
1

A New TCP for Persistent Packet Reordering
Stephan Bohacek, João P. Hespanha, Junsoo Lee, Chansook Lim, and Katia Obraczka

Abstract— Most standard implementations of TCP perform
poorly when packets are reordered. In this paper, we propose
a new version of TCP that maintains high throughput when
reordering occurs and yet, when packet reordering does not
occur, is friendly to other versions of TCP. The proposed TCP
variant, or TCP-PR, does not rely on duplicate acknowledgments
to detect a packet loss. Instead, timers are maintained to keep
track of how long ago a packet was transmitted. In case
the corresponding acknowledgment has not yet arrived and
the elapsed time since the packet was sent is larger than a
given threshold, the packet is assumed lost. Because TCP-PR
does not rely on duplicate acknowledgments, packet reordering
(including out-or-order acknowledgments) has no effect on TCP-
PR’s performance.

Through extensive simulations, we show that TCP-PR per-
forms consistently better than existing mechanisms that try to
make TCP more robust to packet reordering. In the case that
packets are not reordered, we verify that TCP-PR maintains the
same throughput as typical implementations of TCP (specifically,
TCP-SACK) and shares network resources fairly. Furthermore,
TCP-PR only requires changes to the TCP sender side making
it easier to deploy.

I. INTRODUCTION

The design of TCP’s error and congestion control mecha-
nisms was based on the premise that packet loss is an indi-
cation of network congestion. Therefore, upon detecting loss,
the TCP sender backs off its transmission rate by decreasing
its congestion window. TCP uses two strategies for detecting
packet loss. The first one is based on the sender’s retransmis-
sion timeout (RTO) expiring and is sometimes referred to as
coarse timeout. When the sender times out, congestion control
responds by causing the sender to enter slow-start, drastically
decreasing its congestion window to one segment. The other
loss detection mechanism originates at the receiver and uses
TCP’s sequence number. Essentially, the receiver observes
the sequence numbers of packets it receives; a “hole” in the
sequence is considered indicative of a packet loss. Specifically,
the receiver generates a “duplicate acknowledgment” (or DU-
PACK) for every “out-of-order” segment it receives. Note that
until the lost packet is received, all other packets with higher

This work has been partially supported by the National Science Foundation
under Grant Nos. ANI-0322476 and CCR-0311084.

Stephan Bohacek is with the Department of Electrical & Computer
Engineering, University of Delaware, Newark, DE 19716 USA (e-mail:
bohacek@udel.edu)

João P. Hespanha is with Department of Electrical & Computer En-
gineering, Univ. of California, Santa Barbara, CA 93106 USA (e-mail:
hespanha@ece.ucsb.edu)

Junsoo Lee is with the Department of Computer Science, Sookmyung
Women’s Univ., Seoul, Korea 140-742 (email: jslee@sookmyung.ac.kr

Chansook Lim is with the Department of Computer Science, Univer-
sity of Southern California, Los Angeles, CA 90089 USA (e-mail: chan-
sool@usc.edu)

Katia Obraczka is with the Department of Computer Engineering, Univer-
sity of California, Santa Cruz, CA 95064 USA (e-mail: katia@cse.ucsc.edu)

sequence number are considered “out-of-order” and will cause
DUPACKs to be generated. Modern TCP implementations
adopt the fast retransmit algorithm which infers that a packet
has been lost after the sender receives a few DUPACKs. The
sender then retransmits the lost packet without waiting for a
timeout and reduces its congestion window in half. The basic
idea behind fast retransmit is to improve TCP’s throughput by
avoiding the sender to timeout (which results in slow-start and
consequently the shutting down of the congestion window to
one).

Fast retransmit can substantially improve TCP’s perfor-
mance in the presence of sporadic reordering but it still
operates under the assumption that out-of-order packets in-
dicate packet loss and therefore congestion. Consequently,
its performance degrades considerably in the presence of
“persistent reordering.” This is the case for reordering of both
data and acknowledgment packets. Indeed, it is well known
that TCP performs poorly under significant packet reordering
(which may not be necessarily caused by packet losses) [1].

Packet reordering is generally attributed to transient condi-
tions, pathological behavior, and erroneous implementations.
For example, oscillations or “route flaps” among routes with
different round-trip times (RTT s) are a common cause for out-
of-order packets observed in the Internet today [2]. Internet
experiments performed through MAE-East and reported in [3]
show that 90% of all connections tested experience packet re-
ordering. Researchers at SLAC performed similar experiments
and found that 25% of the connections monitored reordered
packets [4]. However, networks with radically different char-
acteristics (when compared to the Internet, for example) can
exhibit packet reordering as a result of their normal operation.
This is the case of wireless networks, in particular multi-hop
mobile ad-hoc networks (MANETs). In MANETs, which are
also known as “networks without a network,” there is no fixed
infrastructure and every node can be source, sink, as well as
forwarder of traffic. The potential for unconstrained mobility
poses many challenges to routing protocols including frequent
topology changes. Thus MANET routing protocols need to
recompute routes often, which may lead to (persistent) packet
reordering. In fact, improving the performance of TCP in such
environments (by trying to differentiate out-of-order packets
from congestion losses) has been the subject of several recent
research efforts [5]–[7].

Mechanisms that provide different quality-of-service (QoS)
by differentiating traffic may introduce packet reordering. An
example of such mechanisms is DiffServ [8], which has been
proposed to provide different QoS on the Internet. In the
case of Expedited Forwarding, packets receive preferential
treatment as long as the flow obeys negotiated bandwidth
constraints. If the flow exceeds these constraints, the non-
conformant packets are typically dropped. However, an al-

2

ternative to dropping these packets is to lower their priority.
In this case, the packets will be placed in different queues
and will likely experience different latency, resulting in out-
of-order delivery to the final destination. While this alternative
is atypical, RFC 3246 simply specifies that packets "should
not" be reordered, a weaker requirement than "must not" be
reordered.

While packet reordering is often considered to be patholog-
ical in today’s Internet, as shown in [3], it is actually part of
normal operation for a number of routers containing parallel
paths through the switch. Due to the scheduling algorithms
used, different packet sizes and arrivals times may result in
the reordering of packets entering on a single interface. While
the exact cause of packet reordering lies in the details of the
scheduling algorithm, a more general reason is that parallel
paths are employed for economic reasons; it is cheaper to build
multiple moderate speed paths than a single very high-speed
path. The result of seeking this increase in cost efficiency
is that packets may sometimes be reordered. TCP-PR is a
transport protocol compatible with multipath routing, hence
it will not limit the drive for efficiency at the lower layers.

Beyond router design, there are other areas that stand to gain
efficiency if multiple paths are permitted. For example, load
balancing is greatly simplified if single flows are permitted
to use different paths. When a flow is restricted to use a
single path, then optimal load balancing reduces to an NP-
hard integer programming problem (cf. [9, p. 359]) but if the
single path restriction is lifted, then optimal load balancing
is a simpler linear programming problem. In [10], different
flows may be split along multiple paths in order to meet
QoS requirements. Permitting even single flows to be split
results in a more efficient use of network resources. In the
case of MANETs, spreading packets across different links also
decreases the battery drain on any particular mobile node and
may increase the lifetime of the network.

While efficiency is one area that may benefit from multipath
routing, fault tolerance and security can also be improved
by utilizing multiple paths. For example, in wired networks,
multipath routing has been shown to reduce the impact of
link failures [11]. Similarly, multipath routing can increase
robustness to eavesdropping by spreading packets across dif-
ferent paths, thus forcing the attacker to sniff multiple links
[11]. Multipath routing can take advantage of the considerable
path redundancy that already exists in today’s Internet. For
example, in [12], it was shown that in the US Sprintlink
topology, 90% of PoP pairs are connected through at least
4 distinct paths.

In MANETs, alternate path routing has been an active area
of research. In [13], it is suggested that alternate paths be found
and stored in an attempt to anticipate failures in the primary
path. However, it was shown in [14] that alternate paths may
grow stale and no longer exist when the primary path fails.
One way to learn that alternate paths have failed is to send
part of the data stream along them, as in multipath routing.

While multipath routing has many advantages, it leads to
persistent packet reordering. Today’s implementations of TCP
are not compatible with networks that reorder packets and
suffer great reductions in throughput when faced with persis-

tent packet reordering. TCP’s incompatibility with persistent
packet reordering has been a major deterrent to the deployment
of the mechanisms mentioned above on the Internet or on
other networks in which TCP is prevalent. There are a number
of methods for improving TCP’s performance in packet-
reordering prone environments, but most of them try to recover
from occasional reordering and rely on the packet ordering
itself to detect drops. However, under persistent reordering
conditions, packet ordering conveys very little information on
what is actually happening inside the network.

In this paper, we describe TCP-PR, a transport protocol that
performs well under persistent packet reordering (Section III).
The key feature of TCP-PR is that duplicate ACKs are not
used as an indication of packet loss. Rather, TCP-PR relies
exclusively on timeout. Both worst-case analysis and Internet
traces are used to ensure that the timeout threshold is not
too small and only actual packet losses cause retransmissions
(Section IV). Through extensive ns-2 simulations, we evaluate
the performance of TCP-PR, comparing it to a number of
existing schemes that address TCP’s poor performance under
packet reordering (Section VI). We find that under persis-
tent packet reordering, TCP-PR achieves significantly higher
throughput. We also test TCP-PR’s compatibility and fairness
to standard TCP variants, specifically TCP-SACK (Section
V). In the absence of packet reordering, TCP-PR is shown
to have similar performance and competes fairly with TCP-
SACK. TCP-PR neither requires changes to the TCP receiver
nor uses any special TCP header option. Hence, TCP-PR is
suitable for incremental deployment.

II. RELATED WORK

As previously mentioned, several mechanisms that address
TCP’s lack of robustness to packet reordering have been
recently proposed. This section summarizes them and puts
TCP-PR in perspective.

Upon detecting spurious retransmissions, the Eifel algo-
rithm [15] restores TCP’s congestion control state to its
value prior to when the retransmission happened. The more
spurious retransmissions of the same packet are detected, the
more conservative the sender gets. For spurious retransmission
detection, Eifel uses TCP’s timestamp option and has the
sender timestamp every packet sent. The receiver echoes back
the timestamp in the corresponding acknowledgment (ACK)
packets so that the sender can differentiate among ACKs
generated in response to the original transmission as well as
retransmissions of the same packet1.

DSACK [16] proposes another receiver-based mechanism
for detecting spurious retransmission. Information from the
receiver to the sender is carried as an option (the DSACK
option) in the TCP header. The original DSACK proposal does
not specify how the TCP sender should respond to DSACK
notifications. In [1], a number of responses to DSACK notifi-
cations were proposed. The simplest one relies on restoring
the sender’s congestion window to its value prior to the

1As an alternative to timestamping every packet, Eifel can also use a single
bit to mark the segment generated by the original transmission.

3

spurious retransmission detected through DSACK2. Besides
recovering the congestion state prior to the spurious retrans-
mission, other proposed strategies also adjust the DUPACK
threshold (dupthresh). The different dupthresh adjustment
mechanisms proposed include: (1) increment dupthresh by a
constant; (2) set the new value of dupthresh to the average
of the current dupthresh and the number of DUPACKs that
caused the spurious retransmission; and (3) set dupthresh to
an exponentially weighted moving average of the number of
DUPACKs received at the sender. Recently, another scheme
that relies on adjusting the dupthresh has been proposed [17].

Time-delayed fast-recovery (TD-FR), which was first pro-
posed in [18] and analyzed in [1], addresses packet reordering.
This method stands out from the others in that it utilizes timers
as well as DUPACKs. It sets a timer when the first DUPACK
is observed. If DUPACKs persists longer than a threshold,
then fast retransmit is entered and the congestion window is
reduced. The timer threshold is set to max (RTT/2,DT),
where DT is the difference between the arrival of the first
and third DUPACK.

A number of mechanisms to improve TCP’s performance
in MANET environments have been proposed. For example,
TCP-DOOR [5] detects out-of-order packets by using addi-
tional sequence numbers (carried as TCP header options). To
detect out-of-order data packets, the TCP sender uses a 2-
byte TCP header option called TCP packet sequence number
to count every data packet including retransmissions. For out-
of-order DUPACK detection, the TCP receiver uses a 1-byte
header option to record the sequence in which DUPACKs
are generated. Upon detecting out-of-order packets (internally
or informed by the receiver3), the TCP sender responds by
either: (1) temporarily disabling congestion control for a given
time interval (i.e., freezing the congestion control state, which
includes the congestion window cwnd and the retransmission
timer RTO), or (2) resetting the state to its value prior entering
congestion avoidance. More recently, TCP-DCR [19], another
variant of TCP for wireless networks, has been developed.
Similarly to TD-FR, TCP-DCR delays response to DUPACKs.
However, the delay of one RTT imposed by TCP-DCR is
longer than that of TD-FR.

To some extent, the approaches described above still utilize
packet ordering to detect drops. Indeed, when reordering is
not persistent, packet ordering is still somewhat indicative of
drops and therefore of congestion. However, if packets are per-
sistently reordered, packet ordering conveys little information
regarding congestion and thus should not be used to trigger
congestion control. Consequently, as shown in Section VI,
TD-FR and methods that use DSACK along with adjusting
dupthresh perform poorly when faced with persistent packet
reordering.

We propose to neglect DUPACKs altogether and rely solely
on timers to detect drops: if the ACK for a packet has not
arrived and the elapsed time since the packet is sent exceeds

2Instead of instantaneously increasing the congestion window to the value
prior to the retransmission event, the sender slow-starts up to that value in
order to avoid injection of sudden bursts into the network.

3As suggested in [5], the TCP receiver can notify the sender by setting a
OOO bit in the TCP ACK packet

a threshold, then the packet is assumed to be lost. In the next
section we describe the TCP-PR algorithm in detail. There are
two main design challenges in developing an adaptive timer
threshold. First, the threshold must be chosen such that it is
only surpassed when a packet has actually been lost. This is
discussed in Section IV. The second challenge, covered in
Section V, is to maintain fairness with current implementa-
tions of TCP. Section VI presents extensive simulation results
that show that under persistent packet reordering, TCP-PR
performs significantly better than existing packet reordering
recovery methods.

III. TCP-PR

As mentioned above, the basic idea behind TCP-PR is to de-
tect packet losses through the use of timers instead of duplicate
acknowledgments. This is prompted by the observation that,
under persistent packet reordering, duplicate acknowledgments
are a poor indication of packet losses. Because TCP-PR relies
solely on timers to detect packet loss, it is also robust to
acknowledgment losses as the algorithm does not distinguish
between data- (on the forward path) or acknowledgment (on
the reverse path) losses.

The proposed algorithms only require changes in the TCP
sender and are therefore backward-compatible with any TCP
receiver. TCP-PR’s sender algorithm is still based on the con-
cept of a congestion window, but the update of the congestion
window follows slightly different rules than standard TCP.
However, significant care was placed in making the algorithm
fair with respect to other versions of TCP to ensure they can
coexist.

A. The Basic Algorithm

Packets being processed by the sender are kept in one
of two lists: the to− be− sent list contains all packets
whose transmission is pending, waiting for an “opening”
in the congestion window. The to− be− ack list contains
those packets that were already sent but have not yet been
acknowledged. Typically, when an application produces a
packet it is first placed in the to− be− sent list; when
the congestion window allows it, the packet is sent to the
receiver and moved to the to− be− ack list; finally when an
ACK for that packet arrives from the receiver, it is removed
from the to− be− ack list (under cumulative ACKs, many
packets will be simultaneously removed from to− be− ack).
Alternatively, when it is detected that a packet was dropped,
it is moved from the to− be− ack list back into the
to− be− sent list.

As mentioned above, drops are always detected through
timers. To this effect, whenever a packet is sent to the receiver
and placed in the to− be− ack list, a timestamp is saved.
When a packet remains in the to− be− ack list more than a
certain amount of time it is assumed dropped. In particular, we
assume that a packet was dropped at time t when t exceeds the
packet’s timestamp in the to− be− ack list plus an estimated
maximum possible round-trip-time mxrtt.

4

As data packets are sent and ACKs received, the estimate
mxrtt of the maximum possible round-trip-time is continu-
ously updated. The estimate used is given by:

mxrtt := β × srtt, (1)

where β is a constant larger than 1 and srtt an exponentially
weighted average of past RTT s. Whenever a new ACK
arrives, we update srtt as follows:

srtt = max
n
α

1
bcwndc × srtt, sample− rtt

o
, (2)

where α denotes a positive constant smaller than 1, bcwndc
the floor of the current congestion window size, and
sample− rtt the RTT for the packet whose acknowledg-
ment just arrived 4. The reason to raise α to the power
1/ bcwndc is that in one RTT the formula in (2) is iterated
bcwndc times. This means that, e.g., if there were a sudden
decrease in the RTT then srtt would decrease by a rate
of (α

1
bcwndc)bcwndc = α per RTT , independently of the current

value of the congestion window. The parameter α can therefore
be interpreted as a smoothing factor in units of RTT s. As
discussed in Section IV, the performance of the algorithm is
actually not very sensitive to changes in the parameters β and
α, provided they are chosen in appropriate ranges.

Figure ?? shows how srtt and mxrtt "track" RTT. Note
that srtt tracks the peaks of RTT. The rate that srtt decays
after a peak is controlled by α. The right-hand plot shows
how large jumps can cause RTT > mxrtt (for this data
set, occurrences at 15s, 45s, 75s, etc.) resulting in spurious
timeouts (note that the jumps in RTT in the right-hand
plot were artificially generated). In order for these jumps to
cause a spurious timeouts, the jumps in RTT could occur
no sooner than every 15 seconds. In this case, 1500 packets
were delivered between these jumps. If the jumps occurred
more frequently, then, as can be seen from the figure, mxrtt
would not have decayed to a small enough value and spurious
timeouts would not occur. Furthermore, if the jumps were
larger, then the time between jumps to cause a timeout would
be no smaller. The issue of spurious timeouts is closely
examined in Section IV.

Two modes exist for the update of the congestion win-
dow: slow − start and congestion− avoidance. The sender
always starts in slow − start and will only go back to
slow − start after periods of extreme losses (cf. Section III-
B). In slow − start, cwnd starts at 1 and increases expo-
nentially (increases by one for each ACK received). Once
the first loss is detected, cwnd is halved and the sender

4We currently have an implementation of TCP-PR in the Linux kernel. In
order to compute α

1
bcwndc in the kernel, we employ Newton’s method through

the following loop:
1 x := result from last calculation or 1 if there has not been a previous

calculation of α
1

bcwndc

2 while x− bcwndc−1
bcwndc x+ α

bcwndcxbcwndc−1 > (1− α)10−3

3 x := bcwndc−1
bcwndc x+ α

bcwndcxbcwndc−1
4 end
The larger the value of n, the better the approximation. In our implementa-

tion, we are using n = 10. However, if cwnd is bounded by a small enough
value, it might be simpler to save α

1
bcwndc in a look-up table

transitions to congestion− avoidance, where cwnd increases
linearly (1/cwnd for each ACK received). Subsequent drops
cause further halving of cwnd, without the sender ever leaving
congestion− avoidance. An important but subtle point in
halving cwnd is that when a packet is sent, not only a
timestamp but the current value of cwnd is saved in the
to− be− ack list. When a packet drop is detected, then cwnd
is actually set equal to half the value of cwnd at the time the
packet was sent and not half the current value of cwnd. This
makes the algorithm fairly insensitive to the delay between the
time a drop occurs until it is detected.

To prevent bursts of drops from causing excessive de-
creases in cwnd, once a drop is detected a snapshot of the
to− be− sent list is taken and saved into an auxiliary list
called memorize. As packets are acknowledged or declared as
dropped, they are removed from the memorize list so that this
list contains only those packets that were sent before cwnd was
halved and have not yet been unaccounted for. When a packet
in this list is declared dropped, it does not cause cwnd to be
halved. The rational for this is that the sender already reacted
to the congestion that caused that burst of drops. This type of
reasoning is also present in TCP-NewReno and TCP-SACK.

The pseudo-code in Table I corresponds to the algorithm
just described. Table II summarizes the notation used in the
code.

Remark 1: From a computational view-point, TCP-PR is
more demanding than TCP-(New)Reno because it requires
the sender to maintain the list to− be− ack of packets
whose acknowledgment are pending, but is not significantly
more demanding than TCP-SACK. It does maintain the extra
memorize list used to detect drop bursts, but this list is empty
most of the time and otherwise only needs to contain pointers
to packets also in the to− be− ack list. Recall that the
transport layer must maintain the data to be transmitted until
the packet has been ACKed by a cumulative ACK. If static
memory allocation is used, the transport layer must allocate
enough memory to hold a maximum sender’s window’s worth
of packets. In the typical case where the MSS is several hun-
dred to over a thousand bytes, TCP-PR’s requirement of two
bytes per packet for timestamps and lists of pointers results
in a relatively minor increase in the transport layer’s memory
requirements. On the other hand, α

1
bcwndc must be computed

every time bcwndc is incremented and requires a number of
multiplications, divisions and additions. Alternatively, α

1
bcwndc

can be tabulated requiring table look-up operations. Clearly,
table look-ups are less computationally intensive, but require
more memory (again, this memory demand is small compared
to what is required for packet buffering).

B. Extreme Losses
When more than half of a window’s worth of packets

is dropped, TCP-NewReno/SACK may timeout in the fast-
recovery mode [20]. This is because not enough ACKs are
received for the congestion window to open and allow for the
sender to perform the needed retransmissions. The occurrence
of a timeout typically depends on the number of packets
dropped, the congestion window size cwnd, the round-trip

5

TABLE I: Pseudo-code for TCP-PR (cf. notation in Table II)

Event Code
initialization 1 mode := slow-start

2 cwnd := 1
3 ssthr := +∞
4 memorize := ∅

time > time(n) + mxrtt
(drop detected for packet n) 5 remove(to-be-ack, n)

6 add(to-be-sent, n)
7 if not is-in(memorize, n) then /* new drop */
8 memorize := to-be-ack
9 cwnd := cwnd(n)/2

10 ssthr := cwnd
11 else /* other drops in burst */
12 remove(memorize, n)
13 flush-cwnd()

ack received for packet n 14 srtt = max α
1

cwnd × srtt,time− time(n)
15 mxrtt := β × srtt
16 remove(to-be-ack, n)
17 remove(memorize, n)
18 if mode = slow-start and cwnd+ 1 ≤ ssthr then
19 cwnd := cwnd+ 1
20 else
21 mode := congestion-avoidance
22 cwnd := cwnd+ 1/cwnd
23 flush-cwnd()

flush-cwnd() 24 while cwnd > |to-be-ack| do
25 k=send(to-be-sent)
26 remove(to-be-sent, k)
27 add(to-be-ack, k)
28 time(k) = time

TABLE II: Notation used in Tables I and III

time current time
time(n) time at which time packet n was sent
cwnd(n) congestion window at the time packet n was sent
is-in(list, k) returns true if the packet k is in the list list
add(list, k) add the packet k to the list list
remove(list, k) remove the packet k from list list (if k is not in list do nothing)
|list| number of elements in the list list
k=send(list) send the packet in list list with smallest seq. number, returning the seq. number

time, and the value of RTO. In the ns-2 simulations whose
results we report, we observed timeouts in TCP SACK when
more than cwnd/2+1 packets are dropped within a window,
which is consistent with the results in [20]. TCP-NewReno and
SACK also enter the timeout mode when the retransmitted
packets are lost or when drops occur while the congestion
window size is smaller than 4. In the latter case, there are not
enough ACKs to trigger fast recovery, so a timeout eventually
occurs.

The “correct” behavior of congestion control under extreme
losses is somewhat controversial and perhaps the more reason-
able approach is to leave to the application to decide what to
do in this case. However, we have found that without special
attention to the behavior during extreme losses, TCP-PR is
unfair to today’s implementations of TCP. In order to maintain
fairness (a key goal of this work), we propose a version
of TCP-PR that mimics TCP-SACK’s timeout, i.e., upon
detecting an extreme loss situation, TCP-PR sets SSTHRESH
to cwnd/2, resets cwnd to one, performs exponential back-
off, etc. It should be emphasized that this variation of TCP-
PR is not required for the proper functioning of TCP-PR in

sense that throughput is maintained without this enhancement.
Rather, this variation results in lower, but more fair, throughput
in high loss situations.

TCP-PR detects extreme losses by counting the number of
packets lost in a burst. This can be done using a counter
cburst that is incremented each time a packet is removed
from the memorize list due to drops and is reset to zero when
this list becomes empty. We recall that this list is usually kept
empty but when a drop occurs it “memorizes” the packets that
were outstanding. In the spirit of TCP-NewReno and TCP-
SACK, packets from this list that are declared dropped do not
lead to further halving of the congestion window.

To emulate as close as possible what happens during a TCP-
NewReno or TCP-SACK timeout, we check if cburst (and
therefore the number of drops in a burst) exceeds cwnd/2+1,
or if a drop is detected while cwnd < 4, or if a retransmitted
packet is dropped. When one of these conditions occurs, we
reset cwnd = 1 and transition to the slow − start mode.
Moreover, and for fairness with implementations of TCP-
NewReno/SACK that use coarse-grained timers, we increase
mxrtt to one second and delay sending packets by mxrtt
[21]. If further (new) drops occur while cwnd = 1, instead

6

of dividing cwnd by two we double mxrtt, thus emulating
the usual exponential back-off. The pseudo-code in Table III
implements this algorithm. In this pseudo-code, we also in-
hibited increments of cwnd while the memorize list is not
empty. This was also done to improve fairness with respect
to TCP-NewReno/SACK, because it emulates the fact that in
these algorithms cwnd only goes back to the usual increase
of 1/cwnd per ACK after the sender leaves the fast-recovery
mode.

IV. SELECTION OF TCP-PR PARAMETERS

In this section we discuss the selection of the parameters α
and β used in the estimation of the maximum round-trip time
mxrtt. When the time elapsed since a packet was sent exceeds
mxrtt and its acknowledgment has not yet arrived, TCP-PR
assumes the packet was dropped and divides the congestion
window by two. However, there is the risk that if mxrtt is
set too low, the algorithm will assume that a packet has been
lost when it merely experienced a large round-trip time. We
refer to such events as spurious timeouts. While occasional
spurious timeouts are of little consequence, throughput may
suffer severely if they occur too frequently.

In order to determine adequate values for α and β that
reduce the occurrence of spurious timeouts, we employ two
different methods: (1) an analytical approach that determines a
worst-case relationship between the rate of spurious timeouts
and the values of the parameters, and (2) an empirical method
that utilizes RTT traces to determine the probability of
spurious timeouts in today’s Internet.

A. Worst-case Analysis of Spurious Timeouts
A spurious timeout occurs when the estimate mxrtt of the

maximum round-trip time is actually smaller than RTT . Since
mxrtt adapts online to the current RTT , this can occur when
RTT takes small values for a period of time and suddenly
increases. We consider a worst-case situation where packets
exhibit one of two possible RTT s: a small value RTTmin
and a large one RTTmax. This would occur, e.g., if multipath
routing were employed in the network depicted in Figure 1.
In this network periodic spurious timeouts can occur if several

0.99
0.01

40ms

190ms

190ms

source

destination
Fig. 1: Worst-case topology for spurious timeouts. When the
packet latency along the longer path is at least β times longer
than that of the shorter path and the packets take the shorter
path infrequently enough, a spurious timeout will occur every
time a packet follows the longer path.

packets take the shorter path until srtt essentially becomes

equal to RTTmin and then a packet takes the longer path. A
timeout will then occur if

β × mxrtt ≈ β ×RTTmin < RTTmax. (3)

Suppose that this is indeed the case. One can then ask under
what conditions a spurious timeout can occur again. To answer
this question note that, right after a packet goes through the
longer path, srtt jumps to RTTmax. In the worst-case it
will be followed by several packets taking the shorter path
as otherwise mxrtt will not decrease and further spurious
timeouts will not occur. As discussed in Section III, after
K congestion windows worth of packets have been ACKed,
srtt = αK × RTTmax. Therefore, a spurious timeout will
be produced by a packet taking the long route K × RTTmin
seconds after the previous one, as long as

β × srtt = β × αK ×RTTmax < RTTmax.

We conclude from here that the minimum number of shorter
round-trip times between spurious timeouts is equal to K =
log β
− logα . In this worst-case situation, most packets take the
shorter path and therefore the average RTT is essentially
RTTmin. We can summarize our conclusions as follows. When
(3) does not hold there will be no spurious timeouts, otherwise
the time between spurious timeouts must be larger than

log β

− logα ×RTT,

where RTT is the average round-trip time. This means that
β = 3 and α = 0.999 result in low rates for spurious time-
outs (approximately 1000×RTT seconds between spurious
timeouts) and yield good performance, as confirmed in the
following sections.

Remark 2: This worst-case analysis also applies to condi-
tions such as highly variable processing delay within a router,
or delay variations due to link layer ARQ or media access
in wireless channels which may also cause spurious timeouts.
Similarly to the scenario investigated above, the worst case
situation is when the latency mostly takes a small value and
occasionally jumps to a large value.

B. Analysis of RTT Traces

The above analysis determined the worst-case frequency of
spurious timeouts. RTT traces can be utilized to estimate the
probability of getting a spurious timeout in the more typical
case of today’s Internet. Using a July 25, 2001 snapshot of
round-trip times from the NLANR data set [22], we computed
empirical probability of spurious timeouts. The total data
set consists of nearly 13000 connections between 122 sites
and 17.5 million round-trip time measurements. This data
consisted of time series of round-trip times for each connection
with each time series containing 1440 round-trip times (one
sample per minute over the entire day). For each time series,
the srtt and mxrtt were computed and spurious timeouts
noted. This process was repeated for several values of α and β.
Figure 2 shows the probability of a drop versus the parameters
α and β.

7

TABLE III: Pseudo-code for TCP-PR with extreme losses (cf. notation in Table II).

Event Code
initialization 1 mode := slow-start

2 cwnd := 1
3 ssthr := +∞
4 memorize := ∅
5 waituntil := +∞
6 to-be-ack := ∅
7 cburst = 0

time > time(n) + mxrtt
(drop detected for packet n) 8 remove(to-be-ack, n)

9 add(to-be-sent, n)
10 if mode 6= waiting then
11 if not is-in(memorize, n) then /* new drop */
12 memorize := to-be-ack
13 cburst := 1
14 if cwnd(n) > 1 then
15 cwnd := cwnd(n)/2
16 ssthr := cwnd
17 else /* other drops in burst */
18 remove(memorize, n)
19 cburst := cburst+ 1
20 if cburst > cwnd+ 1 or cwnd < 2 or
21 packet n is a retransmitted packet then
22 cwnd := 1
23 mxrtt := max{2× mxrtt, 1sec}
24 waituntil := time+ mxrtt
25 mode := waiting

ack received for packet n 26 remove(to-be-ack, n)
27 remove(memorize, n)
28 if mode 6= waiting then
29 srtt = max α

1
cwnd × srtt,time− time(n)

30 mxrtt := β × srtt
31 if memorize = ∅ then
32 cburst := 0
33 if mode = slow-start and cwnd+ 1 ≤ ssthr then
34 cwnd := cwnd+ 1
35 else
36 mode := congestion-avoidance
37 cwnd := cwnd+ 1/cwnd
38 flush-cwnd()

flush-cwnd() 39 if mode 6= waiting then
40 while cwnd > |to-be-ack| do
41 k=send(to-be-sent)
42 remove(to-be-sent, k)
43 add(to-be-ack, k)
44 time(k) = timetime > waituntil

time > waituntil 45 put contents of memorize into to-be-sent
46 memorize := ∅
47 to-be-ack := ∅
48 mode := slow-start
49 waituntil := +∞
50 flush-cwnd()

For these computations, it was assumed that cwnd = 1.
However, for cwnd > 1 we have that α < α1/cwnd and
therefore

mxrttk+1 = β × srttk+1
= β ×max

©
α1/cwnd × srttk, sampleRTT

ª
≥ β ×max

©
α1 × srttk, sampleRTT

ª
.

Hence, assuming cwnd = 1 actually reduces mxrtt, leading
to an overestimate on the number of spurious timeouts. The
data used was also collected at one minute intervals, whereas
TCP-PR would likely sample RTT much more frequently.
Since RTT is positively correlated [23], large jumps are
observed less frequently when RTT is sampled at closely

spaced intervals. The more frequent sampling that occurs
within TCP-PR would likely drive down the probability of
spurious timeouts even further.

Despite these two conservative assumptions, Figure 2 shows
that as long as β > 1 and α > 0.99 the probability of a
spurious timeout occurring is less than 10−7. For α > 0.999
and β ≥ 2, the probability of a spurious timeout becomes
vanishingly small.

Standard implementations of TCP [24] compute RTO
which is a filtered version of RTT that is used to trigger TCP’s
timeout. Typically, RTO is computed using Van Jacobson’s

8

algorithm [25]

srttk+1 =
7

8
srttk +

1

8
RTTk

DevRTTk+1 =
3

4
DevRTTk +

1

4
|srttk −RTTk|

RTOk = max (srttk +K ×DevRTTk,MinRTO) ,

While the typical value of K is 4, there is some discrep-
ancy over the value of MinRTO. Often, it is assumed that
MinRTO = 1 second (as specified in RFC 2988), but
some implementations use different values, e.g., BSD and MS
Windows uses 500ms, and Linux uses 200ms. Figure 2 shows
the empirical probability of RTT > RTO from the NLARN
data set under the assumption that MinRTO = 0. For
K = 4, we obtained P (RTT > RTO) ≈ 0.0124, i.e., a little
more than 1% of all packets would timeout. It is difficult to
determine the best value of MinRTO. If RTT > MinRTO,
then we can expect 1% of packets sent will trigger a spurious
timeout. For RTO too large, the throughput of TCP-PR would
be reduced. While it is possible that an intermediate value
of MinRTO would result in less than 1% spurious timeouts
while maintaining high throughput, it is difficult to find a
single MinRTO that works well in many situations. A similar
conclusion was also reached in [26] where no obvious “sweet
spots” were found for MinRTO when used in TCP.

10
-410

-3
10

-210
-1 0

2
4

6
8

10

10
-20

10
-15

10
-10

10
-5

10
0

β1 - α K
0 5 10 15 20

0
0 5 10 15 20

0.01
0.02
0.03
0.04
0.05
0.06
0.07

Fig. 2: Right: Probability of spurious timeouts computed from
the NLANR data set. For many pairs of α, β there were no
spurious timeouts. However, in order to view the data on a
log scale a perturbation of 10−16 has added. Hence, all the
pairs α, β that show a probability of 10−16 actually had no
spurious timeouts at all. Left: probability of spurious timeouts
when Van Jacobson’s Algorithm is used.

V. PERFORMANCE AND FAIRNESS WITHOUT PACKET
REORDERING

Two issues arise when considering TCP-PR over networks
without packet reordering: performance and fairness. The first
issue is whether TCP-PR performs as well as other TCP
implementations under “normal” conditions, i.e., no packet
reordering. Specifically, for a fixed topology and background
traffic, does TCP-PR achieve similar throughput as standard
TCP implementations? The second concern is whether TCP-
PR and standard TCP implementations are able to coexist
fairly. To some extent, the fairness issue encompasses the
performance issue: if TCP-PR competes fairly against standard
TCP implementations in a variety of network conditions,

then it seems reasonable that TCP-PR and other TCP im-
plementations are able to achieve similar throughput (and
thus perform similarly) when exposed to similar network
conditions. Therefore, while this section focuses on fairness,
it indirectly addresses the performance issue. Additionally, in
Section VI, we also show that, when no packet reordering
occurs, TCP-PR achieves the same throughput as other TCP
implementations.

We performed extensive ns-2 [27] simulations to show that
TCP-PR is fair with respect to standard TCP implementations,
for a wide range of network conditions and topologies. In
this section, a sample of our simulation results is presented,
with attention focused on the compatibility with TCP-SACK
[28]. One of the topologies we use is the dumbbell topology,
also known as single-bottleneck. A number of simulation-
based studies have used the dumbbell topology to evaluate
the performance of network protocols. One recent example is
the comparison between the performance (including fairness)
of TCP-SACK and an implementation of the “TCP-friendly”
formula [29]. The other topology used is the parking-lot
topology, which includes multiple bottleneck links and has also
been employed in a number of recent performance studies of
network protocols including [30] and [31]. Figure 3 shows the
parking-lot and dumbbell topologies used, including the source
and destination nodes for the cross traffic. Previous studies
that used the parking-lot topology only included cross traffic
between nodes CS1→CD1, CS2→CD2, and CS3→CD3. In
our simulations, we also considered cross traffic between
CS1→CD2, CS1→CD3, and CS2→CD3. For the single-
bottleneck (dumbbell) topology, we ran simulations both with
and without HTTP background traffic. When background
traffic was used, it corresponded to around 10% of the total
traffic 5. HTTP traffic flowed from node 1 to node 2; more
specifically, we set up five Web server-client pairs, each of
which running ten concurrent connections. All Web clients
ran in node 2 and all Web servers in node 1 so that the HTTP
traffic direction coincides with the TCP flows under study. For
the parking-lot topology, we always considered HTTP cross
traffic. Eight Web server-client pairs were configured each of
which with ten concurrent active sessions. While CS1→CD1
and CS3→CD3 have 2 pairs of Web server-client each, all
other pairs have a single Web server-client pair. In both topolo-
gies, each Web session used the following parameters: inter-
page time was exponentially distributed with mean 1 second,
the number of objects per page was uniformly distributed with
mean 1, the inter-object time was exponentially distributed
with mean 10 ms, and object size was Pareto-distributed with
mean 40KB and shape parameter equal to 1.2 6. A large
number of distinct link speeds and number of flows were
investigated.

Following the approach taken in [29], the fairness of TCP-

5Generating HTTP background traffic to correspond to 10% of the total
traffic was motivated by the observation that, “while the exact fraction of
short-lived traffic found on the Internet is unknown, it appears that short-
lived flows make up for at least 10% of the total Internet traffic” [32].

6These are the same parameters used by sample ns-2 scripts included in
the ns-2 distribution; furthermore, these same parameters have also been used
in simultaions conducted by other researchers (e.g., [33].)

9

1 2 3 4

CS1 CS2 CS3

CD1 CD2 CD3

Sn
1 2

S1

TCP-SACK
sources

Pn

P1

TCP-PR
sources

Tn

T1

TCP-SACK
destinations

Qn

Q1

TCP-PR
destinations

Sn

S1

TCP-SACK
sources

Pn

P1

TCP-PR
sources

Tn

T1

TCP-SACK
destinations

Qn

Q1

TCP-PR
destinations

Fig. 3: Left: Parking-lot topology with multiple bottlenecks and cross traffic. The source and destination are labeled S and D
respectively. The cross-traffic connections are CS1→CD1, CS1→CD2, CS1→CD3, CS2→CD2, CS2→CD3, and CS3→CD3.
The data rates are: 5Mbps for CS1→1, 1.66Mbps for CS2→2, 2.5Mbps for CS3→3, and 15Mbps for all other links. This
results in the following three bottlenecks: 1→2, 2→3, and 3→4. Right: The dumbbell topology.

PR to TCP-SACK is judged by simulating an equal number of
TCP-PR and TCP-SACK flows. These flows have a common
source and destination. The steady state fairness can be quan-
tified with a single number, the mean normalized throughput.
If there are n flows, then the normalized throughput of flow i
is

Ti =
xi

1
n

Pn
j=1 xj

,

where the throughput, xi, is the total data sent during the last
60 seconds of the simulation. The mean normalized throughput
for a particular protocol is the average value of Ti, averaged
over all the flows of that protocol. Note that if Ti = 1, then
flow i achieves the average throughput. Similarly, if the mean
normalized throughout of both protocols is one, then they
achieved the same average throughput.

Figures 4–10 show the normalized throughput and the
mean normalized throughput for different numbers of flows,
topologies, link speeds, queue disciplines, propagation delays,
and with and without cross traffic. In these experiments, α and
β were fixed at 0.999 and 3.0, respectively. For comparison
purposes, Figures 6 and 8 compare the throughput when
TCP-SACK and TCP-Reno compete for bandwidth. From the
graphs, it is clear that the two versions of TCP-PR and TCP-
SACK compete fairly over a wide range of traffic conditions
and thus exhibit similar performance.

0 10 20 30
0

0.5

1

1.5

2

Number of Flows for TCP-Reno and TCP-SACK each

N
or

m
al

ize
d

Th
ro

ug
hp

ut

TCP-SACK TCP-Reno mean TCP-Renomean TCP-SACK

0 10 20 30
0

0.5

1

1.5

2

Fig. 8: Normalized Throughput of TCP-Reno and TCP-SACK.
The left-hand plot shows the throughput of TCP-SACK and
TCP-Reno for the drop-tail queue discipline, while the right-
hand plot shows the results for RED queue discipline. In these
simulations the topology was a single bottleneck topology with
a 1.5Mbps bandwidth bottleneck. The round-trip propagation
delay was 20ms and the queue size was 25 packets.

While the mean normalized throughput describes the aver-
age behavior of all flows, the coefficient of variation describes

0 20 40 60
0

0.5

1

1.5

2

2.5

0 20 40 60
0

0.5

1

1.5

2

2.5

Number of Flows for TCP-PR and TCP-SACK each

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

0 20 40 60
0

0.5

1

1.5

2

2.5
TCP-PR
TCP-S AC K
mean TCP-PR
mean TCP-S AC K

0 20 40 60
0

0.5

1

1.5

2

2.5
TCP-PR
TCP-SACK
mean TCP-PR
mean TCP-SACK

Fig. 10: Normalized Throughput for TCP-PR and TCP-SACK
with HTTP Cross Traffic. The left-hand plot shows the results
for the drop-tail queue discipline while the right-hand plot
shows the results for RED queue discipline. In these simula-
tions the topology was the parking-lot topology with a 15Mbps
links. Each link has the round-trip propagation delay of 20ms
with a queue size of 250 packets.

the variation of the throughput and is defined by

CoV :=
1P
i∈I Ti

sX
i∈I

³
Ti −

1

|I|
X
i∈I

Ti

´2
,

where I denotes the set of flows of a particular protocol, and
|I| the number of elements in the set I . Figure 11 shows
the coefficient of variation for ten simulations as well as the
mean coefficient of variation for the simulation set. From
Figures 4–11, we conclude that the mean and variance of
the throughput for TCP-PR and TCP-SACK are similar. In
light of these results, incremental TCP-PR deployment should
have no adverse effects on competing flows that use other
implementations of TCP.

Figure 12 shows TCP-SACK’s mean normalized throughput
for different values of α and β. For these simulations, the
number of flows was held constant at 64 total flows (32
TCP-SACK and 32 TCP-PR flows). Surprisingly, fairness is
maintained for a wide range of α and β. Note that for
β = 1, TCP-SACK exhibits higher throughput. However, for
β larger than 1, both implementations achieve nearly identical
performance. A large number of simulations show that these
results are consistent for different levels of background traffic
and different topologies. We noticed that even in situations
where cross traffic causes extreme loss conditions (over 15%
drop probability), TCP-SACK only gets up to 20% more
throughput when β = 10, while throughput is essentially the
same for 1 < β < 5. Such extreme loss scenarios are not of

10

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

Number of Flows

N
o

rm
a

li
z

e
d

 T
h

ro
u

g
h

p
u

t

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

Number of Flows

N
o

rm
a

li
z

e
d

 T
h

ro
u

g
h

p
u

t

TCP – PR
TCP – S AC K
Mean TCP – PR
Mean TCP – S AC K

TCP – PR
TCP – S AC K
Mean TCP – PR
Mean TCP – S AC K

TCP – PR
TCP – S AC K
Mean TCP – PR
Mean TCP – S AC K

TCP – PR
TCP – S AC K
Mean TCP – PR
Mean TCP – S AC K

Fig. 4: TCP-PR and TCP-SACK Normalized Throughput over a Single Bottleneck Topology with RED Queue Discipline.
The left-hand figure shows the case of 200ms round-trip propagation delay and a 250 packet queue, while the right-hand plot
shows the case of 20ms round-trip propagation delay and a 25 packet queue. In both cases, the bottleneck link bandwidth was
15Mbps.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

Number of Flows

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Number of Flows

TCP – PR
TCP – S AC K
Mean TCP – P R
Mean TCP – S AC K

TCP – PR
TCP – S AC K
Mean TCP – P R
Mean TCP – S AC K

TCP – PR
TCP – S AC K
Mean TCP – PR
Mean TCP – S AC K

TCP – PR
TCP – S AC K
Mean TCP – PR
Mean TCP – S AC K

Fig. 5: TCP-PR and TCP-SACK Normalized Throughput over a Single Bottleneck Topology with Drop-Tail Queue Discipline.
The left-hand figure shows the case of 200ms round-trip propagation delay and a 250 packet queue, while the right-hand plot
shows the case of 20ms round-trip propagation delay and a 250 packet queue. In both of these cases, the bottleneck link
bandwidth was 15Mbps.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

Number of Flows

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Flows

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
tTCP – SACK

TCP – Reno
Mean TCP – SACK
Mean TCP – Reno

TCP – SACK
TCP – Reno
Mean TCP – SACK
Mean TCP – Reno

TCP – SACK
TCP – Reno
Mean TCP – SACK
Mean TCP – Reno

TCP – SACK
TCP – Reno
Mean TCP – SACK
Mean TCP – Reno

Fig. 6: Normalized Throughput of TCP-Reno and TCP-SACK. The left-hand plot shows the throughput of TCP-SACK and
TCP-Reno for the drop-tail queue discipline, while the right-hand plot shows the results for RED queue discipline. In these
simulations the topology was a single bottleneck topology with a 15Mbps bandwidth bottleneck. The round-trip propagation
delay was 20ms and the queue size was 250 packets.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2
TCP – PR
TCP – S AC K
Mean TCP – PR
Mean TCP – S AC K

number of flows

no
rm

al
iz

ed
th

ro
ug

hp
ut

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2
TCP – PR
TCP – S AC K
Mean TCP – PR
Mean TCP – S AC K

TCP – PR
TCP – S AC K
Mean TCP – PR
Mean TCP – S AC K

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2
TCP – P R
TCP – S AC K
Mean TCP – P R
Mean TCP – S AC K

o
iz

ed
th

o
ug

ut

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2
TCP – P R
TCP – S AC K
Mean TCP – P R
Mean TCP – S AC K

TCP – P R
TCP – S AC K
Mean TCP – P R
Mean TCP – S AC K

Number of Flows

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of Flows
Fig. 7: Normalized Throughput for TCP-PR and TCP-SACK. The left-hand plot shows the results for the drop-tail queue
discipline while the right-hand plot shows the results for RED queue discipline. In these simulations the topology was a single
bottleneck topology with a 1.5Mbps bandwidth bottleneck. The round-trip propagation delay was 20ms and the queue size was
25 packets.

11

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

Number of Flows

N
o

rm
a

ili
ze

d
 T

h
ro

u
g

h
p

u
t

TCP – P R
TCP – S AC K
Mean TCP – P R
Mean TCP – S AC K
Mean HTTP

TCP – P R
TCP – S AC K
Mean TCP – P R
Mean TCP – S AC K
Mean HTTP

TCP – PR
TCP – S AC K
Mean TCP – PR
Mean TCP – S AC K
Mean HTTP

TCP – PR
TCP – S AC K
Mean TCP – PR
Mean TCP – S AC K
Mean HTTP

N
o

rm
a

ili
ze

d
 T

h
ro

u
g

h
p

u
t

Number of Flows
Fig. 9: Normalized Throughput for TCP-PR and TCP-SACK with HTTP Background Traffic. The left-hand plot shows the
results for the drop-tail queue discipline while the right-hand plot shows the results for RED queue discipline. In these
simulations the topology was a single bottleneck topology with a 15Mbps bandwidth bottleneck. The round-trip propagation
delay of 20ms and a queue size of 250 packets.

0 10 20
0

0.1

0.2

0.3

0.4

0.5

Precen t o f Packe ts D ropped

C
o

V

0 10 20
0

0.1

0.2

0.3

0.4

C
o

V

TCP-PR CoV TCP-SACK CoV

mean TCP-PR CoV mean TCP-SACK CoV

Precen t o f Packe ts D ropped
Fig. 11: Coefficient of Variation. The coefficient of variation
as a function of packet loss probability. The variation in loss
probability was simulated by decreasing the link bandwidth.
The left plot is the coefficient of variation for the dumbbell
topology and the right plot is for the parking lot topology. The
single bottleneck had a round-trip propagation delay of 20ms
and a queue size of 250 packets. The parking-lot topology had
a round-trip propagation delay of 20ms with a queue size of
250 packets. In both cases, the link speed was 15Mbps and
the drop-tail queueing discipline was used. The parking-lot
topology had HTTP cross traffic.

particular concern since TCP’s throughput is very low when
the loss probability is this large.

Under normal traffic conditions, fairness is not so much
evidence of the remarkableness of TCP-PR, but rather it attests
to the robustness of additive-increase/multiplicative-decrease
(AIMD) schemes. An important feature of these schemes is
that if two flows detect drops at the same rate, then their
congestion windows will converge to the same value. In fact,
it was shown in [34] and, in more detail, in [35] that, at least
for a dumbbell topology, competing TCP flows converge to
the same bandwidth exponentially fast. While these proofs
rely on the protocols being identical, they also point to the
inherent stability of the AIMD scheme which is witnessed in
the simulation results presented here.

While the focus here is on fairness, packet delay is also of
interest. TCP-PR results in delays that, on average, are similar
to today’s implementations of TCP, even though their loss
detection mechanisms differ. In the case of a single packet
loss in the middle of a file transfer, today’s implementations
of TCP will deliver the lost packet (β− 1)RTTs sooner than

0
5 10

0

0.5

1

0.8

1

1.2

1.4

1.6

1.8

0
5 10

0

0.5

1

0.8

1

1.2

1.4

1.6

1.8

0
5 10

0

0 .5

1
0.8

1

1.2

1

0
5 10

0

0 .5

1
0.8

1

1.2

1 .4

1 .6

1 .8

.4

1 .6

1 .

ββ
α α

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Fig. 12: TCP-SACK normalized throughput for different TCP-
PR parameters. The left plot shows the mean normalized
throughput of TCP-SACK using the single bottleneck topol-
ogy, while the right plot shows normalized throughput for the
parking-lot topology. The single bottleneck had a round-trip
propagation delay of 20ms and a queue size of 250 packets.
The parking-lot topology had a two-way propagation delay of
20ms with a queue size of 250 packets. In all cases, the link
speed was 15Mbps and the drop-tail queueing discipline was
used. The parking-lot topology had HTTP cross traffic.

TCP-PR. We note that our simulations use β = 3. On the other
hand, if there are over β losses, TCP-PR will deliver packets
sooner than TCP New Reno. In the multiple loss scenario, the
packet delay of TCP-SACK compared to TCP-PR depends
(in a complicated way) on the total number of losses and the
window size. In general, as the number of losses increases,
the difference between TCP-PR and TCP-SACK decreases.

In the case of small file transfers, it is likely that a packet
loss will not invoke triple duplicate ACKs (either because
cwnd is small, or because the lost packet is near the end
of the file). In the case that the packet is at the end of
the file, TCP-PR will deliver the packet sooner than current
TCP implementations. On the other hand, if the packet loss
occurs when cwnd is small, TCP-PR will recognize the loss
sooner than many of today’s TCP implementations. Exceptions
are implementations that use Limited Transmit [36], which
allows packets to be sent even when DUP-ACKs arrive. Such
implementations would detect the loss two RTTs after the lost
packet is sent, whereas TCP-PR would detect it β×RTT after
it was sent. Implementations that do not use Limited Transmit
enter timeout in such situations. In order to maintain fairness

12

with implementations that do not use Limited Transmit, TCP-
PR will enter the extreme loss state and will deliver the packet
at the same time as these implementations.

VI. PERFORMANCE UNDER PACKET REORDERING:
COMPARISON WITH OTHER METHODS

This section compares the performance of TCP-PR against
existing algorithms that make TCP more robust to packet
reordering. Two types of packet reordering are investigated:
packet reordering due to queue swaps which might occur
within a switch as suggested by [1], and reordering due
to multipath routing. Our goal in designing TCP-PR is to
provide a transport protocol that is suitable for environments
that exhibit persistent reordering, yet achieving adequate per-
formance (including fairness) in environments with no or
occasional reordering. While queue swaps may lead to the
latter scenarios, as discussed in Section IV, multipath routing
typically results in persistent packet reordering and can be
especially demanding since packets sent back-to-back may
experience very different latencies.

Besides TCP-PR, several other approaches to TCP are con-
sidered. These include TCP-SACK with the DSACK feature
enabled. In this case, spurious drops are detected, but no mit-
igation is performed. This method is labeled DSACK-NM. In
[1], several methods were examined and are considered here as
well. These methods use “limited transmit” [36] so that packets
are still sent when duplicate ACKs arrive. These methods also
adjust dupthresh. In the graphs that follow, Inc by 1 refers
to the approach that increments the dupthresh by one every
time a spurious retransmission is detected. Upon detecting a
spurious retransmission, the method labeled Inc by N increases
the dupthresh such that the just observed spurious retransmis-
sion would not have occurred. The method labeled EWMA
varies the dupthresh according to an exponentially weighted
moving average filter. Another method first suggested in [18]
and further investigated in [1] is referred to as time-delayed
fast-retransmit (TD-FR). In this case, fast retransmit is only
entered when a triple duplicate ACK is observed and a certain
amount of time has passed since the packet was sent. Recently
another method for adapting dupthresh has been suggested
[17]. Since a simulation implementation of this method is not
yet available, it was not included in this comparison.

A. Performance under Packet Reordering Due to Queue Swaps

In [1] the different versions of TCP were compared by
examining their performance in the face of queue swaps. A
queue swap is when two packets in a queue are exchanged.
We assume that queue swap events occur every one second,
and each event consists of K individual packet swaps. The ns-
2 simulations presented refer to a single bottleneck topology
with drop-tail queuing, a maximum queue size of 250 packets,
and one flow. The experiments were repeated for different
propagation delays. Since the critical concern is whether or not
the throughput is affected by queue swaps, Figure 13 shows the
relationship between throughput and the number K of packet
swaps per queue swap event.

The left plot in Figure 13 shows the throughput for a 30ms
propagation delay and the right plot for a 180ms propagation
delay. In the low propagation delay case, most algorithms
work relatively well. Indeed, even TCP-SACK with no special
mitigation for packet reordering achieves a throughput that is
merely 1.5% smaller than the other algorithms. However, for
higher propagation delays the situation is quite different. In the
right plot of Figure 13, we observe that most methods only
achieve a throughput that is 25% smaller than TCP-PR and
TD-FR. In both cases the throughput achieved by TCP-PR is
nearly independent of the number of packet swaps per swap
event. This result is to be expected since reordering of packets
in a queue will merely produce duplicate ACKs. The ACK
arrival rate is not changed and hence TCP-PR’s throughput is
not affected.

DSACK-NMDSACK-NM
Inc by 1Inc by 1Inc by NInc by N

E WMAE WMA TCP-PRTCP-PR

0 5 10 15 20 25
7.5

8

8.5

9

9.5

10

10.5

11

Number of Queue SwapsT
h

ro
u

g
h

p
u

t
(M

b
y

te
s/

se
c

)

0 5 10 15 20 25
12.25

12.3

12.35

12.4

12.45

12.5

Number of Queue Swaps

T
h

ro
u

g
h

p
u

t
(M

b
y

te
s/

se
c

)

TD-FRTD-FR

Fig. 13: Throughput as a function of the number of packet
swaps per swap event. The left plot shows the throughput
for a 30ms propagation delay and the right plot for a 180ms
propagation delay.

B. Performance under Packet Reordering Due to Multipath
Routing

As before, we ran extensive simulations using ns-2 to
compare the performance of the different algorithms in the
face of persistent packet reordering due to multipath routing.
The tests presented were performed on the topology shown in
Figure 14. Different sets of simulations were performed. In the
first set, the propagation delay for each link was set to 10ms,
while in the second set it was set to 60ms. These simulations
were performed with and without background traffic.

source destination

Fig. 14: A Topology to Compare TCP Implemenations. Each
link has a delay of 20ms, bandwidth of 10Mbps and queue
has a size of 100 packets.

Many multipath routing strategies are possible over this
topology. We developed a family of strategies that is para-
meterized by a single variable ε (cf. [37] for details). This
parameter controls the degree to which routing accounts for
link cost: When ε = ∞ the link cost is heavily penalized,
resulting in minimum-hop routing. When ε = 0 the link cost
is not penalized at all and all independent paths from source to

13

destination are used with equal probability. Intermediate values
of ε correspond to compromises between these two extreme
cases. We compared the performance of TCP-PR with that
of the various TCP versions with dupthresh compensation
schemes in [1]. This was done for several fixed routing
strategies, each corresponding to a distinct value of ε. In these
simulations only one flow was active at a time.

Figure 15 shows the throughput for various values of ε. The
simulations show that for ε = 500 (single-path routing), all
methods achieve the same throughput. For ε = 0 (full multi-
path routing) most protocols other than TCP-PR suffer drastic
decreases in throughput. The exception is time-delayed fast-
recovery (TD-FR) and TCP-DCR, which still achieves a rea-
sonable throughput for small values of ε when the propagation
delay is small (the left plot in Figure 15). However, as shown
in Figure 15 and Figure 16, TD-FR and TCP-DCR still suffer
a large decrease in throughput when the propagation delay is
increased. The reason for this drop in throughput is that TD-
FR and TCP-DCR make use of both dupthresh and timers.
While the “limited transmit algorithm” attempts to reduce it,
burstiness remains a problem for TD-FR over connections with
long latency. These simulations demonstrate the effectiveness
of TCP-PR’s timer-based packet drop detection. This confirms
that duplicate ACKs are indicative of packet loss in single path
routing, but their occurrence convey little information when
multi-path routing is utilized.

0
5

10
15
20
25
30

T
C

P
-P

R

T
C

P
-D

C
R

T
D

-F
R

D
S

A
C

K
-N

M

In
c

b
y
 1

In
c

b
y

 N

E
W

M
A

M
b

p
s

epsilon=0epsilon=0 epsilon=1epsilon=1 epsilon=4epsilon=4 epsilon=10epsilon=10 epsilon=500epsilon=500

0

5

10

15

20

25

30

M
b
p
s

T
C

P
-P

R

T
C

P
-D

C
R

T
D

-F
R

D
S

A
C

K
-N

M

In
c

b
y
 1

In
c

b
y

 N

E
W

M
A

Fig. 15: Throughput for different TCP implementations and
different degrees of multi-path routing. ε = 500 corresponds to
single path routing, whereas for smaller values of ε alternative
paths are sometimes used. In the limit ε = 0, all paths are
used with equal probability. The left plot corresponds to the
topology in Figure 14 with a 10ms propagation delay for each
link and the right plot corresponds to the same topology but
with a 60ms propagation delay for each link.

VII. CONCLUSIONS

In this paper we proposed and evaluated the performance
of TCP-PR, a variant of TCP that is specifically designed
to handle persistent reordering of packets (both data and
acknowledgment packets). Our simulation results show that
TCP-PR is able to achieve high throughput when packets are
reordered and yet is fair to standard TCP implementations,
exhibiting similar performance when packets are delivered
in order. From a computational view-point, TCP-PR is more

0

5

10

15

20

25

30
TCP-PR TCP-DCR

M
bp

s

ε
0 1 4 10 500 0 1 4 10 500 0 1 4 10 500

Tprop = 120 ms Tprop = 160 ms Tprop = 200 ms

Fig. 16: Throughput of TCP-PR and TCP-DCR for different
values of � and different propagation delays.

demanding than TCP-(New)Reno but carries essentially the
same overhead as TCP-SACK.

Because of its robustness to persistent packet reordering,
TCP-PR allows mechanisms that introduce packet reordering
as part of their normal operation to be deployed in the
Internet. Such mechanisms include proposed enhancements to
the original Internet architecture such as multi-path routing for
increased throughput, load balancing, and security; protocols
that provide differentiated services (e.g., DiffServ [8]); and
traffic engineering approaches.

A Linux implementation of TCP-PR is under development
and is available at [38]. Furthermore, TCP-PR is expected
to work well in wireless multi-hop environments allowing
wireless routing protocols to make use of multiple paths when
available. While the protocol described in this paper focuses on
wired networks, we plan to adapt it for wireless environments
as part of our future work.

REFERENCES

[1] E. Blanton and M. Allman, “On making TCP more robust to packet
reordering,” ACM Computer Communications Review, vol. 32, 2002.

[2] V. Paxson, “End-to-end routing behavior in the internet,” in ACM
SIGCOMM, 1996.

[3] J. Bennett and C. Partridge, “Packet reordering is not pathological
network behavior,” IEEE/ACM Transactions on Networking, vol. 7,
no. 6, 1999.

[4] L. Cottrell, “Packet reordering,” 2000.
[5] F. Wang and Y. Zhang, “Improving TCP performance over mobile

ad-hoc networks with out-of-order detection and response,” in ACM
MOBIHOC, 2002.

[6] T. Dyer and R. Boppana, “A comparison of TCP performance over three
routing protocols for mobile ad hoc networks,” in ACM MOBIHOC,
2001.

[7] G. Holland and N. Vaidya, “Analysis of TCP performance over mobile
ad-hoc networks,” in ACM MOBICOM, 1999.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Whang, and W. Weiss,
“An architecture for differentiated services.” RFC 2475, 1998.

[9] D. Bertsekas, Network Optimization: Continuous and Discrete Models.
1998.

[10] N. Taft-Plotkin, B. Bellur, and R. Ogier, “Quality-ofservice routing using
maximally disjoint paths,” 1999.

[11] S. Bohacek, J. Hespanha, K. Obraczka, J. Lee, and C. Lim, “Secure
stochastic routing,” in ICCCN, 2002.

[12] R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker, “Characterizing
and measuring path diversity of Internet topologies,” in SIGMETRICS,
2003.

[13] A. Nasipuri and S. Das, “Demand multipath routing for mobile ad
hoc networks,” in Networks, Proceedings of the 8 Th Annual IEEE
Internation Conference on Computer Communications and Networks
(ICCCN), 1999.

14

[14] M. Pearlman, Z. Haas, P. Sholander, and S. Tabrizi, “the impact of
alternate path routing for load balancing in mobile ad hoc networks,” in
Proceedings of the ACM MobiHoc, 2000.

[15] R. Ludwig and R. Katz, “The Eifel algorithm: Making TCP robust
against spurious retransmissions,” ACM Computer Communication Re-
view, vol. 30, no. 1, 2000.

[16] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An extension to the
selective acknowledgement (SACK) option for TCP.” RFC 2883, 2000.

[17] N. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: A reordering-
robust TCP with DSACK,” Tech. Rep. TR-02-006, ICSI, Berkeley, CA,
July 2002.

[18] V. Paxson, “End-to-end internet packet dynamics,” in ACM SIGCOMM,
1997.

[19] S. Bhandarkar, N. Sadry, A. L. N. Reddy, and N. Vaidya, “Tcp-dcr: A
novel protocol for tolerating wireless channel errors,” IEEE Transactions
on Mobile Computing, 2004.

[20] B. Sikdar, S. Kalyanaraman, and K. S. Vastola, “Analytic models and
comparative study of the latency and steady-state throughput of TCP
Tahoe, Reno and SACK,” IEEE/ACM Transactions on Networking,
2003.

[21] M. Allman and V. Paxson, “Computing TCP’s retransmission timer,”
RFC 2988, p. 13, Nov. 2000.

[22] N. L. for Applied Network Research (NLANR).
[23] S. Bohacek, “A stochastic model of tcp and fair video transmission,” in

INFOCOM, 2003.
[24] R. Braden, “Requirements for Internet hosts – communication layers,”

RFC 1122, Oct. 1989.
[25] V. Jacobson, “Congestion avoidance and control,” ACM Computer

Communication Review; Proceedings of the Sigcomm ’88 Symposium
in Stanford, CA, August, 1988, vol. 18, 4, pp. 314–329, 1988.

[26] M. Allman and V. Paxson, “On estimating end-to-end network path
properties,” in Proc. of ACM SIGCOMM ’99, 1999.

[27] The VINT Project, a collaboratoin between researchers at UC
Berkeley, LBL, USC/ISI, and Xerox PARC, The ns Manual (for-
merly ns Notes and Documentation), Oct. 2000. Available at
http://www.isi.edu/nsnam/ns/ns-documentation.html.

[28] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgement options.” RFC 2018, 1996.

[29] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in SIGCOMM 2000, (Stock-
holm, Sweden), 2000.

[30] S. Floyd, “Connections with multiple congested gateways in packet-
switched networks part 1: One-way traffic,” ACM Computer Communi-
cation Review, vol. 21, no. 5, pp. 30–47, October 1991.

[31] D. Katabi, M. Handley, and C. Rohrs, “Internet congestion control for
future high bandwidth-delay product environments,” 2002.

[32] F. Hernández-Campos, J. S. Marron, G. Samorodnitsky, and F. D. Smith,
“Variable heavy tail duration in internet traffic,” in Proc. of IEEE/ACM
MASCOTS 2002, 2002.

[33] S. Floyd, “Scripts for adaptive red simulations.” Available from
http://www.icir.org/floyd/adaptivered/papersims/single1.tcl.

[34] D. Chiu and R. Jain, “Analysis of the Increase/Decrease algorithms
for congestion avoidance in computer networks,” Journal of Computer
Networks and ISDN, vol. 17, pp. 1–14, 1989.

[35] S. Bohacek, J. Hespanha, K. Obraczka, and J. Lee, “Analysis of a TCP
hybrid model,” in Proc. of the 39th Annual Allerton Conference on
Communication, Control and Computing, 2001.

[36] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s loss
recovery using limited transmit,” RFC 3042, 2001.

[37] J. ao Hespanha and S. Bohacek, “Preliminary results in routing games,”
in American Control Conference, (Arlington, VA), IEEE, June, 2001.

[38] “The TCP-PR web page. available at http://eecis.udel.edu/ bohacek/tcp-
pr.htm.”

