Lexical Analysis - An Introduction

The Front End

Source . Front IR R Back Machine
code] End] End code

> Errors

The purpose of the front end is to deal with the input language
* Perform a membership test: code € source language?

* TIs the program well-formed (semantically) ?

* Build an IR version of the code for the rest of the compiler

The front end is not monolithic

The Front End

Source tokens IR
> > Parser >
code Scanner

Scanner . Errors
* Maps stream of characters into words

— Basic unit of syntax Speed is an issue in

—~ x=x+Yy; becomes scanning

<id,x> <eq,=> <id x> <pl +> <id y> <sc,; > = use a specialized

* Characters that form a word are its /lexeme [ecognizer

* TIts part of speech (or syntactic category) is called its token type
* Scanner discards white space & (often) comments

The Front End

Source tokens IR
> > Parser >
code Scanner

Parser » Errors

* Checks stream of classified words (parts of speech) for
grammatical correctness

* Determines if code is syntactically well-formed
* (Guides checking at deeper levels than syntax
* Builds an IR representation of the code

We'll come back to parsing in a couple of lectures

The Big Picture

Why study lexical analysis?
* We want to avoid writing scanners by hand
* We want to harness the theory from classes like CISC 303
Goals:

— To simplify specification & implementation of scanners

— To understand the underlying techniques and technologies

source code parts of speech &
Scanner [words >

4 - tables

or code

A 4

specifications Scanner

Y-enerator

AN

Regular Expressions

Where is Lexical Analysis Used?

For traditional languages but where else...
* Web page "compilation”
* Lexical Analysis of HTML, XML, etc.
* Natural Language Processing
* Game Scripting Engines
* OS Shell Command Line
* GREP
* Prototyping high-level languages
* JavaScript, Perl, Python

Recognizing Words

Finite Automaton (FA) - recognizers that can scan a

stream of symbols to find words
(0[112] ... 9)

(12| ... 9) accepting

& states

Transition Diagram for Number

* AnFA s a five-tuple (5,2,9,5,,5;) where
« S is the set of states
« 2. is the alphabet

« 9 a set of transition functions where each takes a state and a
character and returns another state

* s, is the start state
« S.is the set of final states

Regular Expressions

Regular Expression (over alphabet)
® ¢ is aRE denoting the set {¢}

e IfaisinX, thenais aRE denoting {a}
* If xand yare REs denoting L(x)and L(y) then

— Closure: x" is an RE denoting L(x)*
— Concatenation: xy is an RE denoting L(x)L(y)

— Alternation: x |y is an RE denoting L(x) U L(y)

Note: Precedence is closure, then concatenation, then alternation

Set Operations (review)

Operation Definition

Union of L and M
Written L UM

LUM={slseLorseM}

Concatenationof Land M | ; pr = {st|s€ Land tc M}

Written LM
Kleene closure of L U= . [
Written L” O=<i<oo
Positive Closure of L [*=U, . Li
Written L* I<isoo

These definitions should be well known

Examples of Reqular Expressions

TIdentifiers:
Letter — (a|blc| .. |z|AIB|C| ... |Z)
Digit — (0]1]2]| ... |9)

Identifier — Letter (Letter | Digit)”

Numbers:
Integer — (+|-l¢) (O (1]2]3] .. |9)(Digit™))
Decimal — Integer . Digit”
Real — (Integer | Decimal) E (+|-|€) Digit™
Complex — (Real , Real)

Numbers can get much more complicated!

Regular Expressions (the point)

Regular expressions can be used to specify the words to be
translated to parts of speech by a lexical analyzer

Using results from automata theory and theory of algorithms,
we can automatically build recognizers from regular
expressions

You may have seen this construction in a Automata Course

= We study REs and associated theory to automate scanner
construction |

Regular Expression Class Problem?

What is the reqular expression for a register name?
Examples: rl, r25,r999 <& These are OK.

r sl a2b5 <& These are not OK.

Register Name RE Solution

Consider the problem of recognizing register names
Register — r (0]1]2] .. | 9) (0|1]2] ... | 9)"

* Allows registers of arbitrary number
* Requires at least one digit

Register Name DFA Class Problem?

Consider the problem of recognizing register names
Register — r (0]1]2] .. | 9) (0|1]2] ... | 9)"

* Allows registers of arbitrary number
* Requires at least one digit

What does the DFA look like?

Register Name DFA Solution

Consider the problem of recognizing register names
Register — r (0]1]2] .. | 9) (0|1]2] ... | 9)"

* Allows registers of arbitrary number
* Requires at least one digit

RE corresponds to a recognizer (or DFA)
0|112] ... 9)

accepting state

Recognizer for Register

Transitions on other inputs go to an error state, s,

Example (continued)

DFA operation
* Start in state S, & take transitions on each input character
* DFA accepts aword x iff xleaves it in a final state (S,)

(01)2] ... 9)

(o112 .. ’
OO O

Recognizer for Register

accepting state

So,
* rl17 takes it through s,, s;, s, and accepts
* r takes it through s,, s, and fails

* a takes it straight to s,

Example (continued)

To be useful, recognizer must turn into code

0,1,2,34, All
Char < next character 0 r | 956,789 | others
State < s,
. So S1 Se Se
while (Char = EOF)
State < §(State,Char)
Char < next character 51 Se Sz Se
if (State is a final state) s, s s, s
then report success ° ©
else report failure
Se Se Se Se

Skeleton recognizer Table encoding RE

What if we need a tighter specification?

r Digit Digit” allows arbitrary numbers

* Accepts r00000

* Accepts r99999

* What if we want to limit it o rO through r31?

Write a tighter regular expression
— Register —r ((0|1]2) (Digit | €) | (4]5]6]718]9) | (3]130]31))
— Register — r0|rl|r2| .. |r31|r00|r01|r02]| ... |rO9

Produces a more complex DFA
* Has more states

* Same cost per transition

* Same basic implementation

Tighter register specification (continued)

The DFA for
Register —r ((0|1]2) (Digit | €) | (4]5]6]718]9) | (3]30]31))

(01)2] ... 9)

* Accepts a more constrained set of registers
e Same set of actions, more states

Tighter register specification (continued)

S All
P 0,1 2 3 4-9 | others
So S Se Se Se Se Se
Sy s, S5 S5 S5 Sy s,
S5 s, 53 S3 S3 S3 Se
S3 Se Se S, Se Se Se
S4 s, s, s, s, s, s,
S5 s, Sy s, s, s, s,
S¢ Se Se Se Se Se Se
Se Se Se Se Se Se Se

Table encoding RE for the tighter register specification

Runs in the
same
skeleton
recognhizer

