

# Lexical Analysis - An Introduction





The purpose of the front end is to deal with the input language

- Perform a membership test: code ∈ source language?
- Is the program well-formed (semantically) ?
- Build an IR version of the code for the rest of the compiler

The front end is not monolithic





- Its part of speech (or syntactic category) is called its token type
- Scanner discards white space & (often) comments





- Checks stream of classified words (*parts of speech*) for grammatical correctness
- Determines if code is syntactically well-formed
- Guides checking at deeper levels than syntax
- Builds an IR representation of the code

We'll come back to parsing in a couple of lectures



Why study lexical analysis?

- We want to avoid writing scanners by hand
- We want to harness the theory from classes like CISC 303 Goals:
  - $\rightarrow$  To simplify specification & implementation of scanners
  - $\rightarrow$  To understand the underlying techniques and technologies



Where is Lexical Analysis Used?

For traditional languages but where else...

- Web page "compilation"
  - Lexical Analysis of HTML, XML, etc.
- Natural Language Processing
- Game Scripting Engines
- OS Shell Command Line
- GREP
- Prototyping high-level languages
- JavaScript, Perl, Python



# **Recognizing Words**

Finite Automaton (FA) – recognizers that can scan a stream of symbols to find words



- An FA is a five-tuple  $(S, \Sigma, \partial, S_o, S_F)$  where
  - S is the set of states
  - $\boldsymbol{\Sigma}$  is the alphabet
  - $\delta$  a set of transition functions where each takes a state and a character and returns another state
  - s<sub>o</sub> is the start state
  - $\bullet$   $S_{\scriptscriptstyle {\it F}}$  is the set of final states



# Regular Expressions

Regular Expression (over alphabet  $\Sigma$ )

- ε is a RE denoting the set {ε}
- If  $\underline{a}$  is in  $\Sigma$ , then  $\underline{a}$  is a RE denoting  $\{\underline{a}\}$
- If x and y are REs denoting L(x) and L(y) then
  - $\rightarrow$  Closure:  $x^*$  is an RE denoting  $L(x)^*$
  - $\rightarrow$  Concatenation: xy is an RE denoting L(x)L(y)
  - $\rightarrow$  Alternation: x | y is an RE denoting  $L(x) \cup L(y)$

Note: Precedence is *closure*, then *concatenation*, then *alternation* 



#### (review)



| Operation                                      | Definition                                                       |  |
|------------------------------------------------|------------------------------------------------------------------|--|
| Union of L and M<br>Written L ∪ M              | $\boldsymbol{L} \cup M = \{s \mid s \in L \text{ or } s \in M\}$ |  |
| <i>Concatenation of L and M<br/>Written LM</i> | $LM = \{st \mid s \in L \text{ and } t \in M\}$                  |  |
| Kleene closure of L<br>Written L <sup>*</sup>  | $\boldsymbol{L}^* = \bigcup_{0 \le i \le \infty} L^i$            |  |
| Positive Closure of L<br>Written L⁺            | $\boldsymbol{L}^{+} = \bigcup_{1 \le i \le \infty} L^{i}$        |  |

These definitions should be well known

# Examples of Regular Expressions

#### Identifiers:

Letter  $\rightarrow$  (a|b|c| ... |z|A|B|C| ... |Z) Digit  $\rightarrow$  (0|1|2| ... |9) Identifier  $\rightarrow$  Letter (Letter | Digit)\*

#### Numbers:

Numbers can get much more complicated!





Regular expressions can be used to specify the words to be translated to parts of speech by a lexical analyzer

Using results from automata theory and theory of algorithms, we can automatically build recognizers from regular expressions

You may have seen this construction in a Automata Course

⇒ We study REs and associated theory to automate scanner construction !



What is the regular expression for a register name?

Examples: r1, r25,  $r999 \leftarrow$  These are OK.

 $r, s1, a25 \leftarrow These are <u>not</u> OK.$ 



Consider the problem of recognizing register names

*Register*  $\rightarrow$  r (0|1|2| ... | 9) (0|1|2| ... | 9)<sup>\*</sup>

- Allows registers of arbitrary number
- Requires at least one digit

Register Name DFA Class Problem?

Consider the problem of recognizing register names

*Register*  $\rightarrow$  r (0|1|2| ... | 9) (0|1|2| ... | 9)<sup>\*</sup>

- Allows registers of arbitrary number
- Requires at least one digit

What does the DFA look like?



Consider the problem of recognizing register names

*Register*  $\rightarrow$  r (0|1|2| ... | 9) (0|1|2| ... | 9)<sup>\*</sup>

- Allows registers of arbitrary number
- Requires at least one digit



Recognizer for *Register* 

Transitions on other inputs go to an error state,  $s_e$ 



### Example

#### (continued)



DFA operation

- Start in state  $S_0$  & take transitions on each input character
- DFA accepts a word <u>x iff x</u> leaves it in a final state  $(S_2)$



Recognizer for Register

So,

- <u>r17</u> takes it through  $s_0$ ,  $s_1$ ,  $s_2$  and accepts
- <u>r</u> takes it through s<sub>0</sub>, s<sub>1</sub> and fails
- <u>a</u> takes it straight to s<sub>e</sub>

### (continued)



To be useful, recognizer must turn into code



Example

| δ                     | r               | 0,1,2,3,4,<br>5,6,7,8,9 | All<br>others  |
|-----------------------|-----------------|-------------------------|----------------|
| <b>s</b> <sub>0</sub> | \$ <sub>1</sub> | S <sub>e</sub>          | s <sub>e</sub> |
| S <sub>1</sub>        | S <sub>e</sub>  | <b>s</b> <sub>2</sub>   | 5 <sub>e</sub> |
| <b>s</b> 2            | S <sub>e</sub>  | <b>s</b> <sub>2</sub>   | s <sub>e</sub> |
| S <sub>e</sub>        | S <sub>e</sub>  | S <sub>e</sub>          | s <sub>e</sub> |

Skeleton recognizer

Table encoding RE

# What if we need a tighter specification?

 $\underline{r}$  Digit Digit<sup>\*</sup> allows arbitrary numbers

- Accepts <u>r00000</u>
- Accepts <u>r99999</u>
- What if we want to limit it to <u>rO</u> through <u>r31</u>?

Write a tighter regular expression

- → Register → <u>r</u> ( (0|1|2) (Digit |  $\varepsilon$ ) | (4|5|6|7|8|9) | (3|30|31) )
- → *Register* → r0|r1|r2| ... |r31|r00|r01|r02| ... |r09

Produces a more complex DFA

- Has more states
- Same cost per transition
- Same basic implementation



(continued)

The DFA for

*Register* → <u>r</u> ( (0|1|2) (*Digit* | ε) | (4|5|6|7|8|9) | (3|30|31) )



- Accepts a more constrained set of registers
- Same set of actions, more states





(continued)

## Tighter register specification

All δ 4-9 0,1 3 others 2 r **S**1  $S_e$  $S_e$  $S_e$  $S_e$ **S**0  $S_e$ **S**1 **S**<sub>e</sub> 52 52  $S_{5}$  $S_4$  $S_e$  $S_e$ **S**3 **S**3  $\boldsymbol{S}_{e}$ **S**2 **S**3 **S**3 **S**3  $S_e$  $S_e$  $S_e$  $S_e$  $S_e$  $S_e$ Runs in the same  $S_e$  $S_e$  $\boldsymbol{S}_{e}$  $S_4$  $S_e$  $S_e$  $S_e$ skeleton  $S_e$ **S**6  $S_e$  $\boldsymbol{S}_{e}$  $S_e$  $S_e$  $S_{5}$ recognizer  $S_e$  $S_e$  $S_e$  $S_e$ **S**6  $S_e$  $S_e$  $S_e$  $S_e$  $\boldsymbol{S}_{e}$  $S_e$  $\boldsymbol{S}_{e}$  $S_e$  $S_e$ 

Table encoding RE for the tighter register specification