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Abstract— Testbeds are projected to be the next gener-
ation of mechanisms for protocol verification and perfor-
mance validation of wireless networks. One important ob-
jective of these testbeds is to depict the propagation mech-
anism accurately. This paper presents measurements and
models of propagation between stationary transmitters and
receivers in a dynamic environment. These measurements
indicate that in some environments, the signal strength
displays wide variations, while in other environments, there
is less variation in the signal strength. A diffusion-based
stochastic model is presented that can be used to increase
the accuracy of testbed emulations

I. INTRODUCTION

One of the main challenges of mobile wireless net-
working is time-varying channels. This variability results
in nodes being able to communicate at a high bit-rate and
with high quality at one moment, and then, a moment
later, not able to communicate at all or be able to only
communicate at a low bit-rate. In order to understand
the performance of mobile wireless networks in realistic
environments, high-fidelity simulators or test-beds are
necessary to capture the behaviors that are not amendable
to analytic methods. In case of simulators and test-beds,
it is important that the channels display the full range
of realistic variations. In the case of test-beds, either the
test-bed must include the physical mechanisms that result
in realistic channel variation, or, if the physical means are
not available, then some portion of the channel must be
realized through artificial means. Thus, in order to verify
the behavior of mobile wireless networks, the behavior
of realistic channels variations must be well understood
and perhaps modeled and simulated.

In the context of communication theory, variability of
the channel gains is well known. In order to understand
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the performance of communication techniques, a number
of models of the variability of channels have been devel-
oped. For example, a fast fading channel is assumed to be
the result of the receiver and/or the transmitter moving.
The resulting channel variations are often modeled with
Jake’s Model [1]. To account for the variability induced
by the mobile node moving among large objects (e.g.,
buildings), a time-varying shadowing model can be used.
One approach is to model the channel as a correlated
Gaussian process [2], [3], [4].

It is important to note that the commonly used channel
models used in communication theory assume that it is
the mobility of the receiver or/and transmitter that causes
the channels to vary. On the other hand, it is widely
known that the mobility of objects in the environment
can also result in time-varying channels. However, there
has been little effort focused on quantifying the impact
of mobility in these dynamic environments. Furthermore,
to the best of our knowledge, there are no models
for the channel variation in such environments. This
paper reports on the characteristics of the time-varying
channels that arise when the receiver and transmitter are
stationary, but the environment contains mobile objects.
We specifically focus on the impact of pedestrian mo-
bility on the variability of the channel gain.

In the context of mesh networks, the infrastructure
nodes are fixed. However, the environment could contain
moving pedestrians. Furthermore, even when the receiver
and/or transmitter are moving (e.g., a client node in
a mesh network), the mobility of pedestrians may be
responsible for a significant contribution to the channel
variability. In this paper, it is found that the channel in
such settings displays large variability, with variation in
channel gain exceeding 10 dB. Recall that the dynamic
range1 of 802.11b at 11 Mbps is roughly 50 dB [5],
so, in a sense, a 10 dB variation is 20% of the entire

1Typically the transmission power of 802.11b is -10dBm (100mW).
Considering the first meter loss to be � 40dB the pathloss has to be �
50dB in-order for the received signal be above the receiver sensitivity.
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dynamic range.

Considering the significance of the channel variation
due to movement of objects in the environment, it is
important that test-beds and simulators account for this
type of channel variation. To support this need and to
gain further understanding of channel variability, the
paper develops a continuous-time diffusion model of
the variability of the channel gain. It is important to
note that the motivation for the diffusion-based model
is that diffusion processes can provide a compact way to
completely describe the observed process. In this paper,
a one-dimensional, four-parameter diffusion process is
found to provide a good approximation. Specifically,
the stationary distribution of this process is the Gamma
distribution, which closely matches with the observa-
tions (Section IV-A). And furthermore, we find that the
transition probabilities of the diffusion process approx-
imate the empirical transition probabilities (Section IV-
B). While the four-parameter model is fairly compact, it
appears that the number of parameters could be further
reduced. As will be shown, the process’s parameters are
strongly dependent on the variance, and the variance
is dependent on the pedestrian density. This points to
the possibility of developing a single parameter model,
where the parameter is a function of the pedestrian
density. Future work will verify this possibility.

The remainder of this paper is as follows. In the next
section a brief description of the measurement setup and
the measured scenarios is provided. Then the class of
diffusion models used is brie�y described in Section III.
An overview of how the model parameters are estimated
is provided in Section III-A. In the data analysis section
several feature are examined. Section IV-A focuses on
the stationary distributions, while Section IV-B focuses
on the transition probabilities. And, concluding remarks
are provided in Section V.

II. MEASUREMENT SETUP

The central goal of this effort was to measure the
channel gain when the channel might be subjected to
blockage due to mobile pedestrians. Furthermore, the
impact of the antenna height was investigated. Two
Linksys BEFW11S4 routers were used. The parameters
of the BEFW11S4s were set such that the data rates were
fixed at 1Mbps. They were also outfitted with a 2 dBi
antenna.

To determine the received signal strength, the Yellow-
jacket [6] receiver made by Berkeley Varitronics Systems
was used. The yellowjacket 1.40 firmware was used with
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Fig. 1. Measurement Configuration. T-L and T-H indicate Transmitter
at lower and elevated positions respectively. R indicates the reciver
position.

the system. The base stations and the receiver where
configured to support 20 packets per second.

The configuration of the equipment is illustrated in
Figure 1. Note that two transmitters are used at the same
time. We refer to the higher antenna as the elevated
antenna, and refer to the other antenna as the lower
antenna.

Three scenarios were investigated. The high pedes-
trian node density scenario was measured between 4
PM and 5 PM on Walnut Street between 15th and 16th
Streets in Philadelphia. The other two scenarios are from
Trabant University Center at the University of Delaware.
The low pedestrian density measurements where made
from 4 to 5 PM, while the moderate pedestrian density
measurements were made from 12 to 1 PM, when the
building is fairly crowded due to lunchtime.

III. DIFFUSION PROCESS

Diffusions processes have been used to model a
large number of continuous time (and continuous space)
processes [7]. While diffusion processes have many
properties that make them especially amendable to var-
ious calculations, our purpose for employing diffusion
is limited. Specifically, a diffusion process allows for
a few parameters to specify the invariant distribution
as well as the transition probabilities. Furthermore, the
transition probability is specified for all times. That is, let
� ��� ����� denote the probability density of the process
taking the value � at time �, given that the process
took the value �� at time �. A diffusion model provides
the function � for all the values taken by the variables
�, �, and ��. Finally, it is straightforward to simulate
the process. This last property makes it convenient and
important for the hi-fidelity simulations and test-bed
experiments of wireless networks. The challenge in using
diffusion models is to find a model that has minimum
number of parameters. We will utilize a process with
four parameters.



In general, a diffusion process can be described
through a stochastic differential equation, i.e.,

��� � � ���� ��� � ���� �	�� (1)

where�� is the value of the process at time �, � and � are
one-dimensional functions and 	� is Brownian motion.
Note that if � � �, then (1) is an ordinary differential
equation. Here we are interested in the case where
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In this case, it can be shown that �� � ����� and
that the probability density of the invariant (or sta-
tionary) distribution of �� is given by ���� ��� �
��
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��� 	
� ���� [8]. That is, �� is Gamma distrib-

uted with parameters � and . Note that if � � �, then
(1) is the widely used CIR model [9].

For stochastic calculus [7], it can be shown that the
transition probability of �� obeys
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where �������� ��� ����� is the probability density of ��
given that �� � �� and given the parameters �, , �
and 
. The above partial differential equation can be
solved numerically, or Monte Carlo simulations of 1 can
be used to determine the transition probability.

A. Parameter estimation methodology

The parameters, �, �, , and 
, are estimated in a
two-stage process. First, all the data samples are used
to estimate the stationary distribution, from which � and
, the parameters of the Gamma distribution, are found.
Once � and  are found, 
 and � can be estimated. While
it is possible to estimate the model parameters via maxi-
mum likelihood estimation, here we elected to select the
parameters that minimize the �� norm between the ob-
served probability density function (i.e., the histogram)
and the modeled probability distribution. The motivation
for using the �� norm is that it can be shown that if � and
� are probability densities, then
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��. In other words, the
error from using � to estimate the probability of event
� as oppose to using �, is bounded by one-half of the
�� difference between � and � [10].

The parameters are estimated as follows. Let �� ���
be the fraction of observations between ��� and ���.
Similarly, let �� ��� ����� be the fraction the observations
such that ���� � �� � ���� and ��� � ���� �
���. Then, the � and  are selected such that
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Once � and  are determined, � and 
 can be found in
a similar fashion, by solving
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Note that the above is the weighted �� norm of the
transition probabilities where the weighting is given by
the invariant probability distribution. The rational behind
this is to force the parameters to provide the best fit for
the most likely initial conditions ��.

In the computations below, � � ��� and � � � sec.

IV. DATA ANALYSIS

The data collected represents the channel gain in
dBm. We transform the data as follows. Denote the
collected data at time � as �� dBm. Then, define �� ��
��� � ��
� ����. Thus, �� � �. Note that the smaller
��, the louder the received power. It is important to
note that the received signal power has been normalized
by ��
� ����. Hence statistics such as the mean of ��
cannot be used to directly determine the probability of
transmission error. However, the offset ��
 � ���� does
not impact the variability, which is of primary focus here.

Figure 2 shows several time series of the channel gains
collected in the different scenarios described in Section
II. This figure also shows a sample time series plot
generated by the diffusion process 1 and 2 with model
parameters derived from the observations and using the
techniques discussed in Section III-A. As can readily be
seen, the observed time series and the generated data
are qualitatively the same. Hence, the diffusion model
can be used to generate channel gains that are, in some
ways, realistic. In this section, the observed data and
quality of the diffusion process fit is analyzed in terms
the stationary probability function (Section IV-A) and
in terms of the transition probability functions (Section
IV-B).
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Fig. 2. Observed Time Series and Synthetic Time Series of Channel Gains in Different Scenarios. The synthetic time series were generated
with a diffusion model. Note that difference in scales.
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Fig. 4. The above table shows the description of different experimental scenarios and the parameters and errors for stationary distribution and
probability transition functions



A. Stationary distribution

Utilizing (3), the parameters of the Gamma distrib-
ution were found that minimize the �� norm between
the histogram of the experimental data and the modeled
distribution. Figure 3 shows the resulting Gamma distri-
bution along with the observed histogram for various
measurement scenarios. As can be seen, the Gamma
distribution provides a good fit to the observed behavior
for all pedestrian densities observed.

As can be observed in Figure 3 and in Figure 4,
as the pedestrian density increases, the variance of the
channel gain increases. This conclusion is reasonable.
In a low pedestrian density setting, the received signal
is a multipath signal that has bounced off of several
stationary objects (e.g., the ground, walls, etc.). However,
when the pedestrian density is high, there are a larger
number of objects for the signal to be bounced off. The
result of the increase in the number of re�ectors results
in a higher variability of the received signal power.

Comparing the distribution of the channel gain for
elevated antennas to lower antennas, there is a relatively
small difference. It can be seen that the variance is larger
when the antenna is elevated. One possible explanation
for this behavior is that the wireless signal transmitted
from the elevated antenna is sometimes able reach the
receiver via a strong line-of-sight path. When a line-
of-sight path is not available, then the propagation en-
vironment facing the elevated antenna is similar to the
environment facing the lower antenna, and hence, has
similar channel gain variation. As a result, the received
signal strength ranges from a line-of-sight strength to a
rather weak signal that has experienced many re�ections

Figure 5 shows the relationship between the mean and
variance for different pedestrian densities. As expected,
as the pedestrian density increases, the channel gain
shows more variability. We also see that the mean
increases with the pedestrian density. Furthermore, the
mean approximately obeys an affine relationship with
the variance, with slope of 0.68 and y-intercept 2.67.
Hence, while the Gamma distribution requires two pa-
rameters, if the variance is specified, then the mean is
also approximately specified. Future work will examine
the relationship between the pedestrian �ow rate and the
variance.

B. Transition probabilities

Now we turn to the transition probabilities. While
the transition probabilities are important for determin-
ing channel behaviors such as the outage duration, we
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Fig. 5. The plot shows the least squares fit for relationship between
the variance and the mean channel gain
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investigate these probabilities for the simple reason that
the combination of the stationary probability distribution
and transition probability completely characterizes a
stochastic process. Hence, if the transition probabilities
observed match those derived from the diffusion process
given by (1) and (2), then the diffusion model can be
used to generate synthetic channel gains that realistically
mimic the channel gains that arise in crowded areas.

Following the approach discussed in Section III-A,
the parameters � and 
 were found. These parame-
ters were used to numerically determine the transition
probabilities. Figure 6 shows several observed and fitted
transition probabilities for the high pedestrian density
and low antenna scenario and the low pedestrian density
and high antenna scenario. The other scenarios 4 resulted
in similar quality of fit.

In Section IV-A it was shown that the mean and
variance approximately obey an affine function. Here
we determine if any simple relationship exists for the
parameters �and 
. To this end, Figure 7 shows the
relationship between the variance of the channel gain
and these parameters. Besides the low pedestrian density
scenario, both � and 
 follow an affine relationship with
the channel gain variance. While more work is required
to understand the low pedestrian density case, it appears
that if the variance is known, then � and 
 can be found.

V. CONCLUSIONS

While the variability of the channel is often attributed
to the mobility of the receiver or transmitter, it is
also possible that objects in the environment are partly
responsible for the channel variability. This paper verifies
that hypothesis. Furthermore, a four-parameter, diffusion
process is found to approximate the observed variability
of the channels. Finally, it was found that the model

parameters are closely related to one another and appear
to follow a deterministic relationship. Thus, the only
independent variable is the variance of the channel gain,
which seems to be highly correlated to the pedestrian
density. However, further work is required to determine
the relationship between pedestrian density and the vari-
ance.
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