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Abstract

Wavelet zerotree encoding has been proven to be an efficient way of compressing
still images. Two well-known zerotree encoding algorithms, Embedded Zerotree En-
coding (EZW) and Set Partitioning in Hierarchical Trees (SPIHT), provide excellent
progressive display when images are transmitted over reliable networks. However,
both algorithms are state-dependent and can perform poorly over unreliable networks.
In this paper, we apply the concept of network-conscious image compression to the
SPIHT wavelet zerotree encoding algorithm, to improve its performance over unreli-
able networks. Experimental results confirm the utility of network-conscious image
compression concept.

1 Introduction

Wavelet zerotree encoding is an algorithm that utilizes the correlation between coefficients
of different scales to provide good image compression in the wavelet domain. Wavelet
zerotree encoding is based on the hypothesis that, at a given threshold level, if a wavelet
coefficient at a coarse scale is insignificant, then all wavelet coefficients of the same orienta-
tion in the same spatial location at finer scales are likely to be insignificant. The embedded
zerotree (EZW) encoding, originally introduced in [13], has been proven to be an efficient
yet not complex encoding scheme. The embedded nature of the algorithm, a representation
in which a high resolution image contains all coarser resolutions, effectively sorts bits in
order of importance, thus permitting an effective progressive display when transmitted over
low-bandwidth networks.

Set Partitioning in Hierarchical Trees (SPIHT), introduced in [12] as a refinement to EZW,
differs from EZW in the way subsets of coefficients are partitioned and in the way sig-
nificance information is conveyed. Both EZW and SPIHT provide excellent progressive
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display. These algorithms produce a bit stream in which the bits corresponding to dif-
ferent trees are interleaved. When this bit stream is decoded, coefficients in all the trees
are restored in parallel, thus yielding a progressive display of the whole image. What is
nice about these algorithms is that they encode the most significant bit of every coefficient
of every tree before encoding the next significant bit. They are designed to provide the
maximum PSNR for a given significance level.

EZW and SPIHT are clearly the best progressive display wavelet zerotree encoding algo-
rithms available today for reliable networks. For unreliable networks, however, EZW and
SPIHT have a major drawback: they both are highly state-dependent, and therefore suscep-
tible to bit errors. Even a single changed, missing, or extra bit ruins the decoding process
often destroying an entire image. Recent studies concentrate on composing noise-robust
zerotree encoders. Most of these studies are based on the idea of dividing the bitstream
into several sub-streams each of which receive different amounts of error protection based
on their noise sensitivity [10], or interleaving separately encoded substreams such that any
single bit error will corrupt only one substream [4, 5].

Recently, Rogers and Cosman [11] introduced a packetized zerotree encoding (PZW) method
on still images that produces fixed 53-byte ATM-compatible packets and is robust against
packet loss. A similar study by Crump and Fischer [6] produced variable-length inde-
pendent packets for video transmission. Sherwood and Zeger [14] improved the PZW
algorithm by using a technique called “Macroscopic Multistage Image Compression”.

Unlike previous studies, which focus on robustness of the algorithm, our research on
wavelet zerotree encoding is concentrated on the progressive display aspect as well as ro-
bustness, when images are transmitted over low-speed, lossy, packet-switched networks
(e.g., battlefield networks). Our study of wavelet zerotree encoding is part of a broader
research effort in network-conscious image compression[7].

A network-conscious compressed image is one that is encoded not simply to give the small-
est size for a specified image quality, but to give the best (i.e., smallest) response time -
image quality combination to an end user retrieving the image over a packet-switched net-
work [9]. Network-conscious image compression is based on the concept of Application
Level Framing [2]. An image is divided into path-MTU-size1 pieces, called Application
Data Units (ADUs), at the application layer, so that each piece carries its semantics, that is,
each piece contains enough information to be processed independently of all other ADUs.
As a result, each ADU can be delivered to the receiving application immediately upon ar-
rival at the receiver, without regard to order, thereby potentially enabling faster progressive
display of images.

In this paper, we present a network-conscious version of the SPIHT algorithm called SPIHT-
NC. SPIHT-NC changes the structure of the encoded bit stream to produce independent
ADUs. Obviously any modification to the original structure of the SPIHT algorithm will
diminish the performance of the progressive display when there is no loss as explained in
Section 3. Our objective is to determine if there is any gain in making the SPIHT algorithm

1MTU (Maximum Transmission Unit) is the maximum frame size that a link layer can carry. A path-
MTU-size ADU is one that can be transmitted end to end over a network without the need for IP layer
fragmentation and reassembly.
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network-conscious for faster progressive display over lossy networks. Our previous work
has shown the advantages of network-conscious image compression [1, 7, 8, 9].

Section 2 explains how the network-conscious SPIHT algorithm is created. Section 3
presents experimental results and Section 4 concludes the paper with a summary of the
experimental results.

2 Network-Conscious Wavelet Zerotree Encoding

SPIHT is one of the best progressive display wavelet zerotree encoding algorithms avail-
able today. Over unreliable networks, however, SPIHT suffers from the same phenomenon
every other non-network-conscious progressive compression algorithm suffers; it delays
presenting out-of-order data to the user until missing pieces arrive. In this section we
present SPIHT-NC, a modified version of SPIHT that performs better over unreliable net-
works.

To be able to create independent, SPIHT-encoded ADUs, one has to limit the state de-
pendency to ADU boundaries. Since the smallest independent unit in zerotree encoding
algorithms is a tree, it makes perfect sense to encode each tree separately rather than inter-
leaving all the trees together. Therefore, the most primitive version of SPIHT-NC involves
encoding each tree separately and packetizing these independent trees to give independent
ADUs.

Roger and Cosman’s PZW algorithm [11] uses this technique to introduce robustness
against packet losses. This technique, called uninterleaved spiht, however, lacks the most
important feature of network-conscious image compression: progressive display. Although
some basic techniques can be applied to give the illusion of progressive display (such as
making sure that trees in each packet come from widely dispersed locations in the image,
and interpolating the missing coefficients from the available coefficients), our experience
shows that the resulting progressive display is not satisfactory.

Among the methods we have tried to improve the progressive display of SPIHT-NC, the
idea of multistage image compression proposed by Sherwood and Zeger [14] gave the best
results. Our multistage technique consists of three phases (or stages) as shown in Figure 1.
Each phase encodes the residual wavelet coefficients from the previous phase. Phase 0
is intended to provide a rough image with a PSNR close to what the SPIHT algorithm
provides at the same bit rate. Phase 1 is optimized to refine the rough image to give an
image quality that is recognizable and can be used for low bit rate applications. Phases 0
and 1 together are intended to overcome the problem of slow increase in PSNR in the early
parts of the file/transmission that we observed in our earlier efforts to design SPIHT-NC.
The final phase, phase 2, further refines the image obtained from phases 0 and 1 to give a
high quality image.

As seen in Figure 1, each phase of the encoding process inputs some parameters. These
parameters are used to optimize a phase for a particular purpose. For example, for phase
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Figure 1: Phases of SPIHT-NC Encoding Process

0, the levels parameter is set to the largest possible wavelet decomposition level2 so that
an efficient zerotree coding of the whole image can be performed. In phase 2, a smaller
number of wavelet decomposition levels is used to create smaller and more spatially diverse
trees. The parameters (i.e., ADU size, levels, and number of bits to be encoded) dictate the
number of ADUs that will be produced from a particular phase. For the test image we used
in our experiments (see Section 3), there is only one ADU produced in phase 0, and four
ADUs produced in phase 1. The remaining ADUs are all produced in phase 2.

Typically, as the phase number increases, the wavelet decomposition level decreases. Using
fewer levels of wavelet decomposition in later phases is desirable because the coefficients
in the coarser scales are refined in earlier phases beyond their most significant bit and most
of the parent-child dependencies at these scales are already exploited [14].

Each phase uses the uninterleaved SPIHT algorithm to pre-calculate the sizes of trees.
Within each ADU, the encodings of a certain number of trees are interleaved. The starting
tree number and the number of trees encoded are specified in each ADU’s descriptor so
that the receiver knows exactly what trees are available in the ADU. Depending on the tree
sizes, an ADU might contain one or more trees. If trees were encoded in an uninterleaved
fashion, one would have to specify the size of each tree, so that the receiver would know
where one tree ends and another one starts. Interleaving the trees in each ADU eliminates
this overhead.

There are several ways that the trees can be ordered for transmission. The simplest ap-
proach is to encode the trees in a raster scan order. Another method is to select the trees
from spatially diverse locations so that missing trees can be interpolated from the ones that
are available. A third method is to encode the trees that improve the visual quality the most

2The number of possible wavelet decomposition levels depends on the image’s dimensions.
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in early ADUs. In our experiments we used the simplest method. We encoded trees at each
phase in a raster scan order.

Figure 2 shows the file structures of SPIHT and SPIHT-NC. Both files start with a signa-
ture3. In SPIHT, an image descriptor follows that provides information about the image and
some encoding parameters. The rest of the file contains the encoded data which is highly
state dependent. In SPIHT-NC, after the signature, we have a sequence of ADUs each of
which is self-contained. Each ADU has an image descriptor which carries image related
parameters (such as dimensions of the image), an ADU descriptor which carries informa-
tion specific to that particular ADU (such as phase number, starting tree number, number
of trees in the ADU, etc.), and encoded data.
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Encoded
Data
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Image Descriptor

Encoded
Data
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“SPIHT-NC”
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Figure 2: File Structures of SPIHT and SPIHT-NC

3 SPIHT-NC vs. SPIHT Performance Evaluation

To illustrate the progressive display advantage of SPIHT-NC over SPIHT when images are
transmitted over lossy, packet-switched networks, we ran a set of experiments comparing
SPIHT-NC over a reliable, unordered transport protocol (X2E4) vs. SPIHT over a reli-
able, ordered transport protocol (S2E). Our aim is to investigate SPIHT-NC’s performance
against SPIHT under various network loss rates and bandwidths, and transport window
sizes. Each experiment downloads a compressed image from a server to a client using an

3Said and Pearlman’s original SPIHT code uses a one-byte signature (0x6E). For clarity we will use
“SPIHT” for the SPIHT algorithm, and “SPIHT-NC” for the SPIHT-NC algorithm.

4X2E and S2E are two experimental transport protocols both developed within the Protocol Engineering
Laboratory at the University of Delaware. Details of these protocols are available in [3].
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interface similar to familiar web browsers. Packets are routed through a lossy router5 and
either a PPP link or a SINCGARS radio link.

Since we would like to observe the effects of various transport and network-related param-
eters on the SPIHT vs. SPIHT-NC comparison, we ran several experiments that investigate
parameters such as loss rate, sending transport window size, bandwidth, and transmission
medium (e.g., PPP, SINCGARS, Internet). Details and results of these experiments can
be found in [7]. Because of space limitations we partially present results of one of the
experiments where we test the performances of SPIHT-NC vs. SPIHT at various loss rates.

3.0.1 Effect of Loss Rate

In this experiment, we investigate the progressive display advantage of SPIHT-NC vs.
SPIHT at various loss rates. This experiment involves downloading the SPIHT-NC and
SPIHT versions of a space shuttle image over a 9.6Kbps PPP link. Flow control between
transport sender and receiver is performed via a sending window size of 16 packets. The
lossy router simulates 0%, 5%, 10%, 20%, and 30% one-way IP packet loss.

Graphs presented in this paper represent averages of multiple runs for the tested parameters.
For example, Figure 3 contains graphs showing the performance of SPIHT-NC (illustrated
with green/gray) vs. SPIHT (illustrated with blue/black) at 20% one-way IP packet loss
rate. The graph on the left shows average number of bytes delivered to the application as
time progresses. The Graph on the right shows average PSNR values for the images that
are displayed during the same time interval.
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Figure 3: SPIHT-NC/X2E vs SPIHT/S2E at 20% Loss

In this experiment, the relation between bytes and PSNR is non-linear. Since SPIHT is
based on wavelet transformation which provides layering of information, the effect of an
data bytes from layer on PSNR will not be the same as the effect of data bytes from
layer where . bytes from an upper layer (coarse scale) will result in a larger
increase in PSNR than bytes from a lower layer (finer scale).

5Lossy Router is an IP gateway that randomly drops certain packets according to a specified loss model
and loss rate.
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In the wavelet domain, upper layers contain significant coefficients (i.e., larger in absolute
value). Since SPIHT conveys (encodes) most significant bits first, these significant coef-
ficients from the coarse scale get transmitted first. Therefore, a sharp increase in PSNR
occurs in the early moments of the transmission, and a steady increase occurs in the later
part of the transmission. This sharp increase is most visible with the arrival of the first
packet.

With the arrival of the first SPIHT packet, the PSNR jumps from 0 to 23.27dB. Similarly,
with the arrival of the first SPIHT-NC packet, the PSNR jumps from 0 to 23.24dB. The
small PSNR difference comes from the fact that SPIHT-NC has a header 5-bytes larger
than SPIHT. Therefore, the first SPIHT-NC packet (ADU) carries 5-bytes less information.
Packets 2–5 yield more modest increases in PSNR (24.96dB, 26.06dB, 26.71dB, 27.34dB
with SPIHT, and 23.97dB, 24.73dB, 25.85dB, 27.15dB with SPIHT-NC). Because of the
huge jump in PSNR with the first packet, it is hard to analyze the early moments of the
graph. If the first packet is lost, we have a PSNR of 0dB. If the first packet is delivered to
the application (i.e., not lost), we have a PSNR of more than 23dB. Considering the graphs
in Figure 3 represent averages of multiple runs, the early moments of the graph will have
the averages of 0’s (when the first packet is lost) and 23’s (when the first packet is not lost).
The average of these numbers will be between 0dB and 23dB depending on the loss rate.
For example, if the loss rate is 20%, out of 100 runs we expect 20 runs with 0dB (blank
image) and 80 runs with 23dB.

The above statements apply to both SPIHT-NC and SPIHT. The interesting point is what
happens after the first packet. With SPIHT, if the first packet is lost, the remaining packets
will be buffered at the transport receiver. Therefore, no image will appear on the screen
until the missing first packet is retransmitted and successfully received. With SPIHT-NC,
on the other hand, even if the first packet is lost, packets that follow will be delivered to
the application and an image will be displayed on the screen. Note that, since the first
packet contains the coarse scale coefficients, the quality of the image produced with the
remaining packets will not be as good. Nevertheless, with SPIHT-NC, at least some image
will be displayed on the screen during the time that the missing first packet is retransmitted
and received. In real-time applications over low-bandwidth networks, this time can be
significant (i.e., life or death).

To illustrate the quality of the image in the case when packet 1 is lost, in Figure 4 we provide
a sample screen shot of both SPIHT-NC and SPIHT after the first five packets are transmit-
ted and the first packet is lost. Even though the first packet’s coarse scale coefficients are
lost, the coefficients in the next four packets present an image which is recognizable. In a
time-critical application, SPIHT-NC will provide some information sooner than SPIHT.

Although we ran experiments at several loss rates, because of space limitations, Figure 3
shows results only at 20% loss rate. At 0% loss, SPIHT provides a better progressive
display than SPIHT-NC from start to finish. Considering the excellent progressive display
capability of SPIHT, this result is not surprising. One thing to note here is that SPIHT-NC
performs close to SPIHT in the early moments of the transmission. Similar performance
occurs because the first two phases of SPIHT-NC were optimized to perform better (i.e.,
close to SPIHT) at low bit rates. The performance difference is larger in the later parts of
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SPIHT-NC SPIHT

Figure 4: SPIHT-NC vs. SPIHT When the First of 5 Packets is Lost

the transmission where ADUs of the third phase are being transmitted.

Starting with 10% loss, SPIHT-NC begins to show better progressive display than SPIHT
early in the transmission. As the loss rate increases so does the gain of SPIHT-NC over
SPIHT. At 20% loss, SPIHT-NC performs better in the first 40 seconds. The largest gain
for SPIHT-NC occurs around 30 seconds where SPIHT-NC provides a PSNR of 28dB
while SPIHT provides a PSNR of only 23dB. To illustrate how this performance gain in
PSNR relates to visual image quality, in Figure 5 we provide both SPIHT-NC and SPIHT
images at 30 seconds under 20% one-way IP packet loss. The SPIHT-NC image shows
a much sharper shuttle and much sharper mountains in the background. With SPIHT, the
background is ambiguous.

SPIHT-NC SPIHT

Figure 5: SPIHT-NC vs. SPIHT at 20% loss

Figure 6 presents the same results as Figure 3, but with the graphs organized by algorithm
rather than by loss rate. The graph on the right illustrates how increasing the loss rate
significantly affects the progressive display performance of SPIHT. During a transmission,
if the loss rate suddenly changes from 0% to 10%, the progressive display performance will
degrade by a large amount.

With SPIHT-NC (the graph on the left), however, as the loss rate increases, progressive dis-
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play performance degrades gracefully and by smaller amounts. As the loss rate increases,
the throughput of the network decreases. Therefore, as the loss rate increases, we see a shift
in the graphs towards the right (i.e., it takes more time to transmit the same image at higher
loss rates than lower loss rates). The shifts on the SPIHT graph occur early on resulting in
poorer progressive display. The shifts on the SPIHT-NC graph are more noticeable towards
the end.
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Figure 6: Performance of SPIHT-NC and SPIHT at 0%, 5%, 10%, 20%, and 30% Loss

4 Summary and Conclusions

SPIHT is an embedded zerotree encoding algorithm that provides excellent progressive dis-
play and performs well at low bit rates. However, it is highly state dependent and suscep-
tible to bit errors. SPIHT’s performance over packet switched networks degrades quickly
when the packet loss rate increases.

SPIHT-NC, the network-conscious version of SPIHT, is designed to improve performance
under lossy conditions. SPIHT-NC uses an uninterleaved version of SPIHT encoding to
produce ADUs that are independent of each other. A multiphase (or multistage) approach
is used in encoding to provide progressive display. Since ADUs are independent, a bit
error can only propagate within a single ADU rather than the remainder of the image. This
feature makes SPIHT-NC more robust.

The gain of SPIHT-NC— and we extrapolate— of any network-conscious compression
technique occurs when images need to be progressively displayed at the receiver as soon as
possible. In military applications, seconds may be a matter of life and death. In less critical,
yet still ‘timely’ applications such as browsing the Web, faster display will improve user
perception and acceptance. Faster display is certainly appealing to Web advertisers who
want their logos to appear before the user moves on to another page.

A primary motivation of this research is to argue that future image compression standards
take into consideration whether or not the images are likely to be transmitted over the
Internet (or other lossy, packet-switched networks), and displayed in either real-time or
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interactive environments where progressive display efficiency is a major consideration.
Network-conscious image compression focuses not simply on maximizing compression;
it focuses on optimizing overall progressive display performance.

Experimental results show that, starting at a 10% packet loss rate, SPIHT-NC outperforms
SPIHT in the early moments of the progressive display where a better progressive display is
more desirable. As the loss rate increases, the performance gain of SPIHT-NC over SPIHT
increases due to the fact that SPIHT-NC degrades gracefully under lossy conditions. As the
time it takes for a retransmission to arrive at the transport receiver increases, so does the
performance gain of a network-conscious approach over a traditional approach.
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