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Abstract 

The connection between linear dynamically varying 
(LDV) systems and jump linear systems is explored. 
LDV systems have been shown to  be useful in con- 
trolling systems with "complicated dynamics". Some 
systems with complicated dynamics, for example Ax- 
iom A systems, admit Markov partitions and can be 
described, up to finite resolution, by a Markov chain. 
In this case, the control system for these systems can 
be approximated as Markovian jump linear systems. It 
is shown that (i) jump linear controllers for arbitrarily 
fine partitions exist if and only if the LDV controller ex- 
ists; (ii) jump linear controllers stabilize the  dynamical 
system; (iii) jump linear controllers are approximations 
of the LDV controller. 

it is usually difficult to determine whether a partition 
is Markovian. 

This paper proceeds as follows: In the next section 
the nonlinear tracking problem for systems with com- 
plicated dynamics is presented along with LDV con- 
trollers that solve this tracking problem. In section 3 
jump linear systems are introduced along with some 
standard results. Section 4 shows how under certain 
conditions the nonlinear tracking problem described in 
section 2 may be described as a jump linear control 
problem. However, it is shown that  this approach has 
difficulties in that  stability of the closed loop nonlinear 
system cannot be easily proved. Section 6 consists of 
the main results. 

2 'Ikacking Systems with Complicated 
Dynamics via LDV control 

1 Introduction 

Linear dynamically varying (LDV) controllers have 
been introduced as a technique to  control systems with 
complicated dynamics [3], [4], [5] ,  [lo]. However, many 
systeins with complicated dynamics can be described 
by symbolic dynamics and Markov chains. Hence, in- 
stead of approximating such a nonlinear system with 
an LDV system, one can approximate it with a lin- 
ear system with parameters that  vary according to  a 
Markov chain, i.e. a Markovian jump linear system. 
Markovian jump linear systems have been the focus of 
extensive research 191, [8]. The relationship between 
the LDV and jump linear approximations of nonlinear 
systems will be investigated. I t  will be  shown that  the 
LDV approximation is the limit of a sequence of jump 
linear systems. Thus an  LDV controller exists only if 
and only if a sequence of jump linear controllers exists. 
Furthermore, an  LDV controller can be approximated 

Consider the following nonlinear control problem: find 
a U E 12 such that  Il'p ( k )  - 0 (k)II -+ 0 where 

'p (k+1)  = f ( ' p ( k ) , u ( k ) )  (1) 
q k + u  = f ( e ( k ) , o )  

and f : R" x R" -+ R", f ( 0 , O )  0 with 0 compact, 
0 (0) , 'p (0) E 0 and f E C1. This problem is espe- 
cially interesting when f displays complicated dynam- 
ics on 0, in particular, nontrivial recurrence. Define 
the set of recurrent points R ( f )  and the set of peri- 
odic point P (f). Complicated dynamics occurs when 
P ( f )  R ( f ) ,  or simply if P ( f )  is not a stable at- 
tractor. Such systems have been extensively study by 
Birkhoff, MOser, Halmos, Smale, Kolmogorov, Arnold, 
Sinai, etc. 

The tracking error is defined as z ( k )  = ' p ( k )  - e ( k ) .  
Then system 1 reduces to  

by computing a jump linear controller. It will also be 
shown that when computing the latter controller the 
partition need not be Markov. That  is, even if the in- 
duced symbolic dynamics is not a Markov chain, the 
jump linear controller (which incorrectly assumes that 
the symbolic dynamics is Markovian) will approximate 
the LDV controller. This is an  important feature, since 

5 ( k  + 1) Ae(k)z (IC) + B e ( k ) U  ( k )  ( 2 )  

e ( k + 1 )  = f ( O ( k ) , O )  
+77 ( 0  (k) 7 2 ( k )  7 U (IC)) 

where A0 = 2 (e,O), Be = E ( 0 , O )  and 77 accounts for 
nonlinear terms. I t  is not hard to  show that if z and 
U are small, then system 2 can be approximated as a 
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linear dynamically varying (LDV) system: 

( I c  -k = AO(k)X (IC) + BO(k)U ( k )  
e ( k + i )  = f ( e ( k ) , o ) .  

These LDV systems have been extensively studied in 
[3], [4], [5] and [lo]. Only a brief introduction will fol- 
low. An LDV system is defined as 

s ( k + l )  = Aig; / x (k )+BtgYu(k )  (3) 

e ( k + i )  = j ( e ( I c ) , o ) .  
with ALDV : 8 - R n x n ,  B L D V  . @ -+ R n x m ,  cLDV . 
8 -+ Rpxn, DLDv : 8 -+ R Q x m  and f : 8 -+ 8, with 
8 compact. If the maps A, B, C, D E C", then system 
3 is a continuous LDV. 

We say that the pair (ALDv,  f )  is exponentially sta- 
ble if system 3 is exponentially stable. That  is, for 
U = 0 and Bo E 0 there exist an a(8,) < 1 and a 
P(b',) < CO such that  if b'(0) = b',, then 11x(k)ll < 
p (e,) CY (e,), 112 (0)II. Similarly, the pair (ALDv,  f )  is 
uniformly exponentially stable if the  pair (ALDv,  f )  is 
exponentially stable and CY and p can be chosen inde- 
pendent of b' (0). The triple (ALDV, B L D V , f )  is sta- 
bilizable if there exists a bounded feedback F : 0 - 
R""" such that  (ALDv + BLDvF, f )  is exponentially 
stable. Note that uniform exponential stability is not 
required for a system to be stabilizable. The triple 
(ALDV,CLDV, f )  is uniformly detectable if there is a 
uniformly bounded map H : 8 - R n x p  such that 
(ALDv + HCLDv,  f )  is uniformly exponentially sta- 
ble. 

It was shown in [2] and [3] that  if the  LDV system 3 in- 
duced by f is uniformly exponentially stabilized by the 
control u ( k )  = F@(k)x(k), then the nonlinear system 2, 
with control U (k) = F@(k)x (k) , is locally uniformly ex- 
ponentially stable. By definition locally uniformly ex- 
ponentially stable means that  there exist a < 1, p < CO 

and y > 0 such that  if llz(0)II = IIv(0) - O(0)II < y 
then 11x(k)ll < pakllx(0)ll where a, /3 and y can be 
taken independent of the initial condition b',, i.e. uni- 
formly in 0, and locally in x. Therefore, we say that 
the dynamical system f is LDV stabilizable if the LDV 
system induced by f is stabilizable. 

One of the main results from [3] is: 

Theorem 1 Suppose 3 is a continuous, uniformly de- 
tectable L D V  sys tem with DfDv'DtDv > 0 for b' E 
0. T h e n  sys tem 3 is L D V  stabilizable i f  and only i f  
there exists a bounded func t ion  X : 0 -+ R n x n  with  
XL = Xg 2 0 that satisfies the functional discrete t ime  
algebraic Riccati equation 

(4) xe = AiDVlX ALDV + CtDV'cLDV 

-AiDV'Xf(g)BtDV 
f(9) 9 9 

(DiDvIDiDv + B;D\'lx BLDV 
f(e) e I-' 

XBiDV'Xf(g)AkDV 
I n  this case the control 

u L D V ( k )  = F ~ ~ Y x  (k) (5) 

= - (DLDV'DLDv  9 ( k )  B(k)  + B ~ g / ' X f ( 9 ( k ) ) B t ! ~ ~ ) - 1  

B@Y'xf (e (k ) )A fg , "  

is optimal in the sense that it minimizes the quadratic 
cost 

00 

q e , ,  u,x,) = X ( ~ ) ~ C . ; { ; ; C ; ( ; ) X ( ~ )  
k=O 

k ) D I.' 1 D L  D V 
qe , )  fye,)u(k). 

Furthermore, this control uniformly exponentially sta- 
bilizes the sys tem and xbXg,xo = min, V(b',,u,x0) and 
X is a continuous function. 

Under some mild assumptions on the dynamical system 
f ,  it is known that f has many structural properties. 
These properties can be used to  determine approximate 
solutions to  4. In [3] techniques based on a dense set 
periodic points, a dense orbit and recurrence are de- 
veloped. Another technique based on a probabilistic 
interpretation of f is developed here. 

3 Jump Linear Systems 

A jump linear system is defined as follows: 

x (k + 1) = Ai,$)x (k) + B:&)u (k) (6) 

with s (k) a Markov chain that  takes values in a finite 
set { 1,2 , .  . . , M }  with transition probabilities 

P ( s ( k +  1) = j l  s ( k )  = i , s ( k -  1) = l l , . . . )  = p .  1.1. ' 

Thus the parameters AJL ,  B J L ,  C J L ,  D J L  are matrix 
valued Markov chains. At time k it is assumed that 
only s (k) and x (k) are known. 

System 6 is stochastically stabilizable if there exists a 
function F J L  : {1 ,2 . . -M}  -+ RmXn such that the 
closed loop jump linear system 

x + 1) = (A:,$) + B:&)q:)) x (k) 
is stochastically stable, where stochastically stable 
means that  there exist a < 1 and p < CO such that 
for 1 5 i 5 M ,  

E(tlX(~)IIIS(O) = i )  < ~ ~ k l l ~ ( o ) I I .  
Similarly, system 6 is stochastically detectable if there 
exists a function H J L  : { 1 , 2 .  . . M }  -+ R n x p  such that 
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the closed loop jump linear system 

is stochastically stable. 

As shown in [9], [8], assuming that  
invertible, the optimal linear quadratic controller for 
these stochastic systems is characterized by the exis- 
tence of a function Y : { 1 , 2 , - . . M }  + R""" with 

= yi 1 0 such that: 
J L l c J L  

K ( k )  = A:&liS(k+l)ls(k)A:(k) + Cs(k) s(k) (7) 

-A,JiLR(k+l)IS(k)B:($ 

x ( ~ s ( k )  s(k) S(k) s(k+l)ls(k)Bg)) 

XB~6lYS(k+l)lS(k)A~(k) 

- 1  
J L I D J L  + B J L I Y  

where 
M 

Ys(k+l) l s (k )  = E (Ys(k+l) l  s ( k ) )  = C p s ( k ) , j % .  
j=1 

Equation 7 defines a system of coupled Riccati equa- 
tions. If a such a function exists, then a control is 

U @ )  = Fz:)x(k) (8) 

X B s ( k )  S(k+l)lS(k)A$)~ (k) * 

-1 

J L i  p 
This control is optimal in the sense that  

/ m  

where UJL is the set of U such that  U (k) depends only 
on z(1) and s ( 1 )  for 1 5 k. That  is, U E U J L  implies 
that U (k) E Fk where .Fk is the sigma algebra gener- 
ated by s ( l ) ,  1 5 k and ~ ( k )  E Fk denotes that ~ ( k )  
is Fk measurable. 

If a solution to  7 exists and system 6 is stochastically 
detectable, then the control 8 is stochastically stabiliz- 
ing. Furthermore, a stochastically stabilizing controller 
exists if and only if a positive semi-definite solution to  
7 exists. 

Techniques to  solve 7 are discussed in [l] and [6]. 

4 LDV System Inducing Jump Linear System 

4.1 Dynamical System Inducing a Markov 
Chain 
A dynamical system may admit a Markov chain as fol- 
lows: 

local sta- - Definition 1 The 
ble manifold of z is W: (x) - 

Definition 2 A subset R c 0 .is a rectangle if 
diam(R) < 6 and W: (z) fl W," (y) C R for every 
x, y E R, where 6 and E are small enough and depend on 
the system (see [I21 f o r  details). A rectangle is proper 
if R = cZ( int ( R ) )  . 

Definition 3 A family of proper rectangles R = 
{ R I ,  R2,. . . R M }  is a Markov partition if 

N 1. U+, R, = 0. 

2. & n R j  =aR,naRj  f o r i # j .  

3. For every 1 5 i , j  5 M such that 
f (Ri)flint(Rj) # 0 and every x E R, fl 
f - ' ( in t (Rj ) )  we have 

f (W: (z) Ri) C W,B (f (5 ) )  n Rj. 

4. For every 1 5 i , j  < M such that 
f - ' (R,) f l int(Rj)  # 0 andevery z E R, fl 
f ( int(Rj))  we have 

f-'(W," (z) fl Ri) C Wr ( f - '  (x)) n Rj. 

Once a Markov partition has been chosen, then there 
exist a matrix T = [ti,j] with ti,j E {O, l} ,  a subset of 
allowable sequences of M symbols 

ET = { s : z + {1,2,. ' '  M }  : ts(k),s(k+l) = 1, \dk} 
(9) 

and a continuous map 

h : ET+@ 

h ( s )  = fi f-k (Rs(k)) 
k = - m  

which implies that  

h ( { s : ~ ( O ) = i } ) = & .  

Furthermore, h is such that the diagram 

ET ET 
l h  l h  
8 L Q  

commutes, where a is the shift operator defined by 
a (s) (k) = s (k + 1). Hence, f is semi-conjugate t o  the 
topological Markov chain (a, ET). Furthermore, there 
exists a a invariant measure on ET such that s (k) is a 
Markov chain with 

P ( s (k + 1) = j l  s ( k )  = i )  = p .  2 > 3  . 

and h is a measure preserving map, i.e. 
P ( s E  h - l ( E ) )  = p ( 0 E E )  where p is an in- 
variant measure for f .  Thus the dynamics of f is 
described by a Markov chain. 
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Bowen [7] showed that  systems that  satisfy Axiom A 
have Markov partitions with arbitrarily small diameter 
of the rectangles. Bowen's result can be extended to  
nonuniform hyperbolic systems [ll] and to  systems that 
satisfy a local product structure [ 131. 

4.2 LDV System Inducing a Jump Linear Sys- 
tem 
We now show how a LDV system may give rise to  
a jump linear system. As described above, depend- 
ing on the dynamical system f, there may exist a 
Markov partition and the dynamics of f can be de- 
scribed by a Markov chain s ( k )  on the finite set of 
symbols { 1 , 2 , .  . . M }  with transition probabilities p i j .  

This leads to  a jump linear system as follows: For each 
cell Ri of the Markov partition R = ( R I ,  Rz, . . . R M }  
define a point 4, E ant (a) for 1 5 i 5 M .  Set 

g (h  (ak (4)) = (0 (IC)). 
Since f E C1 it is not hard to  show that  if z ( k )  is small, 
then 17 (0 ( k )  ,z ( k )  , F4k)z ( k ) )  is small. Furthermore, 

it is true that  if 77 0 ( k )  ,z ( k )  , F < i ) z ( k ) )  is small, 
the system 10 is stochastically stable. In this case, 
if Ilz(0)II is small, E (I lz(k) l l )  is small for all k .  How- 
ever, there may be a non-zero probability that 112 (k)II 
is not small. Thus, there may be a non-zero probabil- 
ity that 77 (0 ( k )  ,z ( k )  , F4;)x ( k ) )  is not small. This 
may imply that  there is a non-zero probability that the 
system is unstable, hence E 112 (IC) 11 + CO. Of course, 
using a Chebyshev type inequality one can show that 
by limiting llz (0) 1 1  the closed loop system, with non- 
linear perturbation, is stable with a probability close 
to  one. 

( 

Furthermore, suppose the desired trajectory (0 ( k ) }  is 
a fixed point, and the probability of staying in the cell 
containing the fixed point is not one. In this case, the 
probability of staying in the cell containing the fixed 
point for all time is zero. Therefore, stochastic stabil- 
ity does not directly imply that the jump linear system 

Then A;&) is a Markov chain which takes values in 

and B:&) is a Markov chain is stable at the fixed point. The difficulty is that sto- 
chastic stability implies stability over the average orbit B ~ ; v , .  . . B;;v}. Thus 
(0 ( k ) } .  When a particular orbit is chosen, stochastic 
stability cannot guarantee anything about the stability 
along this orbit. 

we have the jump linear system: 

z J L  ( k  + 1) = A$)z (IC) + B:&)u ( k )  

Note that if maxi (dzam(Ri)) is small and h (s)  = 
0(0 ) ,  then A;&, M Ai&" and BZ, fi! Big)", and 
therefore, zJL  ( k )  M xLDv ( k ) .  Hence, the jump linear 6 Main Results 

system approximates the LDV system. The smaller 
the size of the cells R, the  better the approximation 
and as maxi (dzam(Ri)) -+ 0, and fixed k ,  we have 

Next it will be shown that if the nonlinear system 
is LDV stabilizable, then for a fine enough partition, 
the jump linear system stabilizes the nonlinear system 
(proposition 2). Conversely, if as the partition is re- 

2 J L  ( k )  + z L D V  ( k )  . 

5 Jump Linear Control of Complicated 
Dynamics 

From the above, it is clear that  some dynamical sys- 
tems induce jump linear systems. Since there has been 
extensive work on jump linear systems, it seems feasi- 
ble t o  stabilize system 2 with a jump linear controller. 
However, it will now be shown that  such an approach 
is more difficult than it appears. 

Suppose f induces Markov partitions with arbitrarily 
small rectangles. Then for any of these partitions one 
can construct a jump linear controller. Applying this 
controller t o  system 2 yields: 

fined, the solution to the jump linear coupled Riccati 
equations 7 remains bounded, then the system is LDV 
stabilizable (proposition 4). In this case, as the par- 
tition is refined, the jump linear controller approaches 
the LDV controller (theorem 6 ) .  Moreover, this process 
is robust t o  errors in the Markov partition. That is, if 
the partition is incorrectly assumed to  be Markov, the 
resulting jump linear controller still approximates the 
LDV controller and, if the partition is fine enough, sta- 
bilizes the nonlinear system. 

As discussed in section 4.2, a Markov partition and an 
LDV system induce a Markovian jump linear system. 
Here the requirement that the partition be Markov 
is dropped. Instead, given a partition, a jump lin- 
ear system is defined in the same way as in section 
4.2, with transition probabilities defined via p i , j  := 
P ( s  ( k  + 1) = j l  s ( k )  = 2 ) .  Since the jump linear sys- 
tem assumes that  the partition is Markovian, there will 
be some error. However, if the partition is fine enough, 
i.e. mesh(7Z) is small enough, then the error in as- 
suming the partition is Markov is small. In this way 
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an LDV system and a partition induce a jump linear 
system. 

Proposition 2 A s s u m e  that the map  f is L D V  sta- 
bilizable. In this case there exists a 6 > 0 such that 
i f  m e s h ( R )  < 6,  then  the  j u m p  linear sys tem in- 
duced by f and R is stochastically stabilizable. f i r -  
thermore, assuming that  CLDv : @ + R p x n  and 
DLDv : 0 4 Rqxm are continuous, i f  m e s h ( R )  < 6,  
then  there is a bound Y o n  Y the solution to  the coupled 
Riccati equations that is independent of the partition. 

The following dual result can be proved in the same 
fashion as the  above proposition. 

Corollary 3 A s s u m e  that CLDv : 0 + RPxn is 
continuous and (ALDv, CLDv, f )  is LDV detectable. 
There exists a 6 > 0 such tha t  i f  m e s h ( R )  < 6 , 
then  the jump linear sys tem induced by ALDV, CLDv, 
f and R is stochastically detectable. Furthermore, f o r  
m e s h ( R )  < 6,  the a d  and p d  in the definition of sto- 
chastic detectability can be taken  independent of the 
partition. 

Let {Rt} be a sequence of partitions of 0. Then each 
partition induces a solution Y t  to the coupled Riccati 
equations 7 and a jump linear controller FJLit .  

Proposition 4 A s s u m e  that CLDv : 8 + RPxn 

is L D V  uni formly  detectable and there exists a se- 
quence of partitions {Rt} with m e s h ( R t )  + 0 such 
that IIY,tll < ? f o r  all i. In this case, the LDVinduced  
by f is stabilizable. 

Combining propositions 2 and 4 yields: 

Theorem 5 Let  CLDv : 0 -+ Rpxn and DLDv : 6 + 
Rqxm be continuous wi th  D tDv 'DfDv  > 0, and let 
(ALDV,CLDV,  f )  be uni formly  detectable. T h e  L D V  
induced by  f is stabilizable i f  and only i f  f o r  a n y  se- 
quence of partitions Rt such  that m e s h ( R t )  + 0 the 
Markov j u m p  linear sys tems  induced by  f and Rt are 
stabilizable wi th  bounded optimal quadratic cost, where 
the bound does n o t  depend o n  t .  

Thus the existence of a stabilizing LDV controller is 
linked to  the existence of a series of stabilizing jump 
linear controllers. Now we show that  actually these 
controllers are nearly identical. 

Theorem 6 Le t  CLDv : 0 + RPxn and DLDv : 
0 + Rqxn be continuous with DtDV'DfDv  > 0, and 
let (ALDv,  CLDv, f )  be uni formly  detectable. A s s u m e  
that f is L D V  stabilizable or  equivalently assume that 
there exists a bounded sequence of solutions Y t  to  the 
coupled Riccati equations 7 associated with a sequence 
of partitions wi th  m e s h  (Rt) + 0; then  

DLDv : 6 + Rqxm are continuous, (ALDv,CLDv , f j  
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where X solves the functional Riccati equation and Y t  
solve the coupled Riccati equations. 
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