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Abstract

This paper presents an analytic model for investigating the throughput, delay and bu�er utilization
characteristics of partially ordered transport services. We analyze the e�ects of packet and ack losses as
well as applications' order requirements on overall system performance. The analytic model is veri�ed
by comparing its results against those of an OPNET simulation model. Analytic results show that for
applications that can tolerate some reordering in the delivery of objects, use of partially ordered service
instead of ordered service provides important bu�er utilization and delay improvements, particularly as the
loss rate increases and the order requirements of applications decrease. In terms of throughput, it makes
no di�erence which service (i.e., ordered, partially ordered, unordered) an application uses. Analytic study
also shows that by judicious choice of sender's transmission order, overall system performance can further
be improved in a partially ordered service.

Keywords: transport layer protocol, protocol design and analysis, partially ordered service, quality of
service, multimedia

1 Introduction

Computer networks traditionally o�er either ordered (e.g., TCP) or unordered (e.g., UDP) transport service.
Some applications such as multimedia do not need an ordered service since they can tolerate some reordering
in the delivery of the objects. The degree of reordering should be within the speci�c limits of the applications;
otherwise problems result at the application layer such as increased complexity, increased bu�ering, and loss of
synchronization. For such applications, neither ordered nor unordered service is a perfect �t. Ordered service
insists on delivering all data in sequence even if it results in higher delays and bu�er utilization. Unordered
service, on the other hand, minimizes delay and bu�er utilization, but provides no order guarantees. If an
application with some order constraints uses an unordered transport service, the application programmer is
burdened with the task of implementing mechanisms for object ordering.

To achieve better tradeo�s between order and other quality-of-service (QoS) parameters, and to satisfy the
minimal order requirements of applications, partially ordered transport service has been proposed [1, 3, 5].
Partially ordered service �lls the gap between ordered and unordered service by allowing applications to specify
the delivery order of objects in the form of a partial order. Since partially ordered service does not insist on
delivering all objects in sequence, it can provide lower delays and bu�er utilization than ordered service, while,
at the same time, guaranteeing an application's partial order requirements.

The authors are designing a new transport-layer protocol, called Partial Order Connection (POC), that pro-
vides partially ordered and partially reliable1 service to its users [1, 3, 5]. POC enhances an unreliable/unordered
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1Partial reliability refers to the notion that individual objects may have di�erent QoS requirements with respect to loss; some
may require reliable transport service (guaranteed no-loss), while for others, unreliable transport service (best-e�ort) may su�ce.
Partially reliable transport service provides a middle ground between these two in which the loss tolerance of each object can be
speci�ed individually. References [1, 3, 4, 5] consider partial order and partial reliability in juxtaposition, while this paper focus
solely on partial order.



Figure 1: Screen Refresh

Consider an application that does a \screen refresh" on a workstation screen/display containing multiple
windows (see Figure 1). In refreshing the screen from a remote source, objects (icons, still or video images)
that overlap one another should be refreshed from bottom to top for optimal redisplay e�ciency. Objects that
do not overlap may be refreshed in any order. Therefore, the way in which the windows overlap induces a
partial order.

Consider the four cases in Figure 1. A sender wishes to refresh a remote display that contains four active
windows (objects) named f1 2 3 4g. Assume that the windows are transmitted in numerical order and that
the receiving application refreshes windows as soon as the transport layer delivers them. If the windows are
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con�gured as seen in Figure 1.A, an ordered service (sometimes referred as a FIFO channel) is required. In
this case, only one ordering is permitted at the destination. If due to loss or disorder in the network layer,
window 2 is received before window 1, the transport layer must bu�er window 2 and deliver it only after
window 1 arrives and is delivered.

At the other extreme, if the windows are con�gured as in Figure 1.D, an unordered service would su�ce. Here
any of 4! delivery orderings would satisfy the application since the four windows can be refreshed in any order.
Each of these orderings represents a linear extension (LE) of the partial order (PO). As notation, four ordered
objects are written 1 � 2 � 3 � 4, and unordered objects are written using a parallel operator: 1jj2jj3jj4 (xjjy
means there is no dependency relation between objects x and y). Figures 1.B and 1.C demonstrate two (of
many) window con�gurations that call for a partial order delivery service. In these cases, two and six linear
extensions, respectively, are permitted at the destination.

2.2 Using Partially Ordered Service for Remote Document Retrieval

Reference [4] describes a prototype client/server application for the retrieval and display of multimedia doc-
uments from a remote server using Partial Order Connection version 2 (POCv2), a partially ordered and
partially reliable transport protocol providing coarse-grained synchronization support. In this system, mul-
timedia documents with temporal characteristics are described using a Prototype Multimedia Speci�cation
Language (PMSL). PMSL gives an author the ability to specify the synchronization, (partial) order, and (par-
tial) reliability requirements of the objects that make up a temporal multimedia document. The application
serving these documents can extract these requirements from such a speci�cation and communicate them to
the transport layer, which then provides the necessary QoS and synchronization support.

This simpli�es application development, since the document display client need not contain complex mecha-
nisms for object synchronization and reordering. It also allows for graceful degradation, since the document can
be presented \perfectly" when network conditions allow, and in a less than perfect but nevertheless acceptable
manner when network conditions degrade. Finally, the use of partial order and partial reliability rather than
ordered/reliable or unordered/unreliable service allows better QoS tradeo�s between qualitative parameters
such as order/reliability and quantitative parameters such as delay, bu�er utilization and throughput.

3 Analytic Model

In this section, we present an analytic model for partially ordered transport services. Through this model, we
study the e�ects of packet and ack losses as well as various levels of applications' order requirements on the
performance of di�erent services (i.e., ordered, partially ordered, and unordered). Veri�cation of the analytic
model using simulation will be described later in Section 4.

The analytic study con�rms our expectations that a partially ordered service provides lower delay than an
ordered service while simultaneously requiring less bu�er space at the receiver. Results also show that in a
partially ordered service, the choice of the sender's transmission order further impacts overall system perfor-
mance.

3.1 Introduction to Model

To abstract partially ordered service's usage, we use a three layer architecture which includes only the network
layer, the transport layer, and the user application layer (see Figure 2).

The transport layer protocol provides a partially ordered service as follows: POC Sender takes a packet
from User Sender, transmits the packet over the network, then sets a timer and bu�ers the packet. If the
corresponding ack does not return from POC Receiver within its timeout period, POC Sender retransmits the
packet. When a packet is received at POC Receiver, if the packet is deliverable (i.e., if all packets that this
packet depends on have already been delivered), then it is delivered to User Receiver; otherwise it is bu�ered.
Upon delivering any packet, POC Receiver checks its bu�ers for additional packets that may have become
deliverable as a result of the delivery; these packets are delivered also.

By assumption, User Sender submits constant size packets to POC Sender. In general, given a partial order
with variable object sizes, we can obtain an equivalent partial order with constant object size by fragmenting
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Figure 2: Architecture

large objects into smaller constant size ones that are chained to each other.2 Thus, having constant packet
sizes in the computations should not limit the e�ectiveness of our results.

In the network layer (called Unreliable NET), the loss of a packet or an ack is characterized by a Bernoulli
process, and a constant end-to-end network delay is assumed. It is also assumed that POC Receiver never runs
out of bu�er space. The full set of assumptions about the system in general can be found in Table 2. These
simplifying assumptions, while in some cases are strong (e.g., Bernoulli losses), are needed for the mathematical
analysis of the model.3 The results obtained under these assumptions are useful in comparing various types
of services, and in analyzing trends. We expect the e�ects of these assumptions to be similar across various
levels of services (i.e., ordered, partially ordered, unordered). These expectations are, in part, supported by
simulation results (see Sections 3.4.1 and 3.5).

tpack packet transmission time

tdelay one-way delay for a packet de�ned as \tpack + one-way network layer delay"

RT round trip delay de�ned as

\tpack + (2 � one-way network layer delay) + ack transmission time"

tout timeout period for retransmissions

p probability of losing a packet within Unreliable NET

q probability of losing an ack within Unreliable NET

BufS number of bu�ers at POC Sender
BufR number of bu�ers at POC Receiver
psucc probability of successful packet and ack transmission de�ned as \(1� p) � (1� q)"

Table 1: System Variables

1 p and q are �xed and independent for each packet and ack transmission

2 RT is constant and tout = RT

3 Packets and acks have constant sizes
4 tout is an integral multiple of tpack

5 Processing time of a packet or an ack at each side is negligible

6 BufS = tout
tpack

and BufR = 1

7 Only selective acks are used

8 All packets are ready at User Sender, or equivalently, a packet arrives at User Sender at
every tpack

9 User Sender submits packets to POC Sender in an order that respects the given PO

Table 2: Assumptions

The system variables are de�ned in Table 1. Throughout this paper, we refer to this system as NET . Thus,
NET = htpack; tdelay; RT; tout; p; q;BufS ;BufR; psucc; Ai, where tpack, .., psucc represent the system variables,
and A stands for the assumptions given in Table 2. Unless otherwise stated, all subsequent values and

2The last fragment may have to be padded.
3Even with these simplifying assumptions, the mathematical analysis is complicated and we have only approximate computa-

tions for certain target values.
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computations in this paper refer to this given NET with linear extension LE of partial order PO being used
as POC Sender's transmission order.

3.2 De�nitions

Throughput (�) Average number of packets delivered to User Receiver per unit time
End-to-end Packet Delay (Tenda ) Expected end-to-end delay for packet a

Bu�ers Used at Receiver (R Bu� ) Average number of packets bu�ered at POC Receiver waiting
to be delivered to User Receiver

Table 3: Important Performance Statistics

pBufa;b P(packet a arrives after packet b) if a � b; 0 otherwise

Bufa;b E(time that packet b is bu�ered waiting for a to arrive at POC Receiver) if a � b; (Note:
if there is no constraint a � b, then Bufa;b = 0)

pBufa P(packet a is bu�ered at POC Receiver)

Bufa E(time that packet a is bu�ered at POC Receiver)

Table 4: Bu�ering Probabilities and Times

In this paper, we analyze the throughput, delay and bu�er utilization characteristics of partially ordered trans-
port services. This analysis is done by computing the performance statistics de�ned in Table 3. Throughput,
�, is the rate at which POC Receiver delivers packets to User Receiver. End-to-end packet delay, Tenda , is the
expected time for packet a to reach to User Receiver once it is given to POC Sender. For many applications
such as real time audio and video, lower delay is more important than higher throughput. Finally, expected
bu�ers used at the receiver, R Bu� , indicates the average memory resources utilized at POC Receiver. In
general, it is desirable to have higher �, lower Tenda , and lower R Bu� .

In addition to the performance statistics of Table 3, we also compute the bu�ering probabilities and bu�ering
times for a partially ordered service. For this, Table 4 de�nes four target values. The investigation of bu�ering
probabilities and times is done for three reasons. First of all, we need to know Bufa;b and Bufa in order to
compute Tenda and R Bu� . Secondly, the analysis of bu�ering characteristics helps us better understand
the overall analytic model. For example, we introduce some approximations to the computations of Tenda

and R Bu� . These approximations are easier to understand when explained through bu�ering probabilities.
Finally, for packets a and b such that a � b in PO, we investigate the negative e�ects of packet a's loss on
packet b through the target values pBufa;b and Bufa;b .

a       b      c

d       e

Partial Order: L   = a b c d e1

Dist     = 1a,b

Dist     = 3a,b

L   = a d e b c2

Figure 3: Dista;b values for two di�erent linear extensions of a partial order

Let Dista;b(L) be the distance between packets a and b in the linear extension L de�ned as \seq(b)-seq(a)"
where seq(x) returns the assigned sequence number for packet x in L. Notice that Dista;b values can be
di�erent for di�erent linear extensions of a PO. As an example, consider the PO in Figure 3 and two of its
linear extensions L1 and L2. The distance between packets a and b for these two linear extensions are 1 and
3, respectively. In our computations, we use the Dista;b values of the dependent pairs (i.e., a � b in PO) to
express the LE and PO information in the target values.

In our analysis, we �rst present the computations of bu�ering probabilities and times in Section 3.3. We then
introduce the investigation of Table 3's performance statistics (i.e., throughput, end-to-end packet delay and
expected bu�ers used at receiver) in Section 3.4. We study the e�ects of using a di�erent LE as the sender's
transmission order on system performance in Section 3.5.
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3.3 Analysis of Bu�ering Probabilities and Times

This section presents the investigations of bu�ering probabilities and times for a partially ordered service.
This analysis proceeds by �rst computing these target values for a dependent pair of packets (i.e., pBufa;b and
Bufa;b). We then expand our computations to general bu�ering probabilities and times (i.e., pBufa and Bufa)
for any given packet.

3.3.1 Bu�ering probability and time between dependent pairs: pBufa;b and Bufa;b

In a partially ordered service, there are packets whose delivery depends on other packets having been delivered.
For example, for packets a and b such that a � b in PO, packet b cannot be delivered to User Receiver unless
packet a has already been delivered. This is the requirement needed to assure that transport protocol provides
the application's desired partially ordered service. Hence, if b is received before a, then b should be bu�ered
at POC Receiver until after a's arrival and delivery. In this section, we study the bu�ering e�ects on b of a's
loss when a � b in PO.

pBufa;b is de�ned as the probability of having to bu�er b due to loss of a. Let pSBa;b be the probability that all
transmissions of packet a (i.e., original transmission and any retransmissions) preceding the �rst transmission
of packet b fail. Then we can compute pBufa;b by using pSBa;b as follows:

4

pBufa;b =
1

1 + p
� pSBa;b (1)

Similarly, Bufa;b , the expected time that packet b is bu�ered waiting for packet a to arrive, can be computed
as follows:

Bufa;b = pSBa;b �
(1� p) � (BufS � SLa;b) � tpack + p � tout

1� p2

= pBufa;b �
(1 � p) � (BufS � SLa;b) � tpack + p � tout

1� p
(2)

where SLa;b is the expected number of slots between a's failure just before b's �rst transmission, and b's �rst
transmission (see Appendix A.3 for the computational details of Bufa;b and SLa;b).
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Figure 4: E�ects of Dista;b on (A) pBufa;b and (B) Bufa;b when p = q = 0:1, BufS = 3 and tpack = 1

Figures 4.A and 4.B illustrate \pBufa;b and Bufa;b vs Dista;b" for the system con�guration where p = q = 0:1,
BufS = 3, and tpack = 1. Note that tpack = 1 represents the normalized case where it takes one unit time to
transmit a packet. These graphs show that both target values decrease with increasing Dista;b values. Thus,
for any two packets a and b where a � b in PO, the negative e�ects of a's loss on b decrease as the separation
of b from a in the transmission order of the packets (i.e., Dista;b) increases. It is noteworthy that at large
Dista;b values (e.g., Dista;b � 5), the bu�ering of b due to the loss of a is almost totally eliminated.

This is an encouraging result since by putting some distance between the transmission orders of dependent
packets, POC Sender can signi�cantly reduce bu�ering probabilities and times in the system. That is, by
wisely deciding on the packet sending order, POC Sender can improve the overall system performance. After
computing all target values, we will further discuss the importance of sending transmission order in Section 3.5.

4Computational details for pSBa;b and pBufa;b can be found in Appendix A.1 and A.2, respectively.
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3.3.2 Bu�ering probability for a packet: pBufa

pBufa is the overall bu�ering probability for packet a. Note that as the bu�ering probabilities in a system
decrease, bu�ering times also decrease. Since packets are bu�ered for shorter times, end-to-end packet delays
and bu�er utilization at the receiver should tend to be smaller. Thus, overall system performance should
improve as pBufa decreases. In this section, we investigate the conditions for this target value to decrease.

Notice that packet a will be bu�ered if and only if it overtakes (i.e., arrives before) a packet b and b � a in
PO. Then:

pBufa = P ([8 b� a a overtakes b)

=
X
8 b� a

P (a overtakes b) �
X

8 fb1;b2g� a

P (\2k=1 a overtakes bk)

+
X

8 fb1;b2;b3g� a

P (\3k=1 a overtakes bk) � ::: (3)

P (\mk=1 a overtakes bk) = pSBb1::bm;a �

�
1� p

1� pm+1

�
(4)

where pSB b1::bm;a is the probability that all transmissions (original plus retransmissions) of packets b1 through
bm preceding the �rst transmission of packet a fail.5 Appendix A presents an exact computation for pSB b;a.
We only have an approximate expression for pSB b1::bm;a when m � 2 in [10]. Thus, besides being complicated,
the bu�ering probability for packet a does not have an exact expression.

In general, we can simplify expression (3) by using a di�erent approximation. The terms P (\m
k=1 a overtakes bk)

decrease with decreasing BufS and p. Therefore, we do not have to compute all of the terms in expression (3)
under low loss rates and sender bu�er sizes. Under such situations, pBufa can be approximated as:

pBufa '
X
8 b� a

P (a overtakes b) =
X
8 b�a

pBufb;a (5)

Intuitively, we can explain this approximation as follows: when the loss rate is low, it is unlikely that packet a
would overtake two or more preceding packets. Hence, when p is small, the bu�ering probability for packet a
can be approximated by expression (5) since pBufa '

P
8 b�a P (a overtakes b) =

P
8 b�a pBufb;a . Similarly, if

BufS is small, then fewer number of packets b such that b � a have a chance of failing until the �rst transmission
of packet a. Thus, packet a has a smaller chance of overtaking two or more preceding packets. Therefore,
expression (5) will be a good approximation to bu�ering probabilities when BufS or p is small.6 It is noteworthy
that when BufS = 2, pBufa will be exactly equal to expression (5) since all terms P (\m

k=1 a overtakes bk) = 0
for m � BufS .

Expression (5) shows that as the number of packets b such that b � a decreases, or Distb;a values increase,7

pBufa will decrease. In general, if the density of PO is small8 (i.e., relatively few ordering constraints), there
will be a smaller number of packets b such that b � a. Additionally, Distb;a values between dependent packets
can in general be made larger by POC Sender's choice of transmission order in the case of low density POs.
Combining these two observations, we can say that if PO has low density, then the bu�ering probabilities in
the system will be lower.

a       c      e

b       d 

a       b      d       e a       b      c      d     e

1. Partial order with
    Density=0.4

2. Partial order with
    Density=0.6

3. Partial order with
    Density=1.0

c

Figure 5: Partial Orders with Di�erent Densities

Figure 5 introduces three partial orders with densities 0:4, 0:6 and 1:0, respectively. Throughout this paper,
we use these three partial orders in periodic form while comparing the performance of di�erent services (i.e.,

5See [10] for approximate computations of pSBb1::bm;a and P (\m
k=1 a arrives before bk).

6We will approximate the computations of Bufa , Tenda and R Bu� under the same conditions.
7pBuf b;a decreases with increasing Distb;a; see Figure 4.A.
8The density of a partial order is a measurement de�ned as follows [7]. Let D represent the cardinality of the set of all ordered

pairs (a; b) such that a � b in PO. The maximum value for D is N(N � 1)=2, therefore the density, d, is de�ned by the ratio
d = 2D= (N(N � 1)). For a chain, d=1; for an antichain, d=0.
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0.05 0.13 0.14 0.18 31.1% 21.0%
0.10 0.22 0.26 0.33 31.7% 22.0%
0.20 0.36 0.41 0.53 32.7% 23.5%
0.40 0.43 0.51 0.68 36.3% 25.7%
0.60 0.34 0.42 0.59 41.8% 28.5%

Figure 6: Average Bu�ering Probabilities (i.e., pBuf ) with three di�erent POs when BufS = 5 and tpack = 1

partially ordered service with di�erent densities, ordered service) with each other. A periodic PO is de�ned
as a partial order repeating itself some number of times. Periodic POs can be represented as P � ::�P where
P is the base partial order repeatedly concatenated to itself.9 The base density of a periodic PO is de�ned as
the density of just one period. Notice that for a chain PO, the base density (or the density of any number of
periods) will be equal to 1. Thus, the third PO in Figure 5 represents an ordered service, while the other two
represent partially ordered services with periodic POs having base densities 0:4 and 0:6. For these three POs,
LE = a b c d e is used as transmission order.

Let pBuf be the average of bu�ering probabilities de�ned as pBuf =

P
N

i=1
pBuf i

N
, where N is the total number

of packets. Figure 6.A illustrates pBuf values for the three partial orders shown in Figure 5. Similarly, the
table in Figure 6.B introduces the corresponding values for pBuf . The rightmost two columns of the table
give the percentage improvements in bu�ering probabilities by using either the 0:4 or the 0:6 base density PO
instead of the chain (i.e., the 1:0 density). As an example, at 0:1 loss level (i.e., p = q = 0:1), BufS = 5 and
tpack = 1, the average of bu�ering probabilities for the 0:4 base density PO is 0:22 and this is 31:7% smaller
than that of the chain.

Figure 6 clearly shows that as the density of PO decreases, bu�ering probabilities in the system decrease. This
�gure also shows that the improvements in pBuf increase with increasing loss rate. For example, while the
absolute10 and the percentage gains by the 0:4 base density PO are 0:16 and 32:7%, respectively, at 0:2 loss
level, they increase to 0:25 and 36:3% at 0:4 loss level. It is noteworthy that the absolute gains by partially
ordered services are negligible at small loss rates (e.g., p; q < 0:05). This is because bu�ering probabilities by
ordered service are already low and there is not much to improve by using partially ordered services.

In general, we can conclude that a partially ordered service provides important bu�ering probability gains over
an ordered service when the density of PO is low and the loss rate is high.

3.3.3 Expected bu�ering time for a packet: Bufa

This section investigates the bu�ering times characteristics of partially ordered services. Bufa is the expected
time that packet a spends at the bu�ers of POC Receiver. In general, lower bu�ering times achieve desirable
lower delay and bu�er utilization.

We already discussed during the computation of pBufa that when BufS or p is small, it is unlikely that two or
more packets will be overtaken by a later packet. Using this fact, we approximate Bufa as follows:

Bufa '
X
8 b�a

E(time that a waits for b) =
X
8 b�a

Buf b;a (6)

Since with low density POs, the number of packets b such that b � a will be smaller, andDistb;a values between
dependent pairs can be made larger,11 based on expression (6), we can say that bu�ering times decrease with

9\�" is the linear sum or concatenation operator for POs de�ned [6] as x � y in P �Q if and only if x; y�P and x � y in P ,
or x; y�Q and x � y in Q, or x�P and y�Q.
10Absolute pBuf gain simply refers to the di�erence between the pBuf values of a partially ordered service and those of an

ordered service.
11Buf b;a decreases with increasing Distb;a; see Figure 4.B.
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Figure 7: Average Bu�ering Times (i.e., Buf ) with three di�erent POs when BufS = 5 and tpack = 1

decreasing densities of POs. This can easily be seen in Figure 7 that illustrates the average of bu�ering times

(i.e., Buf =

P
N

i=1
Buf i

N
) for the three POs in Figure 5. Figure 7 also shows that as the loss rate increases,

while the percentage gains change only slightly, the absolute gains increase.

Based on the results of Section 3.3, we can conclude that for applications that do not need an ordered service,
by using partially ordered service, bu�ering probabilities and times in the system can signi�cantly be reduced
especially at high loss rates.

3.4 Analysis of Performance Statistics

The main objective of this analytic study is to investigate the throughput, delay and bu�er utilization char-
acteristics of partially ordered transport services. In general, our analysis proceeds as follows:

1. We compute �, throughput, using Little's theorem.

2. The formula for R Bu� , expected bu�ers used at receiver, is derived by using bu�ering times and Little's
theorem.

3. Tenda , end-to-end delay for packet a, is computed by using the expression for bu�ering times.

3.4.1 Throughput: �

With the assumptions 2, 3, 4, 5, 6, and 8 of Table 2, the number of packets at POC Sender is always BufS .
Let PSTime be the expected time that a packet spends at the bu�ers of POC Sender. By Little's theorem:
BufS = � � PSTime . PSTime can be computed as \PSTime =

P1

i=1 i � tout � psucc � (1 � psucc)
i�1 = tout

psucc
".

Thus, since BufS = tout
tpack

by assumption 6, throughput is:

� =
psucc

tpack
packets=unit time (7)

Expression (7) shows the interesting result that throughput does not depend on the order requirements of
applications (i.e., PO). Notice that we obtain this result under the assumptions of in�nite bu�ers at receiver
(i.e., BufR = 1) and constant network layer delays. Thus, based on expression (7), we can conclude that a
partially ordered service does not provide a throughput improvement over an ordered service when BufR =1
and network layer delay is constant.

Would this analytic result be valid if we relax these two assumptions? The simulation results from [10] show
that partially ordered services provide a throughput improvement only when POC Sender has more bu�ers
than POC Receiver (i.e., BufS > BufR). Thus, even though our analytic result is derived under constant
network layer delays and in�nite bu�ers at receiver, it also holds for variable network layer delays and for
�nite BufR such that BufR � BufS .

Since most transport layer protocols tend to use sender and receiver bu�er sizes of roughly equal size, for most
practical purposes, we can conclude that a partially ordered service provides no throughput improvement

9



over an ordered service. Thus, our analytic result explains the relationship between throughput and order
requirements of applications for most practical cases.

3.4.2 Bu�ers Used at Receiver: R Bu�

In general, a packet spends Buf =

P
N

i=1
Buf i

N
time on average at POC Receiver. Using Little's theorem,

R Bu� , the expected number of packets bu�ered at POC Receiver waiting to be delivered to User Receiver,
can be computed as:

R Bu� = � � Buf packets (8)
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0.05 0.30 0.36 0.48 36.9% 25.7%
0.10 0.56 0.66 0.88 36.2% 25.0%
0.20 0.87 1.02 1.36 36.3% 24.9%
0.40 0.92 1.09 1.47 37.7% 26.0%
0.60 0.56 0.69 0.96 42.1% 28.5%

Figure 8: Expected bu�ers used at receiver (i.e., R Bu� ) with three di�erent POs when BufS = 5 and
tpack = 1

Figure 8 illustrates R Bu� values for the three POs in Figure 5. It shows that bu�er utilization is lower
with lower densities of POs. As an example, at 0:1 loss level, R Bu� with 0:4 and 0:6 base density POs
are respectively 36:3% and 24:9% smaller than that of ordered service (i.e., 1:0 density). Figure 8 also shows
that while there are signi�cant percentage improvements in R Bu� at all loss levels, the absolute gains are
negligible at small loss rates (e.g., p; q < 0:1).

3.4.3 End-to-end packet delay: Tenda

Tenda is the expected time for packet a to reach to User Receiver once it is given to POC Sender for trans-
mission. In general, there are two parts of this target value: (1) the expected time to reach to POC Receiver,
and (2) the expected bu�ering time (i.e, Bufa). We computed (2) in Section 3.3.3. By just computing the �rst
term, we can derive the expression for Tenda .

E(time to reach to POC Receiver) = tdelay +
P1

i=1(i� 1) � tout � (1 � p) � pi�1 = tdelay +
p

1�p
� tout. Hence,

Tenda is:

Tenda =

�
tdelay +

p

1� p
� tout

�
+ Bufa (9)

Figure 9 illustrates the average of packet delays (i.e., Tend =

P
N

i=1
Tendi

N
) for the three POs in Figure 5. For

example, for the PO with 0:6 base density, when BufS = 5 , tpack = 1, tdelay = 2:5 and p = q = 0:4, the
average end-to-end packet delay is 8:86 time units. This is 10:7% better than the packet delay achieved for a
chain (i.e., 1:0 density). Figure 9 shows that, at small loss rates (e.g., p; q < 0:05), Tend for all POs are almost
identical. On the other hand, as the loss rate increases, both percentage and absolute improvements in Tend

increase. Such improvements of partially ordered services are particularly higher with lower density POs.

It is noteworthy that partially ordered services provide smaller improvements in delay than those in other
target values such as bu�er utilization, and bu�ering probabilities and times. Intuitively, this is because the
dominant factors in end-to-end packet delay such as network layer delays and retransmissions due to packet
losses cannot be eliminated by reducing the delivery precedence constraints among packets. This intuition can
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Figure 9: Relationship between Tend and loss rates when BufS = 5, tpack = 1 and tdelay = 2:5

easily be veri�ed by expression (9). Consider the two parts of this expression : (1) expected time to reach to
POC Sender and (2) Bufa . The �rst term \tdelay+

p
1�p

�tout" represents the Tenda components due to network
layer delays and retransmissions. This term is independent of the PO being used; it cannot be reduced by
using a partially ordered service. Partially ordered service can improve delay only by reducing the bu�ering
times (i.e., just one of the two important parts of delay expression). Therefore, the overall improvements
in delay are not as signi�cant as those of other target values. Nevertheless, there is still some improvement
obtainable in Tend by partially ordered services.

In general, Section 3.4 shows that for applications that can tolerate some reordering in the delivery of packets,
use of partially ordered service instead of ordered one provides some delay and considerable bu�er utilization
improvements in the system, particularly as the loss rate increases and the order requirements of the applica-
tions decrease. Analytic results also show that in terms of throughput, it does not make any di�erence which
service (i.e., ordered, partially ordered, unordered) an application uses.

3.5 Using a di�erent LE as POC Sender's Transmission Order

In a partially ordered service, POC Sender is permitted to transmit packets in any order that does not violate
the partial order [3]. That is, any valid LE of PO is permitted. Does the choice of which LE is used by
POC Sender a�ect the expected performance? In this section, we will address this question by comparing the
performance of di�erent LEs of a PO.

Consider the following two LEs of the �rst PO = (a � c � e)jj(b � d) in Figure 5: LE1 = a c e b d and
LE2 = a b c d e. Is either of these two LEs a better transmission order? From Section 3.3.1, we know that if
the separations of the dependent packets in transmission order (i.e, Dista;b values for all a � b) are increased,
then bu�ering probabilities and times in the system are reduced. Thus, we can say that LE2 is better because
in LE1, dependent packets a c e and b d are transmitted in sequence whereas in LE2, they are separated.

Which target values can be improved by using LE2 over LE1? Since � is independent of PO being used,
throughput will be una�ected by the choice of LE. On the other hand, all other target values (i.e., pBuf ,
Buf , Tend and R Bu� ) will be improved by LE2.

12 This can easily be seen in Figure 10 that compares the
performance of LE1 with that of LE2. This �gure shows that at higher loss rates, bu�ering probabilities
and times, bu�er utilization and delay are improved by using LE2 over LE1. For example, when loss rate=
0:1, the percentage improvements are 4:30%, 12:27%, 2:51% and 12:27% in pBuf , Buf , Tend and R Bu� ,
respectively. Figure 10 clearly shows that the choice of which LE is used by POC Sender a�ects the overall
system performance. Thus, it is important to use a good linear extension as transmission order in a partially
ordered service.

Reference [8] provides a more in-depth study of the problem of determining the best transmission order for a
given partially ordered service. In [8], a new metric (pBuf -metric) for quantifying a linear extension's goodness

is de�ned based on the average of bu�ering probabilities (i.e., pBuf -metric=

P
a�b in PO

(pBufa;b)
N

). This pBuf -

12See expressions (5), (6), (8) and (9) for pBufa , Bufa , R Bu� and Tenda , respectively; all these target values decrease with

increasing Distb;a values for b � a.
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Figure 10: Comparison of two LEs as transmission order when BufS = 5, tpack = 1 and tdelay = 2:5

metric approximates the average of bu�ering probabilities when the linear extension LE of PO is used as
transmission order. Because of this characteristic, pBuf -metric can be used to discover the LE (or the set of
LEs) of a PO that achieves the lowest bu�ering probabilities in the system. In deciding between two linear
extensions of a PO, if POC Sender chooses the one with smaller pBuf -metric value, then that LE is expected
to result in smaller bu�ering probabilities and other performance advantages.

Consistent with analytic results, the simulation results of [8] show that by choosing better LEs over suboptimal
ones, we obtain some delay and important bu�er utilization improvements, but, in general, no throughput
improvement. Results of [8] also show that pBuf -metric (the metric derived directly from analytic model) is
e�ective in determining the good LEs of a PO even under variable network layer delays and �nite receiver
bu�ers.

4 Veri�cation of Analytic Model

Section 3 investigates the bu�ering, delay, bu�er utilization and throughput characteristics of partially ordered
transport services by computing the set of target values de�ned at Tables 3 and 4. In this section, we will
verify the analytic model by comparing the results against those of simulation model. More speci�cally,
the computations of the following target values will be veri�ed: bu�ering probabilities and times between
dependent pairs (i.e., pBufa;b and Bufa;b for a � b), bu�ering probabilities and times for a packet (i.e., pBufa
and Bufa ), throughput (i.e., �), expected bu�ers used at receiver (i.e., R Bu� ) and end-to-end packet delay
(i.e., Tenda ).

For simulation study of partially ordered transport services, we built an OPNET-based simulation model at
the University of Delaware's Protocol Engineering Lab. OPNET (OPtimize Network Engineering Tools) is a
comprehensive engineering system capable of simulating large communication networks with detailed protocol
modeling and performance analysis [2].

For the veri�cation process of analytic model, we run three di�erent sets of experiments each of which testing
a di�erent hypothesis of the analytic model. It is important to state that these four hypotheses were all
developed based only on the analytic model and before any simulation were run. The hypotheses are:

Hypothesis 1 Analytic model gives the exact expressions for pBufa;b , Bufa;b and �.

Hypothesis 2 Analytic model results in the actual values for pBufa , Bufa , Tenda and R Bu� when BufS = 2.
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Hypothesis 3 As BufS increases, analytic model overestimates the values for pBufa , Bufa , Tenda and R Bu� .

Hypothesis 4 At low loss rates, the analytic model better approximates the values for pBufa , Bufa , R Bu�

and Tenda even at larger BufS values.

The analytic model gives the exact computational results for the target values pBufa;b , Bufa;b and � regardless
of bu�er sizes and loss rates. Thus, under the assumptions given at Table 2, we have the exact expressions for
these target values. In all experiments performed, we show that the simulation and analytic results are closely
matched for these three target values (Hypothesis 1).

We will explain Hypothesis 2-4 only for bu�ering probabilities (i.e., pBufa ). But one can easily extend these
explanations for bu�ering times (i.e., Bufa). Since Tenda and R Bu� are derived using Bufa , the same
arguments will be valid for those two target values as well.

The bu�ering probability for packet a is approximated in expression (5). Let Error be the following:

Error =
X

8 fb1;b2g� a

P (a overtakes b1; b2) �
X

8 fb1;b2;b3g� a

P (a overtakes b1; b2; b3) + :::

= P (a overtakes two or more dependent packets) (10)

Thus, pBufa � Error is the exact computation where Error represents the error value in the approximated
computation.

When BufS = 2, P (a overtakes more than one preceding packet) = 0. Thus, under this condition, Error = 0
and we have the exact computation for the target values pBufa , Bufa , Tenda and R Bu� . In Experiment.1,
we show that when BufS = 2, the simulation and analytic results for these target values are closely matched
(Hypothesis 2).

As BufS increases, we expect to see that packet a overtakes more preceding packets. Thus, with increasing
BufS , Error should also increase. Notice that as Error increases, the analytic model starts increasingly
overestimating the approximated values. This e�ect is shown in Experiment.2 (Hypothesis 3).

Finally, at small loss rates, Error = P (a overtakes more than one dependent packets) will be low even when
BufS is large. Intuitively, this is because, at small loss rates, it is unlikely that packet a will overtake two or
more preceding packets. Thus, at small loss rates, the analytic model should provide closer approximations
for the target values pBufa , Bufa , Tenda and R Bu� . This is shown in Experiment.3 (Hypothesis 4).

The analytic model computes the target values under certain assumptions (e.g., constant network layer delays,
in�nite bu�ers at POC Receiver, etc; see Table 2 for the full set of assumptions). The parameters of the
simulation model are tuned so that we have a comparable system. That is, the results of these simulation
experiments can be compared to analytic results because they are both derived from the same kind of system.

In the simulation study, each experiment is repeated three times with 30000 packets and the averages of the ob-
served values from these three simulation runs are computed. The worst case for the analytic model to estimate
the values for pBufa , Bufa , Tenda and R Bu� occurs when the PO under consideration has the most dependen-
cies possible. This is because for such partial orders, there will be a higher chance that the packets overtaken
by a will have a dependency relation with a, and thus, Error = P (a overtakes two or more dependent packets)
will be higher. Additionally, if the partial order has the most dependencies possible, then we will have the
maximal number of nonzero terms for pBufa;b and Bufa;b to compare with simulation results.13 Hence, to best
verify the analytic model, in all experiments, we use a chain as PO.

Sections 4.1, 4.2, and 4.3 present the results of the experiments through graphs. The graphs compare the
average values from the three simulation runs with the analytic values for all target values. In the graphs, the
following conventions are used: the analytic results are plotted as lines without explicitly marking the computed
points whereas the simulation results are shown only as computed points. Additionally, the simulation and
analytic results in the graphs are labeled as \S" and \A", respectively.

4.1 Experiment.1

In these experiments, we simulated a sender bu�er size (BufS ) of 2 in order to test Hypothesis 2. The results
of these experiments are also checked for Hypothesis 1. These experiments consist of three simulations runs for
the loss rates of 0:01, 0:05, 0:1, 0:2, 0:3, 0:4, 0:5, 0:6, and 0:8. The corresponding analytic values are computed
for p = q values of 0:01, 0:05, 0:1, 0:15, 0:2, 0:25, 0:3, 0:35, 0:4, 0:45, 0:5, 0:6, 0:7, 0:8, 0:9, and 0:99. The

13pBufa;b and Bufa;b are zero if there is no constraint a � b in PO; see Section 3.3.1.

13



A.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ro
ug
hp
ut
 (
pa
ck
et
s/
un
it
 t
im
e)

loss rate

S
A

B.
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

pB
uf
_a
b 
wi
th
 D
is
t_
ab
=1

loss rate

S
A

C.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Bu
f_

ab
 w
it
h 
Di
st
_a
b=
1 
(u
ni
t 
ti
me
)

loss rate

S
A

Figure 11: Graphs for (A) �, (B) pBufa;b and (C) Bufa;b (Experiment.1)

analytic model computations are done for more points (i.e., loss rates) in order to have smooth curves in the
graphs.

Figures 11.A-11.C illustrate the graphs for �, pBufa;b and Bufa;b . As the graphs show, the analytic and
simulation values are closely matched in these experiments. In general, all results from two models are within
1% of each other. Thus, the �rst set of experiments supports the correctness of Hypothesis 1.

The simulation and analytic values for pBufa , Bufa , R Bu� and Tenda are given in Figures 12.A-12.D. Since
BufS = 2, the analytic and simulation results strongly support each other for these target values. The values
from two models are generally within 1% of each other. Thus, as predicted by Hypothesis 2, the analytic and
simulation results are essentially identical when BufS = 2.

4.2 Experiment.2

In the �rst set of experiments, we set BufS = 2, vary the loss rate, and test Hypothesis 1 and 2. In the second
set of experiments, we set the loss rate= 0:1, vary BufS , and test Hypothesis 1 and 3. We run three simulations
for BufS values of 2, 3, 4, 5, 6, and 8 . The corresponding analytic values are computed for BufS values of 2,
3, 4, 5, 6, 7, 8, and 9.

Figures 13.A-13.C introduce the graphs for �, pBufa;b and Bufa;b . As in the �rst set of experiments, the
analytic and simulation values are close to each other in these experiments as well. Thus, the �, pBufa;b and
Bufa;b results of these experiments are as stated in Hypothesis 1.

The graphs for pBufa , Bufa , R Bu� and Tenda are given in Figures 14.A-14.D. These graphs clearly show
that as BufS increases, the analytic model increasingly overestimates these four target values as expected. For
example, while at BufS = 3, the analytic model value for pBufa is about 4:6% larger than the corresponding
simulation value, at BufS = 5, it is almost 15:7% larger. Thus, Hypothesis 3 successfully explains the results
of these experiments.

4.3 Experiment.3

The primary purpose of the third set of experiments is to test Hypothesis 4. Meanwhile, we also check the
correctness of Hypothesis 1. In the experiments, we set BufS to a value greater than 2, and vary the loss
rate in order to test Hypothesis 4. In both the analytic and simulation models, BufS is taken to be 6. The
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Figure 12: Graphs for (A) pBufa , (B) Bufa , (C) R Bu� and (D) Tenda (Experiment.1)

simulation experiments are run for the loss rates of 0:05, 0:1, and 0:3. The corresponding analytic values are
computed for p = q values of 0:05, 0:1, 0:2, and 0:3.

As stated in Hypothesis 1, Figures 15.A-15.C show that the analytic and simulation values for �, pBufa;b and
Bufa;b are closely matched. The results from two models are generally within 1% of each other.

The graphs for pBufa , Bufa , R Bu� and Tenda are illustrated in Figures 16.A- 16.D. These graphs show that
the results from two models are closer to each other at lower loss rates. Thus, as predicted by Hypothesis 4,
the analytic model better approximates these four target values at smaller loss rates. For example, while
the analytic model overestimates Tenda by about 10:9% at loss rate= 0:3, it is only 2:3% larger than the
corresponding simulation value at loss rate= 0:01.

In summary, Sections 4.1-4.3 present the results from three di�erent sets of simulation experiments. These
experiments support the four hypotheses derived from the analytic model before any simulation experiment
were run. In general, the analytic and simulation results are within 1% of each other for the values that
analytic model is expected to provide the exact results. Based on the results of Sections 4.1-4.3, we conclude
that the analytic model provides

� accurate results for �, pBufa;b and Bufa;b under any loss rate and sender bu�er size,
� accurate results for pBufa , Bufa , R Bu� , and Tenda when BufS = 2,
� close results for pBufa , Bufa , R Bu� , and Tenda when sender bu�er size or the loss rate is small, and
� accurate \shape of curve" for pBufa , Bufa , R Bu� , and Tenda even at high loss rates and large BufS
values.

Thus, based on these results, we conclude that the simulation experiments provide strong evidence to the
correctness of the analytic model.

5 Summary of Main Results

This paper presents an analytic model for investigating the throughput, delay and bu�er utilization charac-
teristics of partially ordered transport services. Through this model, we study the e�ects of packet and ack
losses as well as various levels of applications' order requirements on the performance of di�erent services (i.e.,
ordered, partially ordered, and unordered). The analytic model is veri�ed by comparing the results against
those of an OPNET simulation model.

15



A.
0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

Th
ro
ug
hp
ut
 (
pa
ck
et
s/
un
it
 t
im
e)

Buf_S

S
A

B.
0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

0.09

0.092

2 3 4 5 6 7 8 9 10

pB
uf
_a
b 
wi
th
 D
is
t_
ab
=1

Buf_S

S
A

C.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8 9 10

Bu
f_

ab
 w
it
h 
Di
st
_a
b=
1 
(u
ni
t 
ti
me
)

Buf_S

S
A

Figure 13: Graphs for (A) �, (B) pBufa;b and (C) Bufa;b (Experiment.2)

The analytic study shows that in terms of throughput, it does not make any di�erence which service (i.e.,
ordered, partially ordered) an application uses. On the other hand, for applications that can tolerate some
reordering in the delivery of objects, use of ordered service instead of partially ordered one results in important
bu�er utilization and delay increases, particularly as the underlying network's loss rate increases and the
applications' order requirements decrease. Unordered service, however, is unable to provide the minimal order
guarantees of applications. Thus, in lossy environments, partially ordered service is necessary to provide the
order requirements of applications, and at the same time, to prevent the delay and bu�er utilization costs of
ordered service.

In a partially ordered service, the sender is permitted to transmit packets in any order that does not violate the
partial order. Analytic results show that by judicious choice of transmission order, the system performance can
further be improved. Thus, it is important to use a good linear extension as transmission order in a partially
ordered service.
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Figure 14: Graphs for (A) pBufa , (B) Bufa , (C) R Bu� and (D) Tenda (Experiment.2)
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Appendix A

A Computational Details

In this appendix, we present the computational details of pSBa;b, pBufa;b and Bufa;b . pSBa;b is the probability
that all transmissions of packet a prior to packet b's �rst transmission fail. This probability is the cornerstone
of our computations. Obviously, only if packet a keeps failing until packet b's �rst transmission, is there a
possibility that packet b will overtake packet a, resulting in packet b's bu�ering at POC Receiver. pSBa;b is
used to derive the expressions for pBufa;b and Bufa;b , which in turn are used in the approximate computations
of pBufa and Bufa . The expressions for R Bu� and Tenda are derived by using Bufa . Because of this, we will
present a detailed discussion on pSBa;b in the next section.

Let sai be the time that packet a's ith transmission starts at POC Sender. sa1 is the time of a's original
transmission, sa2 is the time of the �rst retransmission, and so on. Additionally, let ra be the time that packet
a is received at POC Receiver for the �rst time. Throughout this appendix, we will use these two variables in
our computations.

A.1 Probability that one packet keeps failing until the �rst transmission of an-

other packet: pSBa;b

Figure 17 shows a scenario where packet a's original transmission and all of its retransmissions occurring
before packet b's �rst transmission fail. In this �gure, the total number of times that a fails before b's �rst
transmission is t+ 1.

Time at 
POC Sender

ba

failsuccess

a

fail

a

last success

successfail

i slots

exactly t failures of packet a and

a fails one 
more time

t out

sa 1
sa 2

sa t
sa t+1

sb1- t outsb1

+-sb1
t out t pack

t pack

+ t packsa 1
t out-

X Y

     t*Buf   + i  transmissions containingS 

Dist     successes of other packetsa,b

a’s 1     transmission
st

     a’s t     
transmission

th

b’s 1     transmission
st

Figure 17: a fails until sb1

Note that for any original packet transmission, there must be a corresponding successful packet-ack trans-
mission tout earlier in time in order to free a bu�er space at POC Sender and to allow for the corresponding
packet's �rst transmission. For example, the successful packet-ack transmission allowing for packet a's �rst
transmission occurs at point X in Figure 17.

In this example case, sb1 � sa1 = t � tout+ i � tpack = (t �BufS + i) � tpack. Thus, there are a total of t �BufS + i

transmissions during time [sa1 ; sb1 ] or equivalently during time [sa1 � tout + tpack; sb1 � tout + tpack]. If a fails
until the �rst transmission of b, then the following conditions are satis�ed for the t � BufS + i transmissions
during time [sa1 � tout + tpack; sb1 � tout + tpack]:

1. a fails t times. Thus, out of t�BufS+i transmissions, t of them are a's unsuccessful packet transmissions;
leaving t � (BufS � 1) + i transmissions for other packets.
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2. Out of remaining t � (BufS � 1) + i transmissions, there must be only Dista;b successful packet-ack
transmissions allowing for the packets between a and b (a total of Dista;b of them) to have their �rst
transmissions in time [sa1 + tpack; sb1 + tpack].

3. A successful packet-ack transmission occurs precisely at time sb1 � tout (point Y in Figure 17), thereby
allowing POC Sender to transmit packet b at time sb1 . This is the last success.

4. The remaining Dista;b � 1 successes must have occurred in any of the previous t � (BufS � 1) + i � 1
transmissions.

Additionally, a must fail one more time during [sb1� tout+ tpack; sb1 ] just before b's �rst transmission as shown
in Figure 17. In this example scenario, there are t timeout periods between the �rst transmissions of packets
a and b, and b's �rst transmission takes place at the (i + 1)th slot of the last timeout period (i.e., (t + 1)th

timeout period after a's �rst transmission). We have the following overall probability for this situation:
P (a fails until sb1 and

there are t timeout periods in [sa1 ; sb1 ] and

b0s �rst transmission takes place at (i + 1)th slot of last timeout period)

= P (a fails t times in [sa1 � tout + tpack; sb1 � tout + tpack] and

there is a success at time sb1 � tout and

there are Dista;b � 1 successes from remaining t � (BufS � 1) + i� 1 transmissions and

a fails one more time in time [sb1 � tout + tpack; sb1 ])

= pt � (psucc) �

��t � (BufS � 1) + i� 1

Dista;b � 1

�
(psucc)

Dista;b�1 � (1 � psucc)
t�(BufS�1)+i�Dista;b

�
� p

= pt+1 �

��t � (BufS � 1) + i� 1

Dista;b � 1

�
(psucc)

Dista;b � (1 � psucc)
t�(BufS�1)+i�Dista;b

�
(11)

Since 1 � i � BufS � 1:
P (a fails until sb1 and

there are t timeout periods in [sa1 ; sb1 ])

= pt+1 �

0
@BufS�1X

i=1

�t � (BufS � 1) + i� 1

Dista;b � 1

�
(psucc)

Dista;b � (1 � psucc)
t�(BufS�1)+i�Dista;b

1
A (12)

Based on these observations, pSBa;b can be computed as follows:
pSBa;b = P (a fails until sb1)

=

1X
t=b

Dista;b�1

BufS�1
c

P (there are t timeout periods in [sa1 ; sb1 ] and a fails until sb1)

= p
b
Dista;b�1

BufS�1
c+1

BufS�1X
i=remainder(

Dista;b�1

BufS�1
)+1

�bDista;b�1

BufS�1
c � (BufS � 1) + i� 1

Dista;b � 1

�
�

 
(psucc)

Dista;b � (1� psucc)
b
Dista;b�1

BufS�1
c�(BufS�1)+i�Dista;b

!

+

1X
t=b

Dista;b�1

BufS�1
c+1

pt+1

BufS�1X
i=1

�t � (BufS � 1) + i� 1

Dista;b � 1

�
�

�
(psucc)

Dista;b � (1 � psucc)
t�(BufS�1)+i�Dista;b

�
(13)

Expression (13) thus far has no known closed-form solution; it reduces to expression (14) when BufS = 2.

pSBa;b = pDista;b � (psucc)
Dista;b +

1X
t=Dista;b

� t

Dista;b � 1

�
pt+1 � (psucc)

Dista;b � (1� psucc)
t+1�Dista;b

=

�
p � psucc

1� p+ p � psucc

�Dista;b

=

�
p � (1� q)

1 + p � (1 � q)

�Dista;b

(14)
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A.2 Computation of pBufa;b

pBufa;b is the probability that packet a is received after packet b, thus resulting in bu�ering packet b. This
value will be computed when b's delivery depends on a's previous delivery, i.e., a � b (If there is no dependency
relation between a and b, this value is zero by de�nition).

pBufa;b = P (ra > rb)

= pSBa;b � P (ra > rbja fails until sb1) (15)

The latter term in expression (15) can be computed as follows:
P (ra > rbja fails until sb1 )

=

1X
j=1

(1 � p) � pj�1 � P (ra > rb j b
0s packet transmission succeeds at jth attempt and a fails until sb1 )

=

1X
j=1

(1 � p) � pj�1 �

 
1X
i=j

P (a0s packet transmission succeeds at ith attempt after sb1 where i � j)

!

=

1X
j=1

(1 � p) � pj�1 �

 
1X
i=j

(1� p) � pi�1

!

=
1

1 + p
(16)

Substituting equation (16) in expression (15) :

pBufa;b = pSBa;b �
1

1 + p
(17)

A.3 Computation of Bufa;b

The value Bufa;b , the time that packet b is bu�ered waiting for packet a to arrive, is computed for a � b. This
value is zero by de�nition when there is no dependency between a and b since in this case b never has to wait
for a in the bu�ers of POC Receiver.

Bufa;b = E(rb � ra)

= pSBa;b � E(rb � raja fails until sb1)

= pSBa;b �
� 1X
j=1

(1� p) � pj�1

�E(rb � raja fails until sb1 and b0s packet transmission succeeds at jth attempt)
�

= pSBa;b �
� 1X
j=1

(1� p) � pj�1 �
� 1X
i=j

P (a 0s packet transmission succeeds at ith attempt after sb1)

�
�
(j � i) � tout + (BufS � SLa;b) � tpack

���
= pSBa;b �

 
1X
j=1

(1� p) � pj�1 �

 
1X
i=j

(1� p) � pi�1 �
�
(j � i) � tout + (BufS � SLa;b) � tpack

�!!

= pSBa;b �
(1� p) � (BufS � SLa;b) � tpack + p � tout

1� p2

= pBufa;b �
(1 � p) � (BufS � SLa;b) � tpack + p � tout

1� p
(18)

where SLa;b is the expected number of slots between a's failure just before b's �rst transmission and b's �rst
transmission (in Figure 17, this is shown as \i slots"). We have studied the events leading to a's failure until
the �rst transmission of b in detail in Appendix A.1. Thus, by using these events, SLa;b can be computed as:

SLa;b =

1X
i=1

i � P (a is transmitted at 1st slot of timeout period and b is transmitted at (i+ 1)th slot of

the same timeout period j a fails until sb1 )
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=

BufS�1X
i=remainder(

Dista;b�1

BufS�1
)+1

�bDista;b�1

BufS�1
c � (BufS � 1) + i� 1

Dista;b � 1

�
� i �

 
(psucc)

Dista;b � (1 � psucc)
b
Dista;b�1

BufS�1
c�(BufS�1)+i�Dista;b

!

+

1X
t=b

Dista;b�1

BufS�1
c+1

BufS�1X
i=1

�t � (BufS � 1) + i� 1

Dista;b � 1

�
� i �

�
(psucc)

Dista;b � (1� psucc)
t�(BufS�1)+i�Dista;b

�
(19)
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