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Abstract

A di usion model of the roundtrip time experienced by packets on the Internet is developed.
The parameters of the di usion system are modeled as Markov processes. The transition prob-
abilities of the parameters are modeled with a mixture of Laplace distributions. The stationary
distributions of the parameters are modeled as Normal distributions. The results show that the
model is able to reproduce the probabilities observed in the Internet.
c© 2003 Elsevier B.V. All rights reserved.

1. Introduction

The large majority of Internet communication is acknowledgment based. The sender
transmits a data packet to the receiver. If the receiver receives the packet, it responds
with an acknowledgement. The time until the acknowledgement arrives (assuming it
arrives at all), is known as the round-trip time. There has been extensive work focused
on the stationary distribution of round-trip time (Pointek et al., 1996; Mukherjee, 1994;
Quarterman et al., 1994; Mills, 1983; Acharya and Saltz, 1996). However, little work
has focused on the dynamic aspects of round-trip time. This paper develops a simple
di usion process that is able to re>ect the behavior round-trip time observed in the
Internet.
The importance of accurate models of round-trip time is well established. When a

packet is sent and an acknowledgement never arrives, at some point the sender must
declare a time-out, that is the sent packet or the acknowledgement has been dropped
and an acknowledgement will never arrive. The decision as to when to declare a
time-out, that is based on estimates of the round-trip time and is critical to maximizing
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TCP’s 1 performance (Paxson and Allman, 2000). Congestion control schemes such as
TCP-Vegas (Brakmo and Peterson, 1995) use the variation in round-trip time to esti-
mate the congestion. Furthermore, some recently suggested congestion control mech-
anisms for multipath routing ignore out-of-order packets and only utilize time-out. In
this case, the decision as to whether a time-out has occurred is of paramount impor-
tance and models of round-trip time play a critical role. Furthermore, in models of TCP
found in Misra et al. (1999) and Padhye et al. (1998), the data sending rate depends
on the round-trip time. Thus, accurate models of round-trip time are required for both
the theoretical development of TCP as well as its implementation.
Additionally, there is hope that the Internet can be used for voice communication.

One diHculty with such an approach is that data that transverses the Internet is sub-
jected to time-varying delay, i.e., jitter. In order to fully understand the impact of this
jitter and to develop countermeasures, the dynamics of the round-trip time must be
understood.
Network tomography (Vardi, 1996; Tebaldi and West, 1998) and network monitoring

also use dynamic models of round-trip time. SpeciIcally, end users typically only have
access to the edges of the network and are not able to directly assess the state of the
network. Even network operators only have access to routers in their control and are
unable to determine the state of neighboring ISPs. Furthermore, most routers are only
able to forward packets and do not monitor traHc. Thus, there is a need to determine
the state of the network based only on external measurements (i.e., measurements made
at the end hosts and not at the internal router). Beyond the fact that most routers are not
able to closely monitor traHc, another advantage of monitoring connections is that a set
of connections can provide information about a far larger set of links. Techniques using
connection information to understand link properties are developed in DuHeld et al.
(2001). In this paper, the state of the network is assessed by determining the parameters
of a dynamical model the round-trip time. By observing the model parameters, the
network can be monitored and anomalies, either failures or network attacks, can be
detected. This application of the work presented has special importance since there is
an increase in network attacks that do not attack hosts directly, but instead attack the
network by either attacking routers or links.
To elucidate this last possibility, imagine a distributed denial of service attack on a

single link. The attack could be realized by coordinating a diverse set of hosts to send
large UDP packets to another diverse set of hosts. If these hosts are picked carefully,
then the packets would traverse a common link causing considerable congestion along
this link. Note that the end hosts themselves would not be under attack and would not
necessarily be aware of the on-going attack. The only way that such an attack could be
detected is by monitoring the link itself or monitoring connections that utilize this link.
Such monitoring would detect the attack by noticing a jump in congestion and change
in delay. Furthermore, it is likely that since the congestion is cause by UDP packets
and not the typical TCP connections, the dynamics of the latency over this attacked

1 More than 85% of the traHc on the Internet uses the TCP protocol to determine how fast data packets
should be sent.
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link would di er from the dynamics typically found over other links. Indeed, Jonckheere
et al. (2002) has found some di erence between the network dynamics under attack
and under normal conditions.
In this paper two related models are considered. First, a di usion process with

time-invariant parameters is considered (Section 3). In this case, the system has six
scalar parameters. Techniques to estimate these parameters are developed (Section 3.1).
While such time-invariant models are valid over short time intervals, in which the pa-
rameter variation is typically very small, the model is too simple to capture substantial
changes in the dynamics of the round-trip time. For example, at night, the round-trip
time may vary by less than 5 ms, while over the same connection during the after-
noon, the round-trip time may vary by more than 30 ms. To account for these varying
environments, a second model is developed where the parameters of the di usion pro-
cess vary (Section 5). In this case, the dynamics of the parameters are of interest.
These dynamics are modeled as Markov processes on a Inite space (Section 5.2). The
transition probabilities for these parameters are well modeled by a mixture of Laplace
distributions, while the stationary distributions of the parameters are modeled as Normal
distributions.

2. Measurement procedure

The results presented here are part of a large ongoing data collection and modeling
e ort. The purpose of this paper is not to discuss the spatial variability of the statistics
(i.e., how they vary from one geographical point to the next), but to develop models
of the dynamics of round-trip time. To exclude distractions by the sources of the data,
all data utilized in this paper is from two connections, Los Angeles to San Jose and
Los Angeles to Tampa, Florida. Packets going from Los Angeles to San Jose and back
pass through 32 routers, while packets going from Los Angeles to Tampa and back
traverse 18 routers. These connections and the data collected represent what we have
found to be typical cases. From this data not only the best, but rather the full range
of results is shown. Therefore, most plots include the case where the results are not as
strong. The rationale is to give an idea of the variation of the results. However, there
are some outlier data points such as those shown in Fig. 24 that are not discussed.
These occasional abrupt events are worthy of their own study and are not discussed
here.
The data analyzed was collected during March 2001. During this time an ICMP echo

request packet was sent every 10 ms for 100 s, then no data was sent for 80 s and then
the process was repeated. The packets had 64 bytes of payload, making them compatible
with many voice applications. Furthermore, when using small packets, the measurement
process should not have a large e ect on the network that is being measured. However,
the size of the packets is clearly smaller than typical TCP data packets. The di erence in
the behavior of the round-trip time dynamics when sending small packets as compared
to when sending larger packets is not known. Some small experiments indicate that
the dynamics on these connections did not show much variation when small packets
were sent as compared to large packets.
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3. A stationary model

The round-trip time experience by a packet sent at time t from source S to destination
D and back can be decomposed into a Ixed, non-varying component due to propagation
time and transmission time and a time-varying component that is principally due to
queuing delay. Denote this time-varying component as Rt . A di usion model for Rt is

dRt =
�2

2
R�−1

(
(�R�

t + ���R�
t )

(R�
t + ��R�

t )
+ �− 2	 ln(Rt)

)
dt +

√
�2R�

t dWt: (1)

Note that for � = 0 and �= 1, the above reduces to

dRt =
�2

2
(�+ 1− 2	 ln(Rt))dt +

√
�2RtdWt;

which is similar to the Black–Derman–Toy di usion model for short-term interest rates
(Black et al., 1990).
Applying Theorem 1 in Grigelionis (2000), it can easily be shown that (1) is an

ergodic H-di usion and with unique invariant distribution given by

h(r) = C(r� + ��r�) exp(−	(ln(r))2); (2)

where C is such that
∫∞
0 h(r) dr = 1.

Notice that � and � play no role in the invariant density. These parameters only
e ect the transition probabilities. Let pt(y; x) dx be the probability of moving from
R0 = y to x6Rt6 x + dx. Then p satisIes the Kolgomorov’s forward equation

@
@t

pt(y; x) =
�2

2

(
− @

@x
(�(x)pt(y; x)) +

@2

@x2
(x�pt(y; x))

)
; (3)

where �(x) = x�−1((�x� + ���x�)=(x� + ��x�) + � − 	2 ln(x)). Since the process is
ergodic, pt(y; x) → h(x) where h is given by (2). Thus, � controls how fast the
conditional density converges to the invariant density. The role of � is not so easily
seen. This separation between the roles of the parameters (�; �; �; 	) and (�; �) is helpful
in parameter estimation. In particular, we are able to Irst estimate (�; �; �; 	) from the
stationary density. These parameters can be found using an optimization technique such
as quasi-Newton. Then, once these parameters are determined, � and � can be found
by examining the transition probabilities. This second optimization is far more diHcult
than the Irst as it requires repeatedly solving Kolgomorov’s forward equation. Since
this second optimization has only two unknown parameters, as opposed to six, this
separation reduces the number of times equation (3) must be solved.
An implicit assumption in (1) is that Rt is a Markov process. SpeciIcally, it is

assumed that for 0¡�1 ¡�2 ¡ · · ·,
P(Rt ∈A|Rt−�1 ; Rt−�2 ; : : : ; Rt−�n) = P(Rt ∈A|Rt−�1 ): (4)

To a great extent, the assumption that round-trip time is Markov is supported by the
data. Fig. 1 shows the conditional distribution of the latency. The Igure indicates that
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Fig. 1. The above plots show the conditional distribution of the round-trip time. The distributions are con-
ditioned on either one, two or three past values.

the distribution depends little on the past given the present, i.e., the Markov condition
(4) appears to be a reasonable approximation.

3.1. Parameter estimation for the stationary model

There are many possible approaches to estimating the parameters. A very popular
approach to parameter estimation is the method of maximum likelihood. While the
maximum likelihood parameter estimators are tractable in this setting, they do not yield
very good estimates. In particular, these estimates appear to overestimate all parameters.
The reason for this poor performance is that the model (1) is not the actual system
and the method of maximum likelihood performs poorly in the face of even a few data
points that are not explained by the model. Instead of maximizing the likelihood, we
are interested in the parameters that best It the data. To this end we seek to minimize
the L1 distance between the observed probabilities and the model. Note that this norm
has the desirable property (Devroye, 1987) that when f and g are densities,∫

|f − g|= 2 sup
A

∣∣∣∣
∫
A
f −

∫
A
g
∣∣∣∣ : (5)

In this paper, we are able to make use of large amounts of data. Hence, in most cases,
the histograms provide accurate estimates of the actual density. Thus, the L1 error
between the Itted density and the observed histogram can be easily translated into the
size of the error in terms of probability.
DeIne

h�;�;�;	(xi) = C(r� + ��r�) exp(−	(ln(r))2):
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Fig. 2. Observed and Itted stationary distributions of the round-trip time. The top left-hand plot shows the
round-trip time between Los Angeles and San Jose at 3:30 p:m: on March 26, 2001. The right-hand plot
show the round-trip time for the same connection at 1 a:m: on March 27, 2001. The lower two plots show
the round-trip times at the same times as the upper plots but for the Los Angeles to Tampa connection.

DeIne equally spaced bins centered at xi =Pi. The observed density is

pe(xi) :=
1

� · N
N∑

k=1

1{xi−�=26Rk¡xi+�=2};

where 1{xi−�=26Rk¡xi−�=2} is one if Rk is in the ith bin and zero otherwise and where
N is the number of observations. Fitting cost is deIned as

J1(�; �; �; 	) :=
∞∑
i=1

|pe(xi)− h�;�;�;	(xi)|�: (6)

The objective is to solve min�;�;�;	J1(�; �; �; 	). This four-dimensional minimization can
be solved using numerical methods such as quasi-Newton (Luenberger, 1984). While
this optimization appears to be non-convex, with carefully chosen initial parameters
the optimization usually converged quickly. Note that if N → ∞ and if � → 0, the
minimization becomes

min
�;�;�;	

∫ ∞

0
|pe(x)− h�;�;�;	(x)| dx:

As discussed in the introduction, round-trip time measurements were made for a
connection between Los Angeles and San Jose and between Los Angeles and Tampa.
Fig. 2 shows the observed and the minimum distance It probability density of the
variable part of the latency. The Ixed delay was subtracted and will continue to be
for the remainder of the paper. Hence, a round-trip time of zero means that the packet
experienced the shortest round-trip time observed. Fig. 2 shows the round-trip time for
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Table 1
Estimated parameter values for the stationary distribution

Connection � � � 	 L1

Los Angeles–San Jose (afternoon) 0.33 6.3 13 2.6 0.09
Los Angeles–San Jose (night) 0.44 7.8 16 5.4 0.03
Los Angeles–Tampa (afternoon) 0.01 2.1 369 0.5 0.126
Los Angeles–Tampa (night) 0.41 9.8 21 5.4 0.115

The right-hand column is the L1 norm of the di erence between the Itted density and the observed
histogram.

both connections during the day and night. These plots are typical. Note that larger
round-trip times are experienced during the afternoon. This increase in round-trip time is
due to increased congestion during the afternoon, resulting in longer queueing delays.
The parameter values for these connections and the L1 Itting errors are shown in
Table 1.

3.2. Estimating the di0usion parameters

As in the previous section, a minimum distance It is used to estimate the parameters
� and �. As discussed above, � and � control the distribution of the increments Rt+T −
Rt . SpeciIcally, if �; �; �, and 	 are given, then � and � are uniquely identiIed by the
functions p(RT |R0 = ro) for di erent ro. Thus, � and � can be found by observing RT

whenever |R0 − ro| is small where T is the sampling period. In this paper, T =10 ms.
We approximate the density p(RT |R0 = ro) by subdividing the positive real line into
bins as above and observing the distribution Pe(xi − �

2 6RT ¡xi + �
2 |R0 = ro). Once

Pe is determined, the following minimization can be solved:

min
�;�

∞∑
i=1

∣∣∣∣Pe

(
xi − �

2
6RT ¡xi +

�
2

∣∣∣∣R0 = ro

)

−P
(
xi − �

2
6RT ¡xi +

�
2

∣∣∣∣R0 = ro; �; �; �; 	; ��
)∣∣∣∣ ;

where

P
(
xi − �

2
6RT ¡xi +

�
2

∣∣∣∣R0 = ro; �; �; �; 	; ��
)

=
∫ xi−�

2

xi−�
2

pT (x|ro; �; �; �; 	; ��) dx

with pT (x|ro; �; �; �; 	; ��) found by solving (3).
One drawback to this approach is that there is no clear choice of ro. Indeed, for a

single ro, there may be many pairs (�; �) that achieve the above minimum. To resolve



32 S. Bohacek, B. Rozovskii / Computational Statistics & Data Analysis 45 (2004) 25–50

this ambiguity, a set {roj : 16 j6M} of ro is chosen and a single pair (�; �) is found
for all of these ro. SpeciIcally, deIne the following loss function:

J2(�; �) :=
M−1∑
j=1

(roj+1 − roj)p(roj |�; �; �; 	)

×
∞∑
i=1

∣∣∣∣Pe

(
xi − �

2
6RT ¡xi +

�
2

∣∣∣∣R0 = roj

)

−P
(
xi − �

2
6RT ¡xi +

�
2

∣∣∣∣R0 = Roj ; �; �; �; 	; ��
)∣∣∣∣ :

The best �; � are found by solving min�;�J2(�; �). Note that the weighting (roj+1 −
roj)p(roj |�; �; �; 	) places more weight the more likely ro. Furthermore, as M → ∞,
supj (roj+1 − roj) → 0, and the number of observation N → ∞, we have,

J2(�; �) → E
(∣∣∣∣Pe

(
xi − �

2
6RT ¡xi +

�
2

∣∣∣∣R0 = roj

)

−P
(
xi − �

2
6RT ¡xi +

�
2

∣∣∣∣R0 = roj ; �; �; �; 	; ��
)∣∣∣∣
)

:

However, we have not found a signiIcant beneIt in taking M large. The results
presented here use M = 5 and roj is spaced at the j × 1623 percentile. This mini-
mization was carried out by griding the parameter space and evaluating J2 at each
point. We found that J2 is non-convex. However, as can be seen by examining (3),
p(xt |y0; �; 2�) = p(x4t |y0; �; �). Furthermore, p(xt |y0; �; �) can be approximately rep-
resented as p(xt |y0; �; �) = Ap(y0) and p(x2t |y0; �; �) = A2p(y0) where A is a matrix.
Thus, if the dimension of A is small, then evaluating J2 for a Ixed � and many � is
not signiIcantly more diHcult than evaluating J2 for a Ixed � and �.
Figs. 3–6 show some observed and Itted transition probabilities. Di erent � and �

were found for each time frame but, within a speciIc time frame, the same � and �
were used for all initial conditions. Table 2 shows the parameters found for the times
shown in the Igures.
While the quality of It shown in Figs. 3–6 is typical, the quality is not always

so good. Fig. 7 shows the observed and Itted transition probabilities for March 26
at 6:40 p:m: for the Los Angeles to San Jose connection. Note that the observed and
Itted stationary density appear to match. Indeed, the L1 error is 0.21. However, the
observed and Itted transition probabilities appear to di er with the average L1 cost
for the transition probabilities was found to be 0.42. This di erence is most apparent
when the initial conditions, Ro, is large. Note the multiple modes in the transition
probabilities. If the parameters are Ixed, the model (1) cannot yield such a transition
probability. On the other hand, if the parameters are allowed to rapidly switch, then
it might be possible to yield such behavior. However, in this paper we only consider
slowly varying parameters. The possibility of rapidly varying parameters is left for
future investigations. It is also possible that the observed transition probabilities are
not very accurate. This inaccuracy could be due to the fact that for this observation,
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Fig. 3. Observed and Itted transition probabilities for the Los Angeles to San Jose connection on March, 26
at 3:30 p:m. The upper left shows the stationary density. The remaining plots show the observed transition
probability (solid line), the Itted transition probability (dotted line) and, for reference, the stationary density.
The vertical solid line indicates the initial condition.
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Fig. 4. Observed and Itted transition probabilities for the Los Angeles to San Jose connection on March,
26 at 1 a:m.
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Fig. 5. Observed and Itted transition probabilities for the Los Angeles to Tampa connection on March, 26
at 3:30 p:m.
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Fig. 6. Observed and Itted transition probabilities for the Los Angeles to Tampa connection on March, 26
at 1 a:m.
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Table 2
Estimated parameters for the transition probabilities

Connection � � L1 Cost

Los Angeles–San Jose (afternoon) 0.0125 0.8 0.14
Los Angeles–San Jose (night) 0.0045 2.2 0.15
Los Angeles–Tampa (afternoon) 0.067 1.5 0.33
Los Angeles–Tampa (night) 0.043 2.3 0.18

The right-hand column shows the L1 norm of the di erence between the Itted density and the observed
histograms.
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Fig. 7. Observed and Itted transition probabilities for the Los Angeles to San Jose connection on March,
26 at 6:40 p:m.

the support of the stationary density is large. Hence, each particular round-trip time was
not observed very often. This is particularly true for large xo. Therefore, the variance
of the estimate of P(R10 − R0|Ro) is large for large Ro.

4. Goodness of �t

The above techniques were applied every 3 min during the month of March, 2001.
The data collected over a 100 s period was analyzed and new model parameters were
found. Figs. 8 and 9 show an estimate of the L1 error for the Los Angeles–San Jose
and Los Angeles–Tampa connections, respectively. These Igures also show the average
round-trip time during the period. The L1 error in modeling the stationary distribution
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Table 3
Quality of It for di erent connections and di erent times of day

Connection Stationary Distribution Transition Probabilities

Afternoon Evening Night Morning Afternoon Evening Night Morning

LA–SJ 0.073 0.067 0.11 0.093 0.15 0.14 0.20 0.18
LA–Tampa 0.10 0.12 0.17 0.12 0.20 0.20 0.20 0.17

The measure of It is the L1 norm of the di erence between the Itted density and the observed histogram.

is given by the minimum value of J1 above. While the L1 error in modeling the
transition probabilities is given by the minimum value of J2. Note that for the Los
Angeles–San Jose connection, the diurnal variation in the round-trip time is clearly
visible. Furthermore, it can be seen that the quality of It is better during the more
congested daytime than the lightly congested nighttime. Table 3 shows the mean quality
of It for di erent times of the day and di erent connections.

5. Dynamic model and parameter dynamics

In Section 3.1, it was assumed that the model parameters remain constant. However,
examining Figs. 3–6, it is clear that the parameters vary with time. Figs. 10 and
11show a time series of the estimated parameters �; �; �, and 	 along with the average
round-trip time over the measured period. In this section, models are developed of
parameter variation. Since the parameters are not directly observable, the variation in
the parameters cannot be directly determined. Instead, we make the assumption that
the parameters slowly vary and that the parameters can be taken to be nearly constant
over a short time interval. In this case, the methods described in Section 3 can be used
to estimate the parameters over short time intervals. These estimates are then used to
infer the dynamics of the parameters. To make clear the di erence between observed
distributions and inferred distributions, we denote Pe as the observed quantity (e for
ensemble) and P̂ as the inferred probability.
Models of parameter dynamics are developed and justiIed in the next two subsec-

tions. In Section 5.1, the parameters are divided into three groups. It is assumed that
the parameters in one group are independent of the parameters in the other groups.
In Section 5.2, the models of parameter variation are developed for each parameter
group. Each model consists of a model of the stationary distribution and a model of
the parameter transition.
While much care was put into the selection of the model for the round-trip time, the

models for the round-trip time model parameters are more crude. One reason for this
crudeness is that the round-trip time model is already somewhat complex and complex
models for the parameters would result in very complex model overall. Another reason
for the simpliIed models is that we anticipate that parameters models will be used in a
Bayesian framework. Thus, parameter initial distributions and transition distributions are
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Fig. 10. Time series of inferred parameter values for the Los Angeles to San Jose connection from March,
28 to March 31, 2001.

required. However, the observed dynamics of the round-trip time has a strong impact
on the parameter estimates and tends to compensate for errors in the distributions.

5.1. Parameters correlation

The parameters dynamics will be modeled as Markov processes. Thus, it is assumed
that the parameters obey

p(	t |	t0 ) = p(	t |	t0 ; 	t−1 ; : : : ; 	t−n):

This Markov assumption is only an approximation and is unlikely to exactly hold. Fig.
12 shows the autocorrelation of the parameter increments for the Los Angeles–Tampa
connection. The Los Angeles–San Jose connection gives nearly identical results. Note
that there is little correlation after one time step. The correlation at one step indicates
that a low order AR model might be appropriate. However, in order to develop a
simple model, the Markov assumption is made.
Another modeling assumption is that some parameters are dependent while others

are independent. The upper plot in Fig. 13 shows the observed pairs of the parameters
(	; �). There is a clear aHne relationship between 	 and �. Fig. 14 is similar to 13
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Fig. 11. Time series of inferred parameter values for the Los Angeles to Tampa, Florida connection from
March, 28 to March 31, 2001.
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but for the parameters (	; �). The parameter dependence is model as

�= a+ b	+ n�;

�= c + d	+ n�; (7)
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Table 4
The least squares parameter estimates of the parameters that related 	 to � and 	 to �, the parameters of
the Gaussian approximation of the residual error and the L1 di erence between the histogram of the residual
error and the Gaussian approximation

Connection a b � � L1 c d � � L1

Los Angeles–San Jose 1.4 1.39 −0.14 2.4 0.16 3.9 3.0 −0.45 1.68 0.31
Los Angeles–Tampa 2.1 2.1 0.3 2.3 0.43 3.7 3.7 1.3 3.7 0.37

where a, b, c; and d are constants and n� and n� are normally distributed. The scalar
parameters are found by minimizing the least squares error and the parameters of the
normal distributions are found by minimizing the L1 norm of the di erence between
the residual error distribution and the Itted normal distribution. Table 4 shows the
parameters found for the two connections analyzed as well as the L1 distance between
the residual error and the Itted normal densities. Because of this dependence, the
dynamics of � and � are not investigated. Only the dynamics of 	 is modeled and (7)
is utilized to Ind � and �.

Remark 1. Note that Figs. 14 and 13 indicate that a simple linear relationship may
not be appropriate. It appears that a model that switches between linear relationships
might perform better. This approach will be left for future work.

The data indicates that there is a deterministic relationship between � and �. Specif-
ically, the data indicates that for the large majority of the parameters found obeys
�� = c, where c = 0:01 for the Los Angeles–San Jose connection and c = 0:1 for the
Los Angeles–Tampa connection. Fig. 15 shows the inferred relationship between � and
�. Note that except for some points along the line �=0, the Itted relationship matches
exactly the inferred relationship. Because of this dependence, only the dynamics of �
will be investigated.
In light of the above results, the parameters are divided into three groups; (�; �; 	),

� and (�; �). The variation of the parameters in distinct groups is assumed to be
independent. However, this is a simplifying assumption and is not entirely true. For
example, the inferred correlation coeHcients between the parameters 	, � and � were
found to be ��;	 = 0:44, ��;� = 0:35, �	;� = 0:55.

5.2. Models of parameter variation

To account for the variation in parameters, the model for latency (1) can be extended
to

dRt =
�2

2
R�−1

(
(�R�

t + ���R�
t )

(R�
t + ��R�

t )
+ �− 	2 ln(Rt)

)
dt +

√
�2R�

t dWt:
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Fig. 15. The Inferred Parameter Pairs (�; �) for the Los Angeles–San Jose connection (upper plot) and the
Los Angeles–Tampa connection (lower plot). The plot only shows one set of points because the relation is
exact for � �= 0:

We model the parameter as Markov process and deIne a similar model

dRt =
�(!t)2

2
R�(!t)−1

(
(�(,t)R

�(,t)
t + �(,t)�(-t)�(,t)R

�(,t)
t )

(R�(,t)
t + �(-t)�(,t)R

�(,t)
t )

+ �(!t)− 	(,t)2 ln(Rt)

)
dt +

√
�(!t)2R

�(!t)
t dWt; (8)

where ,t , !t and -t are independent Markov process. The , process is associated with
�; �; 	, the ! process is associated with � and �, and the - process is associated with
�. Thus we can interchange 	(,t) and 	t as well as �(!t) and �t , etc. We assume
that the processes ,, !, and - take integers values 1; 2; : : : ; M . Set R	 := max(	t). The
interval [0; R	] is divided into M equally sized intervals. Thus

P(,t = j|,0 = i) ≡ P
(
(j − 1)

R�
M
6	t ¡ j

R�
M

∣∣∣∣ (i − 1)
R�
M
6	0 ¡i

R�
M

)
:

DeIning R� := max(�t) and R� := max(�t), P(!t = j|!0 = i) and P(-t = j|-0 = i) can be
deIned similarly.
The transition probabilities of the Markov processes can be written as

p(,t = j|,0 = i) = (exp(−Q,t))i; j ;

where (exp(−Qt))i; j is the (i; j) component of the matrix exp(−Q,t). We assume that
the parameters are slowly varying. SpeciIcally, we assume that (−Q,t)i; j are small for
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t on the order of a few minutes. Thus, for t in this range,

p(,t = j|,0 = i) = (exp(Q,t))i; j ≈ (I + Q,t)i; j ;

p(!t = j|!0 = i) = (exp(Q!t))i; j ≈ (I + Q!t)i; j ;

p(-t = j|-0 = i) = (exp(Q-t))i; j ≈ (I + Q-t)i; j ;

where I is the identity matrix. Thus, by estimating the parameter 	 every T seconds
(here, T was taken to be 180), it is possible to estimate p(,T = j|,0 = i). Then Q,

can be estimated via

Q,
i; j ≈

1
T
(p(,T = j|,0 = i)− 1{i=j});

where

1{i=j} =

{
1 if i = j;

0 otherwise:

Likewise

Q!
i;j ≈

1
T
(p(!T = j|!0 = i)− 1{i=j});

Q0
i; j ≈

1
T
(p(-T = j|-0 = i)− 1{i=j}):

A simpliIcation can be made by assuming that

pa;b;c(	T |	0) = (1− c)1 exp(−21|	T − 	0|) + cb exp(−2b|	T − 	0|): (9)

This model is the mixture of Laplace distributions and gives a reasonable It of the data
with great reduction in the complexity of the model. Note that the transition 	T − 	0

is taken to be independent of the initial value 	0. While the data supports this class of
mixture of Laplace distributions, it appears that the parameters a; b; p should depend on
	0. However, we found this dependence to be minor and, hence, make the simplifying
assumption that the distribution of the increment of the parameter is independent of
the initial value. We make the same assumption for the other parameters � and �.
In order to estimate the parameters a, b and c, deIne the cost

J3(a; b; c) :=
M∑
i=1

p̂

(
	0 = i

R	
M

)
×

M∑
k=1

∣∣∣∣∣
(
(1− c)a exp

(
−2a

R	
M

|k − i|
)

+cb exp

(
−2b

R	
M

|k − i|
))

− p̂

(
	T = k

R	
M

∣∣∣∣∣	0 = i
R	
M

)∣∣∣∣∣ ; (10)

where

p̂

(
	T = k

R	
M

∣∣∣∣∣	0 = i
R	
M

)
:= P̂

(
k
R	
M

− 1
2

R	
M

¡	T 6 k
R	
M

+
1
2

R	
M

∣∣∣∣∣ i
R	
M

− 1
2

R	
M

¡	06 i
R	
M

+
1
2

R	
M

)
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Fig. 16. Upper: The stationary distribution of 	 for the Los Angeles–San Jose connection during times of
very low congestion. Lower: The transition probabilities of 	 for the Los Angeles–San Jose connection
during times of very low congestion.

is the inferred transition probability and p̂(	0=i( R	=M)) := P̂(i( R	=M)− 1
2 (
R	=M)¡	6

i( R	=M) + 1
2 (
R	=M)) is the inferred probability. The parameters were found by solving

mina;b;p J3(a; b; c).
The stationary distribution of the parameter values was also estimated. A normal

distribution was chosen to model the stationary distribution. Again, the L1 norm was
used to estimate the parameters of the normal distribution.
By examining Fig. 10 it is clear that the average round-trip time is highly correlated

to the parameters. In particular, for the Los Angeles to San Jose connection, very
low average round-trip times coincide with small values of 	. To account for this
correlation, two models are developed; one for typical values of average round-trip
time and one for very small values of round-trip time. We considered any round-trip
time less than 2:5 ms to be very small. These two model scenarios are only required
for the Los Angeles–San Jose connection. The probability of transitioning from a state
of very low round-trip time to a state of higher round-trip time is 0.051, while the
probability of going from higher round-trip time to very low round-trip time is 0.056.
Furthermore, the probability of being in the low round-trip time state is 0.47.
Figs. 16–18 show the inferred stationary density and transition probabilities for 	.

Table 5 provides the parameter values found.
A similar model for � is also developed. SpeciIcally, the transition probabilities were

modeled using (9) with parameters a, b, c and modeling the stationary distribution with
a Normal distribution with parameters � and �. Table 6 shows the parameter values and
the minimum cost for the transition probabilities and the stationary distribution and Figs.
19–21. Note that the transitions densities are well modeled by a mixture of Laplace
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Fig. 17. Upper: The stationary distribution of 	 for the Los Angeles–San Jose connection during times of
normal congestion. Lower: The transition probabilities of 	 for the Los Angeles–San Jose connection during
times of normal congestion.
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Fig. 18. Upper: The stationary distribution of 	 for the Los Angeles–Tampa connection. Lower: The transition
probabilities of 	 for the Los Angeles–Tampa connection.

densities. However, the Normal distribution only provides a rough approximation of
the stationary distribution.
The Inal parameter to be modeled is �. Again, the transitions are modeled as a

mixture of Laplace random variables and the stationary distribution was modeled as a
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Table 5
Parameters of the stationary and transition probabilities of 	

Connection a b c L1 � � L1

Los Angeles–San Jose (Very Low Congestion) 0.005 4.3 0.77 0.37 2.2 0.19 0.28
Los Angeles–San Jose (Normal Congestion) 1.5 1.1 0.003 0.16 3.8 1.0 0.12
Los Angeles–Tampa 0.26 0.94 0.21 0.16 3.7 1.45 0.090

Table 6
Parameters of the stationary and transition probabilities of �

Connection a b c L1 � � L1

Los Angeles–San Jose (Very Low Congestion) 75. 3.5 0.56 0.35 0.17 0.03 0.75
Los Angeles–San Jose (Not Low Congestion) 26. 3.1 0.45 0.19 0.32 0.07 0.46
Los Angeles–Tampa 30. 2.7 0.57 0.21 0.40 0.082 0.37
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Fig. 19. For the Los Angeles–San Jose connection during periods of very low congestion the inferred and
Itted stationary density of � (upper) and the inferred and Itted density of the increment of � (lower).

Normal distribution. Unlike the other parameters, there is no beneIt to model the case
of very low round-trip time di erently from normal round-trip times. Table 7 shows
the inferred parameters and the measure of It. Figs. 22 and 23 show the inferred and
Itted distributions of �.
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Fig. 20. For the Los Angeles–San Jose connection during periods of not very low congestion the inferred
and Itted stationary density of � (upper) and the inferred and Itted density of the increment of � (lower).
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Fig. 21. For the Los Angeles–Tampa connection the inferred and Itted stationary density of � (upper) and
the inferred and Itted density of the increment of � (lower).

6. Conclusion

A di usion model of the round-trip time has been presented. Although this model
has few parameters, it is able to reproduce the probabilities distributions observed.
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Table 7
Parameters of the stationary and transition probabilities of �

Connection a b c L1 � � L1

Los Angeles–San Jose 1452 152 0.35 0.23 0.0047 0.0012 0.35
Los Angeles–Tampa 243. 3.7 0.43 0.32 0.042 0.0040 0.28
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Fig. 22. For the Los Angeles–San Jose connection the inferred and Itted stationary density of � (upper) and
the inferred and Itted density of the increment of � (lower).
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Fig. 23. For the Los Angeles–Tampa connection the inferred and Itted stationary density of � (upper) and
the inferred and Itted density of the increment of � (lower).
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Fig. 24. Round-trip time observations not explained by the model. The round-trip time is set to 0 if a drop
occurs.

This paper not only provides useful models for round-trip time, but shows that it is
possible to model round-trip time. This result, to some degree, contradicts the popular
opinion that the Internet is unmodelable. With such models the normal and abnormal
behavior of the Internet can be detected. Such monitoring is the Irst step to providing
network attack detection implementable from the edge hosts. However, many issues
require further investigation. For example, these models do not accurately model the
occasional large variation in latency. For example, Fig. 24 shows a time series of the
latency. Clearly, some anomaly occurred some time before t = 0 and ended at around
t = 1 s. In this Igure the round-trip time is set to zero if a packet is dropped. Note
that a large number of drops occurred until about 2 s after the trial commenced. After
this time, the latency slowly decreased back to its ambient level. While such events do
occur, a modeling approach di erent form the one presented here is required to capture
such events. Future work will concentrate in two areas. The Irst will collect more data
from di erent locations and determine if the models developed here are applicable for
other connections. If the models are applicable, then the spatial variation of the model
parameters can be determined. A second direction is to develop a more theoretical
understanding of round-trip time. For example, the long tail of the round-trip time
density is not predicted by simple queue models such as M/M/1.
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