

Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions

Quick Review

Previous class:

- \rightarrow The scanner is the first stage in the front end
- \rightarrow Specifications can be expressed using regular expressions
- \rightarrow Build tables and code from a DFA

- We will show how to construct a finite state automaton to recognize any RE
- This Lecture
 - → Convert RE to an nondeterministic finite automaton (NFA)
 - Requires ε -transitions to combine regular subexpressions
 - \rightarrow Convert an NFA to a deterministic finite automaton (DFA)
 - Use Subset construction

Next Lecture

- \rightarrow Minimize the number of states
 - Hopcroft state minimization algorithm
- \rightarrow Generate the scanner code
 - Additional code can be inserted

More Regular Expressions

• All strings of 1s and 0s ending in a <u>1</u>

(<u>0|1</u>)*<u>1</u>

• All strings over lowercase letters where the vowels (a,e,i,o,u) occur exactly once, in ascending order

 $Cons \rightarrow (\underline{b|c|d|f|g|h|j|k|||m|n|p|q|r|s|t|v|w|x|y|z})$ $Cons^{*} \underline{a} \ Cons^{*} \underline{e} \ Cons^{*} \underline{i} \ Cons^{*} \underline{o} \ Cons^{*} \underline{u} \ Cons^{*}$

• All strings of <u>1</u>s and <u>0</u>s that do not contain three <u>0</u>s in a row:

More Regular Expressions

• All strings of 1s and 0s ending in a $\underline{1}$

(<u>0|1</u>)*<u>1</u>

• All strings over lowercase letters where the vowels (a,e,i,o,u) occur exactly once, in ascending order

 $Cons \rightarrow (\underline{b|c|d|f|g|h|j|k|||m|n|p|q|r|s|t|v|w|x|y|z})$ $Cons^{*} \underline{a} \ Cons^{*} \underline{e} \ Cons^{*} \underline{i} \ Cons^{*} \underline{o} \ Cons^{*} \underline{u} \ Cons^{*}$

• All strings of <u>1</u>s and <u>0</u>s that do not contain three <u>0</u>s in a row: (1^{*} (ϵ |<u>01</u> | <u>001</u>) <u>1^{*}</u>)^{*} (ϵ | <u>0</u> | <u>00</u>)

Each RE corresponds to a *deterministic finite automaton* (DFA)

• May be hard to directly construct the right DFA

This is a little different

• S₁ has two transitions on <u>a</u>

This is a non-deterministic finite automaton (NFA)

Each RE corresponds to a *deterministic finite automaton* (DFA)

• May be hard to directly construct the right DFA

What about an RE such as $(\underline{a} | \underline{b})^* \underline{abb}$?

This is a little different

- *S*₁ has two transitions on <u>a</u>
- S_o has a transition on ε

This is a non-deterministic finite automaton (NFA)

- An NFA accepts a string x iff \exists a path though the transition graph from s_0 to a final state such that the edge labels spell x
- Transitions on ϵ consume no input
- To "run" the NFA, start in s₀ and guess the right transition at each choice point with multiple possibilities
 - → Always guess correctly
 - \rightarrow If some sequence of correct guesses accepts x then accept

Why study NFAs?

- They are the key to automating the RE \rightarrow DFA construction
- We can paste together NFAs with ϵ -transitions

Relationship between NFAs and DFAs

DFA is a special case of an NFA

- DFA has no ϵ transitions
- DFA's transition function is single-valued
- Same rules will work

DFA can be simulated with an NFA

→ Obviously

NFA can be simulated with a DFA

• Simulate sets of possible states

- Possible exponential blowup in the state space
- Still, one state per character in the input stream

(less obvious)

Automating Scanner Construction

To convert a specification into code:

- 1 Write down the RE for the input language
- 2 Build a big NFA
- 3 Build the DFA that simulates the NFA
- 4 Systematically shrink the DFA
- 5 Turn it into code

Scanner generators

- Lex, Flex, and JLex work along these lines
- Algorithms are well-known and well-understood
- Key issue is interface to parser *(define all parts of speech)*

Automating Scanner Construction

 $RE \rightarrow NFA$ (Thompson's construction)

- Build an NFA for each term
- Combine them with ϵ -transitions

 $NFA \rightarrow DFA$ (subset construction)

- Build the simulation
- $DFA \rightarrow Minimal DFA$
- Hopcroft's algorithm

 $DFA \rightarrow RE$ (Not part of the scanner construction)

- All pairs, all paths problem
- Take the union of all paths from s_0 to an accepting state

$RE \rightarrow NFA$ using Thompson's Construction

Key idea

- NFA pattern for each symbol & each operator
- Join them with ϵ transitions in precedence order

NFA for <u>a</u>

NFA for b

Concatenation

NFA for <u>ab</u>

NFA for <u>a</u> | <u>b</u>

Ken Thompson, CACM, 1968

Example of Thompson's Construction

Let's try $\underline{a} (\underline{b} | \underline{c})^*$

1. $\underline{a}, \underline{b}, \& \underline{c}$ $(\underline{s}_0) \xrightarrow{\underline{a}} (\underline{s}_1) (\underline{s}_0) \xrightarrow{\underline{b}} (\underline{s}_1) (\underline{s}_0) \xrightarrow{\underline{c}} (\underline{s}_1)$

 $S_0 \xrightarrow{\varepsilon} S_3 \xrightarrow{\underline{c}} S_4 \xrightarrow{\varepsilon} S_5$

2. <u>b</u> | <u>c</u>

Of course, a human would design something simpler ...

But, we can automate production of the more complex one ...

Need to build a simulation of the NFA

Two key functions

 Delta(q_i, <u>a</u>) is set of states reachable from each state in q_i by <u>a</u>

→ Returns a set of states, for each $n \in q_i$ of δ_i (n, <u>a</u>)

• ε -closure(s_i) is set of states reachable from s_i by ε transitions

The algorithm:

- Start state derived from n₀ of the NFA
- Take its ε -closure $q_0 = \varepsilon$ -closure(n_0)
- Compute Delta(q, α) for each $\alpha \in \Sigma$, and take its ϵ -closure
- Iterate until no more states are added

Sounds more complex than it is...

The algorithm:

 $\begin{array}{l} q_{0} \leftarrow \varepsilon \text{-closure}(n_{0}) \\ Q \leftarrow \{q_{0}\} \\ WorkList \leftarrow \{q_{0}\} \\ while (WorkList \neq \phi) \\ remove \ q \ from \ WorkList \\ for \ each \ \alpha \in \Sigma \\ t \leftarrow \varepsilon \text{-closure}(Delta(q,\alpha)) \\ T[q,\alpha] \leftarrow t \\ if (t \notin Q) \ then \\ add \ t \ o \ Q \ and \ WorkList \end{array}$

Let's think about why this works

The algorithm halts:

- 1. Q contains no duplicates (test before adding)
- 2. 2^Q is finite

3. while loop adds to *Q*, but does not remove from Q *(monotone)*

 \Rightarrow the loop halts

Q contains all the reachable NFA states

It tries each character in each q.

It builds every possible NFA configuration.

 \Rightarrow **Q** and **T** form the DFA

NFA \rightarrow DFA with Subset Construction

Example of a *fixed-point* computation

- Monotone construction of some finite set
- Halts when it stops adding to the set
- Proofs of halting & correctness are similar
- These computations arise in many contexts

We will see many more fixed-point computations

Applying the subset construction:

		ε-closure(Delta(q,*))				
	NFA states	<u>a</u>	b	<u>C</u>		
S 0	\boldsymbol{q}_{o}	$egin{array}{c} {f q}_1, {f q}_2, {f q}_3, \ {f q}_4, {f q}_6, {f q}_9 \end{array}$	none	none		
S ₁		none	q 5, q ₈ , q ₉ , q ₃ , q ₄ , q ₆	q ₇ , q ₈ , q ₉ , q ₃ , q ₄ , q ₆		
S ₂	$q_5, q_8, q_9, q_3, q_4, q_6$	none	S ₂	S ₃		
S 3	$q_7, q_8, q_9, q_9, q_3, q_4, q_6$	none	S ₂	S ₃		
Final states						

NFA \rightarrow DFA with Subset Construction

The DFA for $\underline{a} (\underline{b} | \underline{c})^*$

- Ends up smaller than the NFA
- All transitions are deterministic
- Use same code skeleton as before

δ	<u>a</u>	b	<u>C</u>
s ₀	S 1	-	-
S ₁	-	s ₂	S ₃
s ₂	-	s ₂	S ₃
S ₃	-	s ₂	S ₃

Where are we? Why are we doing this?

 $RE \rightarrow NFA$ (Thompson's construction) \checkmark

- Build an NFA for each term
- Combine them with ϵ -moves

NFA \rightarrow DFA (subset construction) \checkmark

- Build the simulation
- $DFA \rightarrow Minimal DFA$
- Hopcroft's algorithm

$\mathsf{DFA} \rightarrow \mathsf{RE}$

- All pairs, all paths problem
- Union together paths from s₀ to a final state

Enough theory for today

- Report errors for lexicographically malformed inputs
 - \rightarrow reject illegal characters, or meaningless character sequences
 - \rightarrow E.g., '#' or "floop" in COOL
- Return an abstract representation of the code
 - \rightarrow character sequences (e.g., "if" or "loop") turned into tokens.
- Resulting sequence of tokens will be used by the parser
- Makes the design of the parser a lot easier.

- A scanner specification (e.g., for JLex), is list of (typically short) regular expressions.
- Each regular expressions has an action associated with it.
- Typically, an action is to return a token.
- On a given input string, the scanner will:
 - → find the longest prefix of the input string, that matches one of the regular expressions.
 - → will execute the action associated with the matching regular expression highest in the list.
- Scanner repeats this procedure for the remaining input.
- If no match can be found at some point, an error is reported.

- Consider the following scanner specification.
 - 1. aaa { return T1 }
 - 2. a*b { return T2 }
 - 3. b $\{ return S \}$
- Given the following input string into the scanner aaabbaaa

the scanner as specified above would output

T2 T2 T1

• Note that the scanner will report an error for example on the string 'aa'.

Special Return Tokens

- Sometimes one wants to extract information out of what prefix of the input was matched.
- Example:

"[a-zA-Z0-9]*" { return STRING(yytext()) }

- Above RE matches every string that
 - \rightarrow starts and ends with quotes, and
 - \rightarrow has any number of alpha-numerical chars between them.
- Associated action returns a string token, which is the exact string that the RE matched.
- Note that yytext() will also include the quotes.
- Furthermore, note that this regular expression does not handle escaped characters.