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In recent years, the x coefficient of agreement has become the de facto standard to evaluate
intercoder agreement for tagging tasks. In this squib, we highlight issues that affect x and that
the community has largely neglected. First, we discuss the assumptions underlying different
computations of the expected agreement component of . Second, we discuss how prevalence and
bias affect the x measure.

In the last few years, coded corpora have acquired an increasing importance in ev-
ery aspect of human language technology. Tagging for many phenomena, such as dia-
logue acts (Carletta et al., 1997; Di Eugenio et al., 2000), requires coders to make subtle
distinctions between categories. The objectivity of these decisions can be assessed by
evaluating the reliability of the tagging, namely, whether the coders reach a satisfying
level of agreement when they perform the same coding task. Currently, the de facto
standard to assess intercoder agreement is the x coefficient, which factors out expected
agreement (Cohen, 1960; Krippendorff, 1980). « had long been used in content analysis
and medicine, e.g. in psychiatry to assess how well students’ diagnoses on a set of test
cases agree with expert answers (Grove et al., 1981). Carletta (1996) deserves the credit
for bringing x to the attention of computational linguists.

k is computed as %f;)‘g). P(A) is the observed agreement among the coders,
and P(E) is the expected agreement, that is, P(E) represents the probability that the
coders agree by chance. The values of x are constrained to the interval [-1,1]. k =1
means perfect agreement, k = 0 means that agreement is equal to chance, and x = -1
means “perfect” disagreement.

This squib addresses two issues that have been neglected in the computational lin-
guistics literature. First, there are two main ways of computing P(E), the expected agree-
ment, according to whether the distribution of proportions over the categories is taken
to be equal for the coders (Scott, 1955; Fleiss, 1971; Krippendorff, 1980; Siegel and Castel-
lan, 1988) or not (Cohen, 1960). Clearly, the two approaches reflect different conceptual-
izations of the problem. We believe the distinction between the two is often glossed over
because in practice the two computations of P(E) produce very similar if not the same
outcomes in most cases, especially for the highest values of . However, first, we will
show that they can indeed result in different values of x, that we will call k-, (Cohen,
1960) and ksgc (Siegel and Castellan, 1988). These different values can lead to contra-
dictory conclusions on intercoder agreement. Moreover, the assumption of equal distri-
butions over the categories masks the exact source of disagreement among the coders.
Thus, it is detrimental if such systematic disagreements are to be used to improve the
coding scheme (Wiebe, Bruce, and O’Hara, 1999).

Second, « is affected by skewed distributions of categories (the prevalence problem)
and by the degree to which the coders disagree (the bias problem). That is, for a fixed
P(A), the values of « vary substantially in the presence of prevalence and / or bias.
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We will conclude by suggesting that x¢, is a better choice than ksg ¢ in those stud-
ies whether the assumption of equal distributions underlying xsg.c does not hold —
the vast majority if not all of discourse / dialogue tagging efforts. However, as k¢, suf-
fers from the bias problem but xsg ¢ does not, ks should be reported too, as well as
a third measure that corrects for prevalence, as suggested in (Byrt, Bishop, and Carlin,
1993).

1 The computation of P(E)

P(E) is the probability of agreement among coders due to chance. The literature de-
scribes two different methods for estimating a probability distribution for random as-
signment of categories. In the first, each coder has a personal distribution, based on that
coder’s distribution of categories (Cohen, 1960). In the second, there is one distribution
for all coders, derived from the total proportions of categories assigned by all coders
(Scott, 1955; Fleiss, 1971; Krippendorff, 1980; Siegel and Castellan, 1988).*

We now illustrate the computation of P(E) according to these two methods. We will
then show that the two resulting ¢, and kgsgc may straddle one of the significant
thresholds used to assess the raw « values.

The assumptions underlying these two methods are made tangible in the way the
data is visualized, in a contingency table for Cohen, and in what we will call an agreement
table for the others. Consider the following situation. Two coders’® code 150 occurrences
of Okay’s, and assign to them one of the two labels Accept or Ack(nowledgement) (Allen
and Core, 1997). The two coders label 70 occurrences as Accept, and another 55 as Ack.
They disagree on 25 occurrences, which one coder labels as Ack, and the other as Accept.
In Figure 1, this example is encoded by the top contingency table on the left (labeled
Example 1) and the agreement table on the right. The contingency table directly mirrors
our description. The agreement table is a N x m matrix, where N is the number of items
in the data set and m is the number of labels that can be assigned to each object — in
our example, N = 150 and m = 2. Each entry n;; is the number of codings of label j to
item 4. The agreement table in Figure 1 shows that occurrences 1 through 70 have both
been labelled as Accept, 71 through 125 as Ack, and 126 to 150 differ in their labels.

Agreement tables lose information. When the coders disagree, we cannot recon-
struct which coder picked which category. Consider Example 2 in Figure 1. The two
coders still disagree on 25 occurrences of Okay. However, one coder now labels 10 of
those as Accept and the remaining 15 as Ack, whereas the other labels the same 10 as Ack
and the same 15 as Accept. The agreement table does not change, but the contingency
table does.

Turning now to computing P(E), Figure 2 shows, for Example 1, Cohen’s computa-

1 To be precise Krippendorff uses a computation very similar to Siegel & Castellan’s to produce a statistic
called a. Krippendorff computes P(E) (called 1 — De in his terminology) with a
sampling-without-replacement methodology. The computations of P(E) and of 1 — De show that the
difference is negligible:
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2 Both kgg o (Scott, 1955) and k¢, (Cohen, 1960) were originally devised for two coders. Each has been
extended to more than two coders, e.g., respectively (Fleiss, 1971) and (Bartko and Carpenter, 1976). Thus,
without loss of generality, our examples involve two coders.
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Example 1
Coder 2
Coder 1 Accept  Ack
Accept 70 25 95
Ack 0 55 55
70 80 150
Example 2
Coder 2
Coder 1 Accept  Ack
Accept 70 15 85
Ack 10 55 65
80 70 150
Figure 1

Kappa, a second look

Accept  Ack
Okay; 2 0
Okayg 2 0
Okayr; 0 2
Okayi2s 0 2
Okayi26 1 1
Okayso 1 1

165 135

Cohen’s contingency tables (left) and Siegel & Castellan’s agreement table (right)

Assumption of different distributions among
coders (Cohen)

Step 1. For each category j, compute the over-
all proportion p;; of items assigned to j by
each coder [. In a contingency table, each row
and column total divided by N corresponds
to one such proportion for the corresponding
coder.

PAccept,1 = 95/15Oy PAck,1 = 55/150,

DAccept,2 = 70/150, pack,2 = 80/150

Step 2. For a given item, the likelihood of both
coders independently agreeing on category j
by chance is p;,1 * pj,2.

PAccept,1 *PAccept,2 = 95/150*70/150 = 0.2956
DAck,1 * Pack,2 = 55/150 % 80/150 = 0.1956

Step 3. P(E), the likelihood of coders acciden-
tally assigning the same category to a given
item is:

>, Pin *pj2 = 0.2956 + 0.1956 = 0.4912

Step 4.
Kco =  (0.8333-0.4912)/(1 - 0.4912)=
.3421/.5088=0.6724
Figure 2

Assumption of equal distributions among
coders (Siegel & Castellan)

Step 1. For each category j, compute p;, the
overall proportion of items assigned to 5. In
an agreement table, the column totals give
the total counts for each category 7, hence:

Pi = wp X D Mij
PAaccept = 165/300=0.55, pacr = 135/300=0.45

Step 2. For a given item, the likelihood of both
coders independently agreeing on category j
by chance is p3.

Phceept = 0.3025

pher = 0.2025

Step 3. P(E), the likelihood of coders acciden-
tally assigning the same category to a given
item is:

>2;P; = 0.3025 +0.2025 = 0.5050

Step 4.
ksge = (0.8333-0.5050)/(1 - 0.5050)=

.3283/.4950=0.6632

The computation of P(E) and x according to Cohen (left) and to Siegel & Castellan (right)

tion of P(E) on the left, and Siegel & Castellan’s computation on the right. We include the
computations of k¢, and kgg ¢ as the last step. For both Cohen and Siegel & Castellan,
P(A) = 125/150 = .8333. P(A) is computed as the proportion of items the coders agree on
to the total number of items. N is the number of items, k& the number of coders. N=150
and k=2 in our example. Both k¢, and ksgc are highly significant at the p = 0.5 % 10~°
level (significance is computed for k¢, and ksgc according to the formulas in (Cohen,
1960) and (Siegel and Castellan, 1988) respectively).

The difference between k¢, and ksgc in Figure 2 is just under 1%, however it
straddles the value .67, which for better or worse has been adopted as a cutoff in com-
putational linguistics. It is based on the assessment of x values in (Krippendorff, 1980),
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Example 3 Example 4
Coder 2 Coder 2
Coder 1 Accept  Ack Coder 1 Accept  Ack
Accept 90 5 95 Accept 45 5 50
Ack 5 0 5 Ack 5 45 50
95 5 100 50 50 100

P(A) =0.90, P(E) = 0.905 P(A)=0.90, P(E)=0.5

Kco = ksg&o =-0.048,p=1 Kco = ksg&e =.80,p=0.5x% 10°°

Figure 3

Contingency tables illustrating the prevalence effect on «

which discounts x < .67, allows tentative conclusions when .67 < xk < .8, and definite
conclusions when « >.8. Krippendorff’s scale has been adopted without question, even
if Krippendorff himself considers it only as a plausible standard that has emerged from
his and his colleagues’ work. In fact, Carletta et al’s (1997) use words of caution against
adopting Krippendorff’s suggestion as a standard; we have also raised the issue of how
to assess x values in (Di Eugenio, 2000).

If Krippendorff’s scale is supposed to be our standard, the example just worked
out shows that the different computations of P(E) do affect the assessment of intercoder
agreement. If less strict scales are adopted, the discrepancies between the two x compu-
tations play a larger role, as they have a larger effect on smaller values of . For example,
(Rietveld and van Hout, 1993) considers .20 < x < .40 as indicating fair agreement, and
40 < k < .60 as indicating moderate agreement. Suppose that 2 coders are coding 100
occurrences of Okay. The two coders label 40 occurrences as Accept and 25 as Ack. The
remaining 35 are labeled as Ack by one coder and as Accept by the other, as in Example 6
in Figure 4. ko, =0.418, but kg =0.27. These two values are really at odds.

2 Unpleasant behaviors of : Prevalence and bias

In the computational linguistics literature,  has been mostly used to validate coding
schemes: namely, a “good” value of k means that the coders agree on the categories, and
therefore, that those categories are “real”. We noted above that assessing what “good”
values for x are is problematic in itself, and that different scales have been proposed.
The problem is compounded by the following obvious effect on x values: if P(A) is kept
constant, varying values for P(E) yield varying values of x . What can affect P(E) even
if P(A) is constant are prevalence and bias.

The prevalence problem arises because skewing the distribution of categories in
the data increases P(E). The minimum value P(E) = 1/m occurs when the labels are
equally distributed among the m categories (see Ex. 4 in Figure 3). The maximum value
P(E) = 1 occurs when the labels are all concentrated in a single category. But, for a
given value of P(A), the larger the value of P(E), the lower the value of « .

Ex. 3 and Ex. 4 in Figure 3 show two coders agreeing on 90 out of 100 occurrences
of Okay’s, i.e., P(A)=0.9. However, x ranges from -0.048 to 0.80, and from not signifi-
cant to significant (the values of ksgc for Exs. 3 and 4 are the same as the values of
kco).® The differences in « are due to the difference in the relative prevalence of the two
categories Accept and Ack. In Ex. 3, the distribution is skewed, as there are 190 Accept’s
but only 10 Ack’s across the two coders; in Ex. 4, the distribution is even, as there are
100 Accept’s and 100 Ack’s respectively. These results do not depend on the size of the

3 We are not including agreement tables for the sake of brevity.
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Example 5 Example 6
Coder 2 Coder 2
Coder 1 Accept  Ack Coder 1 Accept  Ack
Accept 40 15 55 Accept 40 35 75
Ack 20 25 45 Ack 0 25 25
60 40 100 40 60 100

P(A) = 0.65, P(E) = 0.52 P(A) =0.65, P(E) = 0.45

koo =027, p = 0.005 Koo =0.418,p=0.5%107°

Figure 4

Contingency tables illustrating the bias effect on x¢,

sample, i.e., they are not due to the fact Ex. 3 and Ex. 4 are small. As the computations of
P(A) and P(E) are based on proportions, the same distributions of categories in a much
larger sample, say 10000 items, will result in exactly the same x values. Although these
results follow squarely from «’s definition, they are at odds with using  to assess a cod-
ing scheme. From both Ex. 3 and Ex. 4 we would like to conclude that the two coders
are in substantial agreement, independently of the skewed prevalence of Accept with
respect to Ack in Ex. 3. The role of prevalence in assessing « has been subject to heated
discussion in the medical literature (Grove et al., 1981; Berry, 1992; Goldman, 1992).

The bias problem occurs in k¢, but not ksgc. For k¢, , P(E) is computed from each
coder’s individual probabilities. Thus, the less two coders agree in their overall behav-
ior, the fewer chance agreements are expected. But for a given value of P(A), decreasing
P(E) will increase k¢,, leading to the paradox that k¢, increases as the coders become
less similar, i.e., as the marginal totals diverge in the contingency table. Consider two
coders coding the usual 100 occurrences of Okay, according to the two tables in Fig. 4.
In Ex. 5, the proportions of each category are very similar among coders, at 55 versus 60
Accept, and 45 versus 40 Ack. However, in Ex. 6 coder 1 favors Accept much more than
coder 2 (75 versus 40 occurrences), and conversely chooses Ack much less frequently
(25 versus 60 occurrences). In both cases, P(A) is 0.65 and kgg ¢ is stable at 0.27, but
koo goes from 0.27 to 0.418. Our initial example in Figure 1 is also affected by bias. The
distribution in Ex. 1 yielded k¢, = 0.6724 but ksgc = .6632. If the bias decreases as in
EX. 2, ko, becomes .6632, the same as ksgc.

3 Discussion

The issue that remains open is which computation of x to choose. S&C’s ksgc IS not
affected by bias, whereas Cohen’s k¢, is. However, it is questionable whether the as-
sumption of equal distributions underlying ksg ¢ is appropriate for coding in discourse
and dialogue work. In fact, it appears to us that it holds in few if any of the published
discourse or dialogue tagging efforts where x has been computed. It is for example ap-
propriate in situations where item; may be tagged by different coders than item; (Fleiss,
1971). However, x computations for discourse and dialogue tagging are most often per-
formed on the same portion of the data, which has been annotated by each of a small
number of annotators (between 2 and 4). In fact, in many cases the analysis of system-
atic disagreements among annotators on the same portion of the data (i.e., of bias) can
be used to improve the coding scheme (Wiebe, Bruce, and O’Hara, 1999).

To use k¢, but to guard against bias, (Cicchetti and Feinstein, 1990) suggest that
koo be supplemented for each coding category, by two measures of agreement, posi-
tive and negative, between the coders. This means a total of 2m additional measures, we
believe too many to gain a general insight into the meaning of the specific kg, Vvalue.
Alternatively, (Byrt, Bishop, and Carlin, 1993) suggest that intercoder reliability be re-
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ported as three numbers: k¢, , and two adjustments of k¢, one with bias removed, the
other with prevalence removed. k¢, adjusted for bias turns out to be ... ksg.c. koo ad-
justed for prevalence yields a measure which is equal to 2P(A4) — 1. The results for Ex. 1
should then be reported as: k¢, =0.6724, ksg.c =0.6632, 2P(A) — 1 = .6666; for Ex. 6 as:
koo =0.418, ksgc =0.27, and 2P(A4) — 1 = 0.3. For both Exs. 3 and 4 2P(A) — 1 = 0.8.
Collectively, these three numbers appear to provide a means to better judge the mean-
ing of x values. Reporting both x and 2P(A) — 1 may seem contradictory, as 2P(A) — 1
does not correct for expected agreement. However, when the distribution of categories
is skewed, this highlights the effect of prevalence. Reporting both k¢, and ksgc does
not invalidate our previous discussion, as we believe k¢, is more appropriate for dis-
course / dialogue tagging in the majority of cases, especially when exploiting bias to
improve coding (Wiebe, Bruce, and O’Hara, 1999).
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