
Overview of the Course

Critical Facts

Welcome to CISC 672 — Advanced Compiler Construction

•  Instructor: Dr. John Cavazos (cavazos@cis.udel.edu)
•  Office Hours: Tues/Thurs 3PM to 4PM, Smith Hall 412
•  Text: Engineering a Compiler

by Keith Cooper and Linda Torzcan
•  Web Site: http://www.cis.udel.edu/~cavazos/CISC672

→  Lab handouts, homework, slides, practice exams, …
→  I will not have handouts in class; get them from the web

Topics in the design of programming language translators,
including parsing, semantic analysis, error recovery, code
generation, and optimization

Lab data is on
the web site

Basis for Grading

•  Exams
→  Midterm 20%
→  Final 20%

•  Quizzes 10%
•  Projects

→  Scanner 7%
→  Parser 8%
→  Semantic Analyzer 15%
→  Code Generation 15%

This only adds up to
95%. Where is the
other 5%?

Class participation!

Notice: Any student with a disability requiring accommodations in this
class is encouraged to contact me after class or during office hours,
and to contact UDel’s Coordinator for Disabled Student Services.

Basis for Grading

•  Exams
→  Midterm
→  Final

•  Quizzes

•  Projects
→  Parser (& scanner)
→  Semantic Analyzer
→  Code Generation

  Closed-notes, closed-book
  Old exam on web site as an example

  Reinforce concepts
  Number of quizzes t.b.d.

  Parser lab might be a team lab
  High ratio of thought to programming
  Will build a compiler for a language
called COOL (Java)

Rough Syllabus

•  Overview § 1
•  Scanning § 2
•  Parsing § 3
•  Context Sensitive Analysis § 4
•  Inner Workings of Compiled Code § 6, 7
•  Introduction to Optimization § 8
•  Instruction Selection § 11
•  Instruction Scheduling § 12
•  Register Allocation § 13
•  More Optimization (time permitting)

Class-taking technique for CISC 672

•  I will use projected material extensively
→  I will moderate my speed, you sometimes need to say “STOP”

•  You should read the book
→  Not all material will be covered in class
→  Book complements the lectures

•  You are responsible for material from class
→  The tests will cover both lecture and reading
→  I will probably hint at good test questions in class

•  CISC 672 is not a programming course
→  Projects are graded on functionality, documentation, and lab

reports more than style (results matter)
•  It will take me time to learn your names (please remind me)

Compilers

•  What is a compiler?

Compilers

•  What is a compiler?
→  A program that translates a program in one language into a

program in another language
→  The compiler should improve the program, in some way

•  What is an interpreter?

Compilers

•  What is a compiler?
→  A program that translates a program in one language into a

program in another language
→  The compiler should improve the program, in some way

•  What is an interpreter?
→  A program that reads a program and produces the results of

executing that program

Compilers

•  What is a compiler?
→  A program that translates a program in one language into a

program in another language
→  The compiler should improve the program, in some way

•  What is an interpreter?
→  A program that reads a program and produces the results of

executing that program

•  C is typically compiled, Scheme is typically interpreted
•  Java is compiled to bytecodes (code for the Java VM)

→  which can then interpreted
→  Or a hybrid strategy is used

  Just-in-time compilation

Taking a Broader View
•  Compiler Technology

→  Offline
  Typically C, C++, Fortran

→  Online
  Typically Java, C##

→  Goals: improved performance and language usability
  Making it practical to use the full power of the language

→  Trade-off: preprocessing time versus execution time (or space)
→  Rule: performance of both compiler and application must be

acceptable to the end user

Why Study Compilation?
•  Compilers are important system software components

→  They are intimately interconnected with architecture, systems,
programming methodology, and language design

•  Compilers include many applications of theory to practice
→  Scanning, parsing, static analysis, instruction selection

•  Many practical applications have embedded languages
→  Commands, macros, formatting tags …

•  Many applications have input formats that look like
languages,
→  Matlab, Mathematica

•  Writing a compiler exposes practical algorithmic &
engineering issues
→  Approximating hard problems; efficiency & scalability

Intrinsic interest

  Compiler construction involves ideas from many different
parts of computer science

Artificial intelligence
Greedy algorithms
Heuristic search techniques

Algorithms Graph algorithms,
Dynamic programming

Theory DFAs & PDAs, pattern matching
Fixed-point algorithms

Systems
Allocation & naming,
Synchronization, locality

Architecture Pipeline & hierarchy management
Instruction set use

Intrinsic merit

  Compiler construction poses challenging and interesting
problems:
→  Compilers must do a lot but also run fast

→  Compilers have responsibility for run-time performance

→  Compilers are responsible for making it acceptable to use the
full power of the programming language

→  Computer architects perpetually create new challenges for the
compiler by building more complex machines

→  Compilers must hide that complexity from the programmer

→  Success requires mastery of complex interactions

Aren’t compilers a solved problem?

“Optimization for scalar machines is a
problem that was solved ten years ago.”
 David Kuck, Fall 1990

Aren’t compilers a solved problem?

“Optimization for scalar machines is a
problem that was solved ten years ago.”
 David Kuck, Fall 1990

– Architectures keep changing
–  Languages keep changing
– Applications keep changing
– When to compile keeps changing

About the instructor

•  My own research
→  Applying machine learning to solve hard systems problems
→  Compiling for advanced microprocessor systems
→  Interplay between static and dynamic compilation
→  Optimization for embedded systems (space, power, speed)
→  Interprocedural analysis and optimization
→  Nitty-gritty things that happen in compiler back ends
→  Distributing compiled code in a heterogeneous environment
→  Rethinking the fundamental structure of optimizing compilers

•  Thus, my interests lie in
→  Building “Intelligent” Compilers
→  Quality of generated code(smaller, more efficient, faster)
→  Interplay between compiler and architecture
→  Static analysis to discern program behavior
→  Run-time performance analysis

Next class

•  The view from 35,000 feet
→  How a compiler works
→  What I think is important
→  What is hard and what is easy

