
CISC 879 : Advanced Parallel Programming

John Cavazos!
Dept of Computer & Information Sciences!

University of Delaware!

www.cis.udel.edu/~cavazos/cisc879!

Lecture 9!
Loop Transformations!

Part II!

CISC 879 : Advanced Parallel Programming

Loop Unswitching
•  Hoist invariant control-flow out of loop nest

•  Invariant means does not change in loop

•  Replicate the loop & specialize it

•  No tests (branches) in loop body
•  Longer segments of straight-line code

CISC 879 : Advanced Parallel Programming

Loop Unswitching

loop
 statements
 if test then
 then part
 else
 else part
 endif
 more statements
endloop

becomes
(unswitch)

If test then
 loop
 statements
 then part
 more statements
 endloop
else
 loop
 statements
 else part
 more statements
 endloop
endif

CISC 879 : Advanced Parallel Programming

Loop Unswitching

loop
 statements
 if test then
 then part
 else
 else part
 endif
 more statements
endloop

becomes If test then
 loop
 statements
 then part
 more statements
 endloop
else
 loop
 statements
 else part
 more statements
 endloop
endif

CISC 879 : Advanced Parallel Programming

Loop Unswitching

loop
 statements
 if test then
 then part
 else
 else part
 endif
 more statements
endloop

becomes If test then
 loop
 statements
 then part
 more statements
 endloop
else
 loop
 statements
 else part
 more statements
 endloop
endif

CISC 879 : Advanced Parallel Programming

Loop Unswitching

loop
 statements
 if test then
 then part
 else
 else part
 endif
 more statements
endloop

becomes If test then
 loop
 statements
 then part
 more statements
 endloop
else
 loop
 statements
 else part
 more statements
 endloop
endif

CISC 879 : Advanced Parallel Programming

Loop Unswitching

do i = 1 to 100
 a(i) = a(i) + b(i)
 if (expression) then
 d(i) = 0
end

becomes
(unswitch) if (expression) then

 do i = 1 to 100
 a(i) = a(i) + b(i)
 d(i) = 0
 end
else
 do i = 1 to 100
 a(i) = a(i) + b(i)
 end

CISC 879 : Advanced Parallel Programming

Loop Fusion
•  Two loops over same iteration space ⇒ one loop

•  Safe if does not change values used or defined by any
statement in either loop (i.e., does not violate deps)
do i = 1 to n
 c(i) = a(i) + b(i)
end

do j = 1 to n
 d(j) = a(j) * e(j)
end

becomes
(fuse) do i = 1 to n

 c(i) = a(i) + b(i)
 d(i) = a(i) * e(i)
 end

For big arrays, a(i) may not be
in the cache a(i) will be found in the cache

CISC 879 : Advanced Parallel Programming

Loop Fusion Advantages

•  Enhance temporal locality

•  Reduce control overhead

•  Longer blocks for local optimization &
scheduling

•  Can convert inter-loop reuse to intra-loop
reuse

CISC 879 : Advanced Parallel Programming

Loop Fusion of Parallel Loops

•  Parallel loop fusion legal if dependences loop
independent
•  Source and target of flow dependence map to

same loop iteration

CISC 879 : Advanced Parallel Programming

Loop distribution (fission)
•  Single loop with independent statements ⇒ multiple

loops

•  Starts by constructing statement level dependence
graph

•  Safe to perform distribution if:

•  No cycles in the dependence graph

•  Statements forming cycle in dependence graph put in
same loop

CISC 879 : Advanced Parallel Programming

Loop distribution (fission)

do i = 1 to n
 a(i) = b(i) + c(i)
 end

do i = 1 to n
 d(i) = e(i) * f(i)
 end

do i = 1 to n
 g(i) = h(i) - k(i)
 end

becomes
(fission)

do i = 1 to n
 a(i) = b(i) + c(i)
 d(i) = e(i) * f(i)
 g(i) = h(i) - k(i)
 end

} Reads b & c
Writes a

}Reads e & f
Writes d

}Reads h & k
Writes g

{Reads b, c,
e, f, h, & k

Writes a, d,
& g

CISC 879 : Advanced Parallel Programming

Loop distribution (fission)

Has the
following

dependence
graph

(1) for I = 1 to N do
(2) A[I] = A[i] + B[i-1]
(3) B[I] = C[I-1]*X+C
(4) C[I] = 1/B[I]
(5) D[I] = sqrt(C[I])
(6) endfor

CISC 879 : Advanced Parallel Programming

Loop distribution (fission)

becomes
(fission)

(1) for I = 1 to N do
(2) A[I] = A[i] + B[i-1]
(3) B[I] = C[I-1]*X+C
(4) C[I] = 1/B[I]
(5) D[I] = sqrt(C[I])
(6) endfor

(1) for I = 1 to N do
(2)   A[I] = A[i] + B[i-1]
(3) endfor
(4) for
(5)   B[I] = C[I-1]*X+C
(6)   C[I] = 1/B[I]
(7)  endfor
(8)  for
(9)   D[I] = sqrt(C[I])
(10)  endfor

CISC 879 : Advanced Parallel Programming

Loop Fission Advantages

•  Enables other transformations
•  E.g., Vectorization

•  Resulting loops have smaller cache
footprints
•  More reuse hits in the cache

CISC 879 : Advanced Parallel Programming

•  Swap inner & outer loops to rearrange iteration
space

Effect
•  Improves reuse by using more elements per cache

line
•  Goal is to get as much reuse into inner loop as

possible

do i = 1 to 50
 do j = 1 to 100
 a(i,j) = b(i,j) * c(i,j)
 end
 end

do j = 1 to 100
 do i = 1 to 50
 a(i,j) = b(i,j) * c(i,j)
 end
 end

becomes
(interchange)

Loop Interchange

CISC 879 : Advanced Parallel Programming

•  If one loop carries all dependence relations

•  Swap to outermost loop and all inner loops executed in
parallel

•  If outer loops iterates many times and inner only a
few

•  Swap outer and inner loops to reduce startup overhead

•  Improves reuse by using more elements per cache
line

•  Goal is to get as much reuse into inner loop as
possible

Loop Interchange Effect

CISC 879 : Advanced Parallel Programming

Reordering Loops for Locality

After interchange, direction of
Iteration is changed

cache line

Runs down cache line

1,1 2,1 3,1 4,1
1,2 2,2 3,2 4,2
1,3 2,3 3,3 4,3
1,4 2,4 3,4 4,4

In row-major order, the opposite loop ordering causes
the same effects

In Fortran’s column-major order,
a(4,4) would lay out as

1,1 2,1 3,1 4,1
1,2 2,2 3,2 4,2
1,3 2,3 3,3 4,3
1,4 2,4 3,4 4,4

cache line

As little as 1 used element per line

CISC 879 : Advanced Parallel Programming

Loop permutation
•  Interchange is degenerate case

•  Two perfectly nested loops

•  More general problem is called permutation

Safety

•  Permutation is safe iff no data dependences
are reversed
•  The flow of data from definitions to uses is

preserved

CISC 879 : Advanced Parallel Programming

Loop Permutation Effects

•  Change order of access & order of
computation

•  Move accesses closer in time ⇒ increase
temporal locality

•  Move computations farther apart ⇒ cover
pipeline latencies

CISC 879 : Advanced Parallel Programming

Strip Mining

•  Splits a loop into two loops

do j = 1 to 100
 do i = 1 to 50
 a(i,j) = b(i,j) * c(i,j)
 endend

becomes
(strip mine)

do j = 1 to 100

 do ii = 1 to 50 by 8
 do i = ii to min(ii+7,50)
 a(i,j) = b(i,j) * c(i,j)
 end
 end
end

Note: This is always safe, but used by itself not profitable!

CISC 879 : Advanced Parallel Programming

Strip Mining Effects
•  May slow down the code (extra loop)
•  Enables vectorization

CISC 879 : Advanced Parallel Programming

Loop Tiling (blocking)

Want to exploit temporal locality
in loop nest.

CISC 879 : Advanced Parallel Programming

Loop Tiling (blocking)

CISC 879 : Advanced Parallel Programming

Loop Tiling (blocking)

CISC 879 : Advanced Parallel Programming

Loop Tiling (blocking)

CISC 879 : Advanced Parallel Programming

Loop Tiling (blocking)

CISC 879 : Advanced Parallel Programming

Loop Tiling Effects

•  Reduces volume of data between
reuses
•  Works on one “tile” at a time (tile size is B

by B)

•  Choice of tile size is crucial

CISC 879 : Advanced Parallel Programming

Scalar Replacement
•  Allocators never keep c(i) in a register

•  We can trick the allocator by rewriting the references

The plan

•  Locate patterns of consistent reuse

•  Make loads and stores use temporary scalar variable

•  Replace references with temporary’s name

CISC 879 : Advanced Parallel Programming

Scalar Replacement

do i = 1 to n
 do j = 1 to n
 a(i) = a(i) + b(j)
 end
end

do i = 1 to n
 t = a(i)
 do j = 1 to n
 t = t + b(j)
 end
 a(i) = t
end

becomes
(scalar replacement)

Almost any register allocator
can get t into a register

CISC 879 : Advanced Parallel Programming

Scalar Replacement Effects
•  Decreases number of loads and stores
•  Keeps reused values in names that

can be allocated to registers
•  In essence, this exposes the reuse of

a(i) to subsequent passes

