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Abstract 

Analysis and synthesis for linear systems with param- 
eters that  vary according to a set-valued map are in- 
vestigated. It is shown that the  optimal controllers are 
continuous and homogeneous, but not additive. A com- 
putational method based on approximating the  non- 
quadratic cost by a piece-wise quadratic function is 
developed. Such an  approximation determines stabil- 
ity nonconservatively and preserves the  homogeneity of 
the  controller. Computational methods for both anal- 
ysis and synthesis are provided. 

1 Introduction 

Recently, controlling linear systems with varying pa- 
rameters has been an  active area of research. Much of 
this work has focused on sub-optimal linear controllers 
[I], [a], [4], [ll]. However, [13] looked at nonlinear con- 
trollers for the  case where the  parameters can only take 
a finite number of values. This paper will examine the 
case where the system parameters can take values in 
an  infinite set. 

The general form of an  LPV system is 

Here, the parameters vary according to some dynamical 
system, f : @ + @. In the  typical LPV case, all that  is 
known about the parameter dynamics is that f (4) E @ 
for all 4 E @ [2], [4]. When @ is a convex polytope, 
this LPV model has the advantage that there are very 
computationally efficient methods for synthesizing con- 
trollers [9]. In general, when the designer knows more 
about how the  parameters vary than simply that they 
are contained in some set, these approaches will tend 
to be conservative. In addition, these approaches also 
assume that if the stage cost is quadratic, then the infi- 
nite horizon cost is quadratic and the  control is linear. 
In general, these assumptions are not true. 
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A slight specialization of the above LPV systems is ac- 
complished by putting bounds on the rate at which the 
system parameters vary, i.e. I f  (4) - < A [I], [14). 
This approach may be less conservative than the typical 
LPV model. However, this approach is computation- 
ally more difficult. Computational methods for anal- 
ysis and synthesis for this model constitute an active 
area of research. This approach has shortcomings when 
the parameters vary drastically, for example, in the case 
where the  controller needs to account for failures which 
lead to sudden changes in the  system parameters. Fur- 
thermore, like the  typical LPV approach, this refined 
LPV approach assumes that the cost is quadratic in  
the state and continuous in the  parameters, and the 
control is linear. However, in [7] it was shown that. the 
optimal HO" controller may be discontinuous. 

Jump linear systems [IO], [12] are another type of LP\' 
systems. Here incomplete knowledge of the dynami- 
cal system f is modeled probabilistically as a Markov 
chain. For this approach there are also good compu- 
tational methods [8]. Furthermore, for the given prob- 
abilistic model, optimal controllers are linear. A mal 
jor drawback of the  jump linear system approach is 
that only stochastic stability can be guaranteed. This 
form of stability does not apply t o  every realization 
of the  Markov chain nor to the  original nonlinear pro- 
cess. For example, consider a control problem where a 
nonlinear plant is modeled by a linear approximation 
around some operating point. The  jump linear model 
makes the  assumption that the  operating point varies 
according to a Markov chain. In this case, it cannot be 
directly shown that the  jump linear controller stabilizes 
every trajectory of the nonlinear plant. 

Linear dynamically varying (LDV) systems are the 
class of LPV systems where the  dynamical system f is 
completely known [5], [7].  With such complete knowl- 
edge of the  parameters dynamics, the  optimal LQ and a 
suboptimal H" controllers can be found and are known 
to be linear and continuous. Furthermore, in some sit- 
uations, the jump linear model described above is ac- 
tually a n  approximation of the LDV system. In this 
case, since the  LDV controllers are robust, it can be 
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shown that the jump linear controllers are also robust 
as well [6] .  If the parameter dynamics has certain prop- 
erties, such as transitive orbits, a dense set of recurrent 
points, etc., then there are efficient methods for com- 
puting the optimal LDV controller. While the exact 
parameter dynamics may be known in some guidance 
and tracking problem, it is common that  the exact pa- 
rameter dynamics is not precisely known. 

The ideal LPV approach is one which utilizes all of the 
a priori knowledge of the  parameter dynamics. Such 
a system would encompass both the typical LPV a p  
proach at one extreme (almost no knowledge of the pa- 
rameter dynamics) and the LDV systems at the other 
extreme (complete knowledge of the parameter dynam- 
ics). Such systems are linear set-valued dynamically 
varying (LSVDV) systems; a linear system with pa- 
rameters dynamics modeled by a set-valued function, 
i.e. f (4) C a. This paper will formally introduce 
LSVDV systems in Section 2. An explanation as to 
why the controller is nonlinear will be given in Section 
3. The analysis and synthesis problems are discussed 
in Sections 4 and 5 respectively. 

2 Linear Set-Valued Dynamically Varying 
Systems 

A linear set-valued dynamically varying (LSVDV) sys- 
tem is of the form (1) where A : @ -+ B"'", B : @ 4 

R"'", C : @ 4 Rpxn and D : -+ Bqxm are continu- 
ous functions, and the map f is a continuous set-valued 
map. Continuity of set-valued maps means that  given 
E > 0, there exists a 6 > 0 such that if 14- P I  < 6, 
then d (f (4 )  , f ( P ) )  < E ,  where 

supinf  ( la-bl) ,supinf  ( l a - b l ) )  
bFB a E A  bEB 

A detailed discussion of set-valued maps can be found 
in (31. It is also assumed that the parameter space @ 
is compact; hence, all of the above maps are uniformly 
continuous. 

The typical LPV case is where f(4) = @ for every 
4 E a. The  w e  where the parameters dynamics is 
typically known, but there may be failures which lead 
to abrupt changes, is given by 

( 8 (4)" no failure 

B (41,. type r failure. 

One situation of slowly varying parameters is given by 
f (4) = B (4,s (4)) . where B (4,6 (4)) is a ball around 
d with radius S ( 0 ) .  Note that the size of the ball is 
allowed to  vary with the parameter 4; hence, the rate 
at n-hich the parameters vary depends of d. .411other 

useful parameter dynamics is given by 

r 

f(4)= UB(8(4);,6(4)J. 
k l  

Note that f can be defined to account for all of the a 
priori knowledge of the parameter dynamics 

An LSVDV system is exponentially stable if for each 
g50 E a, there exist a+o < 1 and ,L3b0 < 00, such 
that 12 (k + j ) l  < &,a$, 111: (k)]. Note that this type 
of stability is uniform in time, but not uniform in 
4. An LSVDV system is uniformly exponentially sta- 
ble if there exist CY < 1 and p < CO such that 
Iz(k)I < pak I11:(O)I. An LSVDV system is stabiliz- 
able if there exists U : R" x @ + R" such that 
z ( k + 1 )  = A+(lc)a:(k) + B + ( l c ) u ( ~ : ( k ) , 4 ( k ) )  is expo- 
nentially stable. An LSVDV system is linearly uwi- 
f o n n l y  detectable if there exists a L : -+ Rnxp such 
that the LSVDV system 

a: + 1) = (Ad@) + Lb(k)C+(k)) 2 (IC) 

is uniformly exponentially stable. 

3 Optimal Controllers for LSVDV Systems are 
Nonlinear and the Cost is not Quadratic 

Define the terminal cost of the two-step problem as 
X (z,@, 2,2) := 2/11:. Then the one-step optimal cost 
for a n  LSVDV system is 

x (11:,4, 1,2) = x q c + x  
+ min (u'D;D+u + (Abs  + Bbu)' (Ada: + B6u)) 

The worst case two-step optimal cost is 

x (11:,@, 0 ,2 )  = x/c;c+a: 
+ min max (u'D;D+u + X ( A + z  + B ~ Z L , ~ .  1,2) )  

P E f  (9)  

Hence the twestep optimal control problem is a min- 
imax problem where the parameters over which maxi- 
mization is carried out enters nonlinearly into the cost. 
Hence, even in this simple two-step problem, the min- 
imizing control is nonlinear in general. 

A simple example shows why the worst case cost is not 
quadratic. Define the LSVDV system with no inputs: 

AC = 0 0  C Y ] R , A d = R ' [ O  a 0  o ] R ,  

Let 

f ( a )  = f ( b )  = {c, d }  and .f (c) = f ( d )  = {a .  b }  . (1) 
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Figure 1: A graphical portrayal of the cost for a = 1. 
The above solid line shows a polar plot of 
{(X (2, c, N - 2, N )  z) : llzll = 1). A polar plot 
of a quadratic function is an ellipse; hence, X 
is not quadratic. The dotted line is the least 
upper quadratic bound on X. 

Then, with 4 (0) = c, the  worst case, two-step cost is 

x (z, c, 0,2) = z’z 

= z‘z + max ( X  ( A c z ,  a, 1,2)  , X ( A c q  b, 1 , 2 ) ) .  

Figure (1) shows that this cost is not quadratic. Fig- 
ure (1) also shows the  least quadratic upper bound 
on X(x ,c ,O ,2 ) .  Note that for z [ & & ]’, 
this upper bound is significantly larger than the  ac- 
tual cost. An LMI approach to this problem would 
use this upper bound as an  approximation of the two- 
step cost. Hence, this cost would be conservative for 
z = [  4 & ] I .  

This conservativeness becomes important when testing 
for stability. Fkom a dynamic programming perspec- 
tive, the  LMI approach approximates the cost with a 
quadratic function at every step. The  conservativeness 
can accumulate. For the  above system given by (2)  - 
(4), the LMI approach attempts to find positive semi- 
definite matrices, Qa,  Qb, QC and Qd such that 

Qa 2 AhQcAa+I, QaLAhQdAa+I 
Qb L A;Q,Ab+I, QbLAiQdAb+I  
Qc L ALQaAc+I, QcLALQaAc+I 
Qd L A&QaAd+I,  Qd ?A&QbAd+I 

This is not possible for a 2 1. However, this system is 
stable for a < fi. The method discussed next is not 
conservative and can be used to show that the above 
system is stable for CY < A. 

4 Analysis for LSVDV Systems 

A nonconservative approach to determine stability of 
an  LSVDV system is to find a positive definite Lya- 
punov function X : W” x @ + R such that 

x (274) = $Ej x ’ C p 4 x  + x (A,z, P)  1 
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Figure 2: This figure shows Q4 a quadratic approximation 
(thin line) of X (bold line) in the cone C4. Note 
that for I $$ C4, z’Q4z is far larger than X (z). 
Since Q(z) = maxiz‘Qiz 2 x ‘ Q ~ x ,  Q would 
not be a very good approximation of X .  

Similarly, an optimal control can be found by finding a 
function X : R” x @ + W, such that 

x (x, 4) = 
min max x’C$C4x + u ’ D ~ D ~ u  + X (A,p  + Bdu, p)  

P E f ( 4 )  

There are many potential difficulties with this ap- 
proach. First, the  function X needs to be determined 
for every z E B” and 4 E @. Second, the minimization 
may be nonconvex and, hence, very difficult t o  solve. In 
the  LSVDV problem, these difficulties are manageable. 
However, it must be stressed that this control problem 
remains difficult; this is essentially a nonlinear control 
problem. 

Next the  cost and control will be characterized. 

Theorem 1 Let f be a continuous set-valued function, 
let A , B , C  and D be continuous functions and let th.e 
LSVDV system be stabilizable, linearly uniforwdy de- 
tectable and let DiD? > 0. T h e n  the optimal cost 
X : @ x W” + R is u n z f o m l y  continuous. 

Proof: The proof is similar to case where f is single 
valued which is proved in 151. 

The  continuity of X is important. It means that the  
cost, and, hence, the  controller, does not need to be  
found everywhere. Rather, a good approximation can 
be found by gridding the  space @ x Wn and computing 
X on this grid. 

Theorem 2 T h e  optimal control i s  homogeneous: but? 
in general, not additive, i.e. U (ax, 4) = CYU (z, @) , but 
U ( Z  +y,4) # u(z ,4)  + u ( y , d ) .  Similarly, the optimal 
cost obeys X (ax, 4 )  = a2X (z,q5). 

This theorem reduces the dimension by 1. That is X : 
x @ + R where RIPn-’ is the it - 1 dimensional &@U”- 1 

real projective space. 

To simplify, an  approximate problem will be formulated 
and its solution will be found. This approximation will 
converge to the  actual solution. The  idea is to  approx- 
imate the cost X by a set of quadratic functions. To 



this end define the function Q (z, #) = maxi x'Qt (#) z, 
where the {Qi (4 )  : 0 < i <_ N } ' s  are such tha t  

X ( x , # )  M Q ( x , d )  for x E RIP"-' and # E Cp. 

We refer t o  such an  approximation as a piecewise 
quadratic approximation. This approximation is car- 
ried out by partitioning R" into cones {Ci} and find- 
ing a Qi (4 )  such that  X (x,4) M x'Qi (4)  z for x E Ci. 
However, t o  make the approximation a good one, Qi (4) 
must be chosen so tha t  it is the least quadratic upper 
bound of X for all x E Ci.  On the other hand, it is 
desirable that  x'Qi (4).  5 x'Qj (4).  for z E Cj .  Fig- 
ure 2 shows a Q where Z'QZ M X (x) for z E C4, but 
x'Qx >> X (x) for some x $! C4. To see how these two 
requirements can be combined, assume tha t  ,C' is the  
cone centered around el := [ 1 0 - e -  0 ] . In this 
case, 

C' := {ax : CY E P, z = el +cy : y1 = 0 and (yI = 1) .  

Note that  the size of the cone is controlled by E .  The 
matrix Q' (4 )  can be found by solving the following 
convex minimization problem: 

(5) 

Q' (4 )  = arg min RQ1,1- c l o g  (1 - Q j , j )  
j>l Q = Q ' E p  X n 

subject t o  : X (z, 4) 5 x'Qx for all x E C', 

where 0 < R E R. The RQ1,l term forces Q I , ~  t o  
be small, while the - Cj,' log (1 - Qj,j) term avoids 
problems such as the  one shown in Figure 2. Note 
that the diagonal elements of Q1 (4 )  may be negative. 
That  is, the matrix Q1 (4)  may be sign indefinite. By 
a change of coordinates, this minimization can be re- 
peated for each Ci. The resulting piecewise quadratic 
approximation is denoted as 

Q, (x, 4) := mFx x'@ (4 )  x. 

By making E small, this approximation can be made 
arbitrarily accurate. 

Theorem 3 Let X be continuous. Then &, (x,4) - 
X (x,4) 1 0 as E + 0 and R --+ 00. In particular, i f  C' 

Qi,i (4) 
is  defined as in (5) and Q' (4 )  = [ i ::: 1 7  

then 

where 

Figure 3 shows a 2-D example of this approximation. 
Note that  - X ( e l ,  4 )  1 depends on R ,  the  weight- 

Figure 3: Locally quadratic approximation of a 
nonquadratic €unction. This plot shows 
{(maxi z'Q~z) Z, : ((z(( = 1). Also shown are 
the plots of {(z Q~z)z  : ((zll = 1) for each i. 

ing on Q;,', the  continuity of X, the function to be 
approximated, and on E ,  the  size of the cone. Recall 
that  Theorem 1 states that  X is continuous. 

The analysis problem can be solved via dynamic pro- 
gramming. To this end, define X (x,q5, k ,  N )  to be the 
cost-to-go from step k t o  step N .  Hence, 

X (z,$, k , N )  = x'C$C+x+ max X (Adz, p, k + 1, N )  . 

I t  is assumed tha t  the terminal cost is quadratic, e.g. 
X (z,4, N ,  N )  = x'x. The analysis objective is to find 
&, (x,4, I C ,  N )  , a piece-wise quadratic approximation 
of X ,  such that 

P E f  (@) 

x (z, CP, k, N )  = €2, (Z, 4, k ,  N )  7 

where the approximation can be made arbitrarily ac- 
curate. Then, by taking N large, the stability can be 
assessed nonconservatively. Such an approximation is 
guaranteed by the following theorem.: 

Theorem 4 Consider the LSVDV system with f a 
continuous set-valued map, and A and C continuous. 
Then, for N < 00, and ang 6 > 0, there exist an E > 0 
and an R < 00, such that 

IX (x, 4 0 ,  N )  - &E (274, 0, N)I < 6, 

and, for 0 E f(4) and llz(( = 1, 

0 5 &, (z, 4, k - l , N ) - ( ~ ' C ~ C @ ~  + Q,   AX,^), k ,  .V)) < 6. 

5 Synthesis for LSVDV Systems 

While the analysis problem may be computationally in- 
tensive, it k straight forward in the sense that it is a se- 
quence of convex optimization problems. The synthesis 
problem, however, is not convex. This is the case even 
when determining the optimal linear controller Fi for 
the piecewise quadratic approximation problem above, 
tha t  is, the optimal control for all x E Ci. In fact, com- 
puting the control for a specific x is nonconvex. How- 
ever, the control for a specific 3: can be found by solving 
a combination of convex problems. Therefore, a synthe- 
sis approach is as follows: 1. Compute U (z), 4)'s for a 
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linearly independent set { X ;  : j = 1,. . , N 2 n}  c Ci . 
(This problem will be solved below.) 2. Based on 
t h e e  u ( x ; , ~ ) ,  find F: such that F: z j  M u ( z ; , $ ) .  
(This can be done using least squares.) 3. Repeat the 
above for i = 1, ... , M where the partition of R" is 
p ; i  = l , . .  . , Ad} . 4. Repeat the above on a grid of 
a. 
As stated above, determining u (z, 4) is nonconvex. To 
see this suppose that 

Q (x, f (4)) = { x ' Q ~ x ,  x ' Q ~ ~ }  

c = [; ;] , D = l , z =  [ i ] ,  
-2 -4 

withQ1 = [ : ] , Q 2 = [  -4 1 .  
J (2 ,  U ,  4) 
max ( ~ ' z  + u'u + ( A ~ x  + Bu)'Q' (AX + Bu) , 

max (5 - 4u + 2u2, -u2 + 13) 

Z'X + U'U + ( A ~ z  + Bu)' Q2 (AX + Bu)) 

Figure 4 shows plots of J1 and JZ. The worst case 
cost is the maximum of these two graphs and is not 
convex. Clearly, the minimum cost is attained at 
U = 2.5. However, there is a local minimum at 
u = -1. An algorithm that will always find the 
global minimum is one that starts at the maximum 
of J2 and performs steepest descent in both direc- 
tions. In higher dimensions the solution is similar. Ex- 
cept at intersections, the cost hyper-surface has the 
form (U ,  (U - U') '  (0'0 + B'QiB) (U - U * ) ) ,  where U* 

is the control given by the standard LQ Riccati equa- 
tion. This surface has ridges along the lines where (i) 
(U - U * )  is an eigenvector of (0'0 + B'Q"I3) and (ii) 
Ji (z,u,$) 2 Jj (z,u,4) for all j ,  that  is, Ji is the ac- 
tive cost. A global minimum can be found by starting 
the steepest descent along these ridges. 
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