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Introduction

Over the past ten years there has been growing interest in
modeling experimentally observed time series as nonlinear
deterministic or possibly chaotic dynamical processes.1 For
example, the analysis of economic time series2 (prediction of the
stock market), the analysis of geophysical seismographic time
series (prediction of earthquakes), and most recently, the virtual
explosion of applications related to the analysis of physiological
time series3 (dynamical analysis of heartbeats to predict fibrilla-

tion, dynamical analysis of brain waves to predict epileptic
seizure, etc.) reflect the wide variety of interests in this area.

The present research fits within this last trend, with the
exception that, while many physiological time series have been
deemed chaotic by some intuitive criteria, it is the intent here to
apply a more rigorous mathematical evaluation of the presence
of chaos in the very specific sEMG signal recorded during the
“somatopsychic” waveform, characteristic of Network Spinal
Analysis (NSA).4 The “somatopsychic” waveform being studied
is observed to undulate primarily between the sacrum and cer-
vical areas of the spine, over a range of amplitudes and frequen-
cies. Whereas these parameters do not appear sequentially pre-
dictive in any one subject, there does appear to be a common-
ality of the distribution of amplitudes and frequencies among
the larger population of subjects expressing the “somatopsychic”
wave. The present preliminary study presents information
acquired to evaluate the nature of this specific waveform as to its
linear versus nonlinear character. Since the waveform associated
with NSA care has a neuromuscular component, it lends well to
measurement by sEMG. Subsequently, the sEMG signals lend
well to mathematical analysis.
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In the present study, caution is being exercised to avoid
incorrectly classifying the sEMG signal as nonlinear. This has
been reported as a potential problem with the false near neigh-
bor (FNN) approach, as purely random signal has been incor-
rectly classified as deterministic by this approach.5 More gener-
ally, while the FNN test works well for low order systems, it is
not clear whether it works well for systems of higher order.5 This
cautious approach is a reflection of concerns regarding the
analysis of chaos in biomedical data, in general.This recent atti-
tude has been triggered by some doubts that have arisen relative
to the benchmark study allegedly indicating that the timing
between heartbeats is chaotic.6,7 A point of consideration is that
there are many factors that affect heart beats; i.e., psychological
factors, breathing, stress associated with being hooked up to an
apparatus, etc.There is also some concern that these extraneous
factors might have influenced the signal leading to misinterpre-
tation as chaos in the data analysis.

This is not to say that there is no chaos associated with the
heart rhythm, but there is some doubt as to whether the data has
been correctly collected or analyzed. Moreover, adding to the
complexity of evaluating the chaotic nature of heart rhythm, it
can also be argued that the heart is naturally subject to psycho-
logical and other physiological factors, and that it is hard to con-
ceive heartbeats outside the human body.

While the heart is subject to some voluntary control via
breathing, the NSA wave, on the other hand, does not appear to
be under any known voluntary control. In fact, if the recipient
were to try to interfere with the wave, it would simply cease rather
than being modified by voluntary control. Thus, the absence of
voluntary control over the NSA sEMG wave signal compared to
the considerable voluntary control of factors affecting the electro-
cardiogram (EKG) signal, renders the former less susceptible to
extraneous factors contributing to its incorrect classification.

There has been some dynamical analysis of EEG and EMG
signals.8,9 However, the novelty in the present study is the speci-
ficity of the sEMG data, being collected during the administra-
tion of NSA care at times when the subject was experiencing the
“somatopsychic” wave. Since no previous analysis of this data has
been performed, it is of interest to compare these findings with
those pertaining to EMG data collected during other physiolog-
ical events, some of which have been classified as chaotic in
nature.Thus, information gained from this on-going study of the
“somatopsychic” waveform associated with NSA care is antici-
pated to be of value to the larger scientific community engaged
in the investigation of the chaotic nature of other less repeatable
physiological systems. Data derived from this study will also be
used to profile any changes which might occur in the sEMG sig-
nal patterns relative to different Levels of Care described in the
clinical application of NSA.4 This growing body of information
is expected to enhance the clinical application of NSA, as well as
serving to further elucidate its underlying mechanisms of action.

Methods

Data Acquisition

The analyses presented in this preliminary study are based on
sEMG data collected during a series of sessions in which a sub-

ject, who granted consent to participate in the study, was
administered NSA care.The study was conducted in the private
office setting with NSA care provided by a certified NSA prac-
titioner.4

The data obtained was in the form of raw (unfiltered) sEMG
signals in micro-volts. The EMG apparatus, an Insight 7000
(EMG Consultants, 255 W Spring Valley Ave., Maywood, NJ
07607) was modified to research standards by accepting data
over a bandwidth of 25 to 500 HZ. Electrodes were applied at
the levels of C1/C2, T6, L5 and S2, following the application
protocol recommended by EMG Consultants.

The sEMG signal was transported directly to disc and
retrieved for analysis on a 330MHz PC compatible computer
and HP workstation.

The application of the nonlinear Canonical Correlation
Analysis (CCA) was applied through the implementation of a
specific algorithm referred to as Alternating Conditional
Expectation (ACE).10

Analyses

Two approaches have been utilized in the initial analysis to
ascertain if any deterministic nonlinear processes are involved in
the sEMG signal. These include the False Near Neighbor
approach (FNN),1 and the linear and nonlinear Canonical
Correlation Analyses (CCA),with accompanying implementation
of the Alternating Conditional Expectation (ACE) algorithm.11

The FNN was utilized initially due to its popularity, although
its relevance has been brought into question especially as applied
to EMG signals. The CCA, alternatively, is a fundamental tool
used by statisticians which has appeared reliable on EMG data.12

To date, in the present study, this approach has been applied
qualitatively. The analysis has centered on the question of
whether or not there is some nonlinear dynamical processes in
the sEMG signal under study.

The nonlinear CCA has been implemented using two
approaches. The first used low order polynomials as simplified
models of the nonlinear distortion whereas the second approach
used the well-known Alternating Conditional Expectation
(ACE).The ACE method provides very explicitly the nonlinear
functions that are generating the data.With the ACE method, it
is possible to establish the shape of the attractor as well as its
topology, etc.

Canonical Variate Analysis

The canonical correlation analysis of an experimentally
observed signal

{X(k) :k=1,2,…,K}

is a technique to detect the dynamics involved in the signal and
to answer such questions as:“Is this signal random?”“Is it corre-
lated to other factors?” “Are there some deterministic features
despite its noisy manifestation?” Hotelling first introduced the
linear canonical correlation analysis in biomedical data process-
ing context in 1936.12

The canonical correlation analysis has both linear and non-
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linear applications.The linear application answers the question,
“Can {X (k)} be modeled by a linear dynamical process driven
by some noise?” In particular, what are the deterministic matri-
ces F, G, H and E such that 

ξ (k+1)=Fξ (k)+Gw(k)
X(k)=Hξ (k)+Εw(k) (1)

where w (k) is considered a “white noise” process, that is, the
w(k)’s are statistically independent. Here, E,F, G and H represent
the linear and deterministic part of the sequence, while the non-
linear and random parts are combined into w. Clearly, the small-
er Gw(k) and Ew(k) are, the easier it is to predict ξ (k) and, there-
fore, X (k).The variable ξ (k) is called the state; it is that part of
the past {…,X(k-2) ,X(k-1)} necessary to predict the future
{X(k) ,X(k+1),…} .The dimension of the state is known as the
order of the system. Before any analysis is performed the order of
the system must be found or estimated. Furthermore, any finite
sequence can be approximated by a system of the form (1) with
arbitrarily small w. However, to produce such an approximation,
the order of the system may need to be very large. Hence, the
goal is to produce a low order model for which Gw(k) and Ew(k)
are small.

Alternatively, the nonlinear canonical correlation analysis
answers such questions as, “Can {X (k) } be modeled as a non-
linear system driven by white noise?” To be specific, what are
the deterministic functions f, g, h and e such that 

ξ (k+1)=f (ξ (k) )+g(w(k) )
X(k)=h(ξ (k) )+e(w(k) ) (2)

where w (k) is a white noise process? If the underlying system
that produced the observed sequence { X (k) } is nonlinear, then
models of the form (2) will have smaller noise terms g(w(k)) and
e(w(k)) than the corresponding linear model (1). The difficulty
with nonlinear analysis is that it is much more involved than the
linear one, and to date only simplified versions of the nonlinear
canonical correlation analysis are used.

Linear Canonical Correlation Analysis

The linear analysis proceeds as follows: At times, k defines the
L (where L stands for “lag”) past observations

X-(k)=(X(k) ,…,X(k–L+1))

and the L future observations

X+(k)=(X(k+1),…,X(k+L)) .

Define the correlation between the past and the future to be
the L x L matrix

C–+=     1     ΚX–(k)TX+(k)
K–2L+1 

Define the autocorrelation of the past as 

C– –=     1     ΣX–(k)TX –(k)
K–L+1 

and that of the future

C++=     1     ΣX+(k)TX +(k).
K–L+1

Define the Cholesky decomposition of C– – and C++,

C– – = T–
TT–

C++= T+
TT+

where the T’s are lower triangular matrices.

The canonical correlation matrix C is defined as

C :=T–
–TC–+T -1

+.

This matrix can be decomposed as

C=U�V

where U and V are orthogonal matrices and 

where the �i’s are called canonical correlation coefficients and
are ordered so that

1 > �1 > �2 > … > �L > 0

These coefficients are the crucial numerical values in the canon-
ical correlation analysis and are providing much information
about the sequence { X (k) }.

A first interpretation is that the predictability of the future of
a sequence given its past (hence a measure of its deterministic as
opposed to random aspect) is the past/future mutual information 

– 12 log det ( I – �2).

In practice, no matter how large L is, the canonical correla-
tion coefficients have a break point,

�1 > … > �D >> �D+1 > … > �L .

Hence, it can be concluded that only the first D coefficients are
important.The rationale for ignoring the tail coefficients 0.1�
�D+1 > … > �L > 0  is that they represent instrumentation and
other noises and numerical rounding errors and are too unreli-
able to take into consideration.Therefore, a Dth order model of
the form (1) would perform nearly as well as a Lth order model.

k-L

k=L

K

k=L

K – L

k=0

�1 0 … 0
0 �2 … 0

0 0 … �L

… … …

…��
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If the canonical coefficients �1 > … > �D are “large” i.e.,
close to 1, then the sequence { X (k)} is nearly linear and deter-
ministic; that is, it can be accurately modeled with a system of
the form (1) with w (k) = 0. On the other hand, if the coeffi-
cients are small, but not too close to zero, then the sequence is
either random or nonlinear; that is, the linear model of the form
(1) would have large Gw(k) and Ew(k) terms.

Nonlinear Canonical Variate Analysis

The nonlinear canonical variate analysis13 is an extension of
the linear canonical correlation analysis. If a system is nonlinear,
then the canonical correlation coefficients (CCC’s) are larger for
the nonlinear analysis compared to the linear analysis. Indeed, an
increase in the nonlinear CCC’s as compared to the linear
CCC’s is an indicator of nonlinearity. Such an increase is appar-
ent for the sEMG signal of the “somatopsychic” waveform char-
acteristic of NSA care. It can, therefore, be concluded from the
present preliminary information, that some type of nonlinearity
is present in the sEMG signal.

To perform a complete nonlinear canonical variate analysis
(CVA) is rather complex. Instead, the correlation is found only for
simple “nonlinearities.” In particular, the nonlinear CVA requires
the discovery of vector valued functions Φ and Θ such that

– 12 log det ( I – �Φ(X_),Θ(X
+

))

is maximized, where �Φ(X _ ) , Θ ( X
+

) denotes the canonical corre-
lation matrix of the signals Φ(X_ ) and Θ(X+ ).This is equivalent
to choosing Φ and Θ such that the mean square prediction error

��Φ�[��k�,…,�(k–L+1)]� –Θ�[��k+1�,…,��k+L�]�� 2) (3)

is minimized where L is the number of “lags” of the system. As
a simplification, the functions Φ are restricted to be simple poly-
nomials of the form

Φ�[��k�,…,�(k–L+1)]�=��i �(k-i)+�i �(k–i)�(k–i)
+	i �(k–i)�(k–i–1). (4)

Furthermore, Θ is restricted to be linear, i.e.,

Θ�[��k+1�,…,�(k+L)]�=��+
i�(k+i).

Since not all possible functions are allowed, the minimum of (3)
might not be achieved. However, (3) might be smaller than in
the case where only linear functions are used. Note that if
β=�=0 then Φ is linear, hence the nonlinear CVA encompass-
es the linear CVA. If the Φ that minimizes (3) is such that β and
� are non-zero, then it can be concluded that the future
{X(k+1),…,X(k+L)} is related to some nonlinear function of
the past {X(k),…,X(k–L+1)}.

Ace Method

In the continued investigation regarding whether the sEMG
signal is due to a nonlinear system as opposed to a random sys-
tem, it has been found prudent to search for the system gener-

ating the data and to evaluate the extent to which it is nonlin-
ear. One reason for not applying tests for nonlinearity (e.g.
FNN) is that it is very hard to determine if the results are an
artifact of the test or a real product of the data. Furthermore,
such difficulties seem to occur with most, if not all, tests for non-
linearity.Alternatively, estimating the nonlinear system has clear
results. If one can construct a low order nonlinear system such
that its output is the same as the sEMG signal, then clearly the
sEMG signal is generated by a low order nonlinear system. If the
output of the constructed nonlinear system is the same as the
sEMG signal, allowing for some small noise, then the sEMG is
mostly nonlinear. In this way, one can precisely gage to what
extent the sEMG signal is nonlinear.

Another advantage of directly identifying the system gener-
ating the sEMG signal is that a linear system can easily be deter-
mined which reflects the best linear system generating the
sEMG signal.This linear system then provides a benchmark to
be compared with nonlinear systems. However, the disadvantage
of identifying the system directly, and the reason why so many
tests for nonlinearity have been developed, is that it is computa-
tionally difficult to construct these nonlinear systems.

The objective of ACE is to search for a possibly nonlinear
system, likely driven by small residual “white noises,” that is gen-
erating the sEMG signal. In particular, the objective is to find
state variables 
i ,i < N , and possibly nonlinear functions f, g, h
and e such that 

where w is a “white noise”, X is the sEMG signal and N is typ-
ically the order D where the sequence of nonlinear CCC’s
shows a break.

A particular approach is to assume that f is linear and h is the
projection of the first factor.That is,

f (
1(k),
2(k),…,
N(k)) =��i–1
i(k)

and h(
)=
1. Hence, 
i(k)=X(k–i+1). In this case, the sEMG sig-
nal is modeled by the Auto Regressive (AR) model

X(k+1)=��iX (k–i). (5)

Such linear predictors are rather simple to determine and pro-
vide comparison benchmarks for all other predictors.

Nonlinear predictors are very hard to construct.A well-estab-
lished approach is the Alternating Conditional Expectation
(ACE) algorithm.11 Although this algorithm does not construct
the most general type of nonlinear predictor, it does generate a
large class of predictors.

It is assumed that mean (X) = 0.The objective of the Nth order
best linear predictor is to find coefficients �i that minimize
E(�0X(k)+�1X(k–1)+�2X(k–2)+…+�N–1X(k–N+1)–Y(k+1))2

L

i=0


1 (k+1)


2 (k+1)


3 (k+1)

�

N (k+1)

g(w(k))
0
0
�
0

f (
1(k),
2(k),…,
N(k))


1(k)


2(k)

�

N–1(k)

X(k)=h(
 (k))+e(w(k))

= +

N

N-1

i=1

i=0
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where Y(k+1)=X(k+1)/ var(X) and var(X) is the variance of X.
The ACE algorithm generalizes this by, instead of searching for
coefficients �1, searching for functions �i and � (see Figures 2-
4) with ��L2  = 1 so as to minimize

E(�0(X(k))+�1(X(k–1))+�2(X(k–2))+…
+�N–1(X(k–N+1))–�(Y(k+1)))2. (6)

To link this to the previous nonlinear CCA, the above pre-
diction error is “small” if the nonlinear canonical correlation
coefficients between the sets of variables

{X(k),X(k–1),…X(k–N+1)},{Y(k+1),Y(k+2),…,Y(k+N)}

are “large,” i.e., close to 1.
Instead of searching over all nonlinear distortions of the

above two sets of variables, a search is done over a certain class
of smooth functions.This class includes linear functions; thus, the
ACE algorithm is more general than the best linear predictor
and will have a prediction error no greater than that of the best
linear predictor. Furthermore, if the ACE algorithm results in a
prediction error that is smaller than the prediction error due to
the best linear prediction error, it can be assumed that the
process generating X is nonlinear.

However, if the ACE algorithm fails to do better than the best
linear predictor, it cannot be assumed that the process is linear.
Indeed, there are many nonlinear functions that may be gener-
ating X and that are not incorporated in the ACE algorithm. For
example, functions of the general form 

f (X(k),X(k–1),…)=�	 i , jX(k–i )1n (X(k–j ) )
i,j

are not necessarily considered by the ACE algorithm. In partic-
ular, only functions of the form

–1(�0(X(k))+�1(X(k–1))+…+�N–1(X(k–N+1))) (7)

are considered.While this is a large class of functions, it does not
generate all possible functions. Furthermore, generating these
nonlinear functions �1 and � takes considerable computational
effort.Thus, it is difficult to check high order functions.

Since the ACE algorithm generates functions of a single
variable, these functions can easily be plotted. The best linear
predictor can be viewed as also generating functions �i, but the
�i’s are restricted to be linear. Thus, not only the prediction
errors can be compared, but also the shape of the linear func-
tions generated by the best linear predictor and the possibly
nonlinear functions generated by the ACE algorithm can be
compared.

Preliminary Results

Canonical Correlation Analysis

By observing the variation in the linear CCC’s compared to
the nonlinear CCC’s it can be determined whether the nonlin-
ear functions of the form (4) lead to a smaller expected predic-

tion error (3) than if linear functions are used. In particular, if the
nonlinear CCC’s are larger than the linear CCC’s it can be con-
cluded that there is some nonlinearity present in the system.
Figure 1 shows the linear and nonlinear CCC’s of burst of
sEMG activity labeled as Burst C, a particular burst of sEMG
activity. The information presented in this figure indicates the
presence of some nonlinearity in the sEMG data collected dur-
ing the NSA “somatopsychic” wave.

The ACE Method

The first tests were on a particular burst of sEMG activity
labeled as “Burst C.” Fourth order predictors (N=4) were com-
puted.The mean square prediction error for the best linear pre-
dictor was 0.42, whereas the prediction error for the ACE
method was 0.33. This implies that the ACE method predicts
about 20% better than linear prediction.

Tenth order predictors (N=10) were also found.The results
were similar to the fourth order predictors.The linear prediction
error was 0.41 and the ACE prediction error was 0.29 - a 30%
improvement. Furthermore, linear prediction did not improve as
the order increased, whereas the ACE method appeared to be
improving. However, the improvement was slow.These findings
corroborate the assumptions of the simplified nonlinear CCA.
Specifically, both approaches indicate that the dimension of the
attractor is somewhere between 4 and 10.

There is no direct relationship between high order systems
and complexity. For example, the chaotic Lorenz map, which is
related to the weather, is only of order 3, and is highly compli-
cated. However, systems of high order (e.g. the stock market)
also tend to have complicated dynamics. Modeling high order
systems is very difficult. Clearly, the waveforms of the NSA
sEMG data are complicated. It is hoped that the order of the sys-
tem that describes the waveforms will be relatively low order.
Since the order 10 predictor performs well, it appears that a sig-

Figure 1. The linear and nonlinear CCC’s for the sEMG of the wave-

form associated with NSA are shown. The key difference between

the plots is that the second coefficient is much larger in the case

of the nonlinear canonical correlation. This is an indicator that

some nonlinearity is present.
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nificant part of the waveform is generated by a low order non-
linear dynamical system.

Figures 2-4 depict the nonlinear functions �i with i=1,…,10
and � generated by a tenth order ACE algorithm and the linear
functions generated by the best linear predictor. The figures
reveal that some of the functions, �1, �2 and � are nearly linear
with some saturation. Additionally, functions �1 and �2 appear
to be the most significant since they range from -2 to 2 and  -
5 to 5, respectively. The other functions �1 with i=2,…,10
appear very nonlinear.These plots also include the linear func-
tions generated by the best linear predictor. Note that the linear
trend of the nonlinear functions roughly coincides with these
linear functions.This similarity is strong for the most significant
functions �9 and �10.

Discussion and Tentative Conclusions

Further study will be necessary to clarify the extent to which
the sEMG signal associated with the waveforms of NSA is due to
a nonlinear versus random source. The findings that the fourth
order ACE predictor performs 20% better than the fourth order
linear predictor and the tenth order ACE predictor performs 30%
better than the tenth order linear predictor are encouraging.
Moreover, the structure of the prediction error will require fur-
ther investigation. The histograms of the linear and nonlinear
prediction errors look very similar (Figure 5). It is known that the
maximum of the canonical correlation between two sets of vari-
ables is achieved when the nonlinearly distorted variables are
jointly Gaussian.14 Hence, it appears that to insure that the best
possible nonlinear predictor has been developed, the histogram of
the prediction error should be Gaussian. However, it is not clear
at this point in the study whether a good, but not quite optimal,
predictor would yield a nearly Gaussian error.

It is suspected that the following features of the ACE proce-
dure may have to be refined to provide the clearest analysis:

1. The function � has been introduced by statisticians to allow
for more freedom in the modeling and to link the ACE
algorithm to the nonlinear canonical correlation analysis. It
is customary to invert the function � to obtain Y(k+1) as a
nonlinear function of the past as in equation (7). However,
applied to the present sEMG signal, � appears to saturate and

Figure 4. The nonlinear functions �1, �2 and � are shown. These

functions are used for nonlinear prediction so as to minimize (6).

The linear functions used in the best linear predictor (5) are also

shown. Note that these functions follow the strong linear trend.

However, there is sufficient deviation from the linear trend to

lower the prediction error from the linear case of 0.41 to the non-

linear case of 0.29.

Figure 2. The nonlinear functions �1 for 7 < i < 10 , generated by the

ACE algorithm as defined by equation (6) are shown. For compari-

son, the linear functions used in the least mean square linear pre-

dictor (5) are shown. Note that the functions  generated from the

sEMG data by the ACE algorithm are nonlinear.

Figure 3. More nonlinear functions, �1 for 3< i <7 , are shown along

with their linear counterparts. As in Figure 2, the functions gener-

ated from the sEMG data by the ACE algorithm are nonlinear.
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is, hence, not an invertible function.The particular way the
function is presented in this sEMG analysis requires re-inter-
pretation of its lack of invertibility relative to the degree of
singularity of the nonlinear system.A singular nonlinear  sys-
tem is a system of the form

F(
(k+1),
(k))=0

whereas a regular system is of the form


(k+1)= f (
(k))

In this sEMG case, the function F appears to be 

F(
(k+1),
(k))�    – ��i(
 i+1
(k))

If � is a pure limiter that saturates between the values * <
 *

, then it would be a case similar to the Lorenz attractor,
where the dynamical system flips back and forth between
two components of the attractor, which in this case would 

be the hypersurfaces ��i(X(k–i))=* and ��i(X(k–i))= *.

However, it appears that most of the motion is concentrated 
not on the saturating part of � but rather in between. It
appears, therefore, that the motion is concentrated on that
part of the state space �N bounded by the two hypersurfaces;

that is, the space defined by *< ��i (X (k–i )) <  *

2. If � is interpreted as the degree of singularity of the system,
it turns out that the ACE algorithm bears significant limita-
tion as to the range of allowable nonlinearities in the sense

that it does not allow cross coupling of the form
X(k–i)X(k–j).

Therefore, there is a need to adapt the ACE algorithm to the
sEMG analysis. In particular, given the interpretation of the lack
of invertibility of � to be a measure of the degree of singularity,
it appears to be important to extend the ACE procedure to
allow for more nonlinear distortions. Hence, it may be necessary
to develop the following extrapolation of ACE:

a. An Nth order ACE prediction error E0 is found.

b. The ACE algorithm is used to predict E0 with the cross
term X(k)X(k–1). Thus a new prediction error E1 is
found.

c. In the same manner, the cross terms X(k)X(k–i) are used
to predict Ei-1 for i<N

d. The same procedure is repeated for  X(k)X(k–i)X(k–j).

Before deciding whether chaos is present in an experimen-
tally observed time series, the preliminary consideration should
be whether the sequence is, for the most part, a manifestation of
random or nonlinear phenomena. As far as the sEMG signal in
the present study is concerned, it is apparent that most of the
sequence can be justified by nonlinear rather than linear or sto-
chastic phenomena.To conclude that the sEMG signal is chaot-
ic will require a definition of chaos. In so far as it has been
argued that a time series is chaotic whenever it can be explained
by nonlinearities despite its external random appearance, the
sEMG signal herein studied fits the definition of chaos.
However, the most recent trend is that the concept of chaos is
relevant to the theory of dynamical systems and as such requires
more than just nonlinearity. In particular, the definition would
require such dynamical concepts as existence of non-periodic
recurrent points, transitivity, etc. From this point of view, further
study will be required to demonstrate that the sEMG data is pre-
dominantly chaotic in nature.

However, the most important achievement is that the non-
linear phenomena, chaotic or not, underlying the sEMG have
at this juncture of study been identified and an “attactor” has
been found. Perhaps the most important issues will be
whether there is some difference among the attractors of all
three levels of NSA care, and to what extent the attactor(s)
bear similarities with those of other physiological events,
including classical and other forms of muscular activity.
Moreover, it will be important to further investigate the uni-
formity of these findings among a spectrum of individuals
undergoing NSA care, as well as evaluating data derived from
sEMG electrodes being placed at different anatomical loca-
tions relative to the spine.
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