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Linear Dynamically Varying LQ Control of Nonlinear
Systems over Compact Sets

Stephan Bohacek and Edmond A. Jonckheere

Abstract—Linear-quadratic controllers for tracking natural  f-invariant (f(©) C ©) subset oR™. The broad objective is to

and composite trajectories of nonlinear dynamical systems evo- find a controlu such thatimy_. .. ||¢(k) — 8(k)|| = 0.
luting over compact sets are developed. Typically, such systems hi devel I f the f _
exhibit “complicated dynamics,” i.e., have nontrivial recurrence. This paper develops a controller of the forntk) =

The controllers, which use small perturbations of the nominal Fax)(w(k) — 8(k)), where the feedbacks is designed, for
dynamics as input actuators, are based on modeling the tracking everyf € ©, from a linear approximation of (¢, «) around
error as a linear dynamically varying (LDV) system. Necessary (6, 0), and the gairFy(1 is “scheduled” so as to forag(k) to
and sufficient conditions for the existence of such a controller follow the desired trajectorg(k). This is a specialized version

are linked to the existence of a bounded solution to a functional
algebraic Riccati equation (FARE). It is shown that, despite the Of theé LPV scheme [20], [3], where the parameter vector

lack of continuity of the asymptotic trajectory relative to initial ¢, instead of being uncertain, is dynamically modeled. This

conditions, the cost to stabilize about the trajectory, as given by justifies the terminology ofinear dynamically varying (LDV)

the solution to the FARE, is continuous. An ergodic theory method ¢gntrol.

for solylng the FARE is presented. Furthermore, it is shown that An unusual feature of the LDV controller viewed as a

wrapping the LDV controller around the nonlinear system secures . . L . :
tracking controller is that the gain is spatially varying and

a stable tracking dynamics. Finally, an example of controlling the - ) - Y
Hénon map to follow an aperiodic orbit is presented. defined all over®. As the first and most generic application,

Index Terms—Chaos, discrete-time Riccati equations, given ar1 arbitrary deswed_trajectory{ﬁ(k): k=0, U s
linear-quadratic control, nonlinear systems, time-varying evalu_atlngFg <’.:1|0ng the trajectory{¢(k): k = 0, ...} y'e!ds
systems, tracking, uncertain systems. the time-varying controllerfy;) that makes the nonlinear

systemy(k + 1) = f(p(k), Fou((k) — 0(k))) asymp-

totically track 8(k + 1) = f(8(k)). More importantly, the
globally defined controllerfy becomes fully motivated in

TYPICAL feature of nonlinear dynamical systems runthose specialized applications where there is a need to quickly

ning over compact sets is that their phase portraits exhibidapt the tracking controller to a new reference trajectory
a variety of trajectories ranging from the trivial periodic orbits tavithout recomputing a new time-varying controller along the
the nonperiodic transitive orbits [18]. Sensitive dependence baw trajectory. Specifically, having reachedko) ~ 6(ko),
initial conditions and other parameters [23] allows a preselectede could track the trajectoryf(k): k& > ko} starting at
trajectory to be tracked—despite offset in initial conditions, eX{ko) ~ 6(ko) by switching from{Fyy: £ =0, ..., ko — 1}
traneous disturbances and uncertainty on the dynamics—vitoa[Fg(k): k > ko}. As shown in [6], switching among natural
cheap control that acts as a small perturbation of the nomiti@jectories allows for such broader control objectives as
dynamics. To formalize the above ideas, define the nominal atadgeting and periodic orbit avoidance. In orbital mechanics,

I. INTRODUCTION

perturbed dynamics, respectively, as switching among free orbits proved instrumental in NASA's
experiment that involved steering a decommissioned satellite
Ok + 1) = f(0(k)), 6(0) =6, € O, (1) toarendezvous with the Giaccobini—Zinner comet [11]. Along

the related line of application of the X-33 program, there
ok +1) = fe(k), u(k)), $(0) =90 €0. (2 js a need to adapt the spacecraft controller to a change of
, ) i launch-to-landing trajectory in case of failure and/or a change
In the above{d(k) € R™: k = 0} is the desired trajectory and landing site [15], [17].
¢(k) is the state of the system under contigk) € R™, which 0 ¢ ontrollerr, exists if and only if a solutiorks to afunc-
Is taken to be a small perturbation of the nominal dynamias, 5| aigebraic Riccati equation (FARE) linkinge and X ;)
f(‘P(kz’ 0) = Jf(¢(k)). The dynamics are differentiabléiz, gyiqts The mathematical difficulty with this functional equation
J € C*(R"xR™, R") and the motion is restricted to a compac ¢, prove that the relevant solution is continuous, in which case
Fy is continuous.
Typically there is no closed form solution to the FARE. How-
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error can be approximated as an LDV system. Section Ill for- LDV and linear parametrically varying (LPV) system can
mally develops LDV systems and the optimal linear-quadratie unified under the so-called linear set-valued dynamically
controllers for this class of systems. Section IV shows thaarying (LSVDV) systems characterized bget-valuednap f
these linear controllers are suitable for robustly stabilizing th&7]. LDV and LPV [5], [4] systems are the two extremes, the
nonlinear systems. Section V develops numerical techniquesmer characterized by the fact th&t) is reduced to a point,

to compute the solution of the FARE. Section VI gives athe latter characterized b§(¢) = ©. Somewhere between the
example. Finally, the Appendix provides the proofs of thevo extremes lies the case of slow systems characterized by

technical results. |1¢/ — 6| < A, V& e f(8) [25], [3]. Under this condition,
it is customary to postulate the existence of an analytic map
[I. LINEAR DYNAMICALLY VARYING TRACKING ERROR X: © — RV such thatd, X549 — Xy < Ofor ||§]| < A
DyYNAMICS from which stability follows. Here, instead gbostulating

analyticity or any other convenient property of some solution to
aninequality, we prove continuity of the solution to a relevant

a(k) = o(k) — O(k). equation[see (44)].

Define the tracking error

Then, we obtain I1l. LINEAR DYNAMICALLY VARYING SYSTEMS AND

CONTROLS
z(k+1) = f(o(k), u(k)) — f(6(k), 0).
_ o Before controllers for LDV systems can be developed, such
The first degree Taylor approximation (%), u(k)) around - systems must be formalized and the relevant stability and de-
p(k) = 6(k) andu(k) = 0 yields tectability concepts must be defined. For the purpose of control,

an LDV system is defined as follows:
(b +1) = Agyz(k) + Bogyu(k) + n(z(k), u(k), 0(k)) Y

ere (3) ok + 1) = Aggya(k) + Bagyu(k)
Coayz (k)
of of 1) — { o) }
Ap=5-(0,0),  By=5(0,0) “ Doryu(k)
and n(z(k), w(k), 8(k)) accounts for nonlinear terms, to be Ok +1) = f(6(k))
specific, sincef € C* with
6(0) =6, and z(0) ==z, (8)
n(z(k), w(k), O(k)) =na(x(k), u(k), 6(k))z(k)
+ u(x(k); u(k), O(k))u(k)  (4)  where
f:6—-0 continuous map;
where 0 CR"” compact and'-invariant;
1 af; af; A © — R functions that need not be
77.7:7-1]-(37, U, 9) = /0 <a]}1 (ta: + 9, tu) — al’j (9, 0)) dt B: 6 — RnXm’ continuous:;
(5) C: ©® — Rri=" and
q D: © — Rp2X™

an Lo, af, 6(k) € © state of the dynamical

Nu;,; (@, u, 6) :/ < “(tx 46, tu) — = (6, 0)) dt. system;

o \Ju; I xz(k) € R" state of the linear system;
®) Wk erm control input;

. L . . z(k) € Revtre output to be controlled.

Since f € ¢ and® is compact, if> and u are bounded, It is assumed that both stategk) and#(k) are known at time

then (8f;/0x;)(tx + 0, tu) — (8f;/dz;)(6, 0) is uniformly
continuous inz andw for ¢ € [0, 1]. In particular, for any
g > 0, there exists & > 0 such that if||z||, [|u|| < &, then
[(8fi)0x;)(te + 6, tu) — (0f;/0x;)(6, 0)| < e fort € [0, 1].
Therefore,||n.(x, v, 8)|| and ||n.(x, u, 8)|| can be made as
small as necessary by limiting the sizewond .

If x andz are small, the error dynamics can be approximat
as

point k.
Itis often assumed that the system coefficient matriteB,
C and D are continuous. We refer to such systemsastin-
uousLDV systems. In Section Il, it was assumed tifag C!
and A and B were defined to be the matrices of partial deriva-
éi(\{es of f, so thatd and B were continuous. Thus, the tracking
error dynamics associated with system (1) and (2) can be ap-
proximated by aontinuousLDV system. However, if a feed-
2k + 1) = Agy(k) + Bygyu(k). (7) backF: © — R™*" is used to stabilize a continuous LDV
system, then the resulting closed-loop system is a continuous
This is a linear system with coefficient matricdsand B that LDV system only if # is continuous. Although this paper will
vary asf(k) varies. Sincé#(k) varies according to the dynam-focus on continuous LDV systems, we canagtriori assume
ical equation (1), such an interconnection as (1) and (3) is calldtat the stabilizing feedback is continuous. Therefore, the defi-
an LDV system. nition of an LDV system should allow for discontinuous coeffi-
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cient matrices. Another motivation for allowing discontinuous there exists an exponentially stabilizing feedback, that is as
LDV systems is to define a class large enough to encompdsiows.
jump linear systems as discussed in [9]. Definition 2: System (8) is stabilizable if there exists a, not
From a mathematical perspective, a linear dynamicalhyecessarily continuous, functidit N x ©® — R™*™ such that
varying system is a family of linear time-varying systemsor all §(0) € © and for allk, | F'(k, 6(0))|| < F(6(0)) < oo
indexed by the initial conditio(0). If #(0) is a fixed point, and the system
then the linear system with inde&(0) is time-invariant. If
6(0) is a periodic point, the linear system with ind@f0) is a z(k + 1) = (Apxy + Bory F (k. 6(0))) z(k)
periodically varying linear system. #{0) is an aperiodic point, o(k) = £5(6(0))
the linear system is a linear time-varying system.
Slnc_e a Ilngar dyn_am|cally varying system is an uncoumaql?exponentially stable, that is, there exi€8(0)) and3(6(0))
collection of linear time-varying systems, the concept of sta,ch that
bility is slightly more complex in the dynamically varying case
than it is in the time-varying case. k-1
Definition 1: The linear dynamically varying system (8) is H (Aff((-)(o)) + Byi ooy F (4, 9(0)))
uniformly exponentially stablé for «(k) = 0, there exist an ||;=;
0 < a < 1and af < oo such that for all9(0) €0 < [3(9(0))ak—1(9(0))

llz()|| < Ba||z(0)]]. where the factors of the matrix product are taken in the proper
order.
System (8) ixponentially stablé for w(k) = 0 and for each  Thus, the feedback that exists via the definition of stabiliz-
6(0) € ©, there exist al < «(8(0)) < 1 and a3(6(0)) < oo ability may not be uniformly bounded nor even continuous in

such that for alke(j) andj < & 6(0). A feedback that is uniformly bounded and making the
closed-loop system uniformly exponentially stable will be said
ot + Il < BOO)BO) 2(i)] to be unifornly stabilizing.

Along with stabilizability, a detectability concept is needed.
System (8) isasymptotically stabléf for uw(k) = 0, any Definition 3: Syst_em (8) is uniformly Qetectable if there ex-
ists a, not necessarily continuous, function® — R™*? such
||z(0)]] < oo and any?(0) € © =
that foré € ©, ||Lq|| < L < oo and the system

Thus, a linear dynamically varying system is exponentially 6(k) = f*(6(0))
stable if every linear system in the family of linear systems
indexed by#(0) is exponentially stable. The parametei$g) is uniformly exponentially stable. That is, there existan< 1
and 3(6), remain constant along a positive trajectory; i.eand a3, < oo such that for alb(0) € ©, || H;C:_;L(Aff(g(o)) +
a(f(8)) = a(6), but may vary discontinuously across different. ;: s(0y,C'si e (o))l < Bact||=(0)]].
trajectories. Another difficulty with this stability concept is The conditions of stabilizability and uniform detectability, re-
that it is possible thdim; «(6;) = 1 while «(lim; ;) < 1 for quired to secure existence of an LDV controller, are slightly
some sequenclf; € ©: ¢ > 0}, in which case the system isasymmetric. However, as can easily be shown by a duality argu-
exponentially stable, but not uniformly exponentially stable. ment, if the functionf is invertible, then uniform detectability

In the case ofontinuoud DV systems, asymptotic, exponen-can be weakened to detectability, whicheisactlythe dual of
tial, and uniform exponential stability are equivalent. stabilizability.

Proposition 1: Assume that the functiod: ® — R™®*™ is Since stabilizability depends oy B, and f, we will say that
continuous ané is compact. Then asymptotic, exponential anthe triple(A, B, f) is stabilizable to mean that system (8) is sta-
uniformly exponential stability are equivalent. bilizable. Similarly, we say thatthe triplel, C, f) is uniformly

Proof: The proof is withheld until the Appendix. m detectable to mean that system (8) is uniformly detectable.

Note that for general time-varying systems, exponential sta-Under the following assumptions, the existence of a uni-
bility and asymptotic stability are not equivalent. However, iformly stabilizing continuous linear dynamically varying
the case of continuous LDVs, continuity and compactness legquladratic controller is proved.
to the equivalence of these two forms of stability. Assumption 1:The functions4: © — R*»** C: 6 —

Since uniformly exponentially stable systems are inherent®” *" and f: ® — © are such thatA, C, f) is uniformly
more robust than exponentially stable systems, itis preferabletetectable.
remain within the confines of continuous LDV systems. Thus, Assumption 2:The functions4: ® — R"*", B: © —
when synthesizing a feedback for controlling a continuous LDR™*" and f: © — O are such that4, B, f) is stabilizable.
system, it is important to ensure that the feedback is not onlyAssumption 3:The functions4, B, C, D, andf are contin-
asymptotically stabilizing, but also continuous. However, toous,© is compact and); Dy > 0 for all § € ©.
maintain generality, an LDV system is considered stabilizable Our main result can now be formulated.
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Theorem 1: Suppose Assumptions 1, 2 and 3 hold. Theis small, then||V;, — V,|| is small. We say thaf has sensitive
there exists a unique, bounded solutiiin © — R™®*™ to the dependence on initial conditions if there existsralr 0 such
FARE that for allf € © ande > 0, there exista € ©, |l — 6| < ¢,

., andaK < oo such that|f*(8) — f(¢)|| > r. Hence, iff
Xy = Ay X y(9)As — Ay X 5(6)Bo (Dy Dy + ByX f(6)Bs) has sensitivity to initial conditions, then

X Bng(g)Ag + CgCQ (9)
d ({Aps o) Byr(oys Oproys Dyrioy: k 2 0F
, — @i > .
such thatXy = X, > 0, and the feedback {Apri)s Bprigyr Cprioys Dyrgoy: k2 0})
-1
w(k) = — (Dg(k)De(k) + Bg(k)Xf(g(k))Bg(k)> may remain bounded from below for arbitrarily smigdl — ¢||.

Thus, the time-varying system
X By X o) Aony (k)

(10) {450, Brroys Croys Dyroy: b 2 0
uniformly exponentially stabilizes system (8). fia(0)|| < o, s discontinuous if and standard continuity results from time-
this feedback minimizes varying control cannot be applied. Surprisingly, despite the fact
o0 that the distance between the time-varying systems indexed by
Z (k)||? ¢ and¢ remains bounded from below, Theorem 1 implies that

| X, — Xs|| can be made small by takirig> — 8]| small enough.

In particular, this continuity implies that the cost of stabilizing a

eriodic orbit is nearly the same as the cost to stabilize a nearby

per|od|c one, whereas general time-varying results seem to

imply that the cost of stabilizing these different orbits may be

very different.

Remark 3: When evaluated along a particular trajectory, the

X(k, N, §) =4’ k(Q)X(k +1, N, 0)A g + C k(e)cfk(e) FARE anq hencg the confcroller become time-invariant, peri.odi—
, : cally varying or time-varying depending on whether the trajec-
f’“(e))‘(k + 1, N, 0)Byro) tory is fixed, periodic or aperiodic, respectively.

and.X is a uniformly continuous function.
Conversely, if Assumptions 1 and 3 hold and if there exisEl
a bounded solutionX, to (9) such thatX, = X; > 0, then
system (8) is stabilizable anHl is continuous. In this case, if
X(k, N, 8) solves the finite-horizon Riccati equation, i.e.,

1 IV. STABILITY AND ROBUSTNESS OFANONLINEAR SYSTEMS

+B}A,(0)X(k +1, N, 9)Bfk(9)) WITH LDV CONTROLLERS
X B}k(g)X(k +1, N, Q)Aﬂ,(a) (11) Here, we address the issue as to whether the LDV quadratic
controller, guaranteed to stabilize the LDV system, also stabi-
with lizes the nonlinear system.
With the feedback given by Theorem 1 in place, the nonlinear
X(N, N, 0) = CiniyCpn o), system (3) becomes
then X (0, N, 8) — X, uniformly in 6. 2k +1) = (Ao + By Fory) (k)

Proof: The proof of this theorem is in the Appendix.m

Remark 1: Stabilizability is a rather weak assumption. In- + (77’”( (k), u(k), (k)
deed, stabilizability merely assumes that every trajectory is sta- +1u(z(k), u(k), (k))F0<k)) z(k)
bilizable. Given this obviously necessary condition, it is inter- 8k +1) = £(8(k)) (12)

esting to observe that continuity and compactness are all that

are needed to prove the existence of a continuous and uniforigiferes,,, ands,, are given by (5) and (6). By Theorem 1,
stabilizing controller.

Remark 2: Thg contin_u_ity of the cosX is cogn_t(_arintuitiv_e_ in z(k+1) = (Aa(k) + Ba(k)F(-)(k)) z(k)
the case wher¢ is sensitively dependent on initial conditions.
It is easily seen that the general time-varying infinite-horizon 0k +1) = f(6(k))

optimal quadratic cost is continuous with respect to the uniform

topology, that is, it is the optimal infinite-horizon quadra'uc'S uniformly exponentially stable. Thus, by [24, Th. 24.7],

cost associated WithAy, By, Ci, Dy: k > 0} andVj is the there exists am > 0 such that if||n. (z(k), u(k), 6(k)) +

optimal cost associated Wiy, By, Ck, Dy: k > 0} and if u(z(k), w(k), 6(k))Foan|| < 7, then system (12) is uni-
formly exponentially stable. If we define

d ({Akv By, Cx, Dy: k > 0}, {flk, By, Cx, Dy ke > O})

= sup (‘
k

77]’(‘1.7 U’? 9)
Ay —AkH T HBk —BkH e, u, 0) + nu(x, u, O)Fe, if ||no(z, u, 6)
= +77u($7 u, 9)F9|| <ﬁ

+ HCk - CkH + HDk - DkH) 7l, otherwise
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then By definition, the poin® is recurrentif for an arbitrarys >
} 0, there exists anV(§) < oo such thatl|§ — fN© ()] <
#(k+1) = (Aow) + B Lo iy 8. Let R(f) denote the set of recurrent points. Singef) is

+i7 (&(k), Foan@(k), 0(k))) #(k) invariant (f(R(f)) € R(f)), the FARE can be restricted to

R(f), and, furthermore, the solutioy, can be extended by
continuity from R(f) to R(f). Recall that for a generic class
of diﬁeomorphismsm is the largest set where nontransient
- - behavior occurs [18].
IEE) < &2l (13) Taked € R(f). SinceX is continuous, foe > 0, there exists

for all #(0) € ©. It was shown in Section Il thataé > 0such thal|Xy — X v gl < e. It follows that

=(x(k), u(k), 8(k and 7, (x(k), u(k), 6(k can be
Zna(xdc(a ?arbi'Era?rily(SZT)lall by Iigiti(né t)he éiz)e oEf())) and u(k) loe 0 o180+ ++ 0 pprer-ae) (Xpnirie)) = Xpnveore)|| <&
Since Xy is continuous,y is continuous, and sinc® is |f we define
compact, there exists a boutdd < oo such that|Fy|| < F.
Thus, there exists am > 0 such that if||z(k)|| < T and po(Y) = po(Y) + Xyniere) — Xo

l(k)|| = [[Fago(k)]| < Fz, then

[ (@ (R), u(k), O(k)) + nu(@(k), w(k), O()) Fo|| <.

Therefore, if

is uniformly exponentially stable. In this case, there exigtsa
oo such that

we have

Do © PyLe) O PN -1(g) (XfN(é)(g)) = XfN(é)(g)

and||ps — ps|| < e. Replacingpy with pg in the above yields
. T the approximate equation fof s ~¢s) 4
||$(0)|| < 5 =: RCapture f ()
pPo © pfl((')) (o pr(£)71(9)(Y) =Y. (15)
then||z(k)|| < = and||Fp)@(k)|| < Fz and thus

(k It turns out thaft”, Xnio) o) and Xy are “close.”
(|7 (2(k), Foy@ (k)
k)

, 6(k)) Theorem 2: Assume thaff is a diffeomorphism an®(f) is

+n, ( F .0 Eonll <7 structurally stable [8]. Lef be a recurrerlt point and let> 0.

1 (3(8), Foo (k). 6(k)) Fagy | <7 Then there exists & > 0 such that|é — V@) ()| < § implies

and that || Xy — Y|| < € whereX solves the FARE and” solves
L N ) ) (15).

7 (2(k), Foqy@(k), 0(k)) =1 (2(k). Foqy 2 (k), 0(k)) - Proof: The definition of the structural stability aR(f)

%nd the proof of this theorem are given in the Appendix. m
Clearly, an approximate solution to the FARE is given by the
fixed point of (15), which can be found as follows. Sintés a

By uniqueness of the solution to a difference equation, we co
clude that if£(0) = z(0), with

|z(0)|| < Rcapture (14) diffeomorphism A, is invertible for allf € ©, and if we define
thenz(k) = Z(k) and system (12) is uniformly exponentially ap =Ag?
stable. Be =A; By (DyDy) " B,
Remark 4: For z andw bounded, the nonlinearity termin =l Cp AT
(12) is clearly a bounded feedback wrapped around the LDV f ' . ) 1,
plant, so that the natural way to reduce the effecf,afnd am- bo = Ay + CyCoAy By (DyDy) ™ By

plify the domain of attraction, is al*° design. This approach then it can be shown [12] that
is pursued in [6] and [7].
po(Y) = (o + 89Y )(cvg + BoY) ™"
V. EXPLOITING ERGODICITY TO SOLVE THE FUNCTIONAL

ALGEBRAIC RiCCATI EQUATION (FARE)

- - —1
Many methods can be devised to solve the FARE. Here wegopsi(gyo- -« pyn—1(g)(Y) = (’7 + 6Y) (a + /JY) (16)
investigate, in detail, a method based on the ergodic property of
recurrence; other methods include the jump linear approximibere
tion [1], [9], [10], and the method based on iterating the Riccati [a /3} <N1 [afk(e) ﬁfk(e)D

and

recursion (11). P

CUONKIR0
A. Solving FARE Over Recurrent Set
For notational convenience, define the Riccati map N1
. H Oéfk(g) ﬁfk(g) I c I
pg(X) = AIQXAQ + CéCQ — AIQXBQ (Dng + BgXBg) Y Y

, S HONRIIO)
X BgXAg.

Equation (16) can be solved by findingrasuch that

where{[.]} is the span of;.]. This invariant subspace problem
With this notation, the FARE can be writtety = pg(Xf(g)). can be solved by the usual methods.
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Fig. 1. Feedbac, = [F,, Fb,] for the Hénon map. The plots show that the feedback is continuofisArplot of the attractor of the Hénon map in the
(61, 02, —6) plane is included for reference.

VI. EXAMPLE way, the gainf: ® — R!*? is obtained and the closed-loop

) ) ) . tracking error dynamics becomes
In the following, an LDV controller is devised for the Hénon

system. The Hénon system is defined as zi(k+1)] z1(k) (k)
[xi(kJr 1)} = (Ao + Bogy For) [3521(/{))} + m;(/z)}
[%(k + 1>} _ [fl ((R), u(k))} (19)
(k1) | = [ (8, wk) here
1—(a+ulk k)2 + 2 (k /
_ [b%(sf) (k) (k) + 72 ( )} = [((—¢l(k)—91(k))F19(k> ~a) xl(k‘)] [azl(k))}

- (‘Pl (k) + xltrajcct(k)) F29(k)x1(k) 372(/6)

whereu is the control input. In this example,= 1.4 andb = (20)
0.3. For these parameter values ane: 0, it is known that the

Hénon map has an attractér, that is, there exists an open set (k) =0
V 2 © such thallimy, ... d(f*(6,), ©®) = 0forall 6, € V. Fy=[F, F,].
This attractor is the crescent-shaped object shown in Fig. 1.
Define the associated LDV system by Fig. 1 shows the feedback gaifi, for the LDV system (19).
Note that the feedback is continuous ©nthe attractor of the
Hénon map.
Agry = % = [_le(k) (1)} a7) The objective in this example is to control the Hénon system
6(k), 0 so as to follow an aperiodic orbit described & + 1) =
5 df —02(k) F6(k), Q) with #(0) = (0.6961, 0.2088). Since the (_:ontro_lle_d
o(k) = 7 = { 0 } (18) system is only locally stable, control cannot begin until time
6(k), 0 k = T when|jo(T) — 6(T)|| < Rcapture aNd Roapture > 0 1S

the initial tracking error bound that ensures stability as defined
Numerical simulation [23] indicates tha® is transitive, in Section IV. Computer simulations indicate that the Hénon
that is, for almost every, € ©, the trajectory{f*(6,)} mapis notdistal and thgtx f is ergodic [21]. Sinc€ (¢, §) €
enters every-neighborhood of every poit € © for every ©x@: ||¢—6|| < Rcapture } has positive measure, the Poincaré
e > 0.Therefore, iterating the time-varying Riccati equationecurrence theorem [18] @b x @ implies that for almost every
(11) from a transitive point yields an approximaXg. In this initial condition(8,, ¢, ), we have|o(T) — 8(T)|| < Rcapture
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Fig. 2. Trackingip; (solid line) and?; (dotted line) are shown. At time = 0, ||(0) — 6(0)]| is small enough for the control to be safely turned on. Once the
control is turned ony tracksé.

for someT’. Fork > I, control force is applied via the control The LDV theory complements the popular LPV/gain sched-
law u(k) = Fyayz(k), whereF is given by the LDV quadratic uling theory by focusing on the extreme casekabwn pa-

control method of Section lII. rameter dynamics. Mathematically, the LMI of LPV design is
Figs. 2 and 3 show the controlled trajectapy,(k), the de- pushed to the extreme situation of an equation linking the values
sired trajectory, (k), and the tracking errog; (k) = @1 (k) —  of the solution for two successive values of the parameters, with

61(k). Attime index 0, the error is small enough to safely turthe inescapable problem of proving continuity of the solution.
the control on (i.e.;” = 0) and ¢, tracks the desired trajec- Such equations, referred to as functional, are indeed notorious
tory. After the control is applied the error may increase beyorfidr generating badly behaved solutions, so that the LDV limit to
Rcapture. EXtensive simulation imply that if the LPV theory was due to involve some mathematical difficul-
ties.

It is hoped that the LSVDV theory, along with its contin-

\/<i>2 (p1(T) — 6,(T))? + <i>2 (p2(T) — 65(T))2  uous-time andd > counterparts [16], [6], [7] will emerge as

1.3 0.4 a unification of the various gain scheduling concepts.
< 0.15,
APPENDIX
the system remains stable, where the scaling factors account foBince a linear dynamically varying system is a collection of
the fact tha®;, € [—1.3, 1.3] andf, € [-0.4, 0.4]. time-varying systems, the following time-varying Lyapunov
An example of controlling the Hénon map to avoid its fixedtability theorem will prove useful.
point is available in [6]. Proposition 2: Assume(A4, C, f) is uniformly detectable.

Then there exists an(d,) € [0, 1) and a3(f,,) < oo such that
VIl CONCLUSION for 6(0) = 6, and anyz(k) € R

LDV controllers for tracking natural and composite trajecto- llz(k + DIl < B(0o)cx(b6) [|(F)|
ries of nonlinear dynamical systems running over compact sets
have been developed. The necessary and sufficient conditifrand only if there exists a sequen¢e i o,): k& = 0} with
for the existence of such controllers are rather weak and a8 s\l < X(6.) < oo andXju(e,) = X} (, ) > 0 such
equivalent to the existence of a bounded positive semidefintfat
solution to the FARE. If the dynamical system has adequate er- ,
godic properties, there are many techniques for computing the4fk(0 )*Xf”‘(@ yArk8,) = Xpr(a,) S —C (8, )Cf* (o)
solution to the FARE. (22)
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Fig. 3. Tracking error: At timé: = 0, the tracking error (solid line) is small enough, iJes(0) — 8(0)|| < Rcapture, WhereRgapture = 0.15. Hence, control
is initiated atk = 0. However, the tracking error exceeRs:. . for the next few time steps. This is acceptable, and the tracking error converges to zero.

Furthermore, if (22) is satisfied, ther{d) and/3(6) can be taken Suppose this is not true, i.ey, = oco. Define T(N) =
to only depend on the boundl(6,) and onay and 3y in the  supgee ||T(N, 8)||. ThenT(N) — oo asN — oc and there is
definition of uniform detectability. a sequenceév,, such thatr’(N,,) > T(M) for M < N, and
Proof: Forg(0) fixed, the resulting LDV system s alinearZ’(X,,) is monotone increasing to infinity. Siné& is compact
time-varying system. Thus, the theorem is simply a statememtd T'(V,,, €) is continuous ind, there exists &, such that
regarding the stability of linear time-varying systems and caf¥’(N,,, 6,,)|| = T(N,). Since® is compact{é,,} contains a
be found in [14]. B convergent subsequenég, — 6, € ©. Thus
Corollary 1: Assume (A, C, f) is uniformly detectable.

Then there exist an < 1 and a3 < oo such that 1T(Nor s br )l =T (N, ) 2 T(M)
N = sup [|T(M, 0)|| = [ T(M, 6)||
(R < Bo{|z(0)] 6o
forallM < N, ,0€ 0. (25)
if and only if there exists a uniformly bounded functidn © — . .

R™<™ with Xy = X} > 0 such that for alp € © Since the system is asymptotically stablef(®) = 6,, then
- ll=(k)|| — 0. Thus, there exists & = N;, < oo such that
ApXjoyAs — Xo < —CyCs. (23) ||IT(P, 6,)]] < 1/4. SinceP < oo, T(P, §) is continuous in

6. Thus, there is & > 0 such that|6, — 8|| < & implies
Proof: Since Xy is uniformly bounded and the system ishat \T(P, 6,) — T(P, 6)|| < 1/4. Sinceb,,, — 6,, there
uniformly detectable, Proposition 2 can be applied at éaeh exists arin < o such that ifm > m then||6, — 6, || < 6,

O. B N, > Pand||T(P,6,)—T(P,6,, )| < 1/4.Itfollows that
» |ZT(P, 6, )] < 1/2. However,T(N,, , 6, )= T(N,
A. Proof of Proposition 1 P, f2(6, )T(P, 6, ) so that

Proof: Clearly, uniformly exponential stability implies »

exponential stability, which implies asymptotic stability. It 17NV, )l < | T(Na,, = Py f7 (00, )| 1T(P, 62,
remains to be shown that asymptotic stability implies uniformly . . . .
exponential stability. Defin& (&, 6(0)) such that kXIhICh implies that
2||T(Nn,., 00 )| < || TN, — P, f7(0,,))]| -
2(8) = Avmsy Aagcsy -+ Aooyo(0) = T(E 6(0)(0) I, )l < [T On )

) This contradicts equation (25). Thus, the claim (24) is true.
We claim that Since the system is asymptotically stable, for apy @, if
8(0) = 8, then||z(k)|| — 0. Thus, thereisaiV(f,) < oo such

7= S‘;p;?‘gg [k, )] < o (24) thatif NV > N(6,), then||T(N, 6,)]| < 1/4v, wherey is given
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by equation (24). WitV (6,) < oo, T(N(6,), 6) is continuous equation (27) converges uniformly to the positive semi-definite
in 6. Thus, there exists&#6,, N(6,)) > 0suchthatif|é, —6|| solution to (9).
< 6(8,, N(6,)),then||T(N(8,), 6,)—T(N(8,), 6)|| < 1/4~. Lemma 1: If assumptions 1 and 2 hold ar@ and D are
Therefore||T(N(6,), 6)|| < 1/2v,whichimpliesthatforV > bounded, then for each, € © andk < oo, there exists an
N(6,) optimal controu(k) = F(k, oo, 8,)x(k), whereF'(k, oo, 6,)

is given by equations (31) and (32). Furthermore, this control is
|T(N, )] < HT (N — N(6,), fj\‘r(%)(@))H |IT(N(8,), 0)]  exponentially stabilizing and for ea¢he ©, the cost of this
1 1 feedback given by (31) is finite.
<fy% =3 (26) Proof: Define the finite-horizon cost-to-go

0 /
Sinces(d, N(6)) > 0, the se{ B(8, 56, N(0) N ©: 0 e @ ¥ ks Ny 0oy a0, u) =2 (N) T p,) Cp6,) 2(N)

is an open covering db. Since® is compact, there exists a finite Nt ey .
subcovering, i.e{B(6, (8, N(8))) (©: § € I} is an open + Z @' (1)C%i 9,y Crie,)w(0)
covering and is a finite set. SelV = maxyc; N(6) < oo. For =k ‘

all ¢ € ©,there exists & € I such that|y —6|| < 6(6, N(8)). + ' (1) D5 g,y Dyi(e,yu(t)-

Thus, by (26) Dynamic programming arguments show that

. _
TN, o)l <5 forN =N inf V(k, N, 6,, 20, u) =V(k, N, 0y, 20, ux)

and
m = I.’L'/‘X ]C, .ZV7 90.’1"
ITmN. o)l < ()" forN >N where WA o)
Define « and 3 by X(k, N, 6,)
0<a=(H"" <1, = Aoy X (k+1, N, 05) Aoy
1 + Coy Coy — Apay X (b + 1, N, 65) Box)
f = — maxsup Tk, 9)|| < oo. -1
at k<N PO X (Dio(k)DO(k) + Ble(k)X(k +1, N, 90)Bg(k))
Letk = mN + [ with < N; then X By X (k 41, N, 6,) Ag(ry (27)
I7(k, 6)|| < || (mN, 6)|| HT (l, f"’ﬁ(e))H subject to the terminal condition
— . !
S (%)’nl T (l, f'rn,]\f(e))H X(N, N, 90) = Oe(]\r)cg(]\f). (28)
mN/N . _ By Assumption 2, system (8) is stabilizable. Thus,
< (%) B < o™V pat = pak. there exists a sequence of suboptimal feedback matrices
- {Fg(k)P“g(l)’g(o)l k 2 0} Such that, |f
a(k) = Foqy, ..001), 000 (k) (29)

B. Proof of Theorem 1

The first, and most difficult, problem is to show that stabilizt€n|l=(*)[| < 5(6(0)) ((6(0)))*~/|(;j)]|. The definition of
ability implies that there exists a uniformly bound&d> 0 that Stabilizability implies thag|u(k)|| < F(6(0))|=(k)||, where
solves the functional Riccati equation (9). The second problefiff(0)) < oo. Furthermore(y, and Dy are continuous and,
is to show that uniform detectability and a uniformly boundefiérefore, bounded gl || < €' < oo, ||Dy|| < D < 0.
X > 0that solves (9) imply that the optimal control (10) is uni- hUS, with the suboptimal feedback in place and & < IV, it
formly stabilizing andX is continuous. is not hard to show that the cost can be bounded as

To show that stabilizability implies existence of a solution to—(xo’ 6,) = lim V(0, N, 6,, z,, )

(9), the finite horizon time-varying linear-quadratic controller N—oo

will be examined. By stabilizability, for each initial condition —9 =29 — » 3%(6,)

6o, this controller will be shown to exist and to be bounded along < (CF+ 26D ool 1—a2(0,) <
the trajectory f*(6,)}. This in turn will imply that the infinite- (30)
horizon time-varying Riccati equation is actually of the form

(9). Finally, it will be shown that the solution to (9) is uniformlySimilarly, the cost-to-go can be bounded as

bounded.
To show that a solution of (9) implies uniform stabilizability, V(k, N, 6o, 2o, un)
standard techniques will be employed to show that the LDV con- < lim V(k, N, 8, z,, u)
troller is uniformly stabilizing. Lemma 5 will show that the pos- o o B2(6,)
itive semi-definite solution to (9) is unique. Finally, Lemma 6 < (C?+F?,))D?) |l=(k)|? TQZQ)

will show that the positive—semidefinite solution to (9) is contin-
uous and the finite-horizon solution to the time-varying Riccatvherew is given by (29). ClearlyX (k, N, 6,) is monotone in-
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creasing and bounded a5 — ~c, so satisfies
X(k‘, o0, 90) = Allirclw X(/{}, .ZV7 90) Xg IAleXf(g)Ag — Angf(g)Bg (Rg + Bng(g)Bg)_l
exists. Therefore, allowingy — o in (27) yields X By X y(8)A0 + CoCo. (34)
X (k, oo, 6,) Proof: Direct manipulation of (31). [ |

A X(E a1 934 As we show below, there is a bound 0n(0, NV, 6) that
= Apay X (k + 1, 00, 65) Ay does not depend ofh or N, that is, X (0, N, 6) is uniformly
+ Cé(k)Ce(k) — Al&(k)X(k + 1, 00, 6,) By .bounde.d.. This feature of stabilizable continu.o'us LDV systems
_1 is surprising. It means that, although the stabilizability assump-
X (Dé(k)De(k) + Byay X (k +1, o0, 90)Be(k)) tion only implies that there exists a controller with possibly

< B X(k4+1 0.)A 31 unbounded cost, the compactness and continuity assumptions
o X ( +1, 00, 60) Aoy G Loy systems imply that there exists a control such that the
Fork < oo, define cost to stabilize any trajectory is uniformly bounded.

1 Lemma 3: If Assumptions 1, 2, and 3 hold, then(0, N, 6)
Pk, ¢, 0,) == (DygyDogy +Bigy X (k. <, 0,)Bagy ) is uniformly bounded.
) Proof: SupposeX (0, N, 8) is not uniformly bounded.
X By(y X (k, 00, 60)As(k)- (32) Define X(N) = supyeo ||X(0, N, 6)||. SinceN < oo,

To prove that this feedback is exponentially stabilizing, obser\‘;g(o’ IV, 6) is continuous ird. Sinces is compact, there exists

: . af(N) such that| X (0, N, 8(N))|| = X(N). Since, by our
that by standard manipulation we get suppositionlimy_.., X (V) = oo, the sequencg( V) is such
(Ae(k) + Be(k)Fe(k))/X(k +1, 0, 6,) (Ae(k) + Be(k)Fe(k)) that|| X (0, N, 8(N))|| — oo. Since® is compact, there exists

a subsequenc#(N,,), such that¥(N,,) — 6, € ©. Define

— X(k, o0, 6,) 6, = 9(N,). Then||X(0, N,, 6,)| = X(N,); thus, for all
) ) ) 1/2 0 € O, [|X(0, Ny, )] = [|X(0, Ny, 0)].
== 10y T (De(k)De(k)) By Lemma 1,]|X(0, o0, #)|| < oo for all § € ©. In par-

ticular, || X (0, oo, 8,)|| < oo. Furthermore, it is assumed that

Cow) [|X(0, N,., 6,)]] — ~o monotonically as» — oc. Thus, there
X (D’ D )1/2 P (33) exists ar; < oo such that, ifn; > 7 then
8(k)*=0(k) (k)
Furthermore 41X (0, 00, o) || < | X(0, Navy, 0,)]| < o0 (35)
C Lemma 1 implies that the closed-loop system is exponentially
<A + BF, [ 12 } , f) stable. Thus, with the feedback in place, there s € oc such
(DD)V2F that for6(0) = 6, we havel|z(P)|| < (1/4)|,||. Define

is uniformly detectable, since

o Us, (k, 6) (Aseo) + BruoyFpe,y)  (36)
} A+ HC ! IIIJ

(DD)Y/?F
where the factors of the product are taken in the correct order.

is uniformly exponentially stable for the output injection feedThenUg (k, 6) is the state transition matrix using the feedback

back H given by the uniform detectability assumption. Sincg: ‘1+6,- Whend(0) + 6, the feedback in not optimal. However,
X(k, o0, 8,)isbounded, Theorem 2 applied to (33) mphesth%hene( 0) = ., the feedback is optimal and
the closed loop system is exponentially stable.

Remark 5: This lemma is nothing more than the |nf|n|te |Us, (P, 6,)]| < %.

horizon, time-varying linear-quadratic control along a trajec-.

tory (for more details on time-varying optimal control see [2PINceF < o0, Us, (P, §) is continuous irf. Sinced,, — 6,
ere exists af» < oo such that ifny > 7o, then

or [13]). However, we have not shown that the closed lo
system isuniformly exponentially stable. U (P, 8,) — U, (P, 6,)]| < L.
The above lemma implies that for &lle © Thus " 4

Xy = lim X(0, N, 6) Us, (P, 6:,)]] < 3. (37)

A+BF+|H —-B(D'D) | [

exists and is finite, although we have not yet proved that it is Define
uniformly bounded. ThereforeX is a functionX: © — R®»*",

. o ) N
This function is a solution to a FARE. W0°((3\f,_1’ %)
Lemma 2: If Assumptions 1 and 2 hold, the function _ Z (U’ k, 6)C CreoyUs (k, 0) + U} (k, 6)
- ) fk(8) g o\ 8,\"
X:0 =R k=0

9 ,_>X0 X F/]"(OO)D/fk(G)Df}“(a)ka(eo)er(k’ 9)) (38)
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Thus z,We, (0, N, 8)z, +z,U, (N, 9)C’N(0) Cy~n@ylUs,  Thus, the contracting hypothesis leads to

(N, )z, is the finite-horizon cost using {he feedback matrix . . P

Fprq,)- This is the optimal cost whef(0) = 6, and N = oo, 2/|X(0, Ny, 0| < [|X(0, N = P, f7(600))] -

so that x,We, (0, o0, b,)z, = ,X(0, 00, 65)x,. SINCE o the other hand, we obviously have

P < o0, Wy (0, P, 8) is continuous irf. Thus, there exists an

713 < oo such thati; > 73 implies that X0, Ny, 0] 2 || X(0, N — P, f7(6,)]| -

|[We,(0, P, 6,.,) — We_(0, P, 8,)] < ||X(0, o0, 6,)]| Thus, there is a clear contradiction between the above two in-

equalities. ThereforeX (0, N, 6) is uniformly bounded. m

which implies that Lemmas 1-3 show that stabilizability implies that there exists
a uniformly bounded solution to the functional equation (34).

W, (0, P, 0| Now we show the converse. That isXf > 0 solves (34) and

< |[We, (0, P, 0,,,) — We_(0, P, 8,)|| + [|We, (0, P, 8,)|| isbounded, thenthe LDV system (8) is stabilizable. In fact, itis

< [1X(0, o0, 6,)]| + [|X(0, 0o, 6,)]| = 2/|X(0, s, 6,)]- unlfqrmly Stablllz'abltf andy is continuous. .
With the solutionX to (34), we construct the optimal feed-

(39) back
Setn = max(71, 72, i3, P) and letr, be such thafjz,|| = _ / Y
1 and||X(0, N,, 6,)] = 2/, X(0, N,, 8,,)x,. Equations (35) b (Ro + BoXjioy Do)~ BoXyier Ao 43)
and (39) imply that and we prove the following.
Lemma 4:Suppose Assumptions 1 and 3 hold, and
z,We, (0, P, 6r)x, <22, X(0, 00, 6)x, X: ©® — R™ " is a uniformly bounded solution to the func-
< %xj)X(O, Ny, 0,)z,. tional algebraic Riccati equation (34) such that = X} > 0.
If w(k) = Fyayz(k), whereFy is given by (43), then the
Thus resulting closed-loop system is uniformly exponentially stable.
Therefore, system (8) is stabilizable.
2, X(0, Ny, 6,)3, — 2,We, (0, P, 0,)z, Proof: Standard manipulation shows that
> 2, X(0, Ny, 0,)z, — L2/ X (0, N, 6,)z,
_ %xg;(()’ N, 9)n)xo- 2 ( ) (40) (Ao + Bols) X 6y (Ao + Bols) — Xo

Cy

= ¢ MDMWQ[
|: 4 4 4 :| (Dng)l/QFg

Now, if we do not use the optimal control for the filBtsteps, } (44)
our cost must be at least as high as the optimal cost, that is, [re-
calling V(0, N,,, 6,,, z,, v) is the cost with initial conditions Where

#,, andzx, using controk for N,, time steps]

<A+BF’ [(C;)'D)WF} ’ f)

is uniformly detectable. Sinc& is uniformly bounded, Corol-
lary 1 implies that the closed-loop system is uniformly expo-

min V(0, Ny, 8, z,, w)

u

S ‘/L'ZWHD(()? P7 en)xo

+ min V (0, N = P, f7(6n), Us, (P, )0, u) nentially stable. ]
or Remark 6: If Assumptions 1, 2, and 3 hold, Lemmas 1-3
min V(0, Ny, On, o, ) imply that there exists a solutioX to (34) such thatX) =

, Xg > 0. Thus, Lemma 4 implies that the resulting closed-loop
= 2, X (0, Nn, b), system is uniformly exponentially stable.
< 2, We (0, P, 0,)x, Lemma 5: Suppose Assumptions 1 and 3 hold. If a solution
+ 2L U) (P, 0,)X (0, Ny — P, f7(6,)) Us, (P, 6)z0 X to equation (34) exists with(y = X} > 0, || Xs|| < X < o0,
then it is unique.

or Proof: By standard results of linear-quadratic control of
time-varying systems, the time-varying Riccati equation asso-
2, X(0, Ny, 6,)z, — 2, Ws (0, P, 0,,)x, ciated with the linear time-varying system
<z U, (P, 0,)X (0, N, — P, f£(6,)) Uy (P, 6,,),.
< 2 Uy, (P, 0,) X ( F7(0n)) Vs, ( )3241) a(k +1) = Aprgo, (k) + Byro,yu(k)
Thus, combining (37), (40), and (41) yields | Dyrgayu(k)
La! X(0, Nn, 0,), i; unique. Sinc;e the .solutioﬁ to 'the functiqnal Riccgti equa-
< 2 X(0, Ny, 6, )20 — 2. Wo. (0, P, 6)z, tion (3_4) coincides with the s_olutlon to the time-varying Riccati
M- o equation, X must also be unique. ]
< U, (P, 0,)X (0, Nn—P, f (en)) Us, (P, 0n)x, Lemma 6: Suppose Assumptions 1 and 3 hold and there ex-

< 2| X (0, No = P, f7(60))]| - (42) ists a solutionX to (34) such that¥, = X, > 0. Suppose
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that there exists alk < oc such that|| X (0, k, 6)|| < X
for all # € © andk. Then X is uniformly continuous and
X(0, k, 8) — X, uniformly.

Proof: SupposeX is not continuous. Then there exists a

6, € ©, anx, with ||z,|| = 1, ane > 0 and a sequenc@,, }
with 6, — 8,, such that

z, Xg,x, > 2, Xg, 2, +¢, for all n (45)

or

2l Xg w, <2\ Xo x,— € for all n.

(46)

7

851

N-1

< lim z/ E
n—oo

k=0

X (Uén (Ii', 9n)0}k(90)0fk(ao)U0n (ka 9”)
+ U, (k, 00)Fpio By,

3
X ka(gn)Ugn(/{J, 9n)) o+ 5

£

€
< limsup 2/ Xy, x, + 3 <2 Xg xy— 5

n—oo

Suppose (46) is true. Lemma 4 implies that the closed-logghere the last inequality follows from (45). Thus, (45) must

system is asymptotically stable. Thus, there existé&var oo

such that||Us, (N, 8,)|| < (1/2)4/e/4X, where U is de-
fined by (36). SinceN < oo, Uy (N, ) is continuous
in 6. Thus, there is am; < oc such that ifn > n4,

then ||Uy, (N, 6,,) — Us, (N, 8,)| < (1/2)4/e/4X; thus,
|Us, (N, 6,)]] < +/e/4X. Likewise, Wg_(0, N, 8) is con-

be false. ThereforeX is continuous. Sinc® is compact,X
is uniformly continuous.

Since X is continuous, X(0, N, §) is continuous,
X(0, N,6) — X, monotonically and® is compact, it
follows that X(0, NV, ) — X, uniformly. For details, see
[19]. [ |

tinuous in 8, where W is defined by (38). Thus, there isC- Proof of Theorem 2

annz < oo such that ifn > ng, then ||Wy, (0, N, 6,)
—We (0, N, 6,)|| < /4. Setn > max(ny, n2). If we use

the feedbacku(k) = Fyr(y,yz(k) for k < N, and the optimal

We prove that foe > 0, there exists @ > 0 such that if
IlFN(6) — 6] < 6 for someN, then|| X, — Y| < ¢, whereX
solves the FARE an#l” solves (15). Sincé is recurrent, given

feedback fork > N, then the cost will be at least as large as > 0, there exists aV < oo such that| f¥(6) — || < 6. It

the optimal cost. That is
2 Xy, x, <2 Wy (0, N, 0,)z,
+ a:;Uéo (N, 9,,,)Xfw(9n)U(N, 97,,)370

<2\ We (0, N, 0)z0 + = + <
171
£

2
where the last inequality follows from (46). Thug, X, z, <

€
<z Xy x,+ 3 < x) Xo x4 —

x, Xy x, — (¢/2), which is impossible. Thus, (46) must not

hold.
Similarly, suppose (45) holds. By Lemma [#/,(k, 8)|| <

Ba® forsome3 < oo and0d < « < 1. Thus, there exists aN <

oo suchthatforalb € ® andN > N, ||Ug(N, 0)|| < 4/e/2X.
By Assumption 3,4 and B are bounded from above adtlis
bounded from below. Thus, sindeX,|| < X, there exists a
F < oo suchthaf|Fy|| < F forall 8 € ©. ThereforeFy, con-
tains a convergent subsequentgy, 1. Let F, = limy—eo
Fy, . Similarly, there exists a sub—subsequeﬂggl — 0,

n

such thatFy = limy . Fye,, ) eXists. In this fashion, de-

is assumed thaf is a diffeomorphism and thak(f) is struc-
turally stable, i.e., forr > 0 there exists & > 0 such that

it deo (f, f) < 6 thendy (R(f), R(f)) < v, wheredy(-, -)
is the Hausdorff metric andqo (f, f) = supy || f(6) — f(8)]].

Note that if R(f) is attracting, then structural stability &f( f)
is a generic property [22]. Furthermore, the closure of the recur-
rent set of a hyperbolic system is structurally stable [18].

Lemma 7: Let f be a diffeomorphism ané be a recurrent
point. For any6 > 0 there exist ailV < oo and a continuoug
such thatf™ (6) = 6 anddco(f, f) < 6.
Proof. Let K be a connected compact set wﬁhg K.
f € C%implies that there existsasuch that > v > 0, and
fora, b € K

lla —b|| <~ implies that||f(a) — f(b)|| < 6.  (47)

Similarly, f~1 € C implies that there existsiawith § > 1/ >
0 such that fo®, ¢y € K

16 — ¢l < v implies that|| F(6) — £~ ()| < % (48)

Now, sinced is recurrent, there exists al¥ < oo such

fine K, for k < N. Redefine{6,,} to be the subsequence suclthat ||f¥ () — 6| < wv. Thus relation (48) implies that

k—1

thatlim, .o Fyr(s,) = Kx fork < N. Let P(k) = [[;2,
(Agie,) + ij(eo)f(j); thenUsg, (k, 6,,) — P(k) fork < N.

Since||Us, (N, 6,)]| < \/e/2X, ||P(N)]| < y/¢/2X. Further-
more, since the feedbadk;, is not necessarily optimal

N-1
7 Xg x, <, <Z P'(k)Cl (5,1 Cpr(s,) P(R)
k=0
+P/(k)Kink(go)KkP(k)> Lo

+ .T;P/(N)XfN(QO)P(N)JJO

If7L0) — Y1) < ~/3. Let M be a smooth curve
connectingf~1(#) and f~~1(#) such that ifa, b € M, then
lla—b|| < v(2/3) andming—o, . n—2 d(f*(8), M) > v > 0.
Let vs = min((v/3)(1/2), (v2/2)). The C° closing lemma
[22] implies that there exists A € C° such that
1) f(g) = f(p) for ¢ ¢ B(M, ~s) whereB(M, vs) is the
open+ys-ball aroundas;
2) f(FN40)) = 6; thus, fN(0) = 6;
3) deo(f, 1) < max
diam( (B(M. 7)))-
Since diamiM) < ~v(2/3), andys < (v/3)(1/2), we have

diam(B(M, v3)) < v < é. Since diamB(M, v3)) < 7, rela-

(diam(B(M, v3)),
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tion (47) implies that diarfy (B(M, ~3))) < 6. It follows that
deo(f, f) < & as desired. [

Proposition 3: Let f € C*. Assume that the LDV system
induced byy is stabilizable{ A, C, f) is uniformly detectable,
DyDg > Oforall & € ©, andC andD are continuous. Then,
for all £ > 0, there exists @ > 0 such that if

o(f, f)+dH(@, é)<5

- X forallg € ©

arg min{||6—8||: 6O} H <&,

HXé - Xargmin{”é—@”: 06@}H <é, forall6 € ©
where
X

(4, B, C, D, f);

solution induced by A, B, C, D, f);

f-invariant set.
Proof. See [8]. L u
__The above proposition implies thatdf> 0, R(f) = © and
R(f) is structurally stable, there existséa> 0 such that if
dco (f7 f) <6 then||X9 - Xargmin{”é—@”: éEC:)}H < e. Set-
ting & € R(f), Lemma 7 provides aiV < oo such that there
exists anf such thaTdCo(f, f) < 6 with fN(6) = 6. There-
fore, Xo = ps o Piigey O Pin- 1(X9) where X solves the

FARE associated with the LDV systefd, B, C, D, f). Since
f"( ) = JH@) fork < N -1, we haveXg = po © ppiey
S pyN- 1(3)(Xg) that is, X solves (15) and| Xy — X, <
€. [
Remark 7: In numerical analysis language, Lemma 7 is th
numerical stability of the algorithm—the computed fixed poir
@ is the exact fixed point for a nearby function. Proposition
is the numerical conditioning of the algorithm—a small pertul
bation of the functionf results in a small perturbation of the
Riccati solution.
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