number of trajectories, and this is also the case when we increase
the dimensionality of the problem'". Finally, even if pricing multidimensional ECs on GPUs allows
better overall speedup, we obtain very short running times for a multi-asset American option pricing
using a large number of trajectories.

When comparing the phases in Table V, we see that the total running time on GPU is ~ 70%
dominated by the running time of the REG phase. We will see, in the next subsection, a method that
can reduce the execution time of the REG phase using a cluster of machines.

7.3. About pricing American contracts on graphics processing unit cluster

Pricing multidimensional ACs remains one of the most challenging problems in financial applica-
tions. The popularity of methods based on MC that use regression is due to the fact that they provide,
in a sufficiently short time, relatively good solutions to dimensions included between one and three
or one and five (It depends on the variance and the regression basis). Knowing the strengths and
the weaknesses of these methods, we only tried to take advantage of the parallel architecture of
the GPU to reduce the execution time of the Longstaff and Schwartz algorithm. As a result of the
previous subsections, we show that we can efficiently execute on GPUs the phases PRC and PG.
In this subsection we present how to reduce the execution time of the REG phase using a cluster
of machines.

“The initialization and the data transfer takes at most 0.8 s.
""Because in the one-dimensional benchmark, we use (1,5, S?) as a regression basis, and we use (1, Sy, S>, S3, S4)
for the four-dimensional benchmark.
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Figure 5. The histogram of simulated prices according to the number of trajectories.

In Figure 5, we sketch the histogram of 200 simulated prices of the four dimensional American
put whose payoff is given by (15). The parameters of the simulations are the following: Maturity
T = 1, time discretization 8z = 0.02, Sé =100, r; = r = 0.0953, d; = 0, 0; = 0.2 and the
4 x 4 correlating matrix (p;x)1<i k<4 is equal to the identity matrix. As said above, we choose this
multidimensional benchmark because we can have a good approximation of the price of the option
using the one-dimensional equivalence and the tree method. In Figure 5, we give the real value™ of
this option and the prices resulting from the MC simulation of 2'© and 2!* trajectories.

According to Figure 5, the two histograms are centered approximately around the same value,
which is different from the real value of the option. This difference is due to regression errors, and
even if we use more trajectories (2!# instead of 2!?), the average of simulated values remains rel-
atively unchanged. Nevertheless, when we increase the number of the simulated trajectories, we
shrink the distribution of simulated prices and thus we reduce the difference between the real value
and the simulated value. We refer the reader to [3] for a CLT result of ACs.

Consequently, we can parallelize the AC pricing on a cluster of 16 machines using 2!° trajectories
for each machine then averaging instead of simulating 2!# trajectories on only one machine. The
former solution will improve the running time of the PG and the PRC phases. Also, according to the
results of subsection 7.2, the decrease in the number of trajectories simulated per machine reduces
almost linearly the execution time of the REG phase. The overall solution obtained would be more
effective on a cluster of machines than it is on only one machine.

In the previous analysis, in order to parallelize our implementation on a cluster of machines, we
use the fact that the reduction of the number of simulated trajectories does not affect the errors
implied by the regression phase. However, there are limits to this result, indeed [8] recommends to
have a number of polynomials K = Kx ~ O(4/log(N)) where N is the number of paths. Thus, for
a fixed number of polynomials this determines approximately the minimum number of the simulated
paths needed for a good regression.

8. CONCLUSION AND FUTURE WORK

The main results of this research work are the following:

e We have analyzed two different methods of parallelizing RNGs for parallel and distributed
architectures. The results of this study are two examples of RNGs, which are most suited to the
GPU architecture.

#]t is the value approximated using the tree method.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
DOI: 10.1002/cpe



L. A. ABBAS-TURKI ET AL.

e When running MC simulations, the accuracy of the results obtained with a cluster of GPUs
using single precision is similar to the one obtained with a cluster of CPUs using double
precision.

e Mixed coarse and fine grain parallelization of MC simulations for pricing ECs, using MPI and
OpenMP on multi-core CPU cluster, or MPI and CUDA on GPU cluster, is an efficient strategy
and scales.

e Execution time and energy consumption of MC simulations can be both efficiently reduced
when using GPU clusters in place of pure CPU clusters.

e In the case of American options that depend on one asset, we compare our GPU implementa-
tion with the one given in QuantLib library. Even if the speedup is small compared with pricing
ECs, we observe a 2—10 improvement of the execution time and the speedup increases with the
complexity of the problem.

e We look into the multi-asset American option and how the execution time can change with the
dimension and the number of trajectories. As a result, when using GPUs, the execution time
is almost only dominated by the REG phase because it is the only phase that cannot be paral-
lelized on the GPU. Consequently, we give a method that aims at reducing the running time of
the REG phase and which is based on a cluster implementation.

Algorithms introduced in this paper remain adapted to the new multi-core CPUs and the new
generation of graphic cards, which computes in double precision.

Similar to the European contracts, we are going to extend the ACs pricing on a CPU/GPU cluster
using the method presented in the Section 7.3. Subsequently, we will compare the speedup and the
energy efficiency of the parallelization on GPUs and CPUs using the coarse-grained and fine-grained
paradigms.

Besides, in order to improve the parallelization of the American options pricing, we are studying
now the Malliavin Calculus-based algorithms [6] which completely avoid matrix regressions and
allow an efficient computation of the hedge.
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