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Statistical Detection of Congestion in Routers
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Abstract—Detection of congestion plays a key role in numerous
networking protocols, including those driving Active Queue
Management (AQM) methods used in congestion control in
Internet routers. This paper exploits the rich theory of statistical
detection theory to develop simple detection mechanisms that
can further enhance current AQM methods. The detection of
congestion is performed using a Maximum Likelihood Ratio Test
(MLRT) that is an asymptotically powerful unbiased test. The
MLRT indicates that the likelihood of congestion grows super
exponentially with the queue occupancy level. Performance eval-
uation of the likelihood detector shows it is robust to variations
of the network parameters. The mathematical expression of the
likelihood of congestion depends only on the current dropping
rate, a desired queue occupancy level and the current queue
occupancy. When incorporated into REM and PI, the MLRT-
based detection improved the reaction time by at least 30%.

Index Terms—Computer Networks, Computer Network Per-
formance, TCP/IP, Congestion Control, Active Queue Manage-
ment (AQM), QoS, Congestion Detection.

I. INTRODUCTION

RECENT evidence suggests, there is a need for Active
Queue Management (AQM) in current networks [1]–

[6]. The advances in AQM presented by Ryu et. al. [7]
conclude that currently proposed schemes do not always
achieve the goal of pro-actively detecting incipient congestion.
Rather, the main focus has been on the reaction to already
present congestion. AQM requires more effective mechanisms
to anticipate congestion, while taking into account the effects
of the network delay.

To understand the need to detect congestion, consider AQM
as a standard control problem [8] with a network flow as the
controlled plant depicted in Fig. 1. As input, the network
takes a packet drop or marking indication probability, δ.
After random delays, marks are received by the TCP sender
and translated into a congestion window value, W , which
impacts the queue occupancy. To make the system amendable
to analysis, the actual TCP system is replaced with a TCP
model that has an output W , an approximated average window
size. This average window size yields to an average queue
occupancy, q. The actual queue occupancy is modeled as
q + N , where N is treated as noise expressed by N = q − q.

The diagram in Fig. 1 is similar those described in [3],
[4], [9], [10], where a linearized TCP model was proposed in
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Fig. 1. Feedback loop analogy for a TCP network. The network
(plant) introduces disturbances (M ,N ), modifying the linearized
models (W ) to produce a measurable variable q. AQM attempts to
estimate the ergodic mean q and produce a dropping probability δ to
control the level of congestion.

order to describe the network box. However, in these efforts
it is assumed that q = q, the disturbance, N , is neglected, and
thus there is no estimator. To understand the limitations of this
assumption, linear control theory [11] can be applied, where
the controller can be modeled as a linear system with Laplace
transform K(s), the network with H(s), and the estimator is
neglected, then

Q̄(S) =
K(s)H(s)

1 + K(s)H(s)
Qd(s) +

1
1 + K(s)H(s)

M(s)+

K(s)H(s)
1 + K(s)H(s)

N(s).

It is possible to see that the impact of the linearization error,
M(s), is reduced by making the controller gain as large as
possible, while maintaining stability. Conversely, the noise
of approximating the mean queue occupancy with the actual
queue occupancy, N(s), is not impacted by large gain. From
standard control theory it is known that disturbances in the
output can only be reduced by using an estimator. This paper
presents such an estimator.

The paper is organized as follows: Section II provides some
background on AQM methods and corresponding congestion
detection schemes. Section III defines congestion from queue
management perspective. Section IV characterizes the queue
distribution based on traffic models and empirical results from
several simulations. Section V details expressions for the like-
lihood of congestion based on different queue distributions as
well as performance analysis of the detectors. Sections V and
VI present simulations in support of the analytical results from
Section V. Finally, in Section VII, discussion and conclusions
are presented. In the next sections, this paper refers to packet
dropping probabilities as packet marking probabilities since
they are both congestion notification techniques, using the term
drop when packet losses occur.
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II. DETECTION OF CONGESTION IN PREVIOUS AQM

The initial AQM work of Floyd et. al. [2] recognized
the need for some kind of congestion detection technique
besides direct observations of the queue occupancy. Specif-
ically, Random Early Detection (RED) measures congestion
by smoothing the queue occupancy and relates this smoothed
queue occupancy to marking probability via a piece-wise
function to produce a marking probability. The smoother is
an Exponentially Weighted Moving Average (EWMA) with
equation

q̄(k + 1) = (1− w)q̄ + wq(k), (1)

where q̄ is the smoothed version of the queue occupancy q and
w is the smoothing factor. The parameter w controls a trade-
off between smoothness and reactiveness. The design of w is
difficult as instabilities or even chaotic responses are observed
if w is not carefully chosen. Ranjan et. al. modeled TCP-
RED and presented simulations supporting the instabilities and
erratic behavior of RED [12], while May et. al recommended
to avoid the deployment of RED until a better understanding of
AQM was acquired [13]. Several variants of RED have since
been proposed [14]–[16] , but the tuning of the algorithm is
still complex.

Random Early Marking (REM) [4], a scheme based on
optimization theory, proposed to control the arrival rate. In
this case a simple smoother is used to estimate the arrival
rate. Since the arrival rate only provides information on the
variations in the queue, a term with the instantaneous value
of the queue was introduced, aiming to maintain the queue
occupancy level to a fixed value. REM detects congestion by
using a weighted observation of the queue and an estimated
arrival rate. Accurate estimates of arrival rates require a careful
design of the smoother.

Using classical control theory, Hollot et. al. proposed a pro-
portional integral controller [3]. They used a linearized TCP
model to describe the ‘plant’ and designed a controller based
on that model. The congestion measure is performed using a
second order filter, which periodically updates an estimated
marking probability based on the current and previous values
of queue occupancy. The update interval as well as the model
parameters need to be carefully chosen, and to achieve optimal
performance depend on network conditions.

Kunniyur and Srikant proposed AQM based on an Adaptive
Virtual Queue (AVQ) [5]. This approach uses the arrival rate as
a measure of congestion attempting to keep the value smaller
than the total capacity. AVQ detects congestion in the same
reactive way drop tail does, once the virtual queue overflows it
assumes the link is congested and marks the arriving packets.

Although, all these schemes have achieved good perfor-
mance improvements in steady state, Le et. al. [17] noted no
significant differences in reaction speed between well known
AQM schemes and the traditional drop tail. Results of these
studies suggest that better understanding of the queue statistics
is necessary for designing AQM algorithms. The statistical
analysis presented in this paper provides better understanding
of the queuing process and contributes with mechanisms for
congestion detection.

III. CONGESTION FROM QUEUE MANAGEMENT POINT OF
VIEW

There are many observables that could be used for detecting
congestion. For example, congestion can be defined as when
the average packet arrival rate exceeds the outgoing link speed,
therefore it may be useful to use the packet arrival rate to detect
congestion. However, statistical detection research indicates
that the queue occupancy, not the arrival rate, is best suited to
derive the level of congestion [18].

To illustrate this concept, consider the goal of detecting
the event of the average arrival rate exceeding its nominal
mean. In this case, it is well-known that sequential change-
point detection will provide the fastest detection for a given
false alarm rate [19]. Under the assumption that the number
of arrivals during a sample interval is Gaussian (a reasonable
assumption if there are many flows), optimal change-point
detection declares that the mean arrival rate has exceeded
its nominal rate when the cumulative sum Q(k) exceeds a
threshold, where Q(k) is defined as

Q(k + 1) = max (0, Q(k) + A(k)− C) , (2)

where A(k) is the number of arrivals in the k-th sample
interval and C is the nominal departure rate. Since Q(k) is
simply the queue occupancy, it is optimal to detect conges-
tion. However, AQM does not require a binary indication of
congestion but rather a continuous variable to indicate the
level of congestion. A real-valued measure of congestion can
be obtained by using hypothesis testing. For the purpose of
this paper, the hypothesis of a link being congested is said
to be true if the ergodic mean queue occupancy, q, is greater
than a desired queue occupancy, qd. Similarly, if q ≤ qd, the
link is said to be underutilized. However, it is not possible to
directly measure the ergodic average of the queue occupancy,
q. Therefore, the observed value qo is used to attempt the
detection of q, turning the problem into speed and accuracy
of the estimated q.

Observables that might impact a determination of the level
of congestion include: the number of flows, the round trip
delay for each flow, and the past marking probability applied
to each flow. While round trip delays and number of flows
are difficult to measure, it is possible to take the marking
probability applied by a router to be the marking probability
experienced by the flows. Thus the smoothed marking proba-
bility is taken as an observable.

IV. STATISTICAL CHARACTERISTICS OF TCP FLOWS

Several probabilistic models have been studied for the statis-
tical characterization of queue occupancy in network routers.
Appenzeller et. al. [20] used a Gaussian approximation of the
sum of TCP congestion windows based on the equation

Qi (k) = Wi (k)−RTTi × Ci − εi, (3)

where Qi is the number of packets of the ith flow in the
queue at time k, Wi is the congestion window, RTTi × Ci

is the number of packets currently in the links and εi is
the number of packets dropped. Summing (3) over all the
flows and using the relationship RTTiCi = c/

√
δ, where c
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is a proportionality constant that relates the throughput and
delay to the marking probability, δ [21], the router’s queue
occupancy can be expressed as

Q (t) =
∑

i

Qi (t) =
∑

i

Wi (t)− c
∑

i

1√
δi

−
∑

i

εi. (4)

Note from (3) and (4) that the distribution of the router’s queue
occupancy, Q =

∑
Qi, depends not only on the distributions

of the congestion windows, but also the round trip delays,
RTTi, per flow throughput, Ci and even the method used
to drop packets, εi. It is possible to assume that each flow
gets a similar marking probability δi [22]. Thus, from (4),
the queue occupancy distribution is, by approximation, the
distribution of the sum of the congestion windows. Using a
Gaussian approximation of the queue occupancy distribution
may at first seem reasonably simpler [20]. However, the non-
negative values of the observed queue and the goal of keeping
the queue occupancy low indicate that a skewed distribution
provides a better representation.

Bohacek and Shah modeled the distribution of the conges-
tion window of a TCP flow i as a negative binomial random
variable with parameters Ni and ri [23]. The distribution
described by

P{Wi = w} =
Γ (Ni + w − 1)
Γ (Ni) Γ (w)

(1− ri)
Ni ri

w−1, (5)

with mean value Niri/(1−ri)+1 and variance Niri/(1−ri)2,
for w > 0. Their simple approximation relates the parameters
of the negative binomial distribution with the packet marking
probability δi of the particular flow,

ri = 1− δi

γ

(
c1√
δi

+ 1
)

, (6)

Ni =
1− ri

ri

(
c1√
δi

− 1
)

, (7)

where c1 is the TCP constant
√

3/2, and γ = 0.31. With
identical marking probabilities, δi, the aggregate throughput is
also negative binomial distributed with parameters r = ri = rj

and N =
∑

Ni.
On the other hand, Bhatnagar [24] and Kim et. al. [25]

assumed the packet interarrival time process follows a Gamma
distribution. The Gamma distribution is a continuous time
approximation to a negative binomial distribution, but the
Gamma distribution is arithmetically simpler [26]. Considering
a constant departure rate, this distribution translates to the
queue occupancy.

For these reasons, the Gamma distribution is used for the
model in this paper. The probability density function of the
Gamma distribution can be expressed as

P {Q = q; q, θ} =
q

q
θ−1e−

q
θ

θ
q
θ Γ

(
q
θ

) , (8)

for q > 0, where q is the mean of the Gamma-distributed ran-
dom variable Q, θ is the scale parameter and Γ is the Gamma
function.Using this notation, E [Q] = q and V ar [Q] = qθ.

An approximation of the negative binomial by a Gamma
distribution is achieved by equating the first two moments [26].

The resulting distribution of the queue occupancy is modeled
as Gamma distributed with parameters q and

θ =
γ

c1

√
δ

(
c1 −

√
δ

c1 +
√

δ

)
. (9)

In order to confirm (8), more than 70,000 simulations
were run using the Network Simulator [27] based on a
dumbbell topology, varying the parameters of the network
as shown in Table I of Section VI. The queue occupancy
histograms obtained from the simulations were used to fit
mean, variance and skewness to a Gamma distribution. The L1

norm,
∫ |f(q)− f̂(q)|dq, is used to evaluate the quality of fit

[28]. When calculating the L1 distance between the empirical
distributions and the Gamma distribution, an average error of
0.02 was obtained, which indicates that the probabilities of the
data sets are off by at most 0.01 [28]. These values decreased
as the marking probability increased and also when the mean
queue occupancy decreased. Smaller error for lower average
queue occupancy points that the Gamma distribution is useful
to represent AQM controlled buffers, where desired mean
queue occupancies are low. Smaller error when the marking
probability increases indicates this type of distribution is also
appropriate for describing heavy congestion. Examples of the
simulated pdf and fitted pdf are shown in Figs. 2 and 3.

Figure 4 shows the fitted values of θ for several simulations.
As can be observed, θ(δ) from (9) provides a good approxima-
tion when characteristics between flows are similar. However,
the differences in network conditions for all the flows in real
case scenarios increase the variability of the queue occupancy.
Therefore, this paper uses a scaled version of θ to provide an
upper bound for several network conditions and improve the
noise rejection of the measured queue occupancy. The upper
bound is required for the next section, where the maximized
probabilities are used to calculate the likelihood of congestion.

V. LIKELIHOOD RATIO TEST AND DETECTION OF
CONGESTION

A. Maximum Likelihood Ratio Test

A fundamental objective of this paper is to determine the
likelihood that the link is congested. As discussed in section
III, the observables are the current queue occupancy, the
smoothed marking probability and the desired queue occu-
pancy, qd. Define qo as an observation of the router’s queue
occupancy level and q the ergodic average of the queue. The
probability that q = qo, for a given set of parameters q and θ,
is given by P {Q = qo; q, θ}.

To detect congestion, we must decide between two hypothe-
ses, being congested, which is referred to as H1 and not
being congested (H0). Define P{H1} as the probability of
being congested and P{H0} as the probability of not being
congested. One of the hypotheses must be true, therefore
P{H0}+ P{H1} = 1.

The Likelihood Ratio Test (LRT) [29] proposes

P{Q = qo; q, θ|H1}
P{Q = qo; q, θ|H0}

accept H1

≷
accept H0

T, (10)
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Fig. 2. Queue occupancy distribution fitted to a Gamma
distribution for 5 TCP flows passing traffic through a 1 Mbps
bottleneck link for different marking probabilities δ.
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Fig. 3. Queue occupancy distribution fitted to a Gamma
distribution for 50 TCP flows passing traffic through a 10 Mbps
bottleneck link for different marking probabilities δ.

where T is a threshold. According to (10), hypothesis H1 can
be safely accepted if the ratio is greater than the threshold
T . The higher the value of T the smaller the false alarm
probability, thus the ratio is a measure of the probability that
hypothesis H1 is true. The optimal threshold T , for equally
probable events, is when T = 1, i.e. the decision rule is
determined by the higher probable event.

Since the a priori probabilities P{H0} and P{H0} are not
known, it is necessary to obtain these expressions. Replacing
the hypotheses by using the definition of congestion from
section III results in,

P{Q = qo; q > qd, θ}
P{Q = qo; q ≤ qd, θ}

accept q > qd

≷
accept q ≤ qd

T. (11)

The generalized form of the likelihood ratio test (GLRT) is
obtained when the probabilities are maximum for each of the
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Fig. 4. Fitted values of θ vs. marking probability and theoretical
value θ(δ) and a scaled version 6θ(δ).

hypotheses. The expression for the GLRT is

Λ(qo) =
maxq>qd

P{Q = qo; q, θ}
maxq≤qd

P{Q = qo; q, θ} , (12)

where Λ(qo) is defined as the likelihood of congestion given
an observation qo.

The function Λ takes values in (0,∞), where large numbers
indicate certainty of congestion, values close to 0 indicate
certainty of link under-utilization, and values around 1 indicate
uncertainty about the degree of congestion.

B. Likelihood of a Gamma-Distributed Queue

To compute the likelihood using the proposed Gamma
distribution from Section IV, it is required to maximize (8)
with respect to q subject to the conditions of the hypotheses,
and replace it into the likelihood ratio test function (12).

Theorem 1: Given an observation, qo, an average marking
probability, δ, and a desired queue occupancy, qd. The
likelihood of congestion of a router’s outbound link with a
Gamma-distributed queue occupancy is,

ΛΓ (qo) =

(
Γ

(
qd

θ

)

Γ
(

qo

θ + 1
2

)
)sgn

(
qo−qd

θ + 1
2

)
(qo

θ

)∣∣∣ qo−qd
θ + 1

2

∣∣∣
,

(13)
where

θ =
κγ

c1

√
δ

(
c1 −

√
δ

c1 +
√

δ

)
.

The parameter γ is 0.31, c1 is the TCP constant,
√

1.5, and
κ = 6, which counteracts the effects of differences between
flows.
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Proof: Taking the derivative of (8) with respect to q,

dP{Q = qo; q, θ}
dq

=
e−

qo
θ q

q
θ−1
o

θ
q
θ +1Γ

(
q
θ

)
(

ln
(qo

θ

)
− ψ

(
q

θ

))
,

(14)
where ψ corresponds to the Digamma function,

ψ(z) =
1

Γ(z)
d

dz
Γ(z).

Letting q∗ be the value of q that maximizes (8), note that q∗

satisfies,

ln
(qo

θ

)
= ψ

(
q∗

θ

)
. (15)

A close form expression for q∗ cannot be obtained, but using
the approximation of Muqattash and Yahdi [30],

ψ(z) ≈ ln(z + a)− 1
z
,

where aε[0, 1], (15) can be rewritten as,

qo = (q∗ + aθ) e−
θ

q∗ . (16)

For θ/q∗ small,

q∗ ≈ qo +
1
2
θ. (17)

The maximized probability for an observation qo given that
the hypotheses are true is obtained by replacing (17) into (8),

P{Q = qo; q∗, θ} =
q

qo
θ −(1−a)

o e−
qo
θ

θ
qo
θ +aΓ

(
qo

θ − (1− a)
) . (18)

Note the small error introduced for large values of θ/qo is
strongly attenuated by the distribution function.

Figure 5 shows two examples for the observations qo < qd

and qo > qd and their corresponding estimated distributions.
The maximized probability for an observation qo given that
the hypotheses are false is simply P{Q = q; qd, θ}. Thus,
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Fig. 6. Likelihood of congestion with respect to the observed queue
occupancy Top: For different marking probabilities, given a desired
queue occupancy qd = 30. Bottom: For different values of desired
queue occupancy, given a current marking probability δ = 0.005.

the likelihood of congestion as a function of the instantaneous
queue occupancy qo can be written as

Λ(qo) =

{
P{Q=qo;q∗,θ}
P{Q=qo;qd,θ} if qo > qd − θ/2
P{Q=qo;qd,θ}
P{Q=qo;q∗,θ} otherwise.

(19)

Replacing both (8) using q = qd and (18) into (19),
a simplified expression for the likelihood of congestion is
obtained.

As mentioned, the likelihood given by (13) represents how
likely the link is congested based on a single a sample qo.
The likelihood depends on the parameters θ and qd, and the
observed variable qo. However, note that θ is function of δ,
which corresponds to the current average marking probability
and can be approximated by the router. The value of qd is set
by the network administrator. Figure 6 shows the behavior of
Λ(qo) for different values of the parameters θ(δ) and qd.

In Fig. 6 is possible to see that as the queue empties
the likelihood goes to 0, indicating a certainty of not being
congested. When the observed queue occupancy is around the
desired value the likelihood goes to 1, indicating uncertainty
about being congested. The likelihood goes to infinity to
indicate certainty that congestion is occurring. For high values
of the marking rate, the congestion certainty grows faster as
the queue occupancy increases, compensating for the variance
of the queue occupancy.

C. Likelihood Based On Other Queue Distributions

It is useful to analyze the results obtained if other, less
realistic, queue distributions are assumed. For example, the
simplest distribution that could be used is the uniform dis-
tribution. Thus, assuming a uniform-distributed queue with
mean µ and variance σ2. The random variable q is uniformly
distributed in (qd −

√
3σ, qd +

√
3σ), where σ2 = qdθ. The

evaluation of the likelihood is straight-forward, since the ratio



6

−40 −30 −20 −10 0 10 20 30 40

10
0

10
2

Λ
(q

0)

Gamma δ=0.010 q
d
=20

Gaussian (p=1.5)
Uniform

−40 −30 −20 −10 0 10 20 30 40

10
0

10
2

q
0
−q

d

Λ
(q

0)

Gamma δ=0.001 q
d
=20

Gaussian (p=1.3)
Uniform

Fig. 7. Comparison between likelihood functions for Gamma (solid),
Gaussian (dashed) and Uniform (dotted) distributed queues, given a
desired queue occupancy of 20 packets.

between the distributions takes only three values {0, 1,∞},
namely,

ΛU (qo) =





0 if qo < qd −
√

3σ2

1 if qd −
√

3σ2 < qo < qd +
√

3σ2

∞ otherwise.
(20)

Thus, an AQM scheme that assumes a uniformly distributed
queue occupancy would mark all the arriving packets when
qo > qd +

√
3qdθ, where qd is the desired queue occupancy

and θ is given by (9), which depends on δ. Thus assuming
uniform distributed queue occupancy results in a virtual queu-
ing approach, where the size of the virtual queue depends on
the past values of marking probability.

It is also of interest to analyze a Gaussian-distributed
queue. Therefore, using a generalized Gaussian distribution
with mean q and variance σ2

P{Q = qo; q, σ2} =
p

2
√

2σ2Γ
(

1
p

)e
−

(
|qo−q|√

2σ2

)p

, (21)

where the q that maximizes the probability function is qo. The
likelihood simplifies to,

ΛG(qo) = e
sgn(qo−qd)

(
|qo−qd|√

2σ2

)p

. (22)

Figure 7 shows a comparison between the likelihood func-
tions for the Gamma, Gaussian and uniform distributions for
different parameter values. The generalized Gaussian adds an-
other parameter, p, which also depends on network parameters.
Through fitting distributions found from simulations, p was
found to be in the interval [1, 2], where tails of Gamma and
Gaussian are similar. Figure. 7 shows two cases for different
marking probability, δ, and the approximated values of the
parameter p are shown in the legend.
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VI. EVALUATION OF PERFORMANCE

A. Detector Evaluation

In this section, the performance of the proposed detector
is compared to the commonly used detectors, specifically, the
smoothed queue occupancy (as in RED, REM, PI, etc.) and
the direct observation of the queue. Normally, detectors use
thresholds to determine whether the hypothesis tested is valid.
Poorly set thresholds can either detect congestion when it is
not occurring (i.e. false alarm probability) or fail to detect
congestion when it is occurring (i.e. probability of detection).
To evaluate the performance of the detector, the classical
performance metrics for detectors were used [31]. Specifically,
the false alarm probability, PFA, the probability of correctly
detecting congestion, PD, and the time to detect, TD. PFA

is the proportion of time that the detector input was above
the threshold during non-congestion. PD corresponds to the
proportion of time the input of the detector was above the
threshold during congestion conditions. Note that the metric
PD does not reveal the detection speed but only certainty.
Therefore, it is necessary to evaluate TD, which is the time it
takes to first cross the threshold after congestion begins (i.e.
when new flows start).

To obtain these measurements, another set of simulations
were run. These simulations used a fixed marking probability
to maintain the average queue occupancy produced by a fixed
number of flows. The simulation parameters included bottle-
neck bitrates ranging from 1Mbps up to 100Mbps, a number of
initial flows varying from 5 to 150 with uniformly-distributed
delays between 1ms and 40ms, marking probabilities from
3 × 10−4 to 0.3, and the smoothing parameter w = 0.002,
originally proposed in [2]. After time 2000 seconds, the
number of flows is doubled, creating a congestion condition.
Several threshold values were used to obtain different values
of PFA, PD and TD.

Figure 8 summarizes the performance using the metrics
explained above. On the top plot, PD versus PFA, the likeli-
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Fig. 9. False alarm probability, PFA, and probability of detection,
PD versus initial packet marking probability, δd. Threshold adjusted
to achieve PFA = 0.1 in a randomly selected baseline scenario.

hood detector shows larger probability of detection and lower
false alarm probability than the instantaneous and smoothed
queue. The performance of the smoothed queue improves
as the parameter w becomes smaller. In fact, the Network
Simulator [27] implements values of w that decrease as the
link throughput grows. However, the average detection times
at the bottom of Fig. 8 reveal the trade-off between TD and
PD for this approach. Therefore, the parameter w cannot be
arbitrarily small given its direct impact on the detection time.
On the other hand, likelihood maintains small detection times,
similar to those of the instantaneous queue occupancy.

In order to evaluate the detector robustness to changes in
network parameters, a baseline scenario was randomly selected
and thresholds were set to obtain false alarm probabilities
on each detector of 10−1, 10−2 and 10−3 fdepending on
the experiment. All the scenarios were then evaluated us-
ing these thresholds. Results in Figs. 9, 10 and 11 show
that the likelihood detector maintains the desired PFA and
keeps PD high as the initial marking probability, δd changes.
These figures also show that both the instantaneous and the
smoothed queue reduce the PFA when δd increases, with the
penalty of decreased PD. Note also that the behavior of the
smoothed queue was not considerably impacted by changes
on the baseline thresholds (i.e the curves corresponding to the
smoothed queue in the figures are nearly the same). Thus, in
the case of the smoothed queue detector thresholds set for a
single scenario might only work for that particular scenario.
On the other hand, the queue detector reduces the PFA with
the penalty of small PD.

The independence of PFA with respect to different scenarios
is a powerful result of the likelihood detector. It reveals
an immediate relationship between the likelihood and the
reaction to congestion, which increases as the certainty of
congestion increases. Therefore, the likelihood provides real-
valued degree of congestion, instead of a binary decision. This
is particularly useful for the development of AQM schemes.
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Fig. 10. False alarm probability, PFA, and probability of detection,
PD versus initial packet marking probability, δd. Threshold adjusted
to achieve PFA = 0.01 in a randomly selected baseline scenario.
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Fig. 11. False alarm probability, PFA, and probability of detection,
PD versus initial packet marking probability, δd. Threshold adjusted
to achieve PFA = 0.001 in a randomly selected baseline scenario.

B. Likelihood of Congestion from Simulations

Using the Network Simulator (NS2) [27], more than 70,000
simulations were run based on a dumbbell topology, differ-
ent values of marking probability, bottleneck link capacity,
transmission delays and number of flows. The values of the
parameters are listed in the Table I. The buffer size of the
router was set to 1000 packets to reduce interference from
the buffer size in the measurement. Packet marking was
accomplished with Explicit Congestion Notification (ECN)
[32].

Based on the results of these simulations, the likelihood
of congestion was calculated for different marking rates and
desired queue occupancies. Figs. 12 and 13 show the empirical
likelihood found from simulations and the likelihood based on
the assumption in (13) that the queue occupancy is Gamma-
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TABLE I
PARAMETERS USED IN THE SIMULATIONS

Marking Probability 0.0001 - 0.6

Bottleneck Capacity 0.2Mbps - 100Mbps

TCP Flows 1 - 30

Bottleneck Link Delay 0.1ms - 5ms

Per Flow Delays 1ms to 40ms

distributed. Values of qd of 20 and 30 packets respectively
were used. The figures show that the simulated results closely
match the analytical results from section V-B.
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Fig. 12. Simulation based likelihood (Λs) compared to Gamma
based likelihood of congestion (ΛΓ) for different values of
marking probability when qd = 20.
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marking probability when qd = 30.

C. The Impact of Congestion Likelihood in AQM Performance

The likelihood-based detector provides a level of certainty
about congestion based on network parameters and it is
reasonable to include it in the estimator of Fig. 1. However,
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Fig. 14. Reaction speed comparison between REM and Likelihood-
REM, for qd = 50

the design of AQM schemes is out of the scope of this paper.
Therefore, for the purpose of a quick evaluation of the detector
characteristics in AQM schemes, the measuring element block
in Fig. 1 was replaced by q̂ = qdΛ(qo). Design of an AQM
using the likelihood-based detector is presented in [33].

The reaction speed of REM and PI was evaluated for a
dumbbell topology. Access links of 100Mbps with uniformly-
distributed delays are connected to a gateway router. The
gateway router has a 10Mbps outbound link, with a buffer
for 200 packets.

D. Experiment 1

The simulation used in this experiment starts at time 0 with
140 ftp flows, after 500 seconds, 105 flows are terminated,
leaving only 35 flows crossing traffic through the gateway
router. At time 1000 seconds, 105 flows start, resulting in a
total of 140 flows again. The parameters of the AQM were set
to the preferred values except for the desired queue occupancy,
which was set to 50 packets aiming to observe a non-empty
queue when in steady state.

Figure 14 shows a significant performance improvement in
the reaction speed of the Likelihood REM (L-REM) over the
traditional REM scheme. This figure shows a convergence
to steady state in less than 40 seconds when congestion
is detected. This time is considerably small compared to
the 140 seconds of the traditional REM. Note that queue
length variability is not negatively impacted when the system
achieves steady state and the large buffer size limitation was
improved.

The likelihood block was also implemented in PI, obtaining
performance improvements in detection of congestion. Figure
15 compares the reaction speed of Likelihood-based PI and
REM, with respect to AVQ, which is a fast AQM scheme. The
improvements in REM reduced the amount of packet drops
due to overflow during the last 500 seconds from more than
900 packets to 150 packets, and, in PI, from 690 packets to 61
packets in identical conditions. Both REM and PI maintained
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Fig. 15. Experiment 1: Reaction speed comparison between L-PI,
L-REM and AVQ for qd = 50, when 105 flows are terminated at
time 500 and restarted at time 1000.

full link utilization during that period of time. Note that even
though the congestion detection was significantly improved,
the reaction to underutilization was only slightly impacted.
The reason for this is that the algorithms are not designed for
the likelihood-based detector. This detector outputs values in
(0,∞). When the likelihood goes to ∞, indicating that the link
is heavily congested, REM and PI take extreme action as they
should. However, when the likelihood goes to 0, indicating that
congestion is unlikely, REM and PI do not take appropriate
action. In fact, they keep marking packets with a probability
that slowly decreases. As previously explained, the likelihood-
based detector requires of an AQM that takes full advantage of
its characteristics and the purpose of this paper is to introduce
these characteristics.

E. Experiment 2

To illustrate an effect of slow reaction speeds in AQM
routers, the previous experiment was slightly changed. Thirty
flows are introduced at time 0, then, at time 20, 110 flows
are introduced in groups of 10 every second, generating an
arrival rate of 10 flows per second. The results shown in
figs. 16 and 17 correspond to the queue occupancy and link
utilization respectively. AVQ struggles to achieve the goal of
maintaining the utilization at 98%, even losing packets due to
buffer overflow. However, Likelihood-REM and Likelihood-PI
converge to the desired queue size of 50 packets faster with no
packet losses. Original implementations of REM and PI would
take longer to converge, dropping hundreds or even thousands
of packets under similar conditions.

VII. CONCLUSIONS

This paper explored a statistical technique applied to AQM,
namely, maximum likelihood estimation of congestion. The
investigation of maximum likelihood estimation of congestion
revealed a relationship between the observed marking rate, the
observed queue occupancy and the likelihood of congestion.
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Fig. 16. Experiment 2: Reaction speed comparison between L-PI,
L-REM and AVQ, when 140 flows are introduced at a rate of 10
flows per second.
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This technique represents significant improvement to many
current AQM algorithms since current schemes use either
binary point of detection or reactive schemes that wait for
the router’s queue to be congested before reacting.

This new approach provides additional information of the
level of congestion of the router’s outbound link based on the
current known parameters. One of the most important results
is that the likelihood of congestion grows super-exponentially
with the queue occupancy.

An AQM based on this detection scheme can boost its re-
action speed, outperforming other schemes. The mathematical
expression of the likelihood of congestion was implemented in
well known AQM algorithms. Simulations showed that these
algorithms can achieve a quick detection of congestion when
used the congestion measurement. An AQM designed to work
with the likelihood of congestion will take full advantage of
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this statistical analysis, resulting in better performance.
AQM schemes based on arrival rate estimation can also take

advantage of the likelihood of congestion by extending the
statistical analysis to packet inter-arrival times.
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