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ABSTRACT

This thesis presents an implemented and evaluated methodology for disam-

biguating terms in search queries. By exploiting Wikipedia articles and their reference

relations, our method is able to disambiguate terms in particularly short queries with

few context words. This work is part of a larger project to retrieve information graphics

in response to user queries.
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Chapter 1

INTRODUCTION

Disambiguation is the fundamental, yet tantalizingly difficult problem of anno-

tating text so that each ambiguous term is linked to some unambiguous representation

of its sense. Wikipedia, the online encyclopedia hosted by the Wikimedia Foundation,

has garnered a lot of interest as a tool for facilitating disambiguation by providing

a semantic web of hyperlinks and “disambiguation pages” that associate ambiguous

terms with unambiguous articles [1, 2, 3, 4]. For an encyclopedia, English Wikipedia

is monolithic. It contains over 3.5 million articles which are interconnected by hun-

dreds of millions of user-generated links. Although errors do exist in articles and link

structure, Wikipedia’s strong editing community does a good job of keeping them to

a minimum.1

Wikipedia has several features that make it an excellent resource for disam-

biguation systems. First, Wikipedia articles are organized so that each one has a

single focused topic. All text that appears in an article can be safely assumed to dis-

cuss that article’s topic. Second, editors are encouraged to augment important words

in their articles with links so that a reader can click a word and read an article that

discusses it. Augmented words are called “anchor text”, and the links that augment

them provide clues as to which topics the anchor text could refer. Third, Wikipedia

provides disambiguation pages that list all articles that could be referenced by a given

1 Here, we refer primarily to technical issues such as duplicate articles or dead links.
However, a common criticism of Wikipedia is that its open nature makes the article
content susceptible to bias and error. For our purposes, we actually prefer common
misconceptions and biases to appear in Wikipedia’s text since they are likely to appear
in our input text as well.
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term. For example, there is a disambiguation page for the term “apple” that lists

the article Apple Inc., Apple (fruit), Apple Records, and more. Articles, links, and

disambiguation pages are jointly created by many human editors, so they are sensitive

to semantic meaning in a way that is difficult to find in other corpuses.

1�1 Wikimantic’s Role in Information Graphic Retrieval

This document describes the methods and performance of Wikimantic, a system

designed to disambiguate short queries. Wikimantic is part of a larger digital library

project to retrieve information graphics (bar charts, line graphs, etc.) that appear in

popular media such as magazines and newspapers. Such graphics typically have a high-

level message that they are intended to convey, such as Visa ranks first among credit

cards in circulation. Others[5, 6] have developed a system for identifying this high-

level message. We anticipate retrieving graphics relevant to a user query by relating

the query to a combination of the graphic’s intended message, any text in the graphic,

and the context of the associated article. To do this, we must first disambiguate the

words in the query.

Although there are many existing methods that extract semantic information

via disambiguation, most require large amounts of context terms or focus exclusively

on named entities [3, 4, 7, 8]. Our experiments have shown that most queries are very

short and that words other than named entities must be disambiguated. Thus, a more

robust method of disambiguation is required.

Our work has several novel contributions to disambiguation which are impor-

tant for information retrieval systems. First, we disambiguate text strings that to our

knowledge are the shortest yet. Second, our method is robust with respect to the terms

that can be disambiguated, rather than being limited to nouns or just named entities.

And third, our method can determine when a sequence of words should be disam-

biguated as a single entity rather than as a sequence of individual disambiguations.

Furthermore, our method does not rely on capitalization since users are notoriously

poor at correct capitalization of terms in their queries; this is in contrast to the text
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of formal documents where correct capitalization can be used to identify sequences of

words that represent a named entity.

1�2 Problem Definition

When we disambiguate a term, we are trying to identify the concept to which

the term refers. For the purpose of this paper, we say that a term refers to a concept

when a speaker (or author) uses that term to communicate the concept to a listener

(or reader). For example, the term “Apple” refers to Apple Inc when an author writes

“Apple” and means the company. Apple Inc is said to be the target of that reference.

Occasionally, the speaker will employ terms that do not directly refer to any concept.

These terms have no correct target and should be ignored. In order to identify such

terms, we make the simplifying assumption that all content words refer to a concept

and all function words do not. We say a term is salient if and only if it refers to some

concept.

When we disambiguate a sequence of terms, we seek to map each salient term

to the Wikipedia article that best represents the term in context. More formally, let

s = (t1� t2� . . . � t�s�) be a sequence of �s� terms. For every term tj, if tj is salient (not

a function word), we wish to generate a mapping tj → Ci where Ci is the Wikipedia

article that best defines the concept tj referenced. For example, given the sentence

“Steve Jobs resigns from Apple”, an acceptable mapping would link “steve” and “jobs”

to the Wikipedia article about Steve Jobs, the former CEO of Apple. “resigns” would

be mapped to the article titled Resignation, and “apple” would be mapped to the article

for Apple Inc. Mapping “apple” to the article Apple (fruit) would be unacceptable in

that context.

Thus, the output W of a disambiguation system can be seen as an ordered

collection of mappings. The correct output of “Steve Jobs resigns from Apple” would

be the following:

W = [(“steve” → Steve Jobs)� (“jobs” → Steve Jobs)� (“resigns” → Resignation)�
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(“apple” → Apple Inc.)]

It is important that “steve jobs” is broken into two mappings, even though they

collectively refer to the same man. This ensures that the outputs of two disambigua-

tion systems on the same input text will always contain the same number of mappings,

which keeps scoring consistent. A system cannot “cheat” by consolidating incorrect

mappings together or breaking a single correct mapping down into many correct map-

pings. Additionally, function words like “from” do not appear at all in the output.

Such words have no correct mapping and may be stripped from the input text before

the disambiguation system processes it.

The remainder of this document is organized as follows. Chapter 2 discusses

related research and Wikimantic’s contribution to it. Chapter 3 describes the underly-

ing principles and mechanics of Wikimantic’s method of disambiguation. In particular,

section 3.1 explains the theory behind our method and introduces the Concept abstrac-

tions we use to represent semantic information. Sections 3.2 and 3.3 explain how the

theory and Concept abstractions are exploited to interpret a text string and arrive at

a coherent set of disambiguations. Chapter 4 presents an evaluation of the Wikimantic

system and chapter 5 concludes with a general summary and suggestions for future

work.
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Chapter 2

RELATED WORK

2�1 Previous Solutions

Bunescu and Pasca are generally credited with being the first to use Wikipedia

as a resource for disambiguation [7]. They formulated the disambiguation task to be a

two step procedure where a system must (1) identify the salient terms in the text and (2)

link them accurately. To identify salient terms, they constructed a dictionary of about

500,000 named entities from Wikipedia and performed lookups to see which terms

could conceivably reference a known entity. However, there is a difference between

discovering salient terms and identifying the number of references that those terms

encode. “Romeo and Juliet” would appear in the dictionary as the name of the play

by Shakespeare. However, the dictionary alone is not enough to decide whether “Romeo

and Juliet” constitutes a single reference to the play Romeo and Juliet or two separate

references to the lead characters Romeo and Juliet, who each have their own articles

in Wikipedia. Although Bunescu and Pasca’s method is capable of detecting salience,

they seem to make the strong assumption that only one reference will ever exist in

their input string.

While Bunescu and Pasca’s work was initially limited to named entity disam-

biguation, Mihalcea[2] later developed a more general system that linked all “interest-

ing” terms. Mihalcea’s keyword extractor and disambiguator relied heavily on anchor

text extracted from Wikipedia’s inter-article links. When evaluating the disambigua-

tor, Mihalcea gave it 85 random Wikipedia articles with the linked terms identified but

the link data removed, and scored it based on its ability to guess the original target

of each link. Mihalcea achieved good precision and recall on this task, and we believe
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the vast amount of information in Wikipedia can be leveraged to perform even more

difficult tasks. In our evaluations, we assume that we are given full sentences that

contain both salient terms and unimportant terms that may not even be covered by

Wikipedia. This differs significantly from Mihalcea’s evaluation, where the only terms

in the test set that needed to be annotated were those that were already proven suit-

able for annotation by the human Wikipedia editors. Where Mihalcea was concerned

with imitating Wikipedia’s sparse links, we seek to identify and link as many terms as

possible.

ManyWikipedia based disambiguation systems use variants of Mihalcea’s method

which attempt to match terms in the text with anchor text from Wikipedia links [3, 9].

When a match is found, the term is annotated with a copy of the link. Sometimes, a

term will match anchor text from multiple conflicting links, in which case the system

must choose between them. Milne and Witten’s[3] contribution was to look for terms

that matched only non-conflicting links, and use those easy disambiguations to provide

a better context for the more difficult ones. Given a large enough text string, it’s

always possible to find at least one trivial term to start the process. However, short

strings do not reliably contain trivial terms.

Ferragina and Scaiella [1] addressed this problem by employing a voting system

that resolved all ambiguous terms simultaneously. They found that good results were

attainable with text fragments as short as 30 words each, which would allow for the

disambiguation of brief snippets from search engine results or tweets. Although their

results are very good, 30 words is still too large for the short queries we wish to process.

In our evaluation, we limit our full sentence queries to a maximum of 15 terms in length.

The average query length in our test set is just 8.9 words, including stop words.

Ratinov et. al [4] define a local disambiguation method to be one that disam-

biguates each term independently, and a global disambiguation method to be one that

searches for the best set of coherent disambiguations. Their recent work has shown that

the best ranking performance can usually be obtained by combining local and global

approaches. Although their system was limited to named entities, our performance
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seems to be best when combining our own local and global approaches as well.

2�2 Wikimantic’s Contribution

Wikimantic makes three major contributions to the above line of work. First, we

disambiguate text strings that to our knowledge are the shortest yet. This opens up a

wide range of applications that were previously closed to disambiguation systems. Short

text fragments like queries, captions, and labels on graphs can now be disambiguated

on their own. Most of the previous systems [1, 2, 3, 4, 8] require a large amount of

context which is often unavailable.

Second, our method is robust with respect to the terms that can be disam-

biguated. Wikimantic does not limit itself to just named entities, and it seeks to

disambiguate terms that are not precisely covered in Wikipedia by finding the best

available article. This means that more semantic information is extracted from fewer

words, leading to a more precise model of the query.

Third, our method does not require references to be identified beforehand. In

many disambiguation systems[2, 4, 7, 8], the input includes information about which

terms constitute a reference to some unknown concept. For example, Ratinov’s named

entity disambiguator is built on the assumption that the document is passed to the

system along with a set of “mentions” which identifies every substring in the document

that must be disambiguated. The sentence “Steve Jobs resigns from Apple” would have

the accompanying set (“Steve Jobs”, “Apple”). This greatly simplifies disambiguation

since there is no chance of mistakenly deciding that “Steve” and “Jobs” constitute two

separate references to the name Stephen and Job (Employment). One may wonder

whether it is realistic to assume that a preprocessing system could generate this set of

mentions without disambiguating them in the first place.

These contributions make Wikimantic more viable for information retrieval, es-

pecially when using short queries to search a corpus of information graphics. Since

graphics present their primary message visually, only small amounts of text can be

scraped from labels and captions. Even when a graphic is accompanied by an article,
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it is dangerous to rely entirely on the article text for disambiguation. During a corpus

study[10] to determine to what extent a graphic’s primary message was available in

an accompanying document, it was found that over half of the documents captured

little or none of the graphic’s primary message. Wikimantic’s ability to disambiguate

more words with less context allows us to avoid relying too heavily on the accompa-

nying article for context terms when disambiguating the graphic. It also allows us to

accurately disambiguate the short queries which have no accompanying article.

8



Chapter 3

APPROACH

This chapter covers Wikimantic’s approach to word sense disambiguation. We

introduce the process with a high level summary and then explain each step in detail.

We begin by defining a generative model which serves as the theoretical under-

pinning for Wikimantic’s implementation. The model is used to relate words and ideas

in a way that is both conceptually intuitive and mathematically well defined. Although

the model itself makes no direct claims as to the definitions and relationships of ideas

and words, it does provide a framework for extracting this data from Wikipedia. Using

the generative model in conjunction with Wikipedia, it is possible for Wikimantic to

estimate the probability of a particular idea being relevant to a particular text string.

With these estimates, Wikimantic can more or less bridge the gap between terms ex-

plicitly written in a text and the implicit semantic content of the text. Section 3.3

explains how we exploit this ability to perform word sense disambiguation.

3�1 Generative Model

Authors encode ideas into words and put the words on paper. A reader may

later take these words and decode them back into ideas. Our generative model is

based on the premise that every idea has certain associated words that are used to

talk about the idea. A person writing about the Apple Corporation may use terms like

“computer”, “iPhone”, “Steve”, or “Jobs”. A reader can use a priori knowledge about

these term-concept associations to know that the writer means Apple Corporation and

not the fruit when they just say “apple”.
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Our generative model makes the simplifying assumption that it is the ideas

themselves that generate terms in a text. When a writer wishes to write a docu-

ment or formulate a query about the Apple Corporation, we say that the idea of

Apple Corporation is actually generating the terms in the text directly. Therefore,

a query about Apple Corporation is likely to contain terms like “computer” and

“iPhone” due to the idea Apple Corporation’s propensity to generate such terms.

3�1�1 Concepts

We employ the object oriented paradigm to express the Generative Model in

terms of precisely defined polymorphic objects. The ideas that generate words in the

text are represented by �oncept objects. All objects of type Concept are defined to

have two important properties.

First, a Concept C has the property P (C), the prior probability that any given

term in any text will be generated by that Concept. For example, if Europe and

Queuing theory are Concepts, one would expect P (Europe) to be relatively high and

P (Queuing theory) to be relatively low. Many documents and conversations involve

Europe, but discussions about Queuing theory are comparatively rare. Thus, P (C) is

a measure of how likely it is that an author will write about C , using C to generate

terms in the text.

Second, a Concept C has the property P (t�C) for every term t. P (t�C) is

the probability that term t will be generated given that Concept C is generating.

This is just a formal way of saying that certain words are used to talk about certain

Concepts. One would expect P (“computer”�Apple Corporation) to be relatively high

and P (“chicken”�Apple Corporation) to be comparatively low.

Our generative model states that a text is generated term by term from some

topic �oncept. The a priori probability of a given Concept C being the topic Concept

of our text is denoted P (C). For every term t, there is a probability P (t�C) that C

will generate t as the next term in the text.
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Documents, queries, and other forms of text are all considered to be of one

type, TermSequence. If P (C) and P (t�C) are known, it is possible to take the terms

in a TermSequence and work backwards to find the probability that C generated the

TermSequence (see section 3.2.2). In order to get P (C) and P (t�C), we extract a set

of fundamental AtomicConcepts from Wikipedia.

3�1�2 Atomic Concepts

An AtomicConcept is defined to be a special subtype of Concept for which

P (C) and P (t�C) are known. By convention, we use A instead of C to represent

AtomicConcepts, so P (A) and P (t�A) are used to denote the prior and conditional

probabilities of a Concept which is Atomic.

We view each article in Wikipedia as a long TermSequence that was generated

by some AtomicConcept. Since every article is unique, there is a one to one map-

ping between articles and the AtomicConcepts that generate them. Everything that

is known about an AtomicConcept is approximated by examining the corresponding

Wikipedia article.1

Wikipedia editors are encouraged to annotate their text with links to other

Wikipedia articles that discuss AtomicConcepts mentioned in the annotated article.

Because of this, AtomicConcepts that are discussed frequently tend to be linked often,

and the fraction of incoming links can be used as a rough estimate of how often an

AtomicConcept is discussed. Thus, P (A) is estimated by counting the number of

inter-article links in Wikipedia that point to A.

P (A) =
number of incoming links

number of links in Wikipedia

1 Since each AtomicConcept is entirely defined by its corresponding article, we of-
ten use the words “AtomicConcept” and “article” interchangeably. For example, if
we say that AtomicConcept A links to AtomicConcept B, we are really saying that
the corresponding article for AtomicConcept A links to the corresponding article for
AtomicConcept B.
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To estimate P (t�A), we view the article body text as a sample of terms generated

by A. The probability of A generating a term t is:

P (t�A) =
count(t� A)

number of words in A

Because articles have finite length, some terms relevant to A won’t actually show

up in the body text of the article. For each term not present in the article, we smooth

the distribution by estimating the probability of A generating t to be the probability

of t occurring in the English language.2

Each AtomicConcept instance is a data structure that encodes important in-

formation about a single idea. The important information, like term frequencies and

incoming links, can each be represented as Vectors. These Vectors can in turn be

stored in a single Vector. Thus, an AtomicConcept is really just a Vector of Vectors,

and therefore the operations of addition and scalar multiplication can be applied to

AtomicConcepts. This property allows us to define a new kind of Concept called a

MixtureConcept in the next section.

3�1�3 Mixture Concepts

A MixtureConcept is defined to be a special subtype of Concept for which P (C)

and P (t�C) are unknown. For example, the topic Concept of the sentence “Steve

Jobs resigns from Apple” will not exist in our set of known AtomicConcepts because

Wikipedia does not contain an article specifically devoted to the resignation of Steve

Jobs. Wikipedia does, however, contain articles that cover Steve Jobs, Apple Inc, and

Resignation separately. To model an unknown topic, we construct a MixtureConcept

by expressing it in terms of other Concepts which are already known. By convention,

2 In Wikimantic, we use Microsoft n-Grams to give us P(t). Because probabilities from
the article and Microsoft n-Grams each sum to 1, the sum of P (t � A) over all possible
terms equals 2. In practice, estimated probability values for AtomicConcepts are always
stored as elements of normalized collections, which ensures that no probability value
falls outside the range [0,1]
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we use M instead of C to represent MixtureConcepts, so P (M) and P (t�M) are used

to denote the prior and conditional probabilities of a Concept which is a mixture.

Formally, a MixtureConcept is defined to be a weighted Vector of n Concepts,

where all the weights sum to 1. When a MixtureConcept generates a term, it randomly

selects one of the Concepts in its Vector to generate in its stead. The weight of

a Concept in the Vector tells us the probability that it will be the one selected to

generate.

Let MixtureConcept M =

n�

i=1

wi ∗ Ci

where wi = the weight of Ci in M

Thus, a MixtureConcept M can be viewed as a series of weighted Concepts added

together. The Concepts can be AtomicConcepts or MixtureConcepts, but ultimately M

is defined by AtomicConcepts since they are the fundamental building blocks we used

to build the MixtureConcepts in the first place. We can exploit this fact to simplify

MixtureConcepts as sums of AtomicConcepts even though they are technically allowed

to contain Concepts of any type. We will use this to show that for any linear function

over AtomicConcepts, one can always construct an equivalent function that operates

on MixtureConcepts.

Let f be a linear function that takes an AtomicConcept A and returns some

output y.

Let M =
�n

i=1wi ∗ Ci be a MixtureConcept of n Concepts.

Due to the Additivity property of linear functions,

f(A� + A1 + ...+ An) = f(A�) + f(A1) + ...+ f(An)

Due to the Homogeneity property of linear functions,

α ∗ f(A�) = f(α ∗ A�)

Since M can be written as the weighted sum of AtomicConcepts,

f(M) = f(w� ∗A�+w1 ∗A1+ ...+wn ∗An) = w� ∗f(A�)+w1 ∗f(A1)+ ...+wn ∗f(An)
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Thus, any linear function over AtomicConcepts can also be applied to Mix-

tureConcepts3. Since all Concepts are either AtomicConcepts or MixtureConcepts,

such functions can always be applied to Concepts.

f(C) =

�




f(A)� if C is of type AtomicConcept

f(M)� if C is of type MixtureConcept

In section 3.1.2, we defined functions to compute P (A) and P (t�A). These

functions can be applied to MixtureConcepts due to their Additive and Homogenous

properties.

P (M) =

n�

i=1

wi ∗ P (Ci) (3.1)

P (t�M) =
n�

i=1

wi ∗ P (t�Ci)

3�2 Interpreting Text with a Topic Concept

Let s be a TermSequence we wish to summarize. The generative model states

that each TermSequence was generated term by term from some topic Concept. We

wish to interpret s by building a MixtureConcept T which models its topic Concept.

Constructing T is a two step procedure in which we populate with AtomicConcepts

and then weight them. Our base method uses the content of an AtomicConcept’s

Wikipedia article to estimate its weight in T , but these weights can optionally be

refined with an algorithm called ReferenceRank. Either way, the result is a weighted

sum of AtomicConcepts which together constitute the MixtureConcept T .

3 Interestingly, the reverse is also true. An AtomicConcept A can always be typecast
to an equivalent MixtureConcept by defining M to be a Mixture of just A. M =�n

i=1 1 ∗ A. Thus, any linear function f(M) over MixtureConcepts can be applied to
any AtomicConcept.
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3�2�1 Populating the Topic Concept

To find AtomicConcepts that belong in T , we look at every subsequence of

terms in s and attempt a direct lookup in Wikipedia. Any article that has a title that

matches a subsequence of terms in s is added to T . Any article that is disambiguated

by a page whose title matches a subsequence of terms in s is also added to T . Finally,

all articles that share a disambiguation page with an article already in T are added.

For example, if s = “Steve Jobs resigns”:

Steve→Matches title of Disambiguation page “Steve”. Add all articles disambiguated

by that page.

Jobs→Matches the title of a redirect page that points to Jobs �Role). Add Jobs �Role)

and all other articles that Jobs �disambiguation) link to.

Resigns → Matches the title of a redirect page that points to Resignation. Add

Resignation and all other articles that Resignation �disambiguation) link to.

Steve Jobs → Matches the title of article for Steve Jobs, the entrepreneur.

Jobs Resigns → Matches nothing, so no articles added.

Steve Jobs Resigns → Matches nothing, so no articles added.

3�2�2 Weighting the Topic Concept according to the Generative Model

Once our MixtureConcept T is populated, it will contain a large number of

Concepts of varying degrees of relevance, and we rely on weighting to diminish the

influence of spurious Concepts.

We weight each Concept according to the probability that every term in s was

generated by that Concept in sequence, ignoring stopwords.

wi = P (Ci�s) =

�s��

j=1

P (Ci�tj) (3.2)

P (Ci�tj) =
P (tj�Ci) ∗ P (Ci)

P (tj)
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This weighting schema ensures that a Concept will only get a high score if

it is likely to generate all terms in the sequence. A Concept like Jobs (Role) may

have a high probability of generating “jobs”, but its low probability of generating

“steve” will penalize it significantly. We can expect the Concept Steve Jobs to generate

“steve”, “jobs”, and “resigns” relatively often, which would give it a larger weight

than Jobs (Role) would get. Occasionally there will be an unrelated Concept that

happens to have a high probability of generating all context words. To avoid assigning

undue significance to such spurious Concepts, the weights of T can be refined with an

additional algorithm called ReferenceRank.

3�2�3 ReferenceRank

ReferenceRank is an algorithm that takes T as an input and refines the weights

to produce a new topic Concept TR. Consider the following examples where unrefined

T might be misleading.

T1 = 0.5 ∗ Apple Inc.+ 0.5 ∗Whole Foods

T2 = 0.5 ∗ Apple Inc.+ 0.2 ∗ iPhone+ 0.2 ∗ Apple Safari+ 0.1 ∗ iPad

In the text described by T1, the topic is 50% about Apple Inc. and 50% about

the grocery store Whole Foods. In the text described by T2, the topic is 50% about

Apple Inc. and 50% about various Apple products. Since iPhone, Apple Safari, and

iPad are all Concepts that are likely to generate the term “apple” (referring to the

company), one would expect Apple Inc. to be referenced more often in T2 than T1.

However, Apple Inc. is weighted equally in T1 and T2. It’s subtle, but there is a very

real difference between the probability that a Concept will generate terms in our query

and the probability that a Concept will appear in our query. To account for this, we

extend our generative model by making the claim that Concepts generate references

to other Concepts as well as terms.

When AtomicConcept A1 generates a reference, the probability that the refer-

enced Concept is A2 is estimated as the probability that clicking a random link in A1’s

article will lead directly to the article for A2.
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P (R�2
�A1) =

number of links from A1 to A2

total number of links originating at A1

Remember that in section 3.1.3 we showed that any function that takes Atom-

icConcepts can be applied to MixtureConcepts as well. Since all Concepts are either

AtomicConcepts or MixtureConcepts, we can calcuate P (RC2
�C1) for any Concepts C1

and C2. For example, if C1 and C2 were both MixtureConcepts P (RC2
�C1) would be

calculated as follows.

P (RC2
�C1) =

�C���

i=1

�C2��

j=1

wi ∗ wj ∗ P (RC2[j]�C1[i])

where C1[i] is the i
th Concept in C1

and C2[j] is the j
th Concept in C2

To compute TR, we populate it with every Concept from T and weight each

Concept by T ’s probability of generating a reference to that Concept.

Let topic Concept TR =
n�

i=1

wi ∗ Ci

where wi = P (RC�
�T )

This process is very similar to one iteration of the PageRank[11] algorithm,

where nodes in a graph vote for other nodes to which they link. In our case, Concepts

in T vote for Concepts in TR using the links in their Wikipedia articles. The power of

a Concept’s vote is proportional to the weight of that Concept in T .

In section 3.2.2, we described how to weight Concepts in T according to their

probabilities of generating s. In this section, we explained how the weights of T can

be refined to produce TR, where Concepts are weighted according to the probability

of being the target of a reference generated by T . Since the goal of disambiguation

is to identify term → Concept references, one would expect TR to provide all the

information needed to identify the most probable Concepts. As it turns out, TR’s

reliance on Wikipedia’s relatively sparse link structure can make it unreliable at times.
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“Do Life Savers cause tooth decay?” is a perfectly reasonable query, but there are no

direct links between the articles for Life Savers and Tooth decay. This means that

neither will vote for the other and their weights in TR will be much lower than one

would expect. Although TR is useful when links are found, it must be supplemented

with information from T . For this reason, the Concept TM = (1− d) ∗ T + d ∗ (TR) is

used. The optimal value of d is determined experimentally.

3�3 Disambiguation

In this section, we describe how we use our weighted Concept to arrive at a

final collection of disambiguation mappings. Our general approach here is to generate

a number of candidate collections and find the most likely one by scoring them with

one of two methods.

3�3�1 Determining the Number of References

In many disambiguation papers[2, 4, 7, 8], the important term strings are as-

sumed to be marked ahead of time and the system must simply choose the single best

Wikipedia article for the marked string. In real world queries, the number of mappings

are not known a priori, which makes disambiguation considerably more difficult. Does

“life saver” refer to the brand of candy or a person who saved a life? If we are talking

about junk food, then “life saver” should entail a single mapping to the AtomicConcept

Life Saver, otherwise it entails two separate mappings to Life and Saver. Although

these kinds of conflicts seem like they should be rare, the vast coverage of Wikipedia

actually makes them common. Company names, book titles, and music album titles

are particularly troublesome since they are often common phrases; moreover, they are

often the topics of graphs in popular media and thus occur in user queries for these

graphs.

Disambiguation would be straightforward if these conflicts didn’t occur. For

each term t, one could simply choose the AtomicConcept A that maximizes P (A�s)

from the list of all AtomicConcepts that were added to T by t in Section 3.2.1.
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Figure 3�1: Product method’s scoring of four possible disambiguations of “new york
city”.

However, if a problematic sequence of terms like “life saver” or “new york city”

is found, every possible breakdown of the sequence must be considered separately. Each

breakdown yields a unique candidate collection of disambiguations that our approach

scores according to its probability of being the correct one. The scoring is calculated

using either the Mixture method or the Product method.

3�3�2 Product Method

The Product method scores a candidate collection as the product of the proba-

bilities of each mapping of term to AtomicConcept. Figure 3.1 depicts the four candi-

date collections that are considered when the string “new york city” is broken down.

We use italics to refer to AtomicConcepts by name, so P (ConceptNew�s) refers to the

probability of the Concept New being the disambiguation of the term “new”. The first

collection contains the three AtomicConcepts New, Y ork, and City. The score of the

collection is simply the product of their probabilities multiplied together. When n ad-

jacent terms should be disambiguated as a single entity, the Product method scores it

as n disambiguations of the entity, as shown by the fourth row in Figure 3.1, where the

score for the sequence “new york city” is P (ConceptNew Y ork City) to the third power.

3�3�3 Mixture Method

The Mixture method treats a collection of possible disambiguations as a mixture

of the AtomicConcepts that disambiguate terms in the collection. The AtomicConcepts

in Mcollection are given equal weight. Under the Mixture method, a collection’s score
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Figure 3�2: Mixture method’s scoring of four possible disambiguations of “new york
city”

is simply equal to the average of the probability values of all AtomicConcepts in the

collection; once again, n adjacent terms that were disambiguated as referring to a single

entity are counted as n disambiguations. For example, the fourth line of Figure 3.2

shows the sequence “new york city” being disambiguated as a single entity but the

score in this case is just the probability of the concept New York �ity (ie., the average

of the scores for three disambiguations of the sequence).

3�3�4 Alternative Methods

When formulating the Product and Mixture methods, we devised a number

of alternative methods for choosing the best collection of possible disambiguations.

We ruled out these methods during our preliminary tests, but feel that it may be

illuminating to describe them here.

The “Use-Best” method was a simple alternative where the system would resolve

conflicts by choosing the collection that contained the single most probable Concept,

no matter how unlikely the other Concepts in the collection may be. The intuition was

that it was more important to rely on our most certain Concept than worry about the

unlikely mappings, but the method had issues when the input text contained multiple

conflicts. If Steve Jobs is the most likely concept in “steve jobs apple computer”, any

collection that resolves “steve jobs” correctly will get the maximum score, regardless

of how well it resolves “apple computer”. Use-Best was not capable of achieving good

performance due to its simplistic scoring.
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Figure 3�3: Tagger method’s scoring of three possible disambiguations of “new york
city”

The Tagger method was an alternative that first analyzed the text with a part

of speech tagger and broke the sentence into noun phrases. For each noun phrase,

the Tagger method considers every possible substring of the phrase that ends with the

last term in that phrase. Each substring is assumed to be a collective reference to

a single concept, and the single most likely reference in the noun phrase is selected

as correct. The strength of the Tagger method is that it greatly simplifies scoring.

There is never a situation in which a set of multiple mappings must be compared

against a single mapping. Additionally, there are much fewer possible disambiguations

to compare, which makes things more efficient. Unfortunately, there are some critical

disadvantages that make it infeasible from a practical and theoretical standpoint. First,

the method’s accuracy is greatly limited by accuracy of the part of speech tagger. A

single incorrect tag can break a noun phrase apart or join two of them together, causing

every term in the phrase to be incorrectly disambiguated. Since the performance of

this method is intrinsically linked to the performance of the part of speech tagger, it

is difficult to isolate the weaknesses of the method from the weaknesses of the tagger

during evaluation. Second, the tagger expects to receive grammatically correct full

sentences as input. This greatly limits the potential uses of Wikimantic, and seems to

be an unreasonable constraint for a system that operates on actual user queries which

may contain grammatical errors.
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Chapter 4

EVALUATION

4�1 Experiment Setup

Wikimantic includes four possible combinations of methods for disambiguation:

the Product and Mixture methods with T as the topic Concept and the Product

and Mixture methods with (1-d)*T+d*TR as the topic Concept. Each method was

evaluated using 70 queries from the Trec 2007 QA track and 26 queries collected for

our Information Graphic Retrieval project. Since the goal of Wikimantic was to handle

short grammatically correct full sentence questions, we found that the QA track suited

our needs fairly well. The queries acquired from the Information Graphic Retrieval

Project were collected from human subjects who were given information graphics and

told to write queries they might have used to find them.

All queries contain at least one (but usually more) salient word that must be

disambiguated. The word count of each query is no less than 4 and no greater than 15.

Out of the 850 words in the set, evaluators identified about 349 nouns (they disagreed

on a couple due to ambiguous phrasing of the queries). About 110 words were content

words that were not nouns. We present results for disambiguating just nouns and for

disambiguating all non-function words.

To measure correctness, we gave the system output to two human evaluators and

instructed them to decide for each term whether the mapped page correctly described

the meaning of the word as it was used in the query. The general rule was that a

mapping was wrong if a significantly better page could be found for the term. For non-

nouns, it was considered correct if a verb or adjective was linked to its noun-equivalent

article. For example, it would be acceptable to annotate the term “defect” (to betray)
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with the page Defection. If a term appeared in the query with a sense that has no

equivalent article in Wikipedia, the evaluators were instructed to mercilessly mark the

output wrong.

4�2 Results

Tables 4.1 and 4.2 present statistics on precision and recall for the four methods.

Precision is equal to the number of terms correctly mapped to concepts divided by the

number of terms mapped by the system. Recall is equal to the number of correct

mappings divided by the number of terms fed to the system. All Precision and Recall

measures are displayed as percentages.

Performance (Nouns Only)
Topic Concept: T Concept: (1-d)*T+d*TR

Mixture Product Mixture Product
Precision 78.71 80.51 81.38 82.76
Recall 75.21 76.93 77.65 79.08

F-Measure 76.92 78.68 79.47 80.88

Table 4�1: Performance on Nouns Only

Overall, the Product method fared better than the Mixture method, and per-

formance was better on nouns than on non-nouns. With the Mixture method, it’s

possible for an obviously incorrect mapping of one term to be offset by a high scoring

Performance (All Terms)
Topic Concept: T Concept: (1-d)*T+d*TR

Mixture Product Mixture Product
Precision 66.82 68.28 69.52 70.57
Recall 61.47 62.45 63.96 64.61

F-Measure 64.04 65.23 66.62 67.46

Table 4�2: Performance on all Non-function Words
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mapping of another. With the Product method, a mapping with a near-zero probabil-

ity will cause the score for the entire collection to be near-zero. The Product method

is therefore a more conservative scoring method that favors well rounded collections

over collections with some very likely and very unlikely references.

Wikimantic’s exceptional performance on nouns seems to be partly due to

Wikipedia’s greater coverage of nouns. Certain verbs like “established”, “occur”,

and “withdraw” don’t have any article in Wikipedia, even though they are relatively

common terms. Verbs also have many conjugations which can lead to errors since

Wikimantic does not support stemming. A detailed analysis of Wikimantic’s output

revealed that precision on non-nouns was 25%, significantly worse than precision on

nouns (82.76%).

Fortunately, most salient terms seem to be nouns. In our test queries, we found

that 349 out of 459 content words were nouns. Interestingly, the ratio of nouns to non-

nouns differed greatly between the QA test set and the Information Graphic Retrieval

Project queries. The QA test set contained 253 nouns and only 62 non-nouns, which

is a 4:1 ratio. The Information Graphic Retrieval Project queries contained 97 nouns

and 46 non-nouns, a 2:1 ratio. Although the combined test set contains mostly nouns,

a closer examination seems to suggest that not all text is written the same way. To

get optimal results with Wikimantic, it is important to be aware of the ratio of nouns

to non-nouns in the text that is being processed.

For each of the two methods described in Section 3.3, we evaluated Wikimantic

using the mixture (1− d) ∗ T + d ∗ TR with varying values of d. Improved performance

occurred for small values of d (d<.2). Although the optimal value of d was found

to be very small (d = 0.0001), the effects of ReferenceRank were still surprisingly

significant. MixtureConcepts often get weighted in such a way that one AtomicConcept

has virtually all the weight, which gives it extremely high voting power. The top

AtomicConcept’s votes are then so powerful that they have disproportionate sway over

the lesser AtomicConcepts. The small value of d works to balance this out.

Based on our results, the approach of interpreting text with Concepts extracted
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from Wikipedia seems to work. The best results are achieved when mixing T with TR

and then applying the Product method to arrive at the best collection of disambiguation

mappings. Even with short queries, we are able to get good precision and recall values

that suggest Wikimantic has real potential as a disambiguator.
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Chapter 5

CONCLUSION AND FUTURE WORK

5�1 Conclusion

In this paper, we formulated a theoretical model which served as the basis of the

Wikimantic implementation. Using this theoretical model, we are able to provide an

intuitive and mathematical backing for our system that both illuminates and validates

the most fundamental operations of Wikimantic. Our model is also extensible. In

section 3.1.3, we showed that any linear function over AtomicConcepts can also be

applied to MixtureConcepts in a meaningful way. Thus, the theoretical model supports

the addition of new functions without altering the fundamental framework. Although

Wikimantic was implemented and evaluated using the September 2011 dump of English

Wikipedia, our model assumes very little about the actual content of the underlying

wiki. In theory, the model could be used with other language versions of Wikipedia to

apply the principles of Wikimantic to other languages.

We implemented and evaluated Wikimantic to demonstrate the feasibility of

using the theoretical model on actual search queries. We found that although our im-

plementation worked most effectively on nouns, it was robust enough to handle queries

that included other parts of speech as well. Our method is unique in that it can handle

exceptionally short queries without reliance on capitalization or prior knowledge about

which terms collectively refer to single entities. Employing the ReferenceRank algo-

rithm helped refine the results so that resulting disambiguations were more coherent.

Overall, we are satisfied with the performance of Wikimantic when it comes to word

sense disambiguation, and confident in Wikimantic’s potential as the subject of future

work.
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5�2 Future Work

For the purpose of this paper, disambiguation is a good task to demonstrate

Wikimantic’s adaptability and sensitivity to context when interpreting a string. How-

ever, there are more features of Wikimantic that have a lot of potential for use in an

actual IR system.

In section 3.2, we explained how to convert a TermSequence to a topic Concept

T that encodes a summary of the TermSequence’s implicit semantic content. NLP

systems are often concerned with relevance between texts, and one may wonder if there

is a meaningful way to measure the relevance between any two arbitrary Concepts. Up

to this point, we assumed any system that incorporated Wikimantic would compute

relevance by disambiguating the texts and comparing the results. In practice, relying

on disambiguation to guide relevance judgments will cause two serious issues that may

effect accuracy.

First, errors incurred during disambiguation will be silently propagated through

to the relevance calculation. Suppose that a disambiguation system is run on two

strings that mention Apple Inc, but the term “apple” from one of the strings is erro-

neously disambiguated to Apple (fruit). If one were to naively compare the disam-

biguations of the two strings, they would appear to discuss very different Concepts and

receive a relevance score that is too low.

Second, two relevant texts could be correctly disambiguated but share no refer-

ences to the same concepts. One would expect a text about bicycles to be tangentially

related to a text about motorcycles, even if the text about motorcycles never explicitly

mentions bicycles. However, it would be difficult for a system that relies entirely on

the output of a disambiguator to detect the relevance of the two related yet distinct

Concepts.

The source of both of these issues seems to be in the definition of the disam-

biguation task. To conform to the task requirements, Wikimantic must take each term

and respond with the single most likely Concept to which the term refers. If Wikiman-

tic identifies other less likely (but still plausible) alternatives, they will not be included
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in the output. In this way, disambiguation necessarily leads to information loss, espe-

cially when the disambiguator is forced to make poorly informed guesses about truly

ambiguous text.

Fortunately, this information loss only occurs at the very end of Wikimantic’s

disambiguation process, after the topic Concept is estimated but before the final dis-

ambiguation candidate is selected. To compare the relevance of two texts, it might be

more effective to compare the topic Concepts of each text directly.

5�2�1 Conditional probabilities

In section 3.2.3, we employed ReferenceRank to refine a Concept’s weight ac-

cording to its relevance with all other Concepts in the topic Concept. ReferenceRank

relied on the assumption that two relevant Concepts would link to each other, but was

somewhat unreliable due to the sparsity of linked words in article text. This prompted

us to formulate a new method which examines more links and has a stronger mathe-

matical backing. Instead of unreliably trying to divine an estimate for the subjective

notion of relevance, we instead compute the conditional probability P (C1 � C2) of dis-

cussing a Concept C1 given that another Concept C2 is known to be discussed. As

usual, we will first define this function in terms of AtomicConcepts, and defer to the

results of section 3.1.3 to guarantee that it must apply to all Concepts.

Suppose we wish to find the coreference probability of AtomicConcept A1 given

AtomicConcept A2. By the definition of conditional probability:

P (A1 � A2) =
P (A1 ∩ A2)

P (A2)

If we stick to our assumption (from section 3.1.2) that a link to an Atom-

icConcept implies it was discussed, we can interpret the above formula to get the

following:

P (A1 � A2) =
number of articles that link to both A1 and A2

number of articles that link to A2
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Essentially, we define the coreference probability of AtomicConcept A1 given

AtomicConcept A2 to be the conditional probability that some article that links to A2

will link to A1 as well. For example, to compute P (Philosophy � Socrates), we would

divide the number of articles that simultaneously link to Philosophy and Socrates by

the total number of articles that link to Socrates. Since nearly every discussion about

Socrates is also about philosophy to some extent, we would expect P (Philosophy �

Socrates) to be very high. Interestingly, coreference probabilities are not necessarily

symmetric. Socrates is just one of many philosophers, and it is entirely possible to

discuss Philosophy without ever mentioning Socrates. Therefore, one might expect

P (Socrates � Philosophy) to be much lower than P (Philosophy � Socrates), though

still larger than something irrelevant like P (Socrates � Hard disk drive). 1

5�2�2 Practical applications of conditional probability calculations

This method of calculating conditional probabilities has many applications, and

not just as a replacement for ReferenceRank. When combined with our method of

generating a topic Concept, we have an extremely powerful tool for directly comparing

text strings. Suppose we wish to compare string s1 =“steve jobs announces iphone”

with string s2 =“apple ipad sale”. Using the topic Concept estimation method from

section 3.2, we can construct topic Concepts C1 and C2 for the strings. We can then

compute P (C1 � C2) or P (C2 � C1) to find the probability that the semantic content of

string s1 will appear in a discussion including the semantic content of string s2.

Comparing strings in this way has three very important advantages over tra-

ditional string comparisons that operate on terms directly. First, Wikimantic is able

to recognize strings that discuss similar topics even when the strings themselves have

no terms in common. In the above example, Wikimantic can pretty confidently gen-

erate precise topic Concepts for s1 and s2 because they contain the terms “iphone”

1 Although this method has not yet been formally evaluated on a large test set as of
this writing, our current version of Wikimantic does indeed yield the expected results
for this particular example.
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and “ipad”, which frequently appear in the articles for Steve Jobs and Apple Inc.

Steve Jobs, Apple Inc, iPhone, and iPad cooccur frequently in Wikipedia, meaning

many of their incoming links originate from the same articles. This leads to a high

value for P (C1 � C2) and P (C2 � C1), even though s1 and s2 share no similar terms.2

The second advantage of Wikimantic with coreference probabilities is its ability

to do the right thing when given text that it cannot confidently interpret, whether

due to its own limitations or a lack of context. Suppose we tasked Wikimantic with

comparing s1 =“apple” and s2 =“orange”. With no context to speak of, Wikimantic

is forced to model s1 using a pretty evenly weighted topic Concept C1 that is part

Apple Inc, part Apple (fruit), and part Apple Records. Likewise, it is also forced to

model s2 with an equally non-committal topic Concept C2 which is roughly equal parts

Orange (telecommunications), Orange (colour), and Orange (fruit). Even though

both sentences are extremely ambiguous, there are many interpretations in which s1 and

s2 are relevant. Apple Inc does business with the companyOrange (telecommunications)

and Apple (fruit) is related to Orange (fruit) for obvious reasons. Since computing

P (C1 � C2) computes the conditional probability of every Concept in C1 given every

Concept in C2, we are computing the coreference probability for all possible interpre-

tations, weighted appropriately. Thus, in the absence of context terms, coreference

probability comparisons will yield appropriate probability values, which is a major ad-

vantage over disambiguators that must commit to the “least wrong” interpretation of

each string.

The third and final advantage is its simplicity and versatility in practical ap-

plications. From a programmer’s perspective, the coreference probability calculation

2 One may argue that term coocurrence methods could be used to detect relevance
between strings that don’t share similar terms. However, ambiguous terms like “steve”,
“jobs”, and “apple” occur often in other contexts but mean different things. Since jobs
is such a common term outside the context of Apple Inc, it could easily be dismissed
as a “useless” term with a low TF-IDF and no strong relation to apple in particular.
Nevertheless, it would be interesting to see how Wikimantic compares to an n-gram
model in a formal evaluation.
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function takes two strings and outputs a real number between zero and one. Little

to no knowledge of Wikipedia or the generative model is actually required in order to

reap their benefits, and the output format is a primitive type in almost every language.

With Wikimantic, the complexities of polysemy and synonymy are completely encap-

sulated and hidden from the programmer without discarding useful information. This

allows the programmer to operate on a higher level of abstraction, reducing the scope

of the project and freeing up development time to improve performance or add new

features.
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