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Abstract 

The predictably of data network traffic is assessed. Dif- 
ferent topologies and types of traffic are studied. Lin- 
ear and nonlinear AR(MA) models as well as state 
space and models based on canonical correlation are 
employed. These predictors are compared against two 
simple predictors: 1. the prediction is the mean value 
of the time series, 2. the prediction is the last obser- 
vation. The significant conclusion is that the dynamic 
predictors fail to perform significantly better than the 
simple predictors over higher frequencies. The impli- 
cation of this result with regard to  active queue man- 
agement is discussed. 

1 Introduction 

There has been a large body of work focused on de- 
veloping dynamic controllers for computer data net- 
works 111, [2], [3]. However, before a controller can be 
developed, the open-loop system must be understood. 
This paper examines the predictability of data network 
traffic through models, since AQM relies on anticipa- 
tion of immitent queue overflow. The main result is 
that network traffic is not predictable at high frequen- 
cies. Thus, there seems to be little hope of developing a 
controller to damp out the high frequency variations of 
TCP/network’s dynamics. This result does not contra- 
dict other work that produced controllers and demon- 
strated their effectiveness over lower frequency band. 
Network traffic analysis has been the focus of count- 
less papers following three avenues of approach. First, 
much work has focused on measuring traffic flow across 
real networks (41, [ 5 ] .  These measurements have at- 
tempted to quantify the variation or growth in traffic 
at very long time scale. The second and very active area 
of investigation in network traffic has been the study 
of steady state sending rate produced by a single TCP 
flow. This work has led to the TCP-friendly equations 
[SI, [7], which establish a steady state relationship be- 
tween the round-trip time, the packet loss probability, 
and the TCP sending rate. The third approach has 
been the dynamic behavior of TCP. Much work has 
focused on a first principles approach to modeling the 

dynamics of TCP [SI, [9], [lo], 1111, [12]. The approach 
followed in the present paper is distinct for these other 
works in that no modeling assumptions are made, that 
is, the models are developed via the “black box” a p  
proach by collecting a large data record and applying 
time series modeling techniques. In [13], the variability 
of TCP dynamics was demonstrated. In 1141, it was 
shown that TCP can display chaotic dynamics. These 
results led to the suspicion that TCP traffic is difficult 
to predict. This paper seeks to confirm this suspicion. 

The result that the dynamic aspects of TCP are not 
predictable is based on experimentation on two topolo- 
gies (dumbbell and parking lot) and two types of traffic 
(FTP and HTTP) for varying drop probability. Before 
the investigation begins, the types of models considered 
and the simulation setup are discussed. 

2 Models and Simulation Set-up 

2.1 Prediction Models 
Many classes of models are considered. These classes 
include linear AR models [15] with or without input 

L L-1 

i=l i=O 

where w is a noise. Also, nonlinear AR models were 
considered, 

L L 
y(k)  = C a I y ( k - i ) + C C a d , i y ( k - i )  d +... 

i= l  dED i=l 
L-1 L-1 

+ b;u (k - i) + b d , ; ~  (k - i) d .... 
i=O dED i=O 

+w ( k )  

where the D is one of the following sets: 
D = {1 ,2 ,3  ..., lo} , f o r  “All” nonlinearities (1) 
D = {1 ,2 ,4 ,6 ,8 ,10}  , f o r  “Even” nonlinearities 
D = { 1 , 3 , 5 , 7 , 9 } ,  fo r  “Odd” nonlinearities 

In the case where the input is not used, the coefficients 
bi are set to zero. Standard least-squares techniques 
were used to  estimate the coefficients of these AR mod- 
els. Linear state space models are of the form 
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z ( k  + 1) = A z ( k )  + B i ~ ( k )  + Bzw (k) 
y(k)  = C z ( k ) + D w ( k )  

Here, estimates of the parameters were identified using 
techniques described in 115). 
Lastly, prediction models based on the canonical corre- 
lation analysis (CCA) were considered. The two mod- 
els that have been investigated here are nonlinear AR 
and state space models. Both models are implemented 
as described in [16]. 
Two simple predictors were employed to compare the 
performance of the dynamic models described above. 
The first predictor is written as 

Hence, this predictor simply uses the mean as a predic- 
tion. The second simple predictor is 

ij(k + 1) = Yneen (2) 

Qsszmple(k + 1) = Y(k). (3) 
In this case the prediction is simply the last observa- 
tion. 
2.2 Measures of Model Fit: 
The most common measure of predictability is the 
mean square error (MSE) defined as, M S E  = 
E((& - U)') and the normalized mean square error 
(NMSE) defined as, N M S E  = M. One 
can view this normalization as a comparison between 
two predictors. One predictor yields the prediction 
while the other predictor trivially predicts the mean. 
Following this interpretation of NMSE as a compari- 
son between two predictors, we consider the relative 
performance of the simple predictor (3) defined as, 
N'SE- sp= E ( $ : m p i r A A '  E where y,,,ple is given 

Note that if NMSE is near 1, then the dynamic pre- 
dictor performs about the same task as just using the 
mean as the prediction. Thus, only when both the 
NMSE and NMSESP are small can we conclude that 
the dynamic predictor is a good predictor. 
2.3 Model Order Selection: 
Because the hest choice of the filter order, L,  is gen- 
erally not known a priori, it is usually necessary in 
practice to postulate several model orders. Many crite- 
ria have been proposed as allegedly objective functions 
for selecting the AR model order. The two hest known 
ones are Akaike's Information Theoretic Criterion, AIC 
[17], which has the form (for gaussian disturbances), 
AIC[L] = N I ~ ( M S E L ) + Z L  and Rissanen's Minimum 
Description Length Criterion, MDL [18], which has the 
form MDL[L] = N In(MSEL) + Lln  (N)  , where N 
is the length of the data record. Here the order L is 
selected to minimize the MDL criterion. 
2.4 Simulation Setup 
We used the Network Simulator (ns-2) developed by 
LBNL to perform OUT simulations. Ns is a discrete event 
simulator widely accepted for networking research. We 
studied many environment set-ups: two types of traffic, 

by (3). 

and two topologies for variable drop probability sys- 
tem, In this system, the queue imposes a drop proba- 
bility on every arriving packet. This drop probability 
is uniformly distributed over [0.0295, 0.03051. Hence, 
at time step I ; ,  the probability p k  is set for the time pe- 
riod [kT, ( k  + l)T), where T is the sample period. We 
consider sample periods from lOms to nearly an hour 
and a half. In order to keep the scale of the packet 
arrivals the same for all sample periods, we define yk+l 
to he the normalized packet arrivals over the period 
[kT, ( k  + 1)"). The normalization is done by dividing 
the observed packet arrivals by the link speed which 
is the maximum number of packets per time period 
[kT, ( k  + 1)T). In this set-up, drops could occur if the 
queue fills. However, the queue size is taken sufficiently 
large and the drop probability is taken large enough, 
so that the queue does not fill up. 
Both the dumbbell and parking lot topologies are in- 
vestigated. The dumbbell topology is shown in Figure 
1. The nodes S, ( i = 2, ..., 6) are set as the sources and 
the nodes Di (i= 7 ,..., 11) are set as the destinations. 
The monitored link, the bottleneck link, is 0 to 1. The 
parking lot topology is a more complicated topology 
and is shown in Figure 2. The nodes 0, 8, 10, 12 are 
set as the sources and the nodes 7, 9, 11, 13 are set as 
the destinations. For this topology, the monitored link 
is the one from 4 to  5. 
FTP traffic was modeled as long lived TCP traffic, 
that is, for each source-destination pair a single TCP 
connection sent data for the entire simulation. The 
starting time of the flows was varied slightly randomly 
so that each simulation was different. HTTP traffic 
was modeled by a collection of flows with an ON/OFF 
behavior. Specifically, a single HTTP connection was 
made up of a single TCP flow. This flow transmits a 
single file. The size of the file is a random variable with 
Pareto distribution with shape parameter equal to  1.06 
and minimum file size equal to  10000. These parame- 
ters are common estimates of the files size distribution 
found on the web [19],[20]. Upon completion of the 
transmission of the file, the connection lies dormant 
for a period of time that is exponentially distributed 
with mean 60 seconds. 
Each simulation was run for extremely long runs to 
ensure that all parameters were accurately estimated. 
For example, most simulations used over 30000 sample 
points. Hence, when the sample period was 100 sec- 
onds, the simulation ran for 3,000,000 secs or nearly 
35 days. Indeed, it is easily argued that the simulation 
environment is overly generous and that any predictor 
that would he deployed would have to perform well in 
far more difficult situations. 

3 Models  Type Selection 

We begin by investigating which model, linear AR, non- 
linear AR, statespace, nonlinear AR (CCA), or states- 
pace (CCA), yields the hest predictor. To this end, 
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Figure 3: Comparison of various models for the input- 
output system and the free system. Topology 
is dumbbell and traffic is FTP. 
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Fieure 4. Comoarison of various nonlinear models for the 
input-output system and free system. Topol- 
ogy is dumbbell and traffic is FTP. 

several environments were simulated. Here, the results 
from one environment are presented. 
The topology being considered is dumbbell (Figure 1) 
and the traffic is FTP. The analysis is 2-fold: first, an 
“input -output” system (where p k  is the input and ~k 
is the output); second, a “free” system (where there 
is no input to the system and Y k  is the freely gener- 
ated signal). The comparison between the NMSE for 
both types of systems for six models ( linear AR, h- 
ear ARMA, nonlinear AR, statespace, nonlinear AR 
(CCA), statespace (,CCA)) is performed. Furthermore, 
the nonlinear AR models are investigated in detail by 
considering various nonlinearities for both systems. 
Figure 3 shows a comparison between NMSE for vari- 
ous models for both types of systems. For both systems 
(Figures on the left and on the right in figure 3), at 
sampling period 0.01, linear AR works slightly better 
(5 - 10%) than the rest of the models. As the sampling 
period increases, the NMSE becomes nearly the same 
for all the predictors. Hence, we can conclude that 
the type of predictor does not matter for the predic- 
tion of Yk. Furthermore, considering the nonlinearities 

window by 2, etc. ), one would expect that nonlinear 
models might perform better. However, our simulation 
cases, the nonlinearities do not appear to  improve the 
prediction quality. The reason behind that is that the 
residual error from the linear predictor is gaussian as 
shown in Figure 5. Hence, we can conclude that the 
nonlinear predictors would not achieve better results 
than the linear predictors for the prediction of yk. 
Comparing the Figures on the left and on the right 
(Figure 3), we see that for small sampling periods (0.01, 
0.05), the NMSE are similar. Thus we can deduce that, 

at smaller sampling periods, thepk does not have much 
effect on the prediction of Y k ,  only the past Y k  is im- 
portant. In contrast, at large sampling periods, NMSE 
decreases for the input-output system while NMSE in- 
creases for the free system. This means that the p k  
begins to have a great effect while the past yk does not 
affect the prediction as much, 
Next, we compare nonlinear models (nonlinear AR and 
nonlinear AR (CCA)) to  see which nonlinear model is 
better and which nonlinearities in particular play an 
important role in prediction. ~ ~ l y  all the non. 
linearities are all the even 
and ‘Lodd” means all the odd nonlinearities are consid- 
ered (1). 

i 1  
in the network (eg. queue overflow, dividing congestion “I 

.o I .o 2 0 0.3 0 I 

Figure 5:  Probability versus residual error (from linear 
AR) plot for different sampling periods. The 
black curve fits the red line, which means that 
the residual error is gaussian. 
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Figure 6:  MSE versus sampling period for dumbbell and F igure  7: NMSE versus sampling period for dumbbell and 
parking lot topologies for FTP traffic. parking lot topologies for FTP trafiic. 

Figure 3 shows the comparison between all the non- 
linear models. Observe that there is a slight gap be- 
tween nonlinear AR and nonlinear AR (CCA) for small 
sample period. As the sample period gets larger, the 
gap gets smaller. Identification of nonlinear AR mod- 
els is computationally much faster than nonlinear AR 
(CCA), as the later involves large matrix computation, 
SVD, etc. Since the gain in prediction error by us- 
ing nonlinear AR (CCA) is only slight (less than 5%),  
we use linear AR and nonlinear AR models for further 
prediction analysis. 
Figure 4 also shows that there is not much difference in 
NMSE when different nonlinearities are used. Specifi- 
cally, models nonlinear AR "Even" and nonlinear AR 
"Odd" give the same prediction error as model non- 
linear AR "All". Since, nonlinear AR "All" is signifi- 
cantly simpler than the other nonlinear AR models, we 
restrict our attention to nonlinear AR "All". 
Similar tests were carried out for other types of nonlin- 
earities, including cross terms between the past and the 
present samples. Moreover, the study was extended by 
investigating Fractional ARIMA models. But all these 
tests yield similar conclusion as above. In addition, 
other simulations for other topologies and other types 
of traffic also yield similar results. Thus, we only con- 
sider linear AR and nonlinear AR "All" models. 

4 Predictabi l i ty  of FTP and HTTP Traffic 

In this section, we investigate the predictability of FTP 
and HTTP traffic for the variable drop probability. 
The study is divided into a 4-fold study, two different 
topologies (dumbbell and parking lot) and two types 
of traffic (FTP and HTTP). First, we discuss the re- 
sults for FTP traffic and then for HTTP traffic. And 
last, we study the worst case prediction scenario. We 
restrict our attention to the input-output system. The 
predictability for to free system is similar to the input- 
output system presented here. 

4.1 Predictabi l i ty  of FTP Traffic wi th  Variable 
Drop Probabi l i ty  
Figures 6, 7, 8, and 9 show the MSE, NMSE, NMSE 
SP, and the order, respectively, for both topologies. In 
these simulations, the traffic is FTP. The models un- 
der investigation are linear AR and nonlinear AR. Each 

1622 

Figure 8: NMSE-SP versus sampling period far dumbbell 
and parking lot topologies for FTP traffic. 

model makes a one step ahead prediction of packet ar- 
rivals given the packet arrivals and drop probability 
(labeled as "with input") or given only the past packet 
arrivals (labeled as "without input"). 
First consider the performance at small sample periods. 
Observe that the MSE, NMSE, and NMSESP are the 
same regardless of whether input is used or not (Figures 
6, 7, and 8). Hence, y mainly depends on its past and 
the drop probability does not play a significant role. 
This conclusion seems to hold for both parking lot and 
dumbbell topologies. By examining Figure 7, it a p  
pears that the dynamic model outperforms a predictor 
that just uses the mean as the prediction. This conclu- 
sion seems to hold for both the dumbbell topology and 
the parking lot topology. However, for the very small 
sample period of lflms, NMSE is large for the parking 
lot topology . This large error may he due to the fact 
that the system order for these small sample periods 
are very large and we limited the system order to less 
than 50. Note that Figure 9 shows that for small sam- 
ple periods, the system order is large. This seems to 
indicate that the traffic is described by a complicated 
dynamical system. However, for these small sample p e  
riods, it is possible to use the simple predictor (3). Such 
a simple predictor performs quite well for small sample 
periods (Figure 8). Hence, we conclude that, while the 
traffic may incorporate some complicated dynamics, a 
significant part of the dynamics is simple. 
One might expect that for very small sample periods 
such as lflms, the predictor (3) should perform well. 
However, the packet arrivals make a discrete event s y s  
tern. Hence, for very small sample periods, there is 
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Figure  9: Order of the system versus sampling period for 
dumbbell and parking lot topologies for FTP 
traffic. 

Figure 11: NMSE versus sampling period for dumbbell 
and parking lot topologies for HTTP traffic. 

lopdon: W W L M  TnmC HTrP 

Figure  10: MSE versus sampling period for dumbbell and 
parking lot topologies for HTTP traffic. 

either one arrival or none. Such a signal might not be 
well modeled by (3). 
For large sampling periods, an increase in the sampling 
period leads to decrease in the MSE for the models with 
input whereas it leads to an increase in the MSE for the 
models without input (Figure 6). Similarly, Figures 7 
and 8 indicate that a significantly better predictor can 
be obtained if drop probability is utilized. Further- 
more, Figure 9 shows that for large sample periods the 
system order is small. By examining the coefficients, it 
can be seen that, for these sample periods, the arrivals 
solely depends on the drop probability. Essentially, for 
large sample periods, the predictor fj(k + 1) is an a p  
proximation of the function E ( c ( k  + 1) ipk) .  
Comparing the left and right plots in Figures 7 and 8 it 
can be observed that, as the sample period is increased, 
the prediction error decreases faster for the dumbbell 
topology than for the parking lot topology. This is due 
to the more complicated dynamics of the parking lot 
topology. Specifically, it seems that the transients take 
longer to die out in the case of the parking lot topology. 
This implies that in order to determine the average 
behavior of the link, it is necessary to average over 
time windows at least 500 seconds long. It is plausible 
that the time windows would have to be even larger for 
more complicated topologies found in the Internet. 
Finally, note that the nonlinear AR has nearly the same 
or slightly less prediction error than the linear AR. 

Figure 12: NMSESP versus sampling period for dumb 
bell and parking lot topologies for HTTP traf- 
fic. 

4.2 Predictabil i ty of HTTP Traffic with Vari- 
able Drop Probabili ty 
Figures 10, 11, and 12 show the MSE, NMSE, and 
NMSESP, respectively, for both topologies. In these 
simulations, the t r a c  is HTTP. 
HTTP traffic is more stochastic as there are many fac- 
tors influencing the trffic. As a consequence, even for 
the dumbbell topology, the degree of predictability for 
all the models is the same (Figure 10). As in the case of 
FTP traffic, the prediction error is fairly large for small 
sample period. However, when normalized by the vari- 
ance of the signal, we see that the NMSE is small for 
these sample periods. For example, in all cases, the 
NMSE is less than 0.50 when sample period is 100ms. 
Furthermore, as above, nonlinear AR performs slightly 
better at  smaller sampling period than linear AR (Fig- 
ures 7, 12). 
As the sampling period gets larger, we see a strong dis- 
crepancy between FTP and HTTP traffic. One might 
expect the NMSE to be small for larger sampling peri- 
ods. But that does not hold true in the case of HTTP 
traffic. This is due to the variability of the HTTP traf- 
fic. For example, during one sample period there may 
be just a few long-lived TCP flows, while during the 
next sample period, there may be many. 

4.3 Predictabil i ty in  the Worst Case Environ- 
ment  
While the above showed that in some cases the dy- 
namic predictor works well, it seems that its perfor- 
mance is dependent on the topology and type of traffic. 
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Figure 13: Maximum NMSE and NMSE-SP versus Sam- 
pling Period. NMSE and NMSE-SP are maxi- 
mized over both the topologies and both types 
of traffics. 

In general, the exact mix of traffic is not known in ad- 
vance and the topology is not fixed. Thus, we demand 
that a predictor works well in all environments. Figure 
13 shows the worst case normalized prediction error. 
Specifically, the normalized error for a particular sam- 
ple period is normalized over both topologies and both 
types of traflic. Note that in no case can we expect 
the error variance from the dynamic predictors to be 
less than half the size of the error variance due to the 
simple predictors. 

5 Conclusion 

Improving congestion control and queue management 
algorithms have been active areas of research over the 
past ten years. This work says that there is a possibil- 
ity of controlling at larger time scale when the focus is 
centered around end-user action. On the other hand, 
at smaller time scale where the TCP's dynamics dom- 
inates the traffic characteristics, control does not seem 
to be possible. Finally, in TCP's steady state, the dy- 
namical predictors do not show improvement over sim- 
ple predictor E(y1p) .  Hence, the mean of the packet 
arrivals is a good estimate of end-user behavior. 
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