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Abstract 

Linear quadratic controllers for dynamical systems 
with complicated dynamics are presented. Systems 
with complicated dynamics are those that run over 
compact sets and have such features as nontrivial 
recurrence, periodic and aperiodic orbits. The con- 
trollers are based on modeling the nonlinear dynam- 
ical systems as linear dynamically varying systems. 
Necessary and sufficient conditions for the existence 
of such controllers are linked to the existence of a 
bounded solution to a functional algebraic Riccati 
equation. Several methods to solve the functional 
Riccati equation are presented. Finally, an example 
of controlling the HBnon map is presented. 

1 Introduction 

This paper presents a control strategy for systems 
with complicated dynamics. By complicated dynam- 
acs, we mean a discretetime, nonlinear dynamical 
system running over a compact set 0 which exhibits 
nontrivial recurrence. By control, we mean tracking 
one of the natural periodic or aperiodic orbits of the 
dynamics. 

A specajk feature of tracking a natural periodic 
or aperiodic motion is that the objective can be 
achieved with low cost control. Therefore, the con- 
trol is taken to be a very small perturbation of the 
parameters of the nominal dynamics. More specifi- 
cally, the nominal and perturbed dynamics are, re- 
spectively, 

e ( k + 1 )  = f ( O ( I C ) ) ,  e (0) = Bo E 0, 
' p ( k + 1 )  = f ( ' p ( k ) , U ( k ) ) ,  cP(O)= 'poE@,  

where f : R" x R" -+ R", f E C'(R" x Rm,Rn), 
0 c R" is compact, and f ( C 3 , O )  0. 
Thus (0  ( k )  : k 2 0} is the desired trajectory and 
p ( k )  is the state of the system under control. 
The objective is to find a control U such that 
limk,, II'p (IC) - 0 (k)II = 0. 

This paper develops a controller of the form U ( k )  = 

F q k )  ('p ( k )  - 6 (IC)), where the feedback Fe is de- 
signed from a linearized approximation of f(p, U )  

around (e,O), and the gain Fe is "scheduled" so as 
to follow the desired trajectory. The controller Fe 
exists if a solution to a functional algebraic Riccati 
equation (FARE) exists. The mathematical difficulty 
with this functional equation is to prove that the 
relevant solution is continuous, in which case Fe is 
continuous. 

Typically, there is no closed form solution to the 
FARE. However, dynamical systems on compact 
sets, subject to some mild additional conditions, are 
known to have such ergodic properties as recurrence, 
which can be put into use to construct an approxi- 
mate solution of arbitrary accuracy. 

The proofs of the results in this paper are provided 
in [l], [3] and [4]. 

2 Controlling Dynamical Systems with 
Linear Dynamically Varying Control 

Consider a slightly generalized version of the problem 
posed in Section 1: 

e ( k  + 1) = f ( 8 ( k ) ,  0) , with e(o) = e,, (1) 

' p ( k  + 1) = f ('p (IC), 'U. ( k ) )  , with P(0) = cPo* (2) 
The popular problem of getting 'p to follow a periodic 
orbit fits into this framework by setting O(0) E P ( f ) ,  
where P ( f )  is the set of periodic points. However, 
if the objective is for 'p to follow an aperiodic orbit, 
then O(0) E N W ( f )  \ P ( f ) ,  where N W  ( f )  is the set 
of nonwandering points. 

The targeting problem also fits within this frame- 
work. Initially, the state is forced to follow a target- 
ing trajectory that ,originates near the current state, 
and ends near a point of the desired orbit. If the sys- 
tem is transitive, such a targeting trajectory exists. 
Once the state has reached the end of the targeting 
trajectory, a second control is applied to force the 
system to follow the desired orbit. This switching 
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of trajectories is accomplished by allowing for occa- 
sional small jumps in 6 (k). 
Now we define the tracking error z(k) = ~ ( k )  - 
e( k )  . The linear approximation of f (cp(k), U )  around 
cp(k) = O(k) and u ( k )  = 0 yields 

z ( k  + 1 )  = A 8 ( k ) X ( k )  + Be(k )u (k )  (3) 
+rl (z@), u ( k ) ,  B ( k ) )  

where Ae = ( e , O ) ,  Be = (0,O) and 

M k ) ,  u ( k ) ,  e ( k > )  = rlz ( X ( k ) ,  u ( k ) ,  ( 6 ) )  z ( h )  (4) 

firthermore, 11% ( x ,  u, @(I and IIVU (5, U ,  ell1 can be 

+vu (x(h) ,  4 k ) ,  8 (IC)) 

made as small as necessary by limiting the size of U 

and x. 

If U and z are small, then we can approximate the 
error dynamics as 

z(k  + 1)  = AB(k)X(k) + BB(k)U(k) ( 5 )  
e ' ( k +  1) = f ( e ( k ) )  

This is a linear system with coefficient matrices A 
and B that vary as B(k) varies. Since O(k) varies ac- 
cording to equation ( l ) ,  system ( 5 )  is a Linear Dy- 
namically Varying (LDV)  system. 

Our objective is to not only force the tracking error 
to go to zero asymptotically, but go to zero'uniformly 
exponentially fast. We distinguish the various forms 
of stability as follows. 

Definition 1 The linear dynamically varying sys- 
t em  (5) i s  uniformly exponentially stable i f  for  
u(k) = 0, there exists an  0 < a < 1 and a 0 < 00 

such that for all 8(0) E 0 

Ilz(k)II 5 Pak Il~(0)II * 

System (5) is exponentially stable, i f  for u ( k )  = 0 
and f o r  each O(0) E 8, there exists an  0 < a(O(0)) < 
1 and a p(O(0)) < CO such that for all x ( j )  and j 5 k 

IIz(k>II 5 ~ ( ~ ( o > ) d e ( o ) ) ~ - - j  IIz(j)tI . 

It was shown in [l) that in the case of continuous 
LDV systems, exponential and uniform exponential 
stability are equivalent. Since uniformly exponen- 
tially stable systems are inherently more robust than 
exponentially stable system, it is preferable to re- 
main within the confines of continuous LDV systems. 
Thus when synthesizing a feedback for controlling a 
continuous LDV system, it is important to ensure 
that the feedback is not only stabilizing, but also con- 
tinuous. However, to maintain generality, an LDV 
system is considered stabilizable if there exists an 
exponentially stabilizing feedback, that is: 

Definition 2 System (5) is stabilizable i f  there ex- 
ists a, not necessarily continuous, function F : W x 

is exponentially stable. 

Our main result can now be formulated: 

Theorem 1 Assume that system (5) is stabilizable. 
Then  there exists a unique, bounded solution X : 
0 -+ R"'" such that Xe = XL 2 0, 

Xe = AhX/(e)Ag + I (6) 

-AhXf(e)Be ( I  + B;Xf(e)Be)-* B;Xf(e)Ae 

= - (I + B;(k)xf (e(k) )Be(*) ) - l  (7) 

and the feedback 

U 

x B ; ( k ) X f ( e ( q ) A e ( k ) x  (IC) 

uniformly exponentially stabilizes system (5). For 

IIz (0)II < CO, this feedback minimizes 115 (k)1I2 + 
llzl (k)1I2 and X is a uniformly continuous function. 
Conversely, i f  there exists a bounded solution, X ,  to 
equation (6) such that Xe = X i  2 0, then system (5) 
is  stabilizable and X is continuous. In this case, i f  
X ( k ,  N ,  0 )  solves the finite horizon Riccati equation, 
i.e. 

00 

k=O 

x ( k ,  N ,  0 )  (8) 
A;*(e)X ( k  + 1,Ny.e) Ajk(8) = 

+I - A;&(,)X ( k  + 1, N ,  e )  Bf&(e) 

x ( I  + B;,(e)X (k + 1, N , e )  Bf*(s))- l  

XB;*(,)X (k + 1, N ,  e> + ( e )  

with 

then X (0,  N ,  e)  -+ Xe uniformly in 8 .  
x ( N ,  N ,  e )  = I ,  

Remark  1 Stabilizability is a rather weak assump- 
tion. Indeed, stabilizability merely assumes that 
every trajectory is stabilizable. Of course, one could 
not hope to stabilize every trajectory i f  some tra- 
jectories are not stabilizable. Given this obviously 
necessary condition, i t  is interesting that continuity 
and compactness are all that is  needed to prove the 
existence of a continuous and uniformly stabilizing 
controller. 

Remark  2 The continuity of the cost X is counter- 
intuitive in the case where f is sensitively depew 
dent on  initial conditions. Intuitively, this continu- 
i ty means that, although small changes in the initial 
conditions may lead to drastic changes in the trajec- 
tories, the cost to stabilize these trajectories does not 
change very much. 
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Remark 3 ,Since the LDV controller yields a uni- 
formly exponentially stable LDV system, the LDV 
controller t i d l  locally sln6.ilize the ol-igin,czl nonlin- 
ear system (3). Hence,, if [ly (0) - 6 (0)II is  s n d l  
enough a.nd the control given by  (‘7) ,is applied, then 
p(k) 3 6 ( k )  us k -+ 00 where y ( k )  and 8 ( k )  are 
given by  (1) and (2) respectively. Furthmmore, i f  the 
perturbation.s w and t i  are small enough an.d/or in- 
frequent enough, then the system reinaim stable. See 
[l] for details. 

3 Exploiting Ergodicity to Solve the 
Functional Algebraic Riccati Equation 

(FARE) 

Solving any functional equation is a difficult task. 
Here we take advantage of several properties of com- 
plicated dynamics to solve the FARE. These methods 
are appealing because all that is needed is a transi- 
tive trajectory and Ae and Be. The function f does 
not need to be known. 

3.1 Solving the FARE on a Tkansitive Orbit  
A rather brute force method is based on the finite 
horizon approximation of the infinite horizon lin- 
ear quadratic control problem. To this end, one 
simply defines X (0, N ,  8,) as the solution to the fi- 
nite horizon Riccati equation as in (8). It can be 
shown that X (0, N ,  8,) -+ Xe, as N --t 00, uni- 
formly in 8,. Hence, for N large enough, X (0, N ,  e,) 
is a good approximation of XO,. Furthermore, if 
X (0, N ,  e,) is known, then X (0, N - 1, f (8,)) is 
also known, and if N - 1 is large enough, then 
X (0, N - 1, f (e,)) z Xf(,o, .  Similarly, we com- 
pute x (0, N - k, f k  ( 6 ) )  FZ Xfk(e,) for k 5 K where 
N - K is large. Now, if 8, is a transitive point, then 
E = {fk (6,) : 0 5 k 5 K }  is a &-net, and solving 
Xe on E provides a good approximation of X every- 
where. It is possible to show that this approach will 
only fail if the LDV system is unstabilizable [l]. 

3.2 Solving the FARE on Periodic Orbits 
It is a generic property of diffeomorphisms on a com- 
pact set to have a dense set of periodic points [8]. In 
this case, since the solution to the FARE is contin- 
uous, if we solve the FARE on the set of periodic 
points, then we know the solution everywhere. Sim- 
ilarly, if we solve the FARE on the set of periodic 
points with period less than N ,  where N is large 
enough, then we approximately know the solution 
everywhere. It is possible to solve the FARE on pe- 
riodic points very efficiently. 

Let 0 be a fixed point, i.e., f (8 )  = 8. Then, by 
equation (6), we have 

Xe  = ALXnAs-ALXsBg ( I  + BLXeBe)-’B&YeAe+.l 

This can be written more succinctly as Xe = pe (Xe), 
where pe : RnXn --+ Rnx” and depends on 6. 

Similarly, if 8 is a periodic point with period N ,  we 
can write pe o p / ~ ( e )  0. . . P ~ N - I  ( 0 )  (Xo) = Xo. Hence, 
Xg is a fixed point of some map. It turns out that 
solving the above equation is equivalent to solving 
the following invariant subspace problem 161, 

where { [ ] } is the span of [ ] and where 

This invariant subspace problem can be solved very 
efficiently [9]. 
As in the case of solving the FARE along a traniitive 
orbit, one can solve the FARE along every periodic 
orbit if and only if the LDV system is stabilizable [I]. 

3.3 Solving the FARE on Recurrent Set 
The above methods do not necessarily lead to compu- 
tationally efficient methods to solve the FARE. The 
method based on transitive points has the difficulty 
that the convergence can be very slow. The method 
based on periodic points has the drawback that it is 
not always possible to exactly determine the periodic 
points. Now a method is presented that solves the 
FARE along a segment of a recurrent orbit and does 
not suffer from these drawbacks. 

The approach here is to approximate a segment of 
a recurrent orbit as a periodic orbit. Once this ap- 
proximately periodic orbit is in hand, one can solve 
the FARE along this orbit using the efficient meth- 
ods based on periodic orbits discussed above. To be 
more specific, define pe : RnX” + RnXn as above 
and let 8 E R (f)  where R (f) is the set of recurrent 
points. Since 8 is recurrent, for 6 > 0 there exists 
an N < 00 such that 118 - f N  ( @ ) I 1  < 6. Since X is 
continuous, for 6 small enough, 11x0 - XfN(e){ (  < E 

and 

( I P ~ o P ~ ( ~ ) o . ‘ . o P ~ N - ~ ( ~ )  ( X f N ( e ) )  -xf~(e)(I < E .  

Therefore, X ~ N ( O )  is ”nearly” the fixed point of 

pe 0 P ~ ( B )  0 . . . P ~ N -  1 (e) 0‘) = y. (9)  

In fact, 

Theorem 2 Let 8 be a recurrent point and let E > 0. 
Then there exists a 6 > 0 and N < 00 such that 
Ilf”(6) - 611 < 6 and IJXg - YII < E where X solves 
the FARE and Y solves (9). 

Remark 4 The proof relies on  the Closing Lemma 
and on the structural stability of the FARE [3]. 
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3.4 J u m p  Linear Approximation 
There is a strong connection between LDV systems 
and j u m p  linear systems [7]. Jump linear systems 
are described by 

z J L  ( I C  + 1) = A$..% ( I C )  + Bi&)u ( I C )  
where n ( k )  is a Markov chain. It is possible to ap- 
proximate the LDV system as a jump linear system 
as follows: Partition 0 into a finite set of cells &, 
i.e. 0 = U:, Ri. For each cell rZ, choose a point 
I-, E &. Define A;'L = Ar, and B;'L = Br,. Define 
the transition probabilities = where 
X is Lebesgue measure. 

The optimal jump linear controller for a jump linear 
system is given by U (k) = F'(k)z (k) where 

and 
Y, = A:P~A,+I 

-A:P,B, ( I  + B;P,B+-' B;P~A, 

for all = l , . - . , N  and = ~ ~ I p u , j ~ .  The 
equations given by (10) form a set of coupled Ric- 
cati equations whose solution has been extensively 
investigated in [5]. In [4] it was shown that as 
maxi diam (&) -+ 0, the solution to the coupled Ric- 
cati equations (10) approaches the solution to FARE. 

4 Example 

In the following, an LDV controller is devised for the 
Hdnon system. The HBnon system is defined as 

1 [ d1 (k + 1)  ] = [ 1 - (1.4 + U (IC)) el + e, (k) 
62 (IC + 1) 0.381 (k) 

with control input U. Define Q to be the attractor of 
the uncontrolled HBnon map. 

Since a trajectory that enters every &-neighborhood 
for small E is easily found, the FARE may be solved 
using the methods from Section 3.1 or 3.3. In this 
way the function F : 0 4 WlX2 is obtained and the 
closed-loop tracking error dynamics (as discussed in 
Section 2) is 

where 77 accounts for the error in linearization. 
Figure 1 shows the feedback gain, F ,  for the LDV 
system (12). Note that the feedback is continuous 
on 0, the attractor of the Hdnon map. 

1 0 5  

0 

-0 5 

1 1 
0 5  0 5  

0 5  

m" ,",- 0 

-0 5 

2 2 

81 
- 0 5  -2 

Figure 1: Feedback Fe = [ Fe, Fe2 ] for the HBnon 
map. This shows that the feedback is con- 
tinuous in 8. A plot of the attractor of the 
HBnon map in the (&,&,-1) plane is in- 
cluded for reference. 
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