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Abstract. General-Purpose computing on Graphics Processing Units
(GPGPU) is an emerging field of research which allows software devel-
opers to utilize the significant amount of computing resources GPUs
provide for a wider range of applications. While traditional high perfor-
mance computing environments such as clusters, grids and supercomput-
ers require significant architectural modifications to incorporate GPUs,
volunteer computing grids already have these resources available as most
personal computers have GPUs available for recreational use. Addition-
ally, volunteer computing grids are gradually upgraded by the volunteers
as they upgrade their hardware, whereas clusters, grids and supercom-
puters are typically upgraded only when replaced by newer hardware.
As such, MilkyWay@Home’s volunteer computing system is an excellent
testbed for measuring the potential of large scale distributed GPGPU
computing across a large number of heterogeneous GPUs. This work
discusses the implementation and optimization of the MilkyWay@Home
client application for both Nvidia and ATI GPUs. A 17 times speedup
was achieved for double-precision calculations on a Nvidia GeForce GTX
285 card, and a 109 times speedup for double-precision calculations on
an ATI HD5870 card, compared to the CPU version running on one
core of a 3.0 GHz AMD Phenom(tm)II X4 940. Using single-precision
calculations was also evaluated which further increased performance 6.2
times for ATI card, and 7.8 times on the Nvidia card but with some loss
of accuracy. Modifications to the BOINC infrastructure which enable
GPU discovery and utilization are also discussed. The resulting software
enabled MilkyWay@Home to use GPU applications for a significant in-
crease in computing power, at the time of this publication approximately
216 teraflops, which would place the combined power of these GPUs be-
tween the 11th and 12th fastest supercomputers in the world5.

5 http://www.top500.org/list/2009/06/100
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1 Introduction

General-Purpose computing on Graphics Processing Units (GPGPU) is an
emerging field of research which allows software developers to utilize the sig-
nificant amount of computing resources GPUs provide for wide range of applica-
tions. While traditional high performance computing environments such as clus-
ter, grids and supercomputers require significant architectural modifications to
incorporate GPUs, volunteer computing grids already have these resources avail-
able as most personal computers have GPUs available for more recreational use.
Additionally, volunteer computing grids are gradually upgraded by the volun-
teers as they upgrade their hardware, whereas clusters, grids and supercomputers
are typically just replaced by newer hardware. As such, MilkyWay@Home’s vol-
unteer computing system is an excellent testbed for testing and measuring the
potential of large scale distributed GPGPU computing across a large number of
heterogeneous GPUs.

There are two main challenges in effectively utilizing GPUs in a volunteer
computing setting. The first is developing efficient applications that appropri-
ately utilize the GPU hardware. Additionally, the MilkWay@Home application
requires a high degree of floating point accuracy to compute correct results.
Only recent generations of GPUs provide the required double precision sup-
port, but with varying degrees of adherence to floating point standards. Second,
MilkyWay@Home uses the Berkeley Open Infrastructure for Network Computing
(BOINC), which provides an easily extensible framework for developing volun-
teer computing projects [1]. However, new support needed to be added to track
not only what GPUs are available on volunteered hosts, but also what driver
versions they are using so appropriately compiled applications can be sent to
those clients.

This paper discusses the implementation and optimization of the Milky-
Way@Home client application for both Nvidia and ATI GPUs. A 17 times
speedup was achieved for double precision calculations on a Nvidia GeForce GTX
285 card, and a 109 times speedup for double precision calculations on an ATI
HD5870 card, compared to the CPU version running on one core of a 3.0GHz
AMD Phenom(tm)II X4 940. Performing single precision calculations was also
evaluated, and the methods presented improved accuracy from 5 to 8 significant
digits for the final results. This compares to 16 significant digits with double
precision, but on the same hardware, using single precision further increased
performance 6.2 times for ATI, and 7.8 times for the Nvidia card. Utilizing these
GPU applications on MilkyWay@Home has provided an immense amount of
computing power, at the time of this publication approximately 216 teraflops.

The paper is organized as follows. Related volunteer computing projects and
their progress in using GPGPU is discussed in Section 2. ATI and CUDA op-
timizations, along with strategies for improving their accuracy are presented in
Section 3. Section 4 describes how BOINC has been extended to support GPU
applications and how to use these exensions. The paper concludes with conclu-
sions and future work in 5.



2 Related Work

Recently there has been an increase in the amount of volunteer comput-
ing projects porting their applications for use on GPUs. Some of these
projects include Folding@Home [2], GPUGRID [3], Einstein@Home [4], and
Aqua@Home [5]. The GPUs are chosen because of their availability and large
increase in computational power over conventional CPUs [6]. However, the in-
crease in computational power is not guaranteed. For example, Aqua@Home’s
GPU application implemented on Nvidia hardware does not perform as well as
the CPU version [7]. Also, in order to reach peak performance levels it is nec-
essary to design the algorithms to access data in specialized ways and limit the
usage of branch type instructions [8].

Folding@home pioneered the use of GPUs in a distributed computing project
to accelerate the speed of their calculations. The application was first pro-
grammed for ATI hardware using the Microsoft DirectX 9.0c API and the Pixel
Shader 3.0 specification [6]. The Folding@Home GPU client was over 25 times
faster than an optimized CPU version, with outdated hardware in today’s stan-
dards. To achieve these performance levels they made use of the large amount
of parallel execution units present on the GPU through the use of several opti-
mizations [6]. To get a better idea of the impact the GPUs had on performance
they stated that in 2006 there were 150,000 Windows computers performing
145TFlops of work, while there were 550 GPUs producing 34TFlops of work.
Based on their numbers that leads to one GPU producing around 56 times more
TFlops per 1 TFlop generated on a CPU.

Since then ATI and Nvidia started to offer tools for programming GPUs with-
out being restricted by a graphics API. Both now use a subset of the C language
augmented with extensions designed to ease the handling of data parallel tasks.
Nvidia calls this programming environment CUDA (Compute Unified Device Ar-
chitecture) [9], while ATI’s version is named Brook+ [10]. This had a significant
impact on both the adoption rate as well as the performance of Folding@home
on GPUs. In 2009 they reported only a moderate increase of the performance
delivered by 280,000 Windows computers to approximately 275TFlops. But now
27,000 GPUs from ATI as well as Nvidia provide more than 3PFlops of com-
puting power [11], almost a hundred-fold increase compared to only 2.5 years
before.

Like Folding@Home, GPUGRID recently started to utilize GPUs for per-
forming molecular dynamics calculations [8, 12]. Both projects experienced sig-
nificant speed ups by performing the calculation on the GPU, in particular Fold-
ing@Home stated between 100x and 700x performance increase comparing a
Nvidia GTX 280 to a CPU with single-precision calculations.

3 Optimizing Milkyway@Home for GPUs

The MilkyWay@Home application attempts to discover various structures exist-
ing in the Milky Way galaxy and their spatial distribution [13]. This requires a



probabilistic algorithm for locating geometric objects in spatial databases [14].
The data being analyzed is from the Sloan Digital Sky Survey [15], which has
recently released 15.7 terabytes of images (fits), 26.8 terabytes of data products
in fit formats, 18 terabytes of catalogs in the SQL database and 3.3 terabytes of
spectra (fits). The observed density of stars is drawn from a mixture distribution
parameterized by the fraction of local sub-structure stars in the data compared
to a smooth global background population, the parameters that specify the po-
sition and distribution of the sub-structure, and the parameters of the smooth
background. Specifically this is a probability density function (PDF ) that cal-
culates the chance of obtaining the observed star distribution after repeated
independent sampling from the total set of stars:

L(Q) =
N∏

i=1

PDF (li, bi, gi|Q) (1)

where i denotes the ith of N stars (l and b are galactic coordinates and g is the
magnitude), and Q represents the parameters in the model. Such probabilistic
framework gives a natural sampling algorithm for separating sub-structure from
background [13].

By identifying and quantifying the stellar substructure and the smooth por-
tion of the Milky Way’s spheroid, it will be possible to test models for the
formation of our galaxy, and by example the process of galaxy formation in gen-
eral. In particular, we would like to know how many merger events contributed
to the build up of the spheroid, what the sizes of the merged galaxies were,
and at what time in the history of the Milky Way the merger events occurred.
Models for tidal disruption of merger events that build up the spheroid of the
Milky Way can be matched with individual, quantified spatial substructures to
constrain the Galaxy’s gravitational potential. Since the gravitational potential
is dominated by dark matter, this technique will also teach us about the spatial
distribution of dark matter in the Milky Way.

This section continues by first describing how precision for single-precision
GPU calculation could be improved in Section 3.1 and then with specific opti-
mizations used to greatly improve the performance of the GPU applications in
Section 3.2.

3.1 Conserving Precision on Different Platforms

A general concern using heterogeneous systems for computation is to ensure
the consistency of the results. This is even more important when completely
different architectures like GPUs from different vendors as well as CPUs are
utilized. While most floating point operations on current GPUs closely follow
the precision requirements of the the IEEE 754 standard [16] there are some
notable exceptions. Furthermore because of the parallel nature of the execution
on GPUs it is necessary to pay attention to the order in which the individual
work items are calculated. Generally, no specific order is guaranteed without
serializing. In our case we can easily work around this issue as the results of



the individual work items of the time consuming parts of the calculation are
basically just added up. The commonly employed solution is the well known
Kahan method [17], which reduces the rounding errors and effectively guards
the result against different summation orders.

We have done extensive testing to determine the reliability and reproducibil-
ity of the results between different architectures using single-precision as well
as double-precision. Using single-precision on GPUs appears especially tempt-
ing because of the wider range of supported products and the vastly higher
performance. While the peak performance difference between single-precision
and double-precision on most CPUs is virtually nonexistent for legacy code and
reaches only a factor of two when using Single Instruction Multiple Data (SIMD)
extensions, it ranges from a factor of five (ATI) to a factor of eight (Nvidia) for
GPUs. Furthermore GPUs support only basic double-precision operations in
hardware, divisions or square roots for instance are computed iteratively with
sequences of instructions. It was not until the latest GPU generations of both
manufacturers that support for the instruction to perform double-precision fused
multiply-add was included. With this instruction it is possible to obtain correctly
rounded results for the already mentioned division and square root operations.
Generally one has to evaluate the stability of the algorithm against small devi-
ations in the handling of certain operations on different platforms. In our case
the non-adherence to the IEEE standard for division and square root operations
does not affect the final results. On the contrary, it enabled the use of low level
optimizations which are described in the following section.

Table 1 shows the obtained precision and performance of the different im-
plementations of our algorithm. The CPU and GPU implementations using
double-precision operations all deliver the exact same results for typical param-
eter ranges. The single-precision variants give a sizable speedup while sacrificing
some accuracy. But this loss can be minimized by taking care of the rounding
errors occurring when combining the results of the individual work items. The
resulting precision is in the expected range and actually slightly better than the
resolution of the single-precision format (2−24 ≈ 6 ·10−8). The reason is that the
Kahan summation method effectively increases the precision of the stored in-
termediate values and the deviations between single and double-precision partly
average out. Furthermore this allows to use CPU as well as GPUs for the same
work units as all platforms calculate to the same precision.

3.2 Performance Optimizations

The time consuming part of our algorithm is the evaluation of the PDF for a
three-dimensional wedge of the sky. The convolution with the probability dis-
tribution of the distance of a star for a given observed magnitude makes this
effectively a four dimensional problem, which can be conveniently mapped to
parallel architectures like GPUs. To use the hardware as efficiently as possibly
we employed a range of optimizations. Changes on the algorithmic level were
applied to all platforms, i.e. CPU as well as GPU applications use the same



Platform precision measured speedup theoretical peak

3.0GHz CPU core, DP, SSE3 0 1 1 (12GFlop/s)

Nvidia GTX285, DP opt. < 1 · 10−16 17 7.4 (89GFlop/s)

ATI HD4870, DP < 1 · 10−16 34 20 (240 GFlop/s)

ATI HD4870, DP opt. < 1 · 10−16 48 20 (240 GFlop/s)

ATI HD5870, DP opt. < 1 · 10−16 109 45 (544 GFlop/s)

NV GTX285, SP, näıve sum ∼ 2 · 10−6 130 89 (1063 GFlop/s)

Nvidia GTX285, SP ∼ 1 · 10−8 130 89 (1063 GFlop/s)

ATI HD4870, SP ∼ 1 · 10−8 299 100 (1200 GFlop/s)

Table 1. Comparison of the performance and precision of different platforms, SP and
DP indicate single-precision and double-precision calculations respectively. The low
level optimizations used in some DP versions are described in the text. The speedup
is given relative to the double-precision CPU implementation running on a single core
of a 3.0 GHz AMD PhenomII X4 940 using already vectorized code. The entry in the
precision column quantifies the typical relative deviation to the results of the CPU
implementation.

algorithm to calculate the results. Here we concentrate on the specific optimiza-
tions done for GPUs. As the architectures of ATI as well as Nvidia GPUs share
common design principles, most of the optimizations apply to both platforms.
Because of the distinct features of the programming environments of both ven-
dors often the same optimization has to be implemented in a different way.
Figure 1 depicts the various optimizations that were done along with their effect
on the performance for the case of the CUDA implementation.

The first set of optimizations aims at the efficient use of the memory con-
troller and the caches. As recurring expensive expressions are precalculated and
stored in lookup tables, the access to these data structures can be accelerated by
the use of the texture caches in GPUs increasing the available bandwidth as well
as reducing the latency in comparison to accesses to the global memory. This is
particularly easy for ATI GPUs as all data structures are allocated as textures
by default in Brook+. The hardware tiles and interleaves the data in a transpar-
ent way to make use of the spatial locality by coalescing memory accesses and
improving the cache hit rate.

For Nvidia GPUs the coalescence of memory accesses requires some manual
intervention. The data inside the different data structures has to be reordered to
be accessed consecutively by the global thread id. Initially the implementation
made use of the GPU’s constant memory instead of textures in order to store
the precalculated values associated with the algorithm. While constant memory
is really stored in the GPU’s global memory space it is cached by a dedicated
constant cache after the first access [9]. Nevertheless the use of texture memory
offers some advantages exploiting the spatial locality in texture references [9].
The first reason is that the textures accesses are cached by a two level cache
system which simply offers more space and therefore higher hit rates. The other



reason is the organization in cache lines, i.e. when one value is read from the
memory, the successive values which are most likely needed by a neighboring
thread or the next iteration in the same thread are also fetched into the cache.
This lowers the average latency for the accesses.

For our algorithm the ratio of calculations to the number of memory accesses
is high. Depending on the problem one has between 5 and 12 floating point
operations per byte fetched from the lookup tables. The calculations can be
arranged to take advantage of spatial locality within the caches even when the
full lookup tables are larger than the first level caches on CPUs or the texture
caches on GPUs. Therefore memory fetches are certainly not a serious bottleneck
by themselves. Nevertheless one has a limited number of threads available to hide
the access latencies. Therefore it is necessary to look into both, improving the
efficiency of memory accesses and minimizing the latency as well as maximizing
the number of threads present on the GPU to attain a high occupancy of the
execution units. The latter usually requires the reduction of the used hardware
registers, as all threads on a SIMD engine in a GPU share the same register file.
In the case of the CUDA version, the amount of shared memory usage had to be
reduced. This reduction is possible by changing the number of active threads per
block, this had a negligible effect on performance. The baseline CUDA version
minimized the register usage, but as our algorithm is clearly compute bound no
excessive amount of threads is necessary to hide the latencies. Furthermore newer
GPUs raised the amount of available registers and lessened the importance of this
optimization strategy. It was therefore beneficial to employ the same strategy as
for CPUs and ATI GPUs and combine calculations wherever possible in order
to minimize the necessary operations. This results in using more registers but
allowed for a slight performance increase and is labeled as Combine Terms in
Figure 1.

As the division and square root are particularly costly on GPUs in double-
precision, we looked for possible shortcuts compared to the compiler gener-
ated instruction sequences for these operations. Generally the Newton iteration
method is used for both. After the exponent extraction which reduces the ar-
gument range the single-precision reciprocal or square root instruction is used
to get the first estimate. In our case we have some prior knowledge about the
range of values we operate with. As we need only the longer mantissa but not the
extended exponent range of the double-precision format one can simply spare
the exponent extraction. To get correctly rounded results, one needs one final
iteration step using a fused multiply add operation [18]. Without this step the
last bit of the mantissa may deviate. But as this step doesn’t make a difference
on GPUs not supporting a fused multiply add instruction without intermediate
rounding and it is not the limiting factor in our calculations, we omitted it as
well. Together this reduced the amount of instructions in the innermost loops
by up to 20 percent. While one cannot guarantee that the results after these
changes exactly match the original versions in all cases, we found no deviations
in our tests (see Table 1). A plot of how the changes affected the performance
of the Nvidia implementation can be seen in Figure 1, labeled as Sqrt and Div.



140

145

150

155

160

165

Baseline

C
om

bine
Term

s

Textures

Sqrt
D
iv

T
im

e
 [

s
]

CUDA Optimizations

Fig. 1. Optimizations for the double-precision CUDA version and the effect on the
calculation time for one evaluation on a Nvidia GTX285 GPU. See the text for a
description of the changes.

We also explored the feasibility of some further low level optimizations for
ATI. As the execution units of current ATI GPUs are organized in groups which
are fed with bundles of independent instructions (resembling VLIW architec-
tures), it is sometimes difficult for the compiler to maximize the utilization of
the units. The Brook+ compiler generates code in a pseudo assembly intermedi-

ate language (IL), which is just-in-time compiled and optimized for the specific
GPU in the system at runtime [10]. The IL code is easily accessible. The inner-
most loop of the time consuming kernels was tuned for an optimal instruction
pairing to increase the utilization resulting in an additional 20 percent speedup
compared to the Brook+ generated IL.

As a result we have implemented the algorithm with a comparable level of
optimization on different platforms. The general strategies are very similar. Only
the VLIW-like organization of the execution units of ATI GPUs requires some
additional attention to obtain optimal performance. This is even more important
for single-precision applications. In our case it was straightforward to combine
four threads into a single one by using the appropriate vector data types. On
the other hand the memory layout and handling required more effort for Nvidia
GPUs.

Generally, the performance of the different implementations roughly follow
the theoretical peak performances of the corresponding platforms. As our al-
gorithm is significantly compute-bound it scales very well on massively parallel
architectures. In fact, even when neglecting the low level optimized version the
resource utilization on GPUs is better than on CPUs. This can be explained
by the latency hiding features of GPUs which are designed to mask the execu-
tion latencies of the individual instructions as well as memory latencies. This
may be even more significant for single-precision when the GPUs can use their
fast hardware instructions for division and square root operations which have a



high latency on CPUs. In contrast GPUs are able to continuously operate close
to their maximum instruction throughput on our algorithm. Comparing ATI
and Nvidia GPUs, both arrive at about the same performance relative to their
theoretical peak throughput.

4 Using GPUs on BOINC

BOINC is a platform for volunteer computing. It is used by about 50 projects,
including Milkyway@home, SETI@home, IBM World Community Grid, Ein-
stein@home, Rosetta@home, and Climateprediction.net. BOINC allows volun-
teers to participate in multiple projects. To do so, they download and run a client
program (available for all common operating systems) and attach the client to
the desired projects. Each attachment has a volunteer-specified resource share
indicating the fraction of the computer’s available resources that should be al-
located to the project.

Fig. 2. The basic operation of BOINC.

The basic operation of BOINC is shown in Figure 2, in which a volunteer
host is attached to projects A and B. The BOINC client maintains a queue of
jobs and manages their execution; depending on user preferences, it may run
jobs when the computer is in use, not in use, or both. When the length of
the queue (in terms of estimated runtime) falls below a lower limit, the client
selects a project and issues a scheduler RPC to it, requesting enough jobs to
reach the upper limit. The lower and upper limits on queue length are chosen
to avoid running out of work during periods of disconnection, and to minimize
the frequency of scheduler RPCs. The choice of project is based on resource



share: the client maintains a per-project work debt that increases in proportion
to resource share, and decreases as work is done. Jobs are requested from the
project whose debt is greatest.

Each project has its own server and database. The database stores a set of
jobs, each of which is associated with an application. An application can have
several versions, one per platform (Window 32-bit, Windows 64-bit, Mac OS
X, Linux, etc.). The attributes of a job include its memory and disk require-
ments, an estimate of its FLOP count, and its deadline. The scheduler RPC’s
request message describes the host’s operating system and version, processor
type and benchmark scores, memory size, and available disk space. It requests
an amount of work, as measured in expected runtime. Based on this information,
the scheduler attempts to find a set of jobs that satisfy the request and that can
be executed on the host (i.e., the memory and disk requirements are met, the
deadline will probably be met, and a version is available for the host’s platform).

This basic framework was extended to handle applications that use GPUs as
well as CPUs. The resulting system handles clients that have arbitrarily many
GPUs, possibly of different types (currently Nvidia and ATI are supported).
GPUs of a given type are assumed to be identical. The volunteer host population
may have a wide range of GPU models, driver versions, and memory sizes.

Referring to Figure 2, we now allow an application to have multiple versions
per platform. For a given platform (say, Win32) an application might have ver-
sions for one CPU, for Nvidia GPU, for ATI GPU, and for multiple CPUs. The
resource requirements of a particular version may not be integral: for example,
a job might need 0.5 GPUs and 0.1 CPUs, and these fractions may depend on
the host.

The notion of resource share is defined as applying to a host’s aggregate
processing resources, not to the resource types separately. For example, suppose
a host has a CPU and a GPU, and the GPU is twice as fast. Suppose that
the host is attached to projects A and B with equal resource shares, and that
project A has both GPU and CPU applications, while project B has only CPU
applications. In this case project A should be allocated 100% of the GPU and
25% of the CPU, while project B should be allocated 75% of the CPU (see
Figure 3).

As shown by this example, the client must be able to ask the server for jobs
of a particular resource type (CPU or GPU). Thus, we extended the scheduler
RPC protocol to include a separate work request (in seconds) for each resource
type. In the scheduler RPC reply, jobs are associated with particular versions,
hence with particular resource types and usage levels.

Two major parts of the BOINC client have been extended to support GPU
applications. First, the job scheduler is now GPU-aware; the client allocates
GPUs, and passes command-line parameters to GPU jobs telling them which
GPU instance(s) to use. Because GPU memory is physical rather than virtual,
preempted GPU jobs must always be removed from memory.

The client maintains separate job queues for each processing resource, and
maintains a separate per-project debt for each resource as well. It maintains a



Fig. 3. A project’s resource share applies to all processing resources. In this example,
projects A and B each get 15 GFLOPS.

dynamic estimate of which projects have jobs for which resources. A project’s
overall debt is the sum of its debts over all resources, weighted by the average
speeds of the resources. The client’s work-fetch policy can be summarized as
follows: when the queue for some resource falls below its lower limit, the client
chooses, from among the projects likely to have jobs for that resource, the one
whose overall debt is greatest. It then issues a scheduler RPC to that project,
requesting work for the given resource and possibly for others as well. This policy
enforces resource shares as described above.

Moving now to the scheduler, deciding whether a GPU job can be handled
by a particular client may involve many details of the GPU hardware and driver.
This decision is made by an application planning function that is supplied by
the project for each of its versions. This function takes as input a description of
the host and its GPUs. It returns a) a flag indicating whether the jobs can run
the version, and if so b) an estimate of the resource usage (number of CPUs,
number of GPUs) and c) estimate of the FLOPs/second the version will achieve
on the host.

In sending a job to a client, the scheduler must now decide which of possibly
several versions to use. This is done as follows. The scheduler considers all the
application’s versions for the client’s platforms, and calls the respective appli-
cation planning functions. It skips those that use resources for which no work
is being requested, and from the other it selects the one whose FLOPs/second
estimate is greatest. This estimate is then used to estimate the job’s runtime on
the host, and the work request for the resource is decremented by that amount.

5 Summary

This work discusses the implementation and optimization of the Milky-
Way@Home client application for both Nvidia and ATI GPUs. A 17 times
speedup was achieved for double-precision calculations on a Nvidia GeForce
GTX 285 card, and a 109 times speedup for double-precision calculations on an
ATI HD5870 card, compared to a vectorized CPU version running on one core
of a 3.0GHz AMD Phenom(tm)II X4 940. Performing single-precision calcula-
tions was also evaluated, and the methods presented improved accuracy from 5



to 8 significant digits for the final results. This compares to 16 significant digits
with double-precision, but on the same hardware, using single-precision further
increased performance 6.2 times for ATI, and 7.8 times faster on the Nvidia
card. Utilizing these GPU applications on MilkyWay@Home has provided an
immense amount of computing power, at the time of this publication approxi-
mately 216 teraflops.

While developing GPGPU applications still requires significant technical
knowledge, the process is becoming easier. Additionally, the large amount of
computing resources this type of hardware provides makes utilizing GPUs a
highly desirable prospect, especially in the area of volunteer computing. As the
hardware and software matures, we expect GPGPU applications to become more
mainstream. The techniques discussed in this paper can aid in the development
of other GPGPU applications and describe how they can be effectively used in
a volunteer computing environment.

6 Acknowledgements

We would like to thank our many volunteers for taking part in the Milky-
Way@HOME BOINC computing project as this research would not be possi-
ble without them, as well as Nvidia and ATI for their generous support and
hardware donations.

This work has been partially supported by the following grants: NSF AST No.
0607618, NSF IIS No. 0612213, NSF MRI No. 0420703 and NSF CAREER CNS
Award No. 0448407. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References

1. D.P. Anderson, E. Korpela, and R. Walton. High-performance task distribution
for volunteer computing. In e-Science, pages 196–203. IEEE Computer Society,
2005.

2. V.S. Pande. http://folding.stanford.edu.
3. G. De Fabritiis. http://gpugrid.net.
4. B. Allen. http://einstein.phys.uwm.edu.
5. D-Wave Systems Inc. http://aqua.dwavesys.com.
6. E. Elsen, M. Houston, V. Vishal, E. Darve, P. Hanrahan, and V.S. Pande. N-Body

simulation on GPUs. In SC ’06: Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, page 188, New York, NY, USA, 2006. ACM.

7. D-Wave Systems Inc. http://aqua.dwavesys.com/faq.html.
8. M.S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A.L. Be-

berg, D.L. Ensign, C.M. Bruns, and V.S. Pande. Accelerating molecular dynamic
simulation on graphics processing units. Journal of Computational Chemistry,
30:864–872, 2009.

9. NVIDIA Corporation. NVIDIA CUDA Programming Guide Version 2.3.1.
10. AMD Corporation. ATI Stream Computing User Guide Version 1.4.0.



11. A.L. Beberg, D.L. Ensign, G. Jayachandran, S. Khaliq, and V.S. Pande. Fold-
ing@home: Lessons from eight years of volunteer distributed computing. In IEEE
International Symposium on Parallel & Distributed Processing, pages 1–8, 2009.

12. M.J. Harvey, G. Giupponi, and G. De Fabritiis. ACEMD: Accelerating Biomolec-
ular Dynamics in the Microsecond Time Scale. Journal of Chemical Theory and
Computation, 5, 2009.

13. Jonathan Purnell, Malik Magdon-Ismail, and Heidi Newberg. A probabilistic ap-
proach to finding geometric objects in spatial datasets of the Milky Way. In
Proceedings of the 15th International Symposium on Methodoligies for Intelligent
Systems (ISMIS 2005), pages 475–484, Saratoga Springs, NY, USA, May 2005.
Springer.

14. C. Reina, P. Bradley, and U. Fayyad. Clustering very large databases using mixture
models. In Proc. 15th International Conference on Pattern Recognition, 2000.

15. J. Adelman-McCarthy et al. The 6th Sloan Digital Sky Survey Data Release,
http://www.sdss.org/dr6/, July 2007. ApJS, in press, arXiv/0707.3413.

16. IEEE Standard for Binary Floating-Point Arithmetic, 1985. ANSI / IEEE Std.
754-1985.

17. W. Kahan. Pracniques: further remarks on reducing truncation errors. Commun.
ACM, 8(1):40, 1965.

18. M.A. Cornea-Hasegan, R.A. Golliver, and P. Markstein. Correctness Proofs Out-
line for Newton-Raphson Based Floating-Point Divide and Square Root Algo-
rithms. In Proceedings of the 14th IEEE Symposium on Computer Arithemtic,
pages 96–105, 1999.




