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Abstract— While many models of the TCP’s dynamics have
been developed, few focus on the effects of timeout and high loss
probability. Active queue management (AQM) is an important
application of these dynamic models. However, recent work
has shown that AQM provides little performance benefit over
drop-tail queueing for HTTP traffic, except possibly at high
utilizations. It is at these utilizations that the dynamic models
of TCP are the least accurate. This paper presents a dynamic
model of TCP that accurately models timeout. This model is
also applicable to the static case. This paper also presents a
model of the variance and the distribution of the congestion
window. It is shown that, while the dynamics of the mean value
of the congestion window are rather mild, the dynamics of
timeout display large oscillations that take several seconds to
decay. These oscillations cause the average bit-rate to also wildly
oscillate. Finally, this paper includes results from several million
simulations providing a detailed view of the dynamics of timeout.

I. INTRODUCTION

Models of TCP are extensively used throughout networking
research. For example, TCP models are used in fields such
as AQM [1], [2], [3], [4], design of TCP friendly transport
protocols [5], planning and provisioning networks [6], pre-
dicting file transfer time [7], [8], etc. In this way, TCP models
are foundation for research. The accuracy of these models is
critical to the accuracy and relevance of the work that rests
upon them.

Models for TCP have evolved over time. Initially, a simple
relationship between the sending rate and the loss probability
was developed. The well-known ”1/sqrt(p)” formula, or more
specifically MSS ×√3/2/

(
RTT

√
p
)
, was found and veri-

fied [9], [10]. While this formula is useful in many settings,
it was found to not be accurate in situations where the packet
loss probability is high. The reason for this inaccuracy is
that this simple model does not account for TCP’s timeout
mechanism. Some studies have shown that timeout, as oppose
to triple duplicate acknowledgement, is a significant way that
TCP detects packet loss [11].

In order to include the impact of timeout, the simple ”square
root of p” formula was extended to include the effect of
timeout [11]. This formula was shown to be more accurate for
large loss probabilities where timeout is significant. Sikdar et
al. [12] developed a model for TCP throughput that includes
time-out. While this model is different from [11], they report
that it gives similar numerical results. However, we have
performed extensive simulations, over 5 million in total, and
have found that when applied to the ns-2 implementation of

TCP-SACK and when loss is probabilistic, the model given in
[11] results in errors as large as a factor of two. Considering
the importance of the relationship between sending rate and
loss probability, these differences are significant and require
closer examination. This paper provides an accurate method to
estimate TCP’s sending rate even for large loss probabilities.

Another important extension to the TCP models was to
make them dynamic. That is, the initial models assumed
that the loss probability was fixed. In the case that the loss
probability varied, dynamic models were required. The first
model in this direction was given in [4], and several closely
related models have followed [1], [3], [7]. The principle
application of these models is for design and analysis of AQM.
These models are extensively used to prove stability and to
indicate the performance of AQM.

Since AQM was first introduced, there have been a large
number of researchers active in this area. Recently, several
groups have investigated what, if any, benefit AQM has on the
performance of the network (see [13] and references therein).
A recent paper along these lines showed that the AQM, be
it drop tail or any more elaborate version, has little impact
on the performance of the network for utilization below 90%.
However, for utilization above 90%, some AQM techniques
were shown to improve the performance [14].

This work is significant as it indicates the environment
where AQM might have a positive impact, specifically, in
networks with high utilization. On the other hand, this con-
clusion is troubling since the models of TCP used to design
AQM neglect timeout. That is, in the environment where AQM
might have the largest impact on performance, the analysis and
design of AQM is least accurate. Because of this inaccuracy,
the possible impact of AQM on network performance at high
utilizations has never been carefully explored.

One reason that AQM design has not considered high
utilization networks is that dynamics of TCP in such an
environment are not known. By dynamics, we mean the
variation of the throughput in the face of a time-varying
loss probability. This paper provides a simple model of the
dynamics of TCP’s throughput that includes timeout. Perhaps
one of the most significant contributions of this paper is that
the dynamics of timeout is quite complicated and can result
in wildly varying bit-rates that can take several seconds to
decay. For example, the lower right of Figure 4 shows such
oscillations. This dynamics is far more complicated than the
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dynamics of the mean congestion window used by most AQM
design. As a result, this work calls into question the proof of
stability of AQM at high loss probabilities.

As a by-product of this work, the variance and the distri-
bution of the congestion window is also found. Specifically, it
is shown that the window size is accurately modeled with a
negative binomial distribution. And finally the huge number of
simulations used to validate this model provide a detailed view
of the behavior of the dynamics of TCP’s timeout mechanism.

The paper proceeds as follows: The next section discusses
the simulations used for verification. In Section III the distri-
bution of the congestion window is found. Next, in Section
IV, a model of the probability of a flow being in timeout is
developed. The results from Sections III and IV yield a static
model of TCP throughput. In Section V, this model is then
extended to the dynamic case. The paper closes with some
concluding remarks in Section VI.

II. THE SIMULATIONS

The goal of this effort is to closely examine the behavior
of TCP. There is little doubt that in today’s networks the
sending rate of a TCP connection is complicated by interacting
flows, router induced packet reordering, faulty load balancing
induced packet reordering, server stalls, implementation id-
iosyncrasies, etc. While these effects are critical and a better
understanding of them is necessary for a complete understand-
ing of TCP, this paper focuses strictly on the behavior of TCP.
The rationale for this is that in order to understand the behavior
of TCP in the wild, it is necessary to thoroughly understand
TCP in a controlled environment. Perhaps the most significant
difference between these simulations and the environment
found in the wild is that in these simulations packet losses
are entirely random and never due to queue overflow. In the
case of AQM, such simulations are appropriate as the goal of
AQM is to drop packets in a controlled fashion, not when the
queue fills.

The simulations presented in this paper are for a single flow
over a single bottleneck topology where drops at the bottleneck
are random. The ns-2 error model was used to produce the
drops. The results presented here are for a fixed round-trip time
of 30ms. Other round-trip times have been explored and yield
the same results as the ones presented here. These simulations
used ns-2 implementation of TCP-SACK in version 2.1b8a.
Delayed acknowledgement and a maximum receiver window
were not used.

Our investigation into TCP included over 5 million sim-
ulations. This large number of simulations is required to
estimate the dynamics of timeout. These simulations were
performed on the University of Southern California’s Linux
cluster [15] and the large simulation results were transferred
via the Internet 2 to the University of Delaware for post-
processing and storage. There is little doubt that without such
high-performance computing, this work would not be possible.

III. THE DISTRIBUTION OF THE CONGESTION WINDOW

This section presents a simple model for the distribution
of the congestion window. While the distribution may be of

interest in its own right, we are particularly interested in this
distribution since it is used to determine the probability of a
flow entering timeout. We justify the model briefly with some
analysis and then present simulations results.

Misra [4] introduced the idea of modeling TCP as a stochas-
tic differential equation. Specifically, he suggested that the
window size varies according to

dWt =
1

RTT
dt − 1

2
WtdNt (1)

where N is a Cox process that counts the number of packet
losses. This model is for the evolution of the congestion
window when the flow is not in timeout. Thus, all probabilities
should be conditioned on the flow not in timeout. We denote
this condition as TO. This model was further investigated
in [7] where the partial differential equation of the window
size was found. Specifically, if p

(
w, t|TO

)
is the probability

density of the congestion window taking the value w at time
t, then p satisfies

∂p
(
w, t|TO

)
∂t

=
1

RTT

(
−∂p

(
w, t|TO

)
∂w

(2)

+w × δ (t − RTT )
(
4p
(
2w, t|TO

)− p
(
w, t|TO

)))
,

where δ is the loss probability. If δ is constant, then in steady

state, i.e.,
∂p(w,t|TO)

∂t = 0, the distribution of the window
solves

dp
(
w|TO

)
dw

= w × δ
(
4p
(
2w|TO

)− p
(
w|TO

))
. (3)

From (3) it is straightforward to show that

E
(
wm|TO

)
=

cm

δm/2
,

for some constants cm. If m = 1, then this is the well-known
”square root of p” formula where c1 has been found to be
between 1.1 and 1.3. Considering m = 2, we find that the
variance is of the form

V ar
(
w|TO

)
:= E

(
w2
∣∣TO

)− E
(
w|TO

)2
=

γ

δ
, (4)

where γ := c2 − c2
1. This relationship is borne out in

simulations that indicates that γ ≈ 0.31.
A closed form solution has not been found for (2), whereas

a complicated closed form solution has been found for (3).
However, simple yet accurate approximate solution to (3) is
the negative binomial distribution, i.e.,

p (w) =
Γ (N + w − 1)
Γ (N) (w − 1)!

(1 − q)N
qw−1.

Since the mean of this negative binomial random variable is
Nq/ (1 − q) + 1 and the variance is Nq/ (1 − q)2,

q = 1 − E
(
w|TO

)− 1
V ar

(
w|TO

) and N =
1 − q

q

(
E
(
w|TO

)− 1
)

(5)
and from mean and variance of the w given above we get

q = 1 − δ

γ

(
c1√
δ

+ 1
)

and N =
(1 − q)

q

(
c1√
δ
− 1
)

. (6)
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In order to determine the distribution of the window size,
the parameters q and N must be determined. This can be
done by plugging the mean and variance into (5). However,
if only the loss probability is known, then (6) must be used,
in which case the parameters c1 and γ must be determined.
We have found that if the objective is to use the distribution
to determine the probability of timeout, the c1 =

√
3/2 and

γ = 0.31 is sufficient. On the other hand, if one is interested
in the distribution of the congestion window (the objective of
this section), then the selection of these parameters, especially
c1, requires some more analysis. However, to keep this paper
focused, this issue is not discussed.

Once the parameters are determined, the distribution of the
congestion window can be estimated. Figure 1 shows the
distribution of the congestion window given the flow is not
in the timeout state, i.e., p

(
w|TO

)
. These figures shows the

three types of curves, the observed distribution (histogram), the
distribution with c1 =

√
3/2, and the distribution where the

parameters are determined by plugging in the observed mean
and variance into (5). This last distribution coincides with the
distribution given by (6) but with c1 = 1.27 for δ = 10−4

and c1 = 1.14 for δ = 0.05. For δ = 0.01, the value of c1

plays less of a role, c1 = 1.14, c1 =
√

3/2, and c1 = 1.27,
or by using the observed mean and variance, all yield nearly
the same distribution. In all cases, γ = 0.31.

IV. A MODEL OF TIMEOUT

In this section, we present a model of the probability of
a flow being in the timeout state. We say that a flow is in
the timeout state if the next packet will be sent only after the
retransmission timer expires. To understand the development
of this model, one should consider a large collection of TCP
experiments all running in parallel on different networks with
identical network characteristics (e.g., link speeds, propagation
delays, etc.). Our goal is to determine the fraction of these
flows that are in timeout.

A flow can enter the timeout state in the following three
ways:

I If a flow experiences so many losses that triple duplicate
acknowledgements are not received, i.e., if at least
max (w − 2, 1) losses occur in one window.

II In the case of the ns-2 implementation of TCP-SACK,
if more than w/2 packets are dropped1.

III If a retransmitted packet is dropped.

Considering I and II, we see that a flow will timeout if a sin-
gle drop is followed by at least max (min (�w/2� , w − 3) , 0)
drops out of the next w − 1 packets. Given that drops occur
at a rate w

Rδ, drops that lead to timeout occur at a rate

ρ′ (w, δ)

=
w

R
δ

w−1∑
k=max(min(�w/2�,w−3),0)

(
w − 1

k

)
δk (1 − δ)w−1−k

.

1This way of entering time-out is discussed in [12]. RFC-3517 eliminates
this way to enter time-out. It is straightforward to adjust the development
below to reflect RFC-3517.

Let λ′ (δ) be the rate that a flow moves from congestion
avoidance to timeout due to I and II. This rate is found taking
the expected value of ρ (w, δ), i.e.,

λ′ (δ) = E
(
ρ′ (w, δ) |TO

)
=
∑
w

ρ′ (w, δ) pδ (w) ,

where pδ (w) is given in Section III, however, here we have
shown the dependence on δ. This dependence is made explicit
by (6). Note that the approximation E

(
ρ′ (w, δ) | TO

) ≈
ρ′
(
E
(
w| TO

)
, δ
)

will result in large errors. Consider the
situation where δ = 0.09 and, using c1 =

√
3/2, the

mean value of the congestion window is 4. In this case,
E
(
ρ′ (w, δ) | TO

)
= 0.13 × R while ρ′

(
E
(
w| TO

)
, δ
)

=
0.38 × R, a difference around a factor of three.

Next we determine λ′′ (i.e., III), the rate that a flow moves
from congestion avoidance to timeout because a retransmitted
packet is dropped. The rate that a packet is first dropped
is δ w

R . The drop will lead to a retransmission only if triple
duplicate acknowledgements are received, i.e., if less than
max (min (�w/2� , w − 3) , 0) packets are dropped out of the
next w−1 packets. In this case, the retransmission is dropped
and timeout is entered with probability δ. Thus

ρ′′ (w, δ) := δ
w

R
× δ × (1

−
w−1∑

k=max(min(�w/2�,w−3),0)

(
w − 1

k

)
δk (1 − δ)w−1−k


 .

The average rate that a flow enters timeout due to dropped
retransmissions is

λ′′ (δ) := E (ρ′′ (w, δ))

Finally, the rate that a TCP flow moves into timeout is λ′+λ′′.
Up to this point we considered the rate that a single flow

moves into timeout. Now we will determine the fraction of
flows entering timeout. Let N ∗ I1 (t), denote the rate that
flows enter timeout at time t, N is the total number of flows.
That is, in small time interval ∆t, the probability that some
flow enters timeout is N ∗ I1 (t)∆t. Let RTO be the time in
which flows remain in the timeout state upon the first timeout.
If a flow exits timeout, but immediately experiences another
drop, then this flow again enters timeout, but for 2 × RTO
seconds2. We denote the rate that flows enter timeout for this
second time with N ∗ I2 (t). The fraction of flows in timeout
are
∫ t

t−RTO
I1 (τ) dτ +

∫ t

t−2RTO
I2 (τ) dτ . The rate that flows

enter timeout is the product of the number of flows not in
timeout and the rate that such flows enter timeout, i.e.,

I1 (t) = (λ′ (δ (t)) + λ′′ (δ (t)))× (7)(
1 −

(∫ t

t−RTO

I1 (τ) dτ +
∫ t

t−2RTO

I2 (t) dτ

))
.

2We don’t consider the case where a flow enters time-out a third time for a
time interval 4×RTO. While it is straightforward to extend the calculations,
it does not appear to improve the accuracy of the model.
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Figure 1. Distribution of the congestion window for loss probability of δ = 10−4 (left), δ = 0.01 (middle), and δ = 0.05 (right).

While the rate that flows exit timeout only to reenter timeout
is

I2 (t) = δI1 (t − RTO) . (8)

In steady state, I1 (t) and I2 (t) are constant. So (7) and (8)
reduce to

I1 = (1 − I1 × RTO − 2I2 × RTO) (λ′ (δ) + λ′′ (δ))
I2 = δI1.

This can be solved

I1 =
λ′ (δ) + λ′′ (δ)

1 + RTO (λ′ (δ) + λ′′ (δ)) (1 + 2δ)

I2 =
δ (λ′ (δ) + λ′′ (δ))

1 + RTO (λ′ (δ) + λ′′ (δ)) (1 + 2δ)

Thus, the fraction of flows in timeout is

P (TO) =
∫ t

t−RTO

I1 (τ) dτ +
∫ t

t−RTO

I2 (τ) dτ (9)

=
(1 + 2δ) RTO (λ′ (δ) + λ′′ (δ))

1 + (1 + 2δ) RTO (λ′ (δ) + λ′′ (δ))
.

If the loss probability varies, then (7), (8), and the re-
lationship P (in timeout at time t) =

∫ t

t−RTO
I1 (τ) dτ +∫ t

t−2RTO
I2 (τ) dτ must be used to determine the probability

that a flow is in timeout.
To verify (9), a large number of ns-2 simulations were per-

formed so that the probability of timeout could be determined
even for small loss probabilities. Figure 2 shows the observed
relationship of P (in timeout) and the loss probability as
well as the estimate of this probability given by (9). These
calculations used c1 =

√
3/2. Note that the fit is quite good,

the observed probability and the model are essentially the
same.

Padhye et al. [11] provides an estimate of the throughput
that accounts for timeout. This formula also provides an
estimate of the fraction of time a flow spends in timeout, i.e.,
P (TO). Specifically, [11] finds

P (timeout) ≈ Q (W (δ) , δ) G (δ) To
1

1−δ
R
8 (W (δ) + 1) + Q (W (δ) , δ) G (δ) To

1
1−δ

,

(10)
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Figure 2. Probability of Timeout. The solid blue line represents the
observed probability of a flow being in timeout. The dashed green
line is the model’s estimate of this probability. Note that these two
lines nearly coincide. The third curve is the relationship derived from
[11].

where

Q (w, δ) = min


1,

(
1 + (1 − δ)3

)(
1 − (1 − δ)w−3

)
(1 − (1 − δ)w) /

(
1 − (1 − δ)3

)



W (δ) = 1 +

√
8 (1 − δ)

3δ
+ 1

G (δ) = 1 + δ + 2δ2 + 4δ3 + 8δ4 + 16δ5 + 32δ6.

Figure 2 includes this estimate. We see that this model, while
providing a qualitative fit in that the shape of the relationship
is correct, it over estimates the probability of being in timeout.
For example, for δ = 1%, the observed probability of being in
timeout is 5%, while (10) gives an estimate of 43%. However,
this comparison must be qualified. This paper focuses on TCP-
SACK while the focus of [11] is on TCP-RENO. Furthermore,
this paper examines how TCP behaves under random losses
such as arises in AQM. In [11], the queueing discipline is
drop tail. Furthermore, the loss probability in [11] was not
exactly the probability of a packet being dropped, but more
along the lines of the probability of a drop event occurring
where a drop event leads to the rest of the packets in the
”round” being dropped. Thus, the δ used in (10) is less than
the packet loss probability. However, this model is useful as
a benchmark as it was not known how accurate this model
would be for TCP-SACK.

From the probability of timeout, the average through-put
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Figure 3. Relative Error of Predicted Throughput. Note that an error
fraction of 0.5 implies a 50% error.

can be found via

T =
c1

R
√

δ
(1 − P (TO)) × MSS.

Figure 3 shows the relative error of this model when compared
to the observed throughput. Figure 3 also shows the relative
error of the model in [11] as well as the model suggested
in RFC-3448 for a TCP friendly sending rate. The figure
shows only the relative error, an examination of the error
shows that the model of [11] and RFC-3448 underestimate
the sending rate (this is due to the over estimation of the
timeout probability). As mentioned, these other models are
for benchmarking purposes only.

Figure 2 shows that for even moderately large loss prob-
abilities, the probability of being in timeout is quite high.
Specifically, for δ > 1%, timeout plays an important role in
the sending rate of TCP. For δ > 5%, a flow will spend 60%
of the time in timeout. Thus, timeout dominates the sending
rate of TCP. There are many implications of this. Recently
there have been some proposed modifications to TCP such as
limited transmit and ECN. These modifications significantly
affect the behavior of timeout, specifically, they enter timeout
much less frequently. Thus, for δ > 1%, one can expect that
TCP implementations with these modifications will be more
aggressive than implementations without these modifications.

There has been extensive work in dynamic modeling of
TCP, but most has neglected timeout. For example, many
approaches to AQM utilize a model of TCP that neglects
timeout. We see that such an approach is only reasonable if
the loss probability is less than 1%. However, in the area of
AQM, it is hoped that these models are applicable to higher
loss probabilities. Next we develop a model for the dynamic
behavior of TCP that includes timeout.

V. DYNAMICS OF TCP

Here we extend the dynamics that is commonly used to
model the dynamics of TCP. The commonly used model is for
only the mean sending rate of TCP. Here we present a model
for the variance. Once the variance is known, the distribution
is found as in Section III. With the distribution, we can find
the probability of being in timeout as was done in the previous
section. Of course, the paper to this point has only considered
a constant loss probability. Here we allow the loss probability
to vary with time. Thus, this model is appropriate for AQM
design.
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Figure 4. Simulation and modeling of a jump in loss probability from
1% to 10%. The jump occurred at t = 0. The solid blue curves show
the observed and the dashed red curves shows the model. In the lower
right, the dotted green indicates the bit-rate if only the mean size of
the congestion window is used (i.e., the dashed red curve in the upper
left). Note the units of the bit-rate is in 1000 bps.

Let w̄ (t) = E
(
w (t) | TO

)
and w2 (t) = E

(
w2 (t) |TO

)
.

An approximation of the dynamics of the mean value of the
congestion window is often given by

d

dt
w̄ (t) =

1
R

− 1
c2
1

1
R

δ (t − R) w̄ (t − R) w̄ (t) . (11)

This is often approximated as

d

dt
w̄ (t) =

1
R

− 1
c2
1

1
R

δ (t − R) w̄2 (t) . (12)

Interestingly, this formula is often derived from (1). However,
if proper stochastic calculus is applied, the correct dynamics
for the mean are

d

dt
w̄ (t) =

1
R

− 1
R

δ (t − R)E (w (t − R)w (t)) ,

which can be approximated as

d

dt
w̄ (t) =

1
R

− 1
R

δ (t − R)w2 (t) . (13)

Note that in (13) the second moment is utilized, while (12)
have 1

c2
1

multiplied by the first moment squared. Fortunately,
we have found that (11) and (12) give good approximation to
the dynamics of the mean. It seems that the mean varies slowly
enough that this difference between w2 (t) and 1

c2
1
w (t)

2
is not

significant.
From (1) it is possible to determine the dynamics of the

second moment of the congestion window,

d

dt
w2 (t) =

2
R

w̄ (t) − 3
4

1
R

δ (t − R)E
(
w3 (t)

)
.
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Figure 5. These figures are similar to the ones shown in Figure 4.
However, here two sets of dynamics are shown, the loss probability
jumping from 0.1% to 1% and falling from 1% to 0.1%. In both
cases, the changes occur at t = 0.
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Figure 6. Validation of the Model. These figures are near identical to
Figure 5, however, here the loss probability jumps between 1% and
5%.

Using the same idea as above, we approximate E
(
w3 (t)

) ≈
8
3

β

(c2
1−0.31)3/2

(
w2 (t)

)3/2

and arrive at

d

dt
w2 (t) =

2
R

w̄ (t) (14)

− 3
4

8
3

β

(c2
1 − 0.31)3/2

1
R

δ (t − R)
(
w2 (t)

)3/2

.

As in the case of (12), this approximation is exact in steady
state.

Equations (12) and (14) form a system of ordinary differ-
ential equations (ODEs). With the mean and second moment,
the distribution of the congestion window can be found as
discussed in Section III. With this approximation of the

distribution, the probability of being in timeout can be found
as in Section IV, i.e., P (TO at time t) =

∫ t

t−RTO
I1 (τ) dτ +∫ t

t−2RTO
I2 (τ) dτ, where I1 (τ) is given by (7) and I2 (τ) is

given by (8).

Figures 4-6 provide some validation of this dynamic
model of TCP. Through extensive simulation, E

(
w (t) |TO

)
,

E
(
w2 (t) |TO

)
, and P (TO at time t) were found under

different time variations of the loss probability. Specifically,
in each simulation, the loss probability took two values δ0

and δ1. The simulation began and ran for 20 seconds with
loss probability set to δ0. In these simulations, 20 seconds
was enough to ensure that the system was in steady state (i.e.,
E
(
w (t) |TO

)
was constant). Then, 20 seconds after the be-

ginning of the simulation, the loss probability was switched to
δ1. In the figures, this moment is labeled as t = 0. This simula-
tion was carried out 200,000 times. With these simulations it is
possible to determine the value of the statistics E

(
w (t) |TO

)
,

E
(
w2 (t) |TO

)
, and P (TO at time t) at each time point. For

example, to determine P (TO at time 500 ms), we found the
fraction of the 200,000 flows that were in the timeout state at
time t = 500 ms. This large number of simulations allows for
high confidence in the observations and allows the details of
the dynamics to be observed.

Figures 4-6 indicate that the dynamic model is quite accu-
rate. They also show, as expected, that using the dynamics of
the mean congestion window given by (12) is not adequate for
large loss probability, but is adequate for small loss probability.
We also see that the dynamics for the mean and the variance
of the congestion window perform rather poorly for very large
loss probability. However, in this case, the behavior of TCP is
completely dominated by the timeout, which is well modeled.
As a result, the bit-rate is accurately modeled.

Perhaps the most striking aspect of Figures 4-6 is the
dynamics of the bit-rate at large loss probabilities. Most sig-
nificantly, we see that the bit-rate experiences wild oscillations
that can take several seconds to decay. In all cases, the model
for the mean congestion window (12) does not produce any
oscillations. To the best of the authors’ knowledge, this be-
havior has not been previously observed, much less modeled.
Oscillating step-responses are often a sign of instability, thus
it is likely that these dynamics will impact the stability results
of previous AQM research.

Figure 6 shows some unexpected behavior of the mean
and the variance of the congestion window. Specifically, we
see that the mean has two distinct phases of growth with a
transition at t = 1000 ms while the variance shows non-
monotonic growth. The ODEs (12) and (14) do not model
this behavior. This behavior is due to the feedback of the
fraction of flows in timeout to the mean and the variance of
the congestion window. Notice that the non-monotonic growth
of w2 occurs at RTO, just as flow exit timeout. However, since
the probability of a flow being in the timeout state is so high,
a slight error in the mean congestion window has a minor
impact on the average bit-rate.
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VI. CONCLUSIONS

We have developed a new model for the sending rate of
TCP that includes the effect of timeout. Previous models have
included the effect of timeout, but we have found these models
to greatly over estimate the probability of being in timeout.
The model presented is easily extended to a dynamic model
of timeout. This dynamic model was shown to agree with
simulations quite well. Furthermore, it was shown that timeout
can cause the bit-rate to oscillate substantially for several
seconds after a change in the loss probability. It was also
shown that for large loss probabilities, the behavior of TCP is
dominated by the behavior of timeout.

This model is significantly different from those used in
previous design of AQM. Future work will examine the
possibility of designing an AQM that utilizes these models
for TCP. Perhaps, more substantial performance gains will be
achieved for large loss probability.
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