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Abstract 

Linear Dynamically Varying (LDV) systems are a sub- 
set of Linear Parameter Varying (LPV) systems char- 
acterized by parameters that are dynamically modeled. 
An LDV system is, in most cases of practical inter- 
est, a family of linearized approximations of a non- 
linear dynamical system indexed by the point around 
which the system is linearized. Special attention is de- 
voted to  nonlinear dynamical systems running over a 
Riemannian manifold. Such (local) differential geo- 
metric concepts as curvature play a crucial role in 
defining the LDV approximation. Furthermore, such 
(global) topological properties as parallelizability, Euler 
characteristics-and a global "flatness" concept-are 
crucially involved in defining the problem in a compu- 
tationally attractive coordinate-dependent fashion. Fi- 
nally, an LQ trajectory tracking problem is formulated, 
revealing a partial differential Riccati equation, itself 
related to a linear PDO, for which an index theorem 
can be formulated. 

1 LDV Systems 

Given a differentiable n-D manifold 8, a dynamical sys- 
tem over 0 is defined by 

B(t) = f ( e ( t ) ) ;  e(o) = o0 (1) 

From the coordinate independent point of view, f 
should be interpreted as a vector field, that  is, a section 
Q + TQ through the tangent bundle T O  with fiber R" 
of the manifold 0. The solution O ( t )  is viewed as a dif- 
ferentiable curve with its velocity defined in the tangent 
space 

d -W) d t  E Te(t)Q 

Depending on the global topology of 8, it is not al- 
ways possible to have an everywhere nonvanishing vec- 
tor field. Such a nonsingular vector field is a section 
through the tangent sphere bundle and there might be 
obstructions to constructing the latter section. A theo- 
rem due to Hopf asserts that, for a compact, orientable, 
smooth manifold 8, x(8) = xi index(Oi), where x de- 
notes the Euler characteristics, the Oi's the singularities 
of the field, and index(.) the Brouwer degree of the local 
Gauss map. 

In the applications considered here, (1) is some nomi- 
nal dynamics that should be enforced via a small ex- 
traneous control effort U E U C RP. To this effect, we 
consider a perturbed dynamical system [3] 

( 2 )  -q t )  d t  = ] (8( t ) ,U( t ) ) ;  iyo) = 8, 

f(e,o) = f(e);  f ( 0 , ~ )  E TeO (3) 

d -  

such that 

and to be controlled such that, for 00 and 80 sufficiently 
close, limttoo d ( e ( t ) ,  B ( t ) )  = 0 for some small control U .  

In the above, f is defined as a section through the tan- 
gent bundle along the projection on the first fuctor map 
7rl or equivalently a lifting of7r1. The latter means that 
the bottom right-hand corner triangle of the following 
diagram commutes 

T Q x ( U x R P )  (9) TQ 

1 
i / " I  (4) 

Q x U  3 8  

The difficulty in defining a conyenient linearized track- 
ing error is that  f ( 0 )  and f(0,u) live in nearby, but 
different tangent spaces. To compare the two vectors 
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f(8) E TeQ and f ( 8 , u )  E T'Q a parallel transport of 
f into TeQ is performed. With both vectors in the 
same tangent space, the so-called covariant differenti- 
ation can be made. To do this parallel transport, 8 is 
assumed to  be a Riemannian manifold with fundamen- 
tal metric ( x , x )  = E.. g;jxaxJ and endowed with the 
Levi-Civita connection: 

'3 

where r(T8) denotes the module of all sections 8 + 

T 8  or vector fields over 8. The connection provides 
the notion of covariant digerentiation of a vector field 
(e.g., e j )  along another vector field (e.g., ei), defined by 
linearity and the Leibniz rules from V e i e j  = Ck I'fjek 
where {ei} is a Cartan moving reference frame in the 
tangent space and the r's are the Christoffel symbols 
of the Levi-Civita connection: 

where { x i }  is a system of local coordinates naturally 
associated with { e i }  via the exponential map [l, 5.131. 
Given a curve c : [0, 11 -+ 8 such that c(s = 1) = 8 and_ 
c(0) = 8, the vector field cp is a paral_eZ transport of f 
along c if V & p  = 0 and p(s = 1) = f .  I t  is customary 
t o  rewrite the operator of covariant differentiation along 
a curve c, V A ,  as 2. (Warning: s is not the arc 
length.) 

The parallel transport from 8 to  8 depends on the path 
joining the two points. It is claimed that if we choose 
the path to be the minimizing geodesic c,, the result- 
ing differential does not depend on the path provided it 
stays close enough to  c,. Indeed, there exists a neigh- 
borhood of 8 ,  Ne,  such that any two points within Ne 
can be joined by _a unique minimizing geodesic. We 
therefore restrict 8 E Ne. Conside: two minimizing 
geodesic paths c1,c2 C_ N e  joining 8 and 8. Because 
of t_he curvature, the results of the parallel transport 
of f along c1 and +, fcl and fc,, r ep . ,  need not be 
the same. Actually, in case n = 2, the Gauss-Bonnet 
theorem asserts that the mismatch or holonomy angle 
is given by 

ds 

ds 

where K denotes the Gauss curvature, dS is the surface 
element, and C is the surface bounded by c1 U c2. (If 
n > 2, use the sectional curvature.) Since 

area 
length 

+ 0 , 8 3 8  

it follows that fcl - fc2 goes t o  zero faster than f c i  - f 
so that the differential does not depend on the path 

provided the latter be sufficiently close to the geodesic. 
From the above, we define the local state of the lin- 
earized approximation as 2 = %13=o and the following 
easily follows: 

ds 

i 

where Fe is a mixed covariant/contravariant tensor 
whose components are 

Therefore, we get 

From the obvious relations 

x = v e x  

it follows that ,  contrary to  the Euclidean case, i and 2 
do not match, because indeed, exploiting the symmetric 
(torsionless) property of the Levi-Civita connection, we 
get 

. Df z - - = D,z - 0 , f  = [f,.] 
ds 

The right-hand side Lie bracket induces a linear map 
adj : x H [ f , x ] .  Therefore, if we define, 

AB = Fe + adf 

we get $x( t )  = Ae(t)x(t) as expected. 

Furthermore, redoing the same in the product space 
8 x U and using the invariance relation (3) yields 

(5) 

'The conflict of notation that x is also the local co- 
ordinate vector is not dangerous. 
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where (Be); = g, ( 5 )  together with (1) is called a 
Linear Dynamically Varying (LDV) system. 

Finally, we can justify the top row of the commutative 
diagram (4). To be specific, ( A , B )  induces a mapping 

( A B )  : Y V7.f 
r(m x (U x RP)) --$ r(e x U , m )  

where r ( X , T Y )  denotes the set of sections X -+ TY 
along a smooth map X Y .  The mapping is defined 
as follows. Consider a section 

where {el , .  -.  , e,, ~ 1 , .  . . , E ~ }  is a moving frame in 8 x 
U .  The image of y is 

( A , B ) r  = xi zj(Vejf) + xi d ( V E j ] )  
= E, e i (Cj  Ajz j  + Cj Bjuj) 

2 global parallelizability issues 

Local, computationally attractive matrix representa- 
tions for Ae, Be are guaranteed to  exist. To obtain 
a global matrix representation of A@,  it is necessary to 
have a coordinate frame {els, ..., ens} in the tangent 
space Tee, smoothly depending on 0, VO E 8. This is 
the issue of pamllelizability of the manifold 8. Because 
a necessary condition for parallelizability is x (8 )  = 0, 
not all manifolds are parallelizable. However, as proved 
[9, Theorem 951, if 8 is a Lie group with a real Lie alge- 
bra, then 8 is parallelizable. If 8 is not parallelizable, 
the  guiding idea is to  attempt to  construct a paral- 
lelizable covering manifold, if this is possible, and then 
“lift” the system to  the covering space. 

2.1 covering surface 
Consider a continuous-time dynamical system running 
on a Mobius strip M ,  to  be controlled so as to  track the 
mid circle. Draw on the strip a &dependent reference 
frame: say, el orthogonal to  the ribbon and e2 aligned 
with the ribbon. Clearly, the e2 axis has to  be “flipped” 
across the edge where the two cuts of the ribbon are 
glued. The problem with this dynamical system can 
be seen from the fact that the state of the controlled 
LDV system, as a vector in the tangent space, is contin- 
uous across the bonding; however, since the e2 axis has 
t o  be flipped, the state component z2 suffers a discon- 
tinuity across the bonding. To remove this difficulty, 
the  intuitive idea is not to  flip the reference frame at 
this stage, but allow the LDV system to  run beyond the 
cut on another sheet, with a consistent reference frame, 

on top of the sheet of the first lap, and after two laps 
along the Mobius strip, there is no more misalignment 
of the axes. Mathematically, this amounts to  cover the 
Mobius strip M with a “doubly twisted” Mobius strip 
A?, which is homeomorphic to  a cylinder, and is hence 
parallelizable. 

The Mobius strip example can be put in the following 
broader context: 

Theorem 1 If 8 is a complete surface with Gaussian 
curvature 5 0, then it has a covering surface homeo- 
morphic to R2. Furthermore, i f  8 is a surface with con- 
stant vanishing Gauss curvature, that is, i f  8 is either 
the cylinder, the torus, the Mobius strip, or the Klein 
bottle, it can be cowered b y  R2, as shown b y  the following 
diagmm in which all arrows are cowering maps: 

R2 
1 

.1 

cylinder 

Mobius 
\ 

torus 1 
Klein 

\ 

Proof See [13, p. 2591 for first claim and [8, p. 4201 
for second claim. U 

A surface of constant > 0 Gaussian curvature is not 
parallelizable (because by the Gauss-Bonnet theorem 
x # 0), nor is its standard covering, the sphere S2 [8]. 
For a compact surface of genus g (guaranteed [8, p. 2661 
t o  have a point a t  which its curvature is > 0), only the 
torus (g = 1) is parallelizable, because of the relation 
x = 2 - 2g. 

2.2 covering manifold 

Theorem 2 If 0 has a ‘flat” connection *, that is, i f  
its curvature R(a,,B) = V,Vp - VpV, - V ~ ~ , p j  = 0, 
then its universal cowering space is parallelizable. 

Proof. From [l, 5.10.31, if R = 0, the connection 
is locally parallelizable. By going to  the covering 
manifold, curvature and local parallelizability are un- 
changed. However, the fact that the universal covering 
manifold is simply connected implies that its connec- 
tion is parallelizable. 0 

I t  can be shown that the Mobius strip can be endowed 
with a flat connection [l, p. 2371. 

2There is no connection between this flatness con- 
cept in terms of vanishing curvature and the “output 
flatness” concept of [IO]. 
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Corollary 3 If Q is almost pamllelizable, that is, i f  the 
structure group of its tangent bundle can be reduced to  
a discrete group, then €3 has a parallelizable universal 
covering manifold. 

Proof. For indeed, an almost parallelizable manifold 
has a flat connection [ll, p. 321. (In fact, as easily seen, 
a finite covering would have made it parallelizable.) U 

2.3 liftability 

Theorem 4 Let  0 be a covering manifold of 8, let 
K : €3 -+ Q be the associated covering map,  and let 
T9 --$ T 8  be the induced tangent bundle covering map. 
T h e n  the vector field f : €3 + TQ lifts to  the covering 
manifold as depicted in the following diagram: 

T 0  

1 
5 
> 

s 
1 T O  

0 

Proof: Take a point 8 E Q and let ~ ( 8 )  = 8, where 
K denotes the covering projection. By definition of the 
covering manifold map, there exist neighborhoods 0 8 )  
0 s  linked by a homeomorphism h : 0, -+ 00. Let 

9e :oe -+ ~ n ,  e o 
$0 :og -+ R", e H 0 

be the coordinate functions around t9 and e, respec- 
tively. The homeomorphism h induces a diffeomor- 
phism of the coordinate spaces 

$ o h o & '  :Wn -+Rn 
By definition of the tangent space TeQ, the  vector f (e )  
is the equivalence class CO of all curves ce in R" tangent 
at 0. Clearly, all of the curves ($8 o h o &')-'(Q), 
ce E CO are tangent to  each other a t  0 in the coordinate 
space of 8. We define f(8) to  be the equivalence class of 
( & o h o & l ) - l ( c e ) ,  which is easily seen not t o  depend on 
the representative ce. Next, it is easily seen that things 
match up properly if 8,  e are within two coordinate 
patches. 0 

3 LQ LDV tracking 

Clearly, if we want t o  track a trajectory of (1) with the 
system (2), the linearized tracking error will be given 
by the LDV system ( 5 ) .  Motivated by this tracking 
problem or by the dual synchronization problem, we 
define the following LQ problem: 

Theorem 5 Assume  that the maps A and B are differ- 
entiable and that (A ,  B )  is stabilizable in the sense that 
there exists a differentiable map K : Tf3 -, RP such 
that the solution to  x = ( A  + B K ) x  is stable. T h e n  

rm 

defines a positive definite, symmetric bilinear f o r m  (or- 
der 2 covariant tensor) X E T*Q @T*Q satisfying the 
partial differential Riccati equation, in terr,n.s of ,matrix  
representation relative to  the dual basis {ea = x a } ,  

(a coordinate independent version also exists) and such 
that Ae - BeBTXe is stable. 

Proof The proof is standard except for two things- 
differentiability of Xe and the use of the covariant dif- 
ferentiation. Assuming without loss of generality by 
stabilizability that Ae is stable, a slight generaliza- 
tion of the concepts of [5] yields families of operators 
A : T 8  4 L2(r(T@)),  L3 : 8 x L2(U) ---* L2(r(TQ)) 
such that z = &,zo + &,U, z, E To,@. It follows that  

iw ((~(~),W) + 1 1 ~ ( ~ ) 1 1 2 )  dT 

= (5, z)LZ(r(Te)) + ( U ,  u ) L ~ ( u )  
(zo, N h o )  + ( U ,  ( I  + B*B)U) + 2(u, B*dxo) = 

Observe that I + B ~ L ? ~  is a Wiener-Hopf operator if e is 
an equilibrium point. Since I + B*B > €1, an extension 
of the argument of [4] yields 

Xeo(zo,  50) = (20, (d'd - d * B ( I  + B * B ) - ' B * d ) z o )  

Since I + B*B > €1, ( I  + B*B)-' has a differential and 
therefore so has Xe.  In the proof that X satisfies the 
PDRE, the key point is that the principle of optimality 
implies that 

l((W, 47)) + I l4T)Il2)dT + Xect,(z(t), z ( t ) )  

is monotone increasing with t along the vector field f .  
Taking the covariant derivative 2 = Vf of the above 
considered as a function Q -+ R and setting it 2 0 for 
all x ,  U yields a LMI, from which, following the classical 
path of approach, we derive the P D m  along with the 
additional claims. U 
Remark: The stabilizability assumption here is consid- 
erably stronger than that  of [2], where the stabilizing 
feedback is not even assumed t o  be continuous. The  
hard part in the  approach of [2] is t o  prove that under 
this weak assumption the LQ and HM feedbacks are 
continuous. 
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Theorem 6 The PDRE has a unique stabilizing, dif- 
ferentiable solution. 0 

Theorem 7 The unique, differentiable, stabilizing so- 
lution to the PDRE, x, is the maximum of all solu- 
tions, in the sense that for any other solution Y ,  we 
have Xe - Ye 2 0,Ve. 0 

This PDRE, related to the Hamilton-Jacobi-Isaacs 
equation, has uniqueness of its solution secured by the 
stabilizability property, itself equivalent to the maxi- 
mality property. This maximality property allows us 
to solve the equation locally, and then "stitch" together 
all local solutions to  get the global stabilizing solution. 

4 Hamiltonian PDO 

Here we proceed in a local, coordinate dependent fash- 
ion, since the factorization Xe = VeVVi' is hard to 
justify intrinsically. Injecting this factorization in the 
PDRE yields an invariant subspace problem 

for the partial differential operator 

P,= 

Ci fi(e(~))& -BWB;c.) 
-GqZ) -AT( , , -C i f "~ (4 )& 

( 7 ) can be reduced t o  find- The computation of 

( 
ing eigenvalues X E C and sections ( Y ) : 0 4  

( Fz ) in the kernel of another partial differential 

operator: 

The following theorem allows us to choose the correct 
eigenvalues X and the correct invariant subspace in the 
kernel of the P,-xr operator: 

Theorem 8 If A is chosen so that the solution to 2 = 
A 2  along the trajectories of e = f ( e )  is such that Z -+ 

0, then As - BeBTfiWi' is stable. 0 

The operator P, is defined, locally in the coordinate 
patch, as a pseudo-differential operator [12] 

where zij(c), 6(c) denote the Fourier transforms of We(z), 

respectively, in the local coordinate patch, and a 
is the formal symbol, 

a(.,t) = 

( -GO(,) -&"z)-~Ci f*(e(z>>ti 
Aqz)-J Xi  f i ( e ( z>) [ i  -Bs(ZP&) 

where 5, stands, formally, for - 3 s .  Globally, P, is 
defined as 

P, : rye, TO e T*O) -+ rye, Te e ~ * q  
where I? denotes smooth sections. The symbol is de- 
fined, intrinsically, as 

U : T"O + hom(TO e T*Q, TO @ T * O )  

Observe that P, is certainly not elliptic. However, what 
makes its Fredholmness analysis easy is the following: 

Theorem 9 If As does not have eigenvalues on the 
imaginary axis, the symbol a is invertible. 0 

Recall that  P, : r -+ r is Fredholm iff both ker P, and 
coker (P,) are finite dimensional. The formal adjoint 
of the operator P,, P,*, is defined as the operator such 
that (a ,  Pub) = (P,*a,b) where 

(a, b)  = SB(a(B), b ( O ) ) P ( W  (6) 

for some measure p with smooth density [12, page 261. 
With these concepts, the fledholm index is defined as 

dim ker P, - dim coker P, = dim ker P, - dim ker Pi 

Using the composition of symbols, it is easily seen that 
P,P,-1 - I and P,-iP, - I are smoothing operators, 
that  is, integral operators with smooth kernels, which 
are known to be compact [la], [6]. Therefore, by Atkin- 
son's theorem, P, is Fredholm. The same applies to 
P, - XI, provided Ae - X I  does not have eigenvalues 
on the imaginary axis. 

We now look at the index of the operator and make a 
merger with ergodic theory. 

Lemma 10 If the partial differential operator xi  fi& is formally skew self-adjoint, viz., 

then the operator Po is Hamiltonian, viz., JP,J = P: 
o r  where J =  ( -I ) .U 
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Theorem 11 If either of the following conditions holds 

1. 8 is a compact subset of W" and f 1% = 0, 

2. or 8 is a compact, smooth, orientable3 manifold, 
viz., de = 0, 

and if t85e flow f has an invariant measure p ( d S )  
absolutely continuous relative to the volume form 
dx'.-.dx" and with a smooth Radon-Nikodyn deriv- 
ative, viz, div(uf) = E, 9 = 0, where v(0) is the 
Radon-Nikodyn derivative [7, Chapter I, Section 31, 
.(e) = *, then the operator E, f i& is skew 
selj-adjoant. 

Proof: The proof basically relies on proving (7) by 
an integration of the type (6), converted t o  an integra- 
tion of an exterior differential form over the subset 8 
of Wn or over all coordinate patches across the whole 
manifold 8, and proving, using Stokes' theorem, that 
it vanishes.U 

Theorem 12 If the operator P, is Fkedholm 
Hamiltonian, then its analytical index vanishes, 
dim ker P, - dim coker P, = 0.0 

We now turn our attention to  the operator P , - ~ I .  

and 
viz., 

The 
operator PU-x1, X # 0, is not Hamiltonian anymore 
because indeed, JPu-xlJ # (P,-xl)*. Therefore, de- 
pending on A, the  operator Pu-xr could have nonva- 
nishing index and hence have a kernel - even when 
det(a - X I )  # 0. 

Theorem 13 There exists an homomorphism 

h : [ Q x R ~ ~ : @ \ { O + ~ O } ] - - ) Z  
deg(a - XI) H indeza(Pu-xr) 

between the set of homotopy classes of maps a(B,<) - 
X , g I  : 8 x R2" + C \ (0 + JO} and the connected com- 
ponents of the set 3(l?,I') of F!rdholm operators, each 
connected component being uniquely determined b y  its 
Redholm index. 0 

Clearly, since W2" is contractible, the degree of the map 
8 x W2" + C \ (0 + JO} can be reduced t o  the degree 
of a(., [) - XI : 8 -+ C \ (0 + ?} at constant [. Since 
C\{O+@} is contractible to a circle, the set of allowable 
homotopy classes are those of the induced map 0 -+ S', 
isomorphic to cohomology group H ' ( 8 ,  Z) by the Hopf 
theorem. 

~ 

30rientability is required for the volume form dx' . . . dx" to 
be expressible as an exterior differential form dz' A . . . A dxn of 
constant sign across the manifold. 

Theorem 14 There exists a homomorphism 
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