
Hybrid Modeling of TCP
Congestion Control?

João P. Hespanha1, Stephan Bohacek1, Katia Obraczka2, and Junsoo Lee1

1 University of Southern California, Los Angeles, CA 90089-2563, USA
2 University of California, Santa Cruz, CA 95064, USA

Abstract. In this paper we propose a hybrid model for TCP’s conges-
tion control mechanism operating under drop-tail queuing policy. Using
this model we confirmed the standard formula T := 1.23

RTT
√

p
used by

TCP-friendly congestion control algorithms, which relates the average
packet drop rate p, the average round-trip time RTT , and the average
throughput T . The hybrid model also allows us to understand the tran-
sient behavior and theoretically predict the flow synchronization phe-
nomena that have been observed in simulations and in real networks
but, to the best of our knowledge, have not been theoretically justified.
This model can also be used to detect abnormalities in TCP traffic flows,
which has important applications in network security.

1 Introduction

Consider the computer network shown in Figure 1. In this topology, n TCP flows
are generated at a source node n1 and are directed towards a sink node n2. All
the flows compete for the finite bandwidth B that characterizes the link ` that
connects the nodes. This configuration is known as a dumbbell topology and is
typically used to analyze TCP’s congestion control. In more realistic networks,
a path of several links (and intermediate nodes) would connect the source and
destination nodes. However, to analyze congestion control mechanisms, one of-
ten ignores the existence of all the intermediate links, except for the bottleneck
link, i.e., the link that has the smallest bandwidth. In the dumbbell topology, `
represents precisely this link.

The basic problem in congestion control is to determine sending rates for each
of the n flows that result in an optimal utilization of the available bandwidth,
avoiding a catastrophic collapse under very heavy load. The transport layer of
the TCP/IP protocol stack is responsible for solving this problem and the send-
ing rates are determined by n congestion controllers. Each congestion controller
adjusts the sending rate of one particular flow, based on the number of packet
drops that this flow is suffering. Packet drops occur when the sending rates of
? This research was supported by the Defense Advanced Research Projects Agency

and the Office of Naval Research. The views presented here are those of the authors
and do not represent the views of the funding agencies.

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 291–304, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

292 J.P. Hespanha et al.

...

n1 n2
`

flow1

flow2

flown

Fig. 1. Dumbbell topology

the flows are too large and the source node n1 is unable to process all the packets
received. The congestion controller becomes aware of packet drops because, each
time a packet is received by the destination node, it sends an acknowledgment
packet back to the source node. When a data packet is dropped, its acknowledg-
ment is never received and the congestion controller should take some action.
The congestion control problem is nontrivial because of the following:

1. The bandwidth B associated with the link ` and the total number of flows n
competing for this bandwidth are not known by the congestion controllers.
Moreover, these parameters are likely to change over time.

2. The exchange of information among congestion controllers and between the
congestion controllers and the nodes is undesirable. This is because the con-
trol information would compete with the data for the available bandwidth.

Every computer connected to the Internet runs some version of TCP con-
gestion control. It is therefore not surprising to find that a significant body of
literature is devoted to this topic. However, many basic questions remain poorly
understood. These include:

1. Does TCP congestion control work? In particular, is it able to prevent a
catastrophic collapse of the network under very heavy load.

2. Is TCP congestion control fair? In particular, does it result in approximately
equal throughput for all competing flows.

3. Is TCP optimal or close to optimal? This question is particularly difficult
because there is no universally accepted notion of optimality. Small drops
rates, small delays, approximately constant flow rates, and fast adaptation
to changes in the network are certainly desirable properties. However, these
criteria are self-contradictory and therefore trade-off solutions are required.

In this paper we provide a hybrid model for Reno congestion control [1,2,3] that
sheds light in some of the questions formulated above. Reno is one of the more
popular versions of TCP congestion control and is generally accepted to perform
well. The model proposed also applies to more recent variations on Reno such
as New Reno, Sack [4], and general AIMD [5].

The model proposed provides a new derivation for the now fairly standard
formula

T =
1.23

RTT
√

p
(1)

Hybrid Modeling of TCP Congestion Control 293

that relates the average packet drop rate p, the average round-trip time RTT ,
and the average throughput T [6,7,8,9]. Formulas such as (1) have been used
to design congestion control mechanisms that are TCP-friendly but produce
more constant sending rates, making them more suitable, e.g., for streaming
multimedia over the Internet [10]. Unlike previous derivations, ours considers
the effect of queuing and the coupling between the competing flows.

The hybrid model presented here also predicts that the dumbbell topology
in Figure 1, with drop-tail queuing at node n1, leads to flow synchronization,
i.e., the sending rates of all the flows exhibit in-phase periodic variations. This
produces undesirably large variations of the round-trip time and poor utilization
of the queue. This type of behavior has been observed before [11] and actually
led to the development of Random Early Detection/Drop active queuing [12,
13]. To the best of our knowledge, this is the first time that the synchronization
phenomena are theoretically explained.

2 Hybrid Model for Congestion Control

In this paper, we consider Reno congestion control. We describe next a simplified
version of this algorithm that is sufficient for the purposes of this paper. Each
congestion controller possesses an internal state known as the window size. We
denote by wi, i ∈ {1, 2, . . . , n}, the window size of the congestion controller
associated with the ith flow. The window size determines the maximum number
of unacknowledged packets for that flow. E.g., if wi = 3, then the congestion
controller can send 3 packets immediately, but must wait for one acknowledgment
to arrive before a 4th packet can be sent. The algorithm to update the window
size wi is as follows: While no drops occur, the window size is incremented by
a fixed constant a ≥ 1 for each wi acknowledgments received (typically a = 1).
This is known as additive increase. When it is detected that a drop occurred
(because an acknowledgment packet is missing) the window size is multiplied
by a constant m ∈ (0, 1) (typically m = 1/2). This is known as multiplicative
decrease. We are ignoring Reno’s initial adjustment of the window size—known as
slow start—because it has little impact on the system after a brief initial period.
The reader is referred to [1,2,3] for a detailed description of Reno congestion
control.

Although the window size takes discrete values, it is convenient to regard
it as a continuously varying variable. Let us call round-trip time, denoted by
RTT , the time interval measured from the moment a packet is sent until an
acknowledgment for that packet is received. As we will see below, the round-trip
time is a time-varying quantity. Suppose that at some time t, the congestion
controller for the ith flow sends one packet and fills its window. This means that
wi packets are now unacknowledged for. Assuming that there are no drops, after
one round-trip time the acknowledgment for this packet is received, as well as
the acknowledgments for the previous wi −1 packets. Since wi acknowledgments
were received, the window size must have increased by a. On average, each wi

294 J.P. Hespanha et al.

thus increases at a rate of a
RTT packets per second. The following hybrid model

provides a good approximation of the ith window size dynamics: While the ith
flow suffers no drops we have

ẇi =
a

RTT
, (2)

and, if a drop is detected on this flow at time t, we have wi(t) = m w−
i (t), where

w−
i (t) denotes the limit from below of wi(s) as s ↑ t.

We proceed to determine the evolution of the round-trip time RTT (t). Typi-
cally, the round trip time has two components: a fixed propagation time Tp that
is determined by the physical length of the link ` and the speed of light, and
a variable service time Ts that accounts for the time the nodes take to process
the packet. The service time is usually dominated by the queue time Tq, i.e., the
time a packet stays in the output queue of node n1 before it is sent to the link.
Denoting by q(t) the size of this queue at time t, and by B the bandwidth of
link ` in packets per second, the queuing time is given by

Tq(t) =
q(t)
B

,

because q(t) packets need to be transmitted (each taking 1/B seconds) before a
new packet can also be transmitted. We assume here that the bandwidth B is
measured in packets per second. The round-trip time is then given by

RTT (t) = Tp +
q(t)
B

. (3)

In this formula, we incorporated in Tp any fixed component of the service time.

As mentioned above, the ith flow receives wi acknowledgment packets in
one round-trip time. Therefore, in average, it sends wi packets per round-trip
time. This means that the output queue at node n1 receives a total of

∑
i wi

RTT
packets per second and is able to send B packets to the link in the same period.
The difference between these two quantities determines the evolution of q(t). In
particular,

q̇ =

{
0 q = 0,

∑
i wi

RTT < B or q = qmax,
∑

i wi

RTT > B
∑

i wi

RTT − B otherwise
(4)

The first branch in (4) takes into account that the queue size cannot become
negative nor should it exceed the maximum queue size qmax. When q(t) reaches
qmax drops occur. These will be detected by the congestion controllers some time
later.

To complete our model it remains to understand how many drops occur and
in which flows. As mentioned above, drops will occur whenever q reaches the
maximum queue size qmax and the rate of incoming packets to the queue

∑
i wi

RTT

Hybrid Modeling of TCP Congestion Control 295

exceeds the rate B of outgoing packets. Since a drop will only be detected after
one round-trip time, the rate of incoming packets will not change for a period
of length RTT and multiple drops are expected. It turns out that, in most
operating conditions, exactly one drop per flow will occur [11]. To understand
why, we must recall that in every round-trip time the window size of each flow will
increase because each flow will receive as many acknowledgments as its window
size. When the acknowledgment that triggers the increase of the window size by
a ≥ 1 arrives, the congestion controller will attempt to send two packets back-
to-back. The first packet is sent because the acknowledgment that just arrived
decreased the number of unacknowledged packets and therefore a new packet
can be sent. The second packet is sent because the window size just increased,
allowing the controller to have an extra unacknowledged packet. However, at
this point there is a very fragile balance between the number of packets that
are getting in and out of the queue, so two packets will not fit in the queue
and the second packet is dropped. This, of course, assumes a drop-tail queuing
policy. Although this behavior is essentially caused by the discreteness of the
queue mechanism, we can incorporate it in our hybrid model by considering two
modes for the system: One mode corresponds to the situation when the queue
is not full and therefore the system evolves according to (2), (3), (4). The other
mode of operation corresponds to the situation where the queue is full and one
drop will occur in each flow. This mode of operation is active for RTT seconds.
When the system leaves this mode all window sizes are multiplied by m because
of the multiplicative decrease caused by the drops. In reality, the multiplicative
decrease of all flows does not occur exactly at the same time instant. However,
this model provides a very good approximation for the time scales considered
here.

Figure 2 contains a graphical representation of the overall hybrid system. In
this figure, each node represents one of the two discrete states: queue-full and
queue-not-full. The continuous state of the hybrid system consists of the queue
size q, the window sizes wi, i ∈ {1, 2, · · · , n}, and a timing variable tT used to
enforce that the system remains in the queue-full state for RTT seconds. The
differential equations for these variables in each discrete state are shown inside
the corresponding nodes. The links in the figure represent discrete transitions,
which are labeled with their enabling conditions and any necessary reset of the
continuous state that must take place when the transition occurs. We assume
here that a jump always occurs when the transition condition is enabled. This
model falls in several of the general hybrid systems frameworks proposed in the
literature [14,15,16,17,18,19,20,21,22]. For simplicity we assume here that the
queue size q never reaches zero.

Remark 1. For a very large number of flows, a single drop per flow may not be
sufficient to produce the decrease in the window size required to make the queue
size drop below qmax after the multiplicative decrease. In this case, the model in
Figure 2 is not valid. However, we shall see in Section 4 that, for most operating
conditions, this model accurately matches packet-level simulations performed

296 J.P. Hespanha et al.

queue-not-full:

q̇ = B
(∑

i wi

BTp + q
− 1

)

ẇi =
aB

BTp + q
ṫT = 0

queue-full:

q̇ = 0

ẇi =
aB

BTp + q
ṫT = 1

q ≥ qmax and
∑

i wi

BTp + q
> 1

tT := 0

tT ≥ Tp +
q

B

wi := mw−
i

Fig. 2. Hybrid model for Reno congestion control

using the ns-2 network simulator [23]. In fact, this hybrid model only fails when
the number of flows is so large that the drop rates take unusually large values.

3 Dynamics in Normalized Time

The dynamics for the hybrid system in Figure 2 are nonlinear essentially because
of the dependence of RTT on q. However, it is possible to make them linear by
normalizing the time variable. To this effect we introduce a new time variable τ ,
called the normalized time1, defined by

dt

dτ
= RTT = Tp +

q

B
, τ(0) = 0. (5)

This means that an interval with duration dτ in the variable τ corresponds to
an interval of duration dt = RTTdτ in the variable t. We can think of τ as a
time variable normalized so that one unit of τ corresponds to one round-trip
time. Figure 3 shows the dynamics of the hybrid system in normalized time.
In this figure, ′ denotes the derivative d

dτ with respect to the normalized time
τ . In Figure 3, we also used the fact that in the queue-full state, q = qmax
and therefore, waiting until tT reaches Tp + qmax

B from zero with t′T = RTT =
Tp + qmax

B , is equivalent to waiting until τT reaches 1 from zero with τ ′
T = 1.

1 Formally, there is a bijective function f that maps normalized time τ into real time
t. This function is actually defined by (5). With some abuse of notation, when we
write q(τ) for some normalized time τ , we really mean q(f(τ)). Similar notation is
used for the remaining time-dependent variables.

Hybrid Modeling of TCP Congestion Control 297

queue-not-full:

q′ = −q − BTp +
∑

i

wi

w′
i = a

τ ′
T = 0

queue-full:

q′ = 0

w′
i = a

τ ′
T = 1

q ≥ qmax and
∑

i

wi > BTp + q

τT := 0

τT ≥ 1

wi := mw−
i

Fig. 3. Hybrid model for Reno congestion control in normalized time.

It is interesting to note that the equation that models the queue dynamics
in the queue-not-full state is stable. This is an important property of window-
based congestion control, as opposed to other congestion control mechanisms
that adapt the packets sending rates directly (instead of indirectly through the
window size).

Let us denote by {τk : τk ≤ τk+1, k ≥ 1} the set of normalized times at
which the system leaves the queue-full mode. Using the fact that the system
dynamics is essentially linear at each discrete mode, it is somewhat tedious but
nevertheless straightforward to show that

τk+1 − τk = f−1(sk) + 1, k ≥ 1, (6)

where

sk :=
qmax + BTp −∑n

i=1 wi(τk)
an

, (7)

and f : [0,∞) → [0,∞) denotes the smooth bijection

x 7→
{

x
1−e−x − 1 x 6= 0
0 x = 0

.

The reader is referred to [24] for the detailed derivation of (6). We proceed to
analyze the evolution of the wi(τk). To this effect, suppose that the system left
the queue-full mode at some normalized time τk, k ≥ 1. Since it takes f−1(sk)+1
units of normalized time until the system leaves the queue-full state again and
during this time w′

i = a, i ∈ {1, 2, . . . , n}, we conclude that

w−
i (τk+1) = wi(τk) + af−1(sk) + a, i ∈ {1, 2, . . . , n},

298 J.P. Hespanha et al.

and therefore

wi(τk+1) = m
(
wi(τk) + af−1(sk) + a

)
, i ∈ {1, 2, . . . , n}. (8)

From (7) and (8) we then conclude that

sk+1 = m
(
sk − f−1(sk)

)
+

1 − m

an
(qmax + BTp) − m. (9)

It turns out that, as long as

qmax + BTp ≥ 2ma

1 − m
n,

the map g : [0,∞) → [0,∞), defined by

s 7→ m
(
s − f−1(s)

)
+

1 − m

an
(qmax + BTp) − m,

is a contraction. In particular,

|g(s) − g(s̄)| = m|s − s̄ − f−1(s) + f−1(ss)| ≤ m|s − s̄|, s, s̄ ≥ 0. (10)

Since (9) can also be written as sk+1 = g(sk), using the Contraction Mapping
Theorem [25, p. 126] we conclude that the sk converges to the unique fixed point
s∞ of g, which is the unique solution to

s∞ = m
(
s∞ − f−1(s∞)

)
+

1 − m

an
(qmax + BTp) − m. (11)

The convergence is as fast as mk. From this and (8) we conclude that the fol-
lowing theorem holds:

Theorem 1. Let {tk : tk ≤ tk+1, k ≥ 1} be the set of times at which the system
leaves the queue-full. For qmax + BTp ≥ 2ma

1−mn, all the wi(tk), i ∈ {1, 2, . . . , n}
converge exponentially fast to

w∞ :=
ma

1 − m
(f−1(s∞) + 1),

as k → ∞ and the convergence is as fast as mk.

The condition qmax + BTp ≥ 2ma
1−mn essentially limits the maximum number of

flows under which the one-drop-per-flow is valid. When this condition is violated,
i.e., when n > 1−m

2ma (qmax + BTp), a single drop per flow may not be sufficient
to produce a decrease in the sending rates that would make q drop below qmax
after the multiplicative decrease.

A straightforward conclusion of Theorem 1 is that all the flows become syn-
chronized as time goes to infinity. This is because the window sizes of all the
flows asymptotically converge to the same limit cycle. This limit cycle corre-
sponds to an increase of the window size from w∞ to 1

mw∞, lasting f−1(s∞)+1

Hybrid Modeling of TCP Congestion Control 299

units of normalized time, followed by an instantaneous decrease back to w∞ due
to drops.

Window size synchronization had been observed in [11] for Tahoe congestion
control [4]. In [11], the authors defend that synchronization is closely related to
the packet loss synchronization that we also use in our model. In fact, they pro-
vide an informal explanation—supported by packet-level simulations—of how
synchronization is a self-sustained phenomenon. Although [11] only deals with
Tahoe, the arguments used there also apply to Reno congestion control. Theo-
rem 1 goes further because it demonstrates that the limit cycle that corresponds
to flow synchronization is globally exponential stable. This means that synchro-
nization will occur even if the flows start unsynchronized or lose synchronization
because of some temporary disturbance. Moreover, the convergence to the limit
cycle is very fast and is reduced by at least m (typically 1/2) on each cycle. In
fact, initially the convergence is even faster because the upper bound in (10) is
conservative for large |s − s̄|.

4 Steady-State Behavior

We proceed now to derive steady-state formulas—such as the ones found in
[6,7,8,9]—that relate the average throughput, the average drop rate (i.e., the
percentage of dropped packets), and the average round-trip time. In this section
we concentrate on the case where s∞ is much larger than one and therefore

f−1(s∞) ≈ s∞ + 1. (12)

This approximation is valid when

qmax + BTp � 2man

1 − m
(13)

and results in the system remaining in the state queue-not-full for, at least, a
few round-trip times2. In practice, this is quite common and a deviation from
(13) results in very large drop rates.

Suppose then that the steady-state has been reached and let us consider an
interval [tk, tk+1] between two consecutive time instants at which the system
enters the queue-not-full state. Somewhere in this interval lies the time instant
t̄k at which the system enters the queue-full state and drops occur. During the
interval [tk, tk+1], the instantaneous rate r at which the nodes are successfully
transmitting packets is given by

r(t) =

{∑
wi(t)

RTT (t) t ∈ [tk, t̄k)

B t ∈ [t̄k, tk+1]
(14)

2 When the system remains in the queue-not-full for at least 4 round-trip times, (12)
already yields an error smaller than 2%.

300 J.P. Hespanha et al.

The total number of packets Nk sent during the interval [tk, tk+1] can then be
computed by

Nk :=
∫ tk+1

tk

r(t)dt =
∫ τk+1

τk

r(τ)RTT (τ)dτ (15)

≈ 1 − m2

2an
(qmax + BTp + 2an)2.

We used here the change of integration variable defined by (5) to work with
quantities in normalized time. Details on the computation of the integrals in
(15) and in (17) below are given in [24]. Since n drops occur in the interval
[tk, tk+1], the average drop rate p is then equal to

p :=
n

Nk
≈ 2a

1 − m2

(
n

qmax + BTp + 2an

)2

. (16)

Another quantity of interest is the average round-trip time RTT . We consider
here a packet-average, rather than a time-average, because the former is the
one usually measured in real networks. This distinction is important since the
sending rate r is not constant. In fact, when the sending rate is higher, the
queue is more likely to be full and the round-trip time is larger. This results
in the packet-average being larger than the time-average. The packet-average
round-trip time can then be computed as

RTT :=

∫ tk+1

tk
r(t)RTT (t)dt

Nk
=

∫ τk+1

τk
r(τ)RTT (τ)2dτ

Nk

≈ 1
T

(
2
3

1 − m3

1 − m2

qmax + BTp + 2an

n
− a

1 − m

1 + m

)
, (17)

where T := B
n is the average throughput of each flow. We recall that, because

the queue never empties, the total throughput is precisely the bandwidth B of
the bottleneck link.

It is interesting to note that the average drop rate p can provide an estimate
for the quantity n

qmax+BTp+2an . In particular, we conclude from (16) that

qmax + BTp + 2an

n
≈
√

2a

(1 − m2)p
. (18)

This, in turn, can be used together with (17) to estimate the average throughput
T . In fact, from (17) and (18) we conclude that

T ≈ 1
RTT

(
2
3

1 − m3

1 − m2

√
2a

(1 − m2)p
− a

1 − m

1 + m

)
(19)

For a = 1 and m = 1/2, (19) becomes T ≈ 1
RTT

(
1.27√

p + 1
3

)
. For reasonable

drop rates, the term 1.27√
p dominates over 1/3 and (19) matches closely similar

Hybrid Modeling of TCP Congestion Control 301

formulas derived in [6,7,8,9]. It should be emphasized that the derivations in
these references do not take queuing into account nor its effect in the varia-
tion of the round-trip time. The coupling between the n competing flows is also
ignored and therefore no theoretically-supported claim is made to the extent
that the steady-state solution is actually reached in an asymptotic sense. The
hybrid model introduced here also leads to a more complete description of the
steady-state behavior of TCP through the explicit formulas (16) and (17) for the
average round-trip time RTT and the drop rate p as a function of the number
of flows n. It is important to emphasize that RTT in (17) denotes the aver-
age round-trip time. It turns out that the actual round-trip-time RTT varies
quite significantly around this average because of fluctuations on the queue size.
These large variations in the queue size (which are amplified by synchronization)
produce a large delay jitter. These phenomena, which have significant implica-
tions in the design of congestion control mechanisms for applications that require
stricter service guarantees from the network, have not been accurately captured
in most existing models [9,26,27,10,28].

To verify the formulas derived above, we simulated the dumbbell of Figure 1
using the ns-2 network simulator [23]. Figure 4 summarizes the results obtained
for a network with the following parameters: B = 107 bits/sec

8 bits/char×1000 char/packet =
1250 packets/sec, Tp = .04 sec, qmax = 250 packets, a = 1 packet/RTT,
m = 1/2. As seen in the Figure 4, the theoretical predictions given by (16),
(17), (19) match the simulation results quite accurately. Some mismatch can
be observed for large number of flows. However, this mismatch only starts to
become significant when the drop rates are around 1%, which is an unusually
large value. This mismatch is mainly due to two factors: the quantization of the
window size and a crude modeling of the fast-recovery algorithm [2]. We are
now in the process of incorporating these two features into our hybrid model to
obtain formulas that are accurate also in very congested networks.

5 Conclusion

In this paper we proposed a hybrid model for Reno congestion control. Using
this model, we analyzed both the transient and the steady-state behavior of n
TCP flows competing for the available bandwidth on a dumbbell network topol-
ogy. Our model confirmed formulas for the steady-state behavior that can be
found in the literature and also derive new relationships between the several
quantities of interest. We were also able to explain the flow synchronization phe-
nomena that have been observed in simulations and in real networks but, to
the best of our knowledge, have not been theoretically justified. We were also
able to demonstrate that the limit cycle that corresponds to flow synchroniza-
tion is globally exponential stable. This means that synchronization will occur
even if the flows start unsynchronized or lose synchronization because of some
temporary disturbance.

302 J.P. Hespanha et al.

10
0

10
1

10
−5

10
−4

10
−3

10
−2

n

Drop rate

NS simulation
Theoretical prediction

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

n

Average round−trip time

NS simulation
Theoretical prediction

10
0

10
1

10
2

10
3

n

Throughput

NS simulation
Theoretical prediction

Fig. 4. Comparison between the predictions obtained from the hybrid model and the
results from ns-2 simulations.

We are now in the process of generalizing the analysis presented here to dif-
ferent network topologies; other congestion control mechanisms (such as Tahoe,
Vegas, and Equation-Based); and different queuing policies (such as drop-head,
Random Drop, RED, and SRED). We are also exploring mechanisms that can
be used to avoid the undesirable synchronization. Another application of the
hybrid model derived here is the detection of abnormalities in TCP traffic flows.
This has important applications in network security.

Appendix

To derive equation (6), suppose that drops occurred at some normalized time τk

at which the system entered the queue-not-full state and therefore that q(τk) =
qmax. Denoting by τ̄k the normalized time at which the next drop occurs, for
τ ∈ [τk, τ̄k), we have

wi(τ) = wi(τk) + a(τ − τk), i ∈ {1, 2, . . . , n},

q(τ) = e−(τ−τk)
(
qmax + BTp + an −

n∑
i=1

wi(τk)
)

+

+ an(τ − τk) +
n∑

i=1

wi(τk) − BTp − an.

Hybrid Modeling of TCP Congestion Control 303

We assumed here that q remains positive during the whole interval. Since a new
drop occurs at the normalized time τ̄k, we must have q(τ̄k) = qmax. Because of
q’s continuity, we must then have

qmax = e−(τ̄k−τk)
(
qmax + BTp + an −

n∑
i=1

wi(τk)
)

+

+ an(τ̄k − τk) +
n∑

i=1

wi(τk) − BTp − an.

We can then solve this equation to compute the normalized time interval τ̄k − τk

and obtain

qmax + BTp −∑n
i=1 wi(τk)

an
=

τ̄k − τk

1 − e−(τ̄k−τk) − 1,

which is equivalent to τ̄k − τk = f−1(sk). Equation (6) is a consequence of
this and the fact that the system enters the queue-not-full state again at time
τk+1 := τ̄k + 1. ut

References

1. V. Jacobson, “Congestion avoidance and control,” in Proc. of SIGCOMM, vol. 18.4,
pp. 314–329, Aug. 1988.

2. V. Jacobson, “Modified TCP congestion avoidance algorithm.” Posted on end2end-
interest mailing list, Apr. 1990.
Available at ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.

3. M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” RFC 2581,
p. 13, Apr. 1999.

4. K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe Reno and SACK
TCP,” Computer Communication Review, vol. 27, pp. 5–21, July 1996.

5. Y. Yang and S. Lam, “General AIMD congestion control. technical report,” Tech.
Rep. TR-200009, Department of Computer Science, University of Texas at Austin,
May 2000.

6. T. Ott, J. H. B. Kemperman, and M. Mathis, “Window size behavior in TCP/IP
with constant loss probability,” in Proc. of the DIMACS Workshop on Perfor-
mance of Realtime Applications on the Internet, Nov. 1996.

7. J. Mahdavi and S. Floyd, “TCP-friendly unicast rate-based flow control.” Technical
note sent to the end2end-interest mailing list, Jan. 1997.

8. T. V. Lakshman, U. Madhow, and B. Suter, “Window-based error recovery and flow
control with a slow acknowledgment channel: A study of TCP/IP performance,”
in Proc. of INFOCOMM, Apr. 1997.

9. M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of the
TCP congestion avoidance algorithm,” Computer Communication Review, vol. 27,
July 1997.

10. S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion
control for unicast applications.” To appear in SIGCOMM, May 2000.

304 J.P. Hespanha et al.

11. L. Zhang, S. Shenker, and D. D. Clark, “Observations on the dynamics of a con-
gestion control algorithm: The effects of two-way traffic,” in Proc. of SIGCOMM,
Sept. 1991.

12. S. Floyd and V. Jacobson, “On traffic phase effects in packet-switched gateways,”
Internetworking: Research and Experience, vol. 3, pp. 115–116, Sept. 1992.

13. S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoid-
ance,” IEEE/ACM Trans. on Networking, vol. 1, pp. 397–413, Aug. 1993.

14. L. Tavernini, “Differential automata and their discrete simulators,” Nonlinear
Anal. Theory, Methods, and Applications, vol. 11, no. 6, pp. 665–683, 1987.

15. A. S. Morse, D. Q. Mayne, and G. C. Goodwin, “Applications of hysteresis
switching in parameter adaptive control,” IEEE Trans. Automat. Contr., vol. 37,
pp. 1343–1354, Sept. 1992.

16. A. Back, J. Guckenheimer, and M. Myers, “A dynamical simulation facility for
hybrid systems,” in Grossman et al. [29].

17. A. Nerode and W. Kohn, “Models for hybrid systems: Automata, topologies, sta-
bility,” in Grossman et al. [29], pp. 317–356.

18. P. J. Antsaklis, J. A. Stiver, and M. D. Lemmon, “Hybrid system modeling and
autonomous control systems,” in Grossman et al. [29], pp. 366–392.

19. R. W. Brockett, “Hybrid models for motion control systems,” in Essays in Con-
trol: Perspectives in the Theory and its Applications (H. L. Trentelman and J. C.
Willems, eds.), pp. 29–53, Boston: Birkhäuser, 1993.

20. M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework for hybrid
control: Background, model and theory,” in Proc. of the 33rd Conf. on Decision
and Contr., vol. 4, pp. 4228–4234, Dec. 1994.

21. M. S. Branicky, Studies in Hybrid Systems: Modeling, Analysis, and Control. PhD
thesis, MIT, Cambridge, MA, June 1995.

22. J. Lygeros, C. Tomlin, and S. Sastry, “Multi-objective hybrid controller synthesis:
Least restrictive control,” in Proc. of the 36th Conf. on Decision and Contr., vol. 1,
pp. 127–132, Dec. 1997.

23. The VINT Project, a collaboratoin between researchers at UC Berkeley, LBL,
USC/ISI, and Xerox PARC, The ns Manual (formerly ns Notes and Documenta-
tion), Oct. 2000.
Available at http://www.isi.edu/nsnam/ns/ns-documentation.html.

24. J. P. Hespanha, S. Bohacek, K. Obraczka, and J. Lee, “Hybrid modeling of tcp
congestion control,” tech. rep., University of Southern California, Los Angeles, CA,
Oct. 2000.

25. A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering and Science.
No. 40 in Applied Mathematical Sciences, New York: Springer-Verlag, 1982.

26. J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: a
simple model and its empirical validation,” in Proc. of SIGCOMM, Sept. 1998.

27. V. Misra, W. Gong, and D. Towsley, “Stochastic differential equation modeling and
analysis of TCP-windowsize behavior,” in In Proceedings of PERFORMANCE99,
(Istanbul, Turkey), 1999.

28. F. Baccelli and D. Hong, “TCP is max-plus linear,” in Proc. of SIGCOMM, Sept.
2000.

29. R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rishel, eds., Hybrid Systems,
vol. 736 of Lecture Notes in Computer Science. New York: Springer-Verlag, 1993.

	Introduction
	Hybrid Model for Congestion Control
	Dynamics in Normalized Time
	Steady-State Behavior
	Conclusion

