
CISC 879 Software Support for Multicore Architectures Spring 2007

Lecture 3: February 19
Lecturer: John Cavazos Scribe: Varun N B, Sameer Kulkarni

The following lecture gave the general overview of the various laws and the history behind the development
of multicore architectures. The power point presentation for the lecture can be found at
http://www.cis.udel.edu/ cavazos/cisc879/Lecture-03.ppt .

The two law discussed were :-

• Amdahla Law

• Gustafson’s Law

3.1 Amdhal’s and Gustafsons Laws

Lemma 3.1 Amdalhls law states that the overall speed up that can be achieved by any process is limited
by the weakest link in the process. With respect to parallelization the serial portions of the code form the
weakest link.

Figure 3.1: Amdhal’s explanation

In postulating this theorem, Amdahl assumed work load to be fixed even when there is hardware / resource
available for more parallelism.

Lemma 3.2 Gustafsons law states that increasing processors gives linear speed up. More processors allow
larger dataset size.

3-1



3-2 Lecture 3: February 19

CPU GPU
Less Parallelism More parallelism

Simple Control requirements Complex control requirements
Devote more area for control and storage More area for computational units

CPU Programming model -
No data parallelism - no SIMD Exploit SIMD and provide for larger

Small arithmetic units bandwidth for communication between
Less latency and less bandwidth processors

Table 3.1: Multi Core features

Figure 3.2: Gustafsons counter argument

Gustafson proposed fixed time and increased work load so that serial parts of the program have diminishing
effect in reducing the overall speedup in a parallel environment. His tests revealed that, as processors grow
the problem size is scaled and this scaling results in a substantial increase in the parallel parts of program
as compared to the serial parts.

3.2 Different types of Multicore achitectures

3.2.1 Computational Power

Looking at the increase in the computational power we find that GPUs have increased their computational
power at a much faster pace than CPUs. The GPU programming model differs from the general programming
model in the following ways :-

• Streams - Collection of data sets that enable parallelization

• Kernel - Takes an input stream and delivers an output stream. No correlation between stream data.

• Stream storage - Input read once and output written once resulting in producer-consumer locality.



Lecture 3: February 19 3-3

3.3 The Cell

The Cell is a heterogenous multicore architecture that is a hybrid of both GPU type and general Control type

processors.

Figure 3.3: The Cell

The main features of the cell:-

1. Exploit parallelism

2. Achieve High Frequency

3. Higher Bandwidth through DMA

4. Applicable to variety of applications

The CELL heterogeneous architecture is composed of two main functional units.

3.3.1 SPE

- Synergistic processor element for data intensive processing. SPE features - No cache, large unified register,
high band width interface bus for communication. Dedicated DMA engine.

3.3.2 PPE

- Power Processor Element handles the control tasks. General purpose 64 bit PowerPC RISC L1 and L2
cache Used for operating system and program control

GNU based C++ compilers and GDB debugger produce code and help debugging the two processors when
invoked in different modes. Various performance profiling tools provided are OProfile, GProf, simulator and
spu timing


