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Abstract

Link lifetime prediction is occurs frequently in MANET
routing protocols. For example, in assigning cache timeout
values and route durations, routing protocols make implicit
predictions of link lifetime. Some protocols even make ex-
plicit predictions. In this paper the predictability of residual
link lifetimes is examined. This investigation is performed
via simulations that make use of detailed models of urban
areas. Propagation is modeled using beam-tracing.

1 Introduction

Throughout all MANET routing protocols, prediction of
link lifetimes is pervasive. For example, on-demand proto-
cols often cache routes and links. The selection of a time
for which these links and routes remain cached is an im-
plicit prediction of the route or link lifetime. In the case
of proactive protocols, neighbors are probed periodically.
The time between probes is typically selected by the pro-
tocol designer and is related to the designers beliefs about
link lifetimes. Several routing protocols make explicit es-
timates of link lifetimes. For example, in [1], an associa-
tion is made between signal strength and longevity of the
link. Specifically, a link is considered strong and suitable
for use if an exponential average of the signal strength is
above a threshold for a certain amount of time. In [2], the
longevity of a route is estimated by observing the change in
signal strength. In [3], a link is declared to be stable if it has
lasted beyond a threshold where the threshold depends on
the transmission range and the relative speed of the nodes.
In [4], a method is presented that tries to predict the link
time-to-live (TTL), i.e., the time until the signal strength
will fall below a threshold by examining the signal strength
and the rate of change in the signal strength. In [5], GPS
is used to estimate the speed and time until the nodes move
out of "range." In [6], the time that a link will last is based
on GPS. Based on this prediction, the routing attempts to
search for an alternative path before the link breaks.

While the idea of link lifetime and lifetime prediction
is common, there has been little investigation of whether

and the degree to which link lifetimes are predictable. In-
deed, many of the references cited above did not attempt to
justify their assumptions about link lifetime. Investigations
that have focused on link lifetimes include [7], [8], and [9].
In [7] extensive simulations were performed. This work in-
dicated that age (i.e., the time that the link has been alive
so far) is a useful indicator of the residual link lifetime. In
[8] and [9], the distribution of link lifetimes and the impact
that link lifetime has on routing protocols were examined.
It was found that link lifetimes and the way that protocols
attempt to predict the lifetime plays an important role in the
overall performance of routing protocols.

However, this previous research has not focused on the
predictability of link lifetimes. Furthermore, all previous
studies have assumed trivial mobility models and either
free-space propagation or a two-ray model. While such
models may have some applicability in desert or rural ar-
eas, there is considerable interest in using MANETs in ur-
ban areas. This paper examines the predictability of link
lifetime in pedestrian MANETs in urban areas. Specifically,
we study predictability of the link lifetime when the predic-
tion is based on age, position, signal strength, relative speed
of the end-nodes as well as many combination of these fac-
tors. Propagation is modeled using beam tracing. Several
conclusions are made. In general, the predictability of link
lifetimes is moderate; the best that can be achieved is a 60%
reduction in the mean square error (MSE) of the predic-
tion error when all the factors are utilized. In many cases,
the difference between predictors that use the same num-
ber of factors is small. Furthermore, there are strong spa-
tial and other heterogeneous effects. Thus, a predictor that
works only marginally well in general, will, in some situa-
tions, work extremely well and produce dramatic reduction
of the error variance. The differences between nodes in-
side of buildings and outside of buildings is significant with
link lifetimes of nodes inside of buildings less predictable
than links of nodes that are outside. Nodes in an free-space
environment (two-ray propagation and random way-point
mobility) have significantly more predictable residual link
lifetimes. Several other differences between free-space and
urban environments are also found.

The paper proceeds as follows. In Section 2, the simula-
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Figure 1. Cities used for Simulation. The rect-
angles are office buildings with evenly dis-
tributed offices and hallways (not shown).
Outside sidewalks are shown. The mobile
nodes are restricted to sidewalks, offices and
hallways.

tions used to reach these conclusions is discussed. In Sec-
tion 5, several predictors that make use of a single factor
are investigated in detail. In section 6, the performance of
predictors that use a combination of several factors is pre-
sented.

2 Simulations

The conclusions reached in this paper are based on
series of simulations. Four different environments were
considered. One environment is a well-known random
waypoint/free-space environment. We will refer to this en-
vironment as free-space. In this environment, the nodes
picked random locations in a 1km×1km space and traveled
to those locations at random speeds. In this investigation we
focus on pedestrian networks. Thus the speed of the nodes
were selected to match typical walking speeds, i.e., walk-
ing speed are Gaussian distributed with mean 1.34 m/s and
standard deviation 0.26 [10]. The propagation in this first
environment was the two-ray model

=

½
2 for 200

× 2002 4 for 200

The transition at 200 m is consistent with a 1.5 m antenna
height.

Three specific urban areas were examined, the Univer-
sity of Delaware Campus (UD), the Paddington area of Lon-
don (Pad), and a hypothetical grid-city (GC). The first two
cities are shown in 1. The grid city is a 1km×1km grid with
each block 100m×85m. Roads and sidewalks separate the
buildings by 30m. Each block has a single building.

In these cities, the simulations use realistic urban propa-
gation and mobility models. Details of this model can be
found in [11]. Briefly, the propagation is based on a 3-
D ray-tracing technique. This model utilizes 3-D beam-
tracing that include reflections off of the ground and of
off buildings, transmissions into buildings, diffraction using
the uniform theory of diffraction, and propagation through
buildings with the attenuation factor model.. The transmis-
sion error probability is modeled to match typical 802.11b
at 1Mbps with no reception possible if the channel gain is
greater than -56dB. Thus, nodes are defined to be connected
if the path loss between them is less than 56dB. A path loss
of 56dB allows for free-space propagation of around 650 m.

The urban mobility model assumes that nodes (pedes-
trians) move from their home office, through the building,
and, if the destination is in another building, the nodes move
along sidewalks to the building, and then to the desire office
destination. While walking, nodes may encounter conges-
tion. In this case, the walking speed will vary as described
in [11]. Also, if walking outside, nodes may come to traffic
lights and be forced to wait. The traffic lights followed a
90 sec. period. If the node is not at a traffic light and not
encountering traffic it maintains randomly selected speed
that is constant for the duration of its trip. When a node
reaches it the destination, the node waits for exponentially
distributed amount of time before returning to the home
office. Upon returning to the home office, the node waits
an amount of time that is approximately exponentially dis-
tributed. In both cases, the mean waiting time is 1200 sec.
(20 minutes). The nodes pick in-building destinations with
probability 5/6 and out-of-building destinations with prob-
ability 1/6. The destinations selected are locations of meet-
ings. Other nodes will also attend the meetings. Nodes tend
to arrive when the meeting starts and leave when the meet-
ing ends.

Each simulation was run for 50 hours of simulation time
with 64 nodes. Approximately 3 million links were ob-
served. Consequently the statistics computed are accurate.
In most cases, the 95% confidence interval gave an error
of well under 0.01%. However, it will be noticed that not
all curves are smooth. We speculate that this is due to the
heterogeneous structure of the environment. However, this
question requires further study.

3 Methodology

We examine the ability to estimate the residual lifetime
of a link, which we denote as . The residual lifetime is
the remaining lifetime of the link. The total lifetime of a
link is + where is the current age, i.e., how long
the link has been alive so far. We say that a link life begins
when the path loss between two nodes is less than or equal
to 56dB and it ends when the path loss exceeds 56dB. In



this investigation, time is discretized at 1 sec. intervals. If
the path loss had been below 56dB and then exceeds 56dB
at the next time step, its residual lifetime is zero. And, if the
path loss had been above 56dB and has just dropped below
56dB, then its age is 1 sec.

We seek to determine if various factors can be used to
predict the residual lifetime. These factors include the age
of the link, the relative speed to the nodes, the path loss
over the link, and the location of the node. We use the rela-
tive mean square error (RMSE) to quantify the utility of the
factor or factors. Specifically, letting represent a factor
(or factors) used to predict , we quantify the utility of this
prediction via ³

( ( | ))2
´

³
( ( ))

2

´ (1)

The choice of mean square error as the metric of interest is
due to the fact that such a metric is widely used to quantify
and compare predictors. However, the usefulness of this
metric within the context of routing protocols is an area that
is left for future research.

It is useful to examine the performance of a predictor
when it is known that the link is to a node that is either
inside or outside. To make such an examination we use the
follow RMSE
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Note that (1) implies that the predictor used is ( | ),
which the optimal predictor when the metric is the mean
square error. Also, the denominator of (1) is the variance,
which can be thought of as a measure of the prediction er-
ror if the mean is used as a predictor. Thus, the RMSE
is a comparison between a complicated predictor that uses
the factor(s) to make the prediction and a simple predictor.
Specifically, the RMSE is the fractional decrease in the pre-
diction error variance of a complicated predictor compared
to a error variance that results from using a simple predictor.

4 The Residual Lifetime of Links

The focus of this paper is on the residual lifetime of
links. Figure 2 shows complementary cumulative distribu-
tion function (CCDF) of the residual lifetime of a link. The
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Figure 2. CCDF of the Residual Lifetime of
Links

right-hand plot shows the distribution when the mobile node
is inside a building, while the left-hand plot shows the distri-
bution for nodes that are outside. The distribution resulting
from each city investigated is shown along with the distri-
bution from the free-space environment. Qualitatively, the
distribution in the cities are similar to one another, whereas,
the distribution from the free-space is quite different from
any city. Furthermore, there is a significant difference be-
tween links to nodes that are inside and links to nodes that
are outside. Specifically, nodes inside take part in links that
have much longer residual lifetimes. The reason for this is
that when a node is outside, it is moving (unless the node
is at a traffic light or caught in sidewalk/hallway/doorway
congestion). And, unless nodes are traveling to the same
location, nodes will soon move far enough apart and/or en-
tering a building so that communication between them is
not possible. The duration of outside trips is noticeable by
the steep decline of the CCDF for the residual lifetime less
than 250 sec.

Nodes that are inside may be stationary for long periods
of time. Thus, links to nodes that are inside may have long
lifetimes. There are three subtle points about the nodes in-
side. First, as a node moves inside, it will walk down the
hallway. As it passes near offices, it will be in communi-
cation range of the node sitting in the office. However, as
it continues to move, this new link will be broken. These
short lived links are visible in Figure 2 where between 20
and 40% of the links have a lifetime that is less than 40 sec.
The reason that such a significant number of links have such
a short lifetime is that a node has the possibility to commu-
nicate with a large number of nodes while moving down
the hall, whereas when a node it is stationary, it will only
make a few links to it nearby neighbors. A second subtle
point is that nodes in meetings will be able to communicate
with other nodes in the meeting. Since these nodes arrive
at the same time, the duration of the connection will have



the same distribution as the duration of the meeting. A third
point is that a node that is merely in its office will be able to
communicate with nodes in nearby offices. However, such
links may be broken when either of the nodes leaves their
office. Thus, for these links, the mean link duration is half
of the waiting time distribution.

Table 1 shows the mean and standard deviation for the
residual lifetimes of links. The means shown are exactly
the simple predictor referred to in Section 3. For each city,
there are three types of links examined, namely, links from
nodes that are inside, links from nodes that are outside, and
links that are from nodes that could be outside or inside.
For brevity, we often call links to node that are inside of
buildings simply inside links. To gain a better understand-
ing of how link behave, we focus on these three types of
link throughout the paper. Thus, to examine the behavior of
inside links, the “simple" predictor is the mean given in the
top row of Table 1 and the denominator of (1) is the square
of the second row from Table 1. We must stress that this
division of links into these class is to assist in understand-
ing the behavior of links. It is not a trivial task for a node
to determine whether it is inside or outside. A truly sim-
ple predictor is one that does not include information as to
whether the node is inside or not. The lower rows of Table
1 provide the mean and standard deviation of residual life-
times where the node may be inside or outside. However,
even these values assume that the city where the node re-
sides is known. Predictors that are independent of the city
is left for future research.

Table 1 shows the mean as well as the standard deviation.
Notice that for links to nodes outside, the standard deviation
is much larger than the mean. Thus, the coefficient of vari-
ation is far larger than one indicating high volatility. This
volatility can also be observed in Figure 2 where the decay
of the CCDF is seen to be slower than exponential. How-
ever, it is faster than polynomial and slower than the CCDF
of a Weibull distribution. The reason for the high volatil-
ity is that nodes going to the same meeting may sometimes
meet outside and then spend an extended period of time in
the meeting.

The fourth column of Table 1 provides the mean and
standard deviation for the free-space environment. Here we
see that the coefficient is nearly one. Notice that the CCDF
indicates that the residual lifetime is well modeled by an
exponential distribution.

5 Predictability Based on a Single Factor

5.1 Age

From renewal theory, one of the first predictors that
comes to mind is the prediction of the residual lifetime
given the age, i.e., ( | ). Figure 3 shows CCDF of

Table 1. Statistics of the Residual Lifetimes of
Links

inside UD PAD GC OS
mean 738 1131 1128 -

std dev 909 874 884 -

outside
mean 235 253 175 337

std dev 585 683 538 338

both
mean 487 692 652 -

std dev 805 898 873 -
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Figure 3. CCDF of Link Age

the link age, while Figure 4 shows the expected residual
lifetime given the current age. It can be seen that qualita-
tively, the expected residual lifetime conditioned on age is
the same for the three cities. But inside and outside are dis-
tinct and free-space behaves different from any of the cities,
both inside and outside. Specifically, for the free-space en-
vironment, the expected residual lifetime is nearly indepen-
dent of the current age, but is slightly decreasing for links
younger than 200 sec. On the other hand, in urban areas,
the expected residual lifetime significantly increases with
the age, hence older links tend to have a longer remaining
lifetime than young links. The increase is significant; a link
that is twice as old will have a residual lifetime that is be-
tween twice and four times greater. Thus, in urban areas, it
is reasonable that a routing algorithm should select old links
over young links. This contrasts the free-space environment
where young links should be slightly favored over old links.

While the expected residual lifetime increases with age
for both inside and outside links, the expected residual life-
time for outside links continuously increases, whereas for
inside links, it rapidly increases and then stabilizes and
slowly decreases. Thus, in the case of inside links, we
see that links may experience "infant mortality," where new
links have a strong tendency to break. As discussed above,
these short lived links are from nodes moving through hall-
ways. Nodes that are not in hallways but are stationary have
links with longer residual lifetimes.
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Figure 4. Expected Residual Lifetime given
Age
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Figure 5. CDF of Relative Speeds of Commu-
nicating Nodes

Table 4 shows the performance of using ( | ) to
predict the residual lifetime of a link. (Section 5.5 discusses
the meaning of the table.) We see that using age only pro-
vides a moderate decrease in the prediction error. For ex-
ample, of links that are outside, conditioning on age results
in decrease in the error variance by less than 10%. This
contrasts Figure 4 that indicates that the residual lifetime is
strongly dependent on the age. However, Figure 3 provide
clarification and shows that there are a relatively small num-
ber of long lived links. Recall that this ( | ) indicates
a significantly different lifetime for old links as compared
to young links. While this is true, most of the links that
arise outside are young, hence the fact that old links will
last longer is not particularly useful.

Table 4 does show that for links to nodes that are inside,
predictions based on age are useful and can reduce the error
variance by 20%. Similarly, links to nodes that are inside or
outside can be predicted 15-25% better if age is used.

Table 4 also shows that in the free-space environment,
conditioning on age has almost no impact. This is expected
since ( | ) is nearly constant.
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Figure 6. Residual Lifetime and Relative
Speed of Nodes.

5.2 Speed

Next factor to be examined is relative speed between two
nodes. Since only pedestrian mobility is considered, when
nodes are moving their speeds are Gaussian with mean 1.36
m/s and standard deviation of 0.26. Thus, node speeds are
typically below 2m/s. As a results, the relative speed be-
tween two nodes ranges from -4 m/s (if the two nodes are
moving toward each other at top speed) to +4m/s (if the
nodes are moving away from each other at top speed). Fig-
ure 5 shows the CDF of the relative speed. It can be seen
that the distribution of relative speed is consistent across
different cities and inside and outside.

Figure 6 shows the expected residual lifetime as a func-
tion of relative speed. In all environments, the predictors are
qualitatively the same, the lifetime increases as the relative
speed decreases for speeds that are greater than -1m/s. As
the relative speed further decreases, the expected lifetime
also decreases. It is intuitive that if nodes have a positive
relative speed, the link between them will not last long. On
the other hand, if nodes have a negative relative speed, then
the nodes are moving toward each other. If the magnitude
of the relative speed is large, then these nodes will soon
reach locations where their distance is minimized and then
begin to move apart resulting in the link breaking. Hence,
as the relative speed decrease, the expected lifetime also de-
creases.

Table 4 shows RMSE if speed is used in prediction. The
performance is fairly uniform across the different cities. For
inside links and link that are either outside or inside, the
MSE is reduced by 10-20%. For links that are outside, the
decrease in MSE is minimal. Knowing the relative speed
only decreases the error variance by 12% in the free-space
environment.

5.3 Path Loss

If the path loss between two nodes is small (i..e, the sig-
nal strength is high), it seems unlikely that the link will
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Figure 8. Expected Residual Lifetime given
the Path Loss.

Table 2. Dynamic Path Loss Based Prediction

inside UD Paddington Grid Free-Space
lag 0 0.57 0.66 0.68 -

lag 0-1 0.56 0.65 0.68 -
lag 0-2 0.56 0.64 0.67 -
lag 0-3 0.55 0.62 0.66 -

outside
lag 0 0.76 0.81 0.92 0.99

lag 0-1 0.75 0.80 0.92 0.98
lag 0-2 0.74 0.79 0.91 0.98
lag 0-3 0.73 0.78 0.90 0.97

both
lag 0 0.57 0.59 0.57 -

lag 0-1 0.57 0.58 0.56 -
lag 0-2 0.57 0.57 0.56 -
lag 0-3 0.56 0.56 0.55 -

break in the near-term. However, it is unclear what a low
path loss implies about the link lifetime in the more distant
future. Furthermore, just because there is an intuition that
a strong link will have a long life, it is not clear how often
such strong links occur. In which case prediction based on
path loss will perform poorly as did age-based prediction.

Figure 7 shows the CDF of the signal strength. For nodes
that are outside, the signal strength is often quite weak. For
example, 20% of the links have path loss that is within 6dB
of where communication is not possible. This is intuitive
since communicating with a distant node results in weak
signal strength and there are more nodes that are far than
nodes that are close. For nodes that are inside, we see two
types of behavior caused by the fact that some nodes are
in meetings and hence in close proximity of other nodes.
Figure 7 shows that nodes that are not in meetings have a
path loss distribution that resembles the path loss distribu-
tion of nodes that are outside. However, when all inside
nodes are considered, a significant number of nodes have a
very small path loss. Clearly, these are links between nodes
that are attending the same meeting. As mentioned (and is
well known), meetings can last a long time, and hence the
links last a significant amount of time and thus can make up
a large fraction the observed links.

The distributions of the path loss of links to nodes out-
side are consistent across all three cities and not signifi-
cantly different from free-space. For nodes inside and not in
a meeting, the distribution of path loss are nearly the same
for the three cities. However, when meetings are consid-
ered, the distributions are quite different.

Figure 8 shows the expected residual lifetime given the
path loss. The results agree with intuition; the stronger the
signal, the longer the link will last. For links to nodes inside
and outside, the expected residual lifetime reaches around
1400 sec., when the path loss is very small. For the inside
nodes, these are nodes that are in a meeting together and
can make up a significant portion of all inside links. For
nodes that are outside, these links are between nodes that
are going to the same meeting. However, as Figure 7 shows,
this rarely occurs.

Figure 8 also shows the expected residual lifetime for
links in the free-space environment. This figure indicates
that the lifetime of a link is not strongly related to the
strength of the signal.

Table 4 shows the RMSE when path loss is used in the
prediction. We see that in many cases, the prediction error
is greatly reduced with this predictor. Indeed, path loss is
the best performing predictor. For nodes that are inside or
outside, the error variance is reduced by over 40%. In most
other cases, the reduction is also significant. However, the
prediction of the residual lifetime for outside nodes in the
grid city is only reduced by 8%. In the case of free-space,
the path loss provides almost no reduction in the prediction



error.
As mentioned in Section 1, some have suggested using

the change in the path loss or signal strength to predict the
link lifetime. More generally, one can consider not just the
current path loss, but the past path loss as well. Table 2
shows the results of using the current path loss and the past
three path loss observations (path loss is sampled every sec-
ond). Specifically, Table 2 shows the RMSE when only the
current path loss observation is used, when the current ob-
servation of path loss is used along with the path loss ob-
served one second ago, and so on. Thus, the table shows
the impact of using more and more information. We see
that while using the past path loss does decrease the error
variance, the decrease is small.

5.4 Location

The performance of the predictors examined so far have
been greatly influenced by whether the node is inside or out-
side. Here we will examine the impact of location in more
detail.

Urban environments are spatially heterogeneous. While
buildings cause a great reduction in the signal strength when
signals pass through buildings, they also can act to guide the
signals. For example, it is often the case that a street lined
with tall, regular shaped buildings attenuates the signal less
than it occurs in free-space propagation. Furthermore, when
nodes are inside, they are often not moving, whereas when
they are outside, they are moving (unless they are stopped
at the traffic light). In this section we examine the impact
that location of the node has on residual lifetime of the link.
We consider information as to whether the node is inside or
outside. This information is denoted by . We also
consider more detailed information denoted , which in-
cludes if the node is inside or outside and, if it is outside, it
includes an approximate position of the node. The resolu-
tion of outdoor position was set to 20 meters.

Table 3 shows the RMSE for the location-based predic-
tion (i.e., ( | ) and ( | )). In comparison to
the predictors discussed above, the performance of location-
based prediction is poor. However, the error shown in Table
3 is averaged over the entire space. Thus, it is dominated
by the behavior in locations that nodes often visit. Since the
environment is heterogeneous, we can expect that location-
based predictors will preform better in some locations than
others. Figure 9 shows how the predictor ( | ) per-
forms in different locations. Specifically, Figure 9 shows
( ) where

( ) :=

³
( ( | ))2 |

´
³
( ( ))

2

´
We see that in many locations the predictor does not de-

Figure 9. Performance of Location Based Pre-
dictor. Gray dots are placed along the side-
walk according to the reduction in variance
conditioned on the location. The dark circles
indicate no reduction in the variance. The
light colors are greater reduction in the vari-
ance. The white squares indicate the variance
is reduced by a factor of 10. The left hand plot
is of the UD campus and the right hand plot
is of Paddington.



Table 3. Location-Based Prediction
outside UD PAD GC

E ( | ) 0.97 0.90 0.92
E ( | ) 0.91 0.89 0.97

E ( | ) 0.68 0.59 0.74
E ( | ) 0.74 0.80 0.91

E ( | ) 0.62 0.56 0.69

both
E( ) 1 1 1

E( | ) 0.89 0.78 0.73
E( | ) 0.90 0.80 0.74

E( | ) 0.83 0.77 0.74
E( | ) 0.67 0.60 0.74

E( | ) 0.74 0.65 0.61
E( | ) 0.56 0.57 0.54

E( | ) 0.51 0.49 0.48
E( | ) 0.55 0.53 0.53

crease the MSE (shown with the dark circles). However the
lighter circles indicate areas where the predictor performs
well. The squares indicate areas that the MSE is reduced by
a factor of 10. Therefore, we can conclude that while the
average user might not get substantial benefit from these
location-based predictors, some users will.

While the location information does not, on its own, pro-
duce a good predictor, when joined with other factors, the
predictors are much better. Table 3 shows that if age, which
was found not to produce a good predictor, is combined
with location, then a good predictor is formed. To under-
stand this, consider Figure 10, which shows the expected
residual age conditioned on age at different locations. The
heterogeneity of the environment is obvious. The behavior
near to the building entry is explained as follows. If a node
is near to the building entry, either it will soon enter the
building or has just left the building. In the first case, once
it enters, all the links to other outside nodes will be broken.
Moreover, if the node will soon enter the building, then its
links are likely to be old since it had formed and maintained
these links during its journey outside. On the other hand,
a node that has just exited the building, has also just estab-
lished links with other nodes that are outside. In this case its
links will be quite young and will be maintained for quite
some time as the node travels outside. The other curves in
Figure 10 can be explained in a similar way.

5.5 Comparison of Single Factor Predictors

Table 4 shows the performance of the predictors that only
use a single factor. The performance is examined in three
ways, namely, the performance when it is known that the
nodes are inside, the performance when it is known that the
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Figure 10. Expected Residual Lifetime given
Age at Different Locations.

nodes are outside, and the performance when the nodes may
be inside or outside (both). When all nodes are considered,
the metric (1) is used, when only inside nodes are consid-
ered, metric (2) is used, and when only outside nodes are
considered, metric (3) is used. The value of the RMSE is
shown in the right three columns. Note that some predic-
tors do not make sense in certain settings. For example, a
predictor that uses the knowledge of whether nodes are in-
side or outside cannot be evaluated on inside nodes only.

The first column of Table 4 shows the predictor used.
The subscript in or out denotes that predictor used the fact
that all the nodes are inside or outside, respectively. The
other columns provide the value of appropriate metric for
the given predictor.

The performance of different predictors is discussed
above. As mentioned, predictors based on path loss outper-
form other predictors in all settings except for free-space
where none of the predictors perform particularly well.

6 Prediction using Multiple Factors

Section 5.4 showed how the combination of two predic-
tion factors, age and location, can be combined and result
in a predictor that performs far better than predictors based
on the individual factors. Here we examine more predictors
that use multiple factors.

Table 5 shows the value of RMSE for predictors that use
three different factors. As expected, these predictors per-
form better then the predictors that use only a single factor.
In many cases, we see that combining of two factors that, by
themselves provided only a marginal reduction in the MSE,
together provide more substantial reduction in MSE. It is
for this reason that we include an examination of path loss
along with the path loss observed one second ago. Predic-



Table 4. Comparision of Single Factor Predic-
tors

inside UD PAD GC OS
Ein(R|Age) 0.78 0.79 0.79 -
Ein(R|Speed) 0.85 0.82 0.84 -
Ein(R|Path loss) 0.57 0.66 0.68 -
Ein(R|Loc) - - - -

outside
Eout(R|Age) 0.90 0.89 0.97 0.98
Eout(R|Speed) 0.96 0.96 0.97 0.88
Eout(R|Path Loss) 0.76 0.81 0.92 0.99
Eout(R|Loc) 0.97 0.90 0.92 -

both
E(R|Age) 0.83 0.77 0.74 -
E(R|Speed) 0.88 0.81 0.82 -
E(R|Path Loss) 0.57 0.57 0.56 -
E(R|Loc) 0.89 0.78 0.73 -

tors that use the past path loss are denoted with Path Loss+.
Note that the inclusion of the past path loss had very small
impact in Table 2, but when more factors are included, the
impact is more significant. Nonetheless, considering past
path loss observations only decreases the error variance a
few percent.

When four factors are included, the MSE continues to
decrease. Table 6 shows that path loss, along with detailed
location information and age of the link provide the most re-
duction in the MSE. Table 7 shows progessively better pre-
dictors based on path loss. At each step, with more infor-
mation added, the predictor substantially improves. Inter-
estingly, age, which was shown to provide little predictive
abilities by itself, substantially improves the performance of
predictor when combined with path loss and location.

7 Conclusion

While link lifetime plays an important role in routing
protocols design and performance, there has been little in-
vestigation into the predictability of link lifetimes. Here we
examine many predictors in realistic urban environments. It
is shown that link lifetime prediction mean square error can
be reduced by nearly 60% as compared to using the mean
lifetime as a prediction of the link lifetime. However, such
predictors would require knowledge of the location of the
node, the path loss across the link, and the age of the link.
Simpler predictors are also useful. However, in all the cases,
path loss leads to be the best predictor. The dynamics of
path loss (e.g., the derivative of the path loss) provides little
additional predictive abilities.

This investigation used the mean square error to quantify

Table 5. Comparision of Predictors that use
Three Factors

inside UD Pad GR FS
Ein(R|Age,Speed) 0.67 0.69 0.70
Ein(R|Age,PthLos) 0.52 0.56 0.62
Ein(R|Speed,PthLos) 0.51 0.57 0.62
Ein(R|Age,PthLos+) 0.49 0.54 0.60
Ein(R|Speed,PthLos+) 0.50 0.55 0.60

outside
Eout(R|Age,Speed) 0.80 0.79 0.91 0.86
Eout(R|Age,PthLos) 0.71 0.76 0.90 0.93
Eout(R|Speed,PthLos) 0.67 0.72 0.87 0.84
Eout(R|Age,PthLos+) 0.67 0.71 0.87 0.93
Eout(R|Speed,PthLos+) 0.64 0.68 0.85 0.93

both
E(R|Age,Speed) 0.71 0.64 0.62 -
E(R|Age,PthLos) 0.55 0.51 0.53
E(R|Speed,PthLos) 0.52 0.51 0.52
E(R|Age,PthLos+) 0.52 0.49 0.51
E(R|Speed,PthLos+) 0.52 0.49 0.50
E(R|Age,I/O) 0.74 0.65 0.61
E(R|Speed, I/O) 0.79 0.68 0.64
E(R|Path Loss, I/O) 0.55 0.53 0.52
E(R|Path Loss+, I/O) 0.56 0.50 0.49



Table 6. Comparision of Predictors that use
Four Factors

inside UD Pad GR FS
Ein(R|Age,

Speed,PthLos)
0.46 0.51 0.58 -

Ein(R|Age,
Speed,PthLos+)

0.44 0.48 0.56 -

outside
Eout(R|Age,

Speed,PthLos)
0.62 0.64 0.81 0.81

Eout(R|Age,
Speed,PthLos+)

0.58 0.57 0.76 0.81

Eout(R|Age,
Loc,PthLos)

0.35 0.33 0.45 -

both
E(R|Age,

Speed,PthLos)
0.49 0.46 0.48 -

E(R|Age,
Speed,PthLos+)

0.47 0.43 0.47 -

E(R|Age,PthLos,Loc) 0.41 0.41 0.43 -
E(R|Age,Speed,I/O) 0.64 0.57 0.54 -
E(R|Age,PthLos, IO) 0.52 0.49 0.49 -

Eout(R|I/O,
Speed,PthLos)

0.51 0.48 0.49 -

E(R|Age,PthLos+, IO) 0.50 0.46 0.48 -
E(R|I/O,

Speed,PthLos+)
0.49 0.46 0.48 -

E(R|Age,I/O
Speed,PthLos+)

0.44 0.41 0.44 -

Table 7. Pregressively Better Path Loss Based
Predictors

outside UD PAD GC
E(R|PL) 0.76 0.81 0.92
E(R|PL,Loc) 0.62 0.56 0.69
E(R|PL,Loc,Age) 0.35 0.33 0.45

both
E(R|PL) 0.57 0.57 0.56
E(R|PL,Loc) 0.51 0.49 0.48
E(R|PL,Loc,Age) 0.41 0.41 0.43

the performance of a link lifetime predictor. However, the
most relevant predictors should focus on network metrics
such as overhead or throughput. Further work is required
to understand the relationship between MSE and these net-
work centric metrics.
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