
NON-RENEGABLE SELECTIVE ACKNOWLEDGMENTS AND

SCHEDULING FOR TCP AND MULTIPATH TCP

by

Fan Yang

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer
Science

Spring 2015

c© 2015 Fan Yang
All Rights Reserved

NON-RENEGABLE SELECTIVE ACKNOWLEDGMENTS AND

SCHEDULING FOR TCP AND MULTIPATH TCP

by

Fan Yang

Approved:
Errol L. Lloyd, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Paul D. Amer, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Adarshpal S. Sethi, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Michela Taufer, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Stephan Bohacek, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

I am the luckiest student for having Prof Paul D. Amer as my advisor. I would

like to express my special appreciation and thanks to him for encouraging my research

and for allowing me to grow as a researcher. With his patience and help, I felt very

warm and went through the most difficult time in my life. His strict attitude towards

both research and life influenced me so much, and I try to remember each sentence

he said to me. These are the most precious wealth of my whole life. Since I am an

international student, he always taught me to speak English slowly and clearly. Also,

he taught me to present complex ideas in a simple and clear way in scientific writings.

I would say he changed my whole life. Really thank you so much Prof Amer.

I would also like to thank my committee members, Prof Adarsh Sethi, Prof

Michela Taufer and Prof Stephan Bohacek for reviews, constructive suggestions and

criticisms that helped to improve this dissertation, for letting my defense be an enjoy-

able moment, and for the brilliant comments and suggestions.

During my years at University of Delaware, I worked with a lot of great people

in the Protocol Engineering Lab (PEL). Jonathan T. Leighton, Qi Wang and Ayush

Dusia always provided invaluable comments and helpful discussions when I was stuck

on a problem, and they also helped me a lot to improve my speaking English. Jiefu

Li contributed to this dissertation by running experiments. In addition, I am very

grateful to Nasif Ekiz for his help during my first years.

This dissertation is dedicated to my mother, Shunwen Ge. Words cannot express

how grateful I am to her for all of the sacrifices that she has made on my behalf.

Without her endless support, this dream would never come true. Although, my father,

Shouxin Yang, has gone, I know his spirit is always with me and hope he be always

happy in the heaven.

iv

A special thanks goes to my wife Yang Xin and my daughter Tianze Yang, hope

both of you enjoy your lives.

I would also like to thank all of my best friends Yuanfang Chen, Wei Wang,

Boyu Zhang, Xiaoran Wang and Hao Feng who made Newark more fun and enjoyable.

Thank you all.

v

TABLE OF CONTENTS

LIST OF TABLES . x
LIST OF FIGURES . xi
ABSTRACT . xv

Chapter

1 INTRODUCTION . 1

1.1 Dissertation Scope . 1

1.1.1 Reneging and NR-SACKs . 2
1.1.2 Multipath TCP . 3

1.2 MPTCP Primer . 5

1.2.1 MPTCP in the Networking Stack 5
1.2.2 MPTCP Connection Establishment 5
1.2.3 Data Transfer Using MPTCP 5
1.2.4 MPTCP Connection Termination 7

2 NON-RENEGABLE SELECTIVE ACKNOWLEDGMENTS
(NR-SACKS) FOR TCP . 8

2.1 Reneging . 8
2.2 Potential Performance Gains by Prohibiting Reneging in TCP 9
2.3 Discussion . 11
2.4 Implementation . 12

2.4.1 Critical Data Structure I: sk buff Structure 12

2.4.1.1 Memory Allocation for an skb 15
2.4.1.2 Control Buffer Field 16

2.4.2 Critical Data Structure II: tcp sock Structure 17

vi

2.4.3 Processing of Incoming NR-SACKs 19
2.4.4 Complexity Analysis of Implementation 21

2.5 Experimental Design I . 27

2.5.1 Experimental Parameters . 28
2.5.2 Results . 28
2.5.3 Impact of Loss Rate . 30
2.5.4 Impact of Delay . 32

2.6 Future Work: Experiment Design II 33

3 NON-RENEGABLE SELECTIVE ACKNOWLEDGMENTS
(NR-SACKS) FOR MPTCP . 36

3.1 GapAck-Induced Send Buffer Blocking in MPTCP Unordered Data
Transfer . 36

3.2 MPTCP Unordered Data Transfer with NR-SACKs 38
3.3 Implementation . 40

3.3.1 Supporting NR-SACKs at the MPTCP Receiver 40
3.3.2 Supporting NR-SACKs at the MPTCP Sender 43

3.4 Experimental Setup . 44

3.4.1 Test-bed Topology . 45
3.4.2 Experimental Parameters . 45

3.5 Results . 45

3.5.1 Retransmission queue evolution 47
3.5.2 Impact of Loss Rate . 49
3.5.3 Impact of Delay . 49

3.6 Conclusion . 50

4 HOW TO DERIVE A GOOD SCHEDULER FOR MPTCP . . . 52

4.1 Problems . 52

vii

4.2 Analysis . 54

4.2.1 Techniques . 55

4.3 A Scheduling Policy Based on Estimated Subflow Path Capacities . . 56
4.4 Implementation . 59
4.5 Evaluation Preliminaries . 61
4.6 Performance Evaluation . 61

4.6.1 Results without Cross Traffic 61
4.6.2 Results with Cross Traffic . 64

4.7 Discussions . 64
4.8 Conclusion . 65

5 USING ONE-WAY COMMUNICATION DELAY FOR
IN-ORDER ARRIVAL MPTCP SCHEDULING 66

5.1 Motivations . 66
5.2 Schedule MPTCP-PDUs to All Established Subflows 69
5.3 One-way Communication Delay . 71
5.4 Time Spent in the Send Buffer . 74
5.5 Two Designs of In-order Arrival Scheduling 75
5.6 Implementation . 78
5.7 Results of In-order Arrival Scheduling 80

5.7.1 Test-bed Topology . 80
5.7.2 Receive Buffer Usage . 81
5.7.3 Throughput with Reduced Receive Buffer 81

5.8 Limitations . 83

5.8.1 Subflows with Different MSS 83
5.8.2 Only Accounting for Losses in CommD 85

6 PRIOR COLLABORATIVE RESEARCH 87

6.1 Methodology to derive SPDY’s Initial Dictionary 87
6.2 Wireshark Extensions . 90

7 SUMMARY AND CONCLUSIONS 93

7.1 Issue I: Reneging and NR-SACKs . 93

viii

7.2 Issue II: MPTCP Scheduling . 94

BIBLIOGRAPHY . 95

Appendix

A PACKET FORMATS OF NON-RENEGABLE SELECTIVE
ACKNOWLEDGMENTS (NR-SACKS) FOR MPTCP 100

A.1 Modified Multipath Capable (MP CAPABLE) Option 100
A.2 Modified Data Sequence Signal (DSS) Option including NR-SACK . . 100

ix

LIST OF TABLES

4.1 MPTCP Data Transfer without Cross Traffic 61

4.2 MPTCP Data Transfer with Cross Traffic 63

5.1 Throughput Comparison with Reduced Receive Buffers 82

x

LIST OF FIGURES

1.1 Dissertation Structure . 1

1.2 MPTCP Scheduler . 4

1.3 MPTCP in the Networking Stack 5

1.4 MPTCP Connection Establishment 6

1.5 Data Transfer Using MPTCP . 7

2.1 TCP Data Transfer: Normal . 10

2.2 TCP Data Transfer: NR-SACKs 11

2.3 sk buff Structure . 13

2.4 A List of skbs . 13

2.5 A TCP-PDU in Linux Kernel . 14

2.6 Allocation of skb without Scatter/Gather I/O 15

2.7 Allocation of skb with Scatter/Gather I/O 16

2.8 tcp skb cb Structure . 17

2.9 tcp sock Structure . 18

2.10 An Example TCP Send Queue . 19

2.11 nrsack block Structure . 21

2.12 nrsack list Structure . 21

2.13 NR-SACKs Processing . 22

xi

2.14 Before Processing NR-SACK Block 3500 - 4500 23

2.15 After Processing NR-SACK Block 3500 - 4500 24

2.16 After Receiving Cumack 3200 . 25

2.17 Test-bed Topology I . 27

2.18 Throughput Gain with NR-SACKs (22KB, 44K, 90KB send buffer
sizes) . 28

2.19 Throughput Gain with NR-SACKs (181KB, 362KB, 905KB send
buffer sizes) . 29

2.20 Throughput Gain with NR-SACKs (10ms delay) 30

2.21 Throughput Gain with NR-SACKs (50ms delay) 31

2.22 Throughput Gain with NR-SACKs (500ms delay) 31

2.23 Throughput Gain with NR-SACKs (1% loss) 32

2.24 Throughput Gain with NR-SACKs (5% loss) 32

2.25 Satellite Control Center in CNES 34

2.26 Satellite Terminals in CNES . 34

2.27 Satellite Topology for TCP NR-SACKs in CNES 35

3.1 Timeline of an Unordered MPTCP Data Transfer 37

3.2 Timeline of an Unordered MPTCP Data Transfer with NR-SACKs 39

3.3 Procedure of Supporting NR-SACKs at the MPTCP Receiver . . . 41

3.4 An Example MPTCP Out-of-order Queue 42

3.5 MPTCP Out-of-order Queue after MPTCP-PDU 1000 - 1999 is
received . 42

3.6 MPTCP Out-of-order Queue after MPTCP-PDU 7000 - 7999 is
received . 43

xii

3.7 Procedure of Supporting NR-SACKs at the MPTCP Sender 44

3.8 Test-bed Topology . 45

3.9 Throughput Gain with NR-SACKs (899KB, 700K, 449KB, 224KB,
112KB send buffer sizes) . 46

3.10 Throughput Gain with NR-SACKs (74KB, 64KB, 56KB, 28KB send
buffer sizes) . 46

3.11 Retransmission Queue Evolution without NR-SACKs (899KB send
buffer size, 1% loss, 10ms delay) . 48

3.12 Retransmission Queue Evolution without NR-SACKs (28KB send
buffer size, 1% loss, 10ms delay) . 48

3.13 Throughput Gain with NR-SACKs (same delay different loss rates) 49

3.14 Throughput Gain with NR-SACKs (same loss rate different delay) . 50

4.1 A scenario in which RTT and congestion mismatch 53

4.2 Algorithm to Estimate Available Path Capacity of a Subflow 57

4.3 Algorithm of Proposed Scheduler 58

4.4 A Subflow’s Send Buffer During Data Transfer 59

4.5 Test-bed Topology . 62

4.6 One Way Delay of Subflow 1 with Different Schedulers 63

5.1 An MPTCP Connection with Two Subflows with Asymmetric RTTs 67

5.2 MPTCP Data Transfer (5 MPTCP-PDUs) with Two Subflows with
Asymmetric RTTs . 68

5.3 Improved MPTCP Data Transfer (5 MPTCP-PDUs) with Two
Subflows with Asymmetric RTTs 69

5.4 MPTCP Data Transfer (32 MPTCP-PDUs) with Two Asymmetric
Subflows . 70

xiii

5.5 Example of CommD Measurement for MPTCP 72

5.6 Send Buffer of a Subflow . 74

5.7 Design 1: MPTCP-PDUs are Always Scheduled In-order 75

5.8 Design 2: MPTCP-PDUs can be Scheduled Out-of-order 77

5.9 Test-bed Topology . 81

5.10 Receive Buffer Usage . 82

5.11 skbs in the MPTCP Send Buffer 83

5.12 Blocks of DSNs in the MPTCP Send Buffer 86

6.1 Default Flow Graph in Wireshark 90

6.2 Extended Flow Graph in Wireshark 91

A.1 Modified MP CAPABLE Option 101

A.2 Modified DSS Option (each NR-SACK is 6 bytes) 102

A.3 Modified DSS Option (each NR-SACK is 8 bytes) 103

xiv

ABSTRACT

We investigate two issues related to the transport layer and propose solutions

to address these issues. All proposed solutions are implemented in the Linux kernel

and evaluated with real network topologies.

First, we explore what performance gains can be obtained when a TCP or Mul-

tipath TCP (MPTCP) receiver guarantees never to discard received out-of-order PDUs

from the receive buffer (i.e., never reneg). TCP is designed to tolerate reneging. This

design has been challenged since (i) reneging rarely occurs in practice, and (ii) even

when reneging does occur, it alone generally does not help the operating system re-

sume normal operation when the system is starving for memory. In the current MPTCP

standard, an MPTCP receiver cannot selectively acknowledge the reception of out-of-

order PDUs to an MPTCP sender. We investigate how freeing received out-of-order

PDUs from the send buffer by using Non-Renegable Selective Acknowledgments (NR-

SACKs) can improve end-to-end performance. This improvement results when send

buffer blocking occurs in both TCP and MPTCP. Preliminary results for TCP NR-

SACKs show that (i) TCP data transfers with NR-SACKs never perform worse than

those without NR-SACKs, and (ii) NR-SACKs can improve end-to-end throughput

when send buffer blocking occurs. Under certain circumstances, we observe throughput

increasing by using TCP NR-SACKs as much as 15%. Preliminary results for MPTCP

NR-SACKs show that (i) MPTCP data transfers with NR-SACKs never perform worse

than those without NR-SACKs, and (ii) NR-SACKs can improve end-to-end through-

put in MPTCP when send buffer blocking occurs. Under certain circumstances, we

observe throughput increasing by using MPTCP NR-SACKs as much as 38%.

Second, we explore potential application performance gains from two innovative

scheduling policies for MPTCP. Whenever an MPTCP sender wants to send data, the

xv

scheduler needs to decide on which subflow to send each byte. We explain problems

with the default scheduler used by Linux MPTCP, and propose the design of a scheduler

based not only on a subflow’s ‘speed’ but also the subflow’s congestion. Preliminary

results show that our proposed scheduler improves the throughput in MPTCP by

alleviating the problems caused by the default scheduler. We also define and use

one-way communication delay of a TCP connection to design an MPTCP scheduler

that transmits PDUs out-of-order over different subflows such that their arrival is

in-order. Preliminary results show our proposed scheduler can reduce receive buffer

utilization, and increase throughput when a small receive buffer size results in receive

buffer blocking.

xvi

Chapter 1

INTRODUCTION

1.1 Dissertation Scope

Dissertation

Introduction
(Chapter 1)

NR-SACKs
for TCP

(Chapter 2)
[11]

A Good
Scheduler
for MPTCP
(Chapter 4)

[30]

NR-SACKs
for MPTCP
(Chapter 3)

[20]

In-order
Arrival

MPTCP
Scheduling
(Chapter 5)

[31, 32]

NR-SACKs MPTCP

Scheduling

Prior
Collaborative

Research
(Chapter 6)

Summary
and

Conclusions
(Chapter 7)

Figure 1.1: Dissertation Structure

This dissertation investigates two issues related to the transport layer: (i) poten-

tial application performance gains if TCP and Multipath TCP (abbreviated MPTCP),

a transport layer protocol designed to concurrently use multiple TCP connections be-

tween multihomed hosts, do not tolerate reneging, and (ii) potential application perfor-

mance gains from two different scheduling policies for MPTCP. The overall structure

of the dissertation is shown in Figure 1.1.

1

TCP and MPTCP Non-Renegable Selective Acknowledgments (NR-SACKs) are

analyzed in Chapters 2 and 3, respectively. Two MPTCP scheduling policies are de-

scribed in Chapters 4 and 5, respectively. The references cited for each chapter rep-

resent the author’s publications for each topic. Chapter 6 summarizes the author’s

collaborative work prior to the research contributions of this dissertation. Finally,

Chapter 7 summarizes the author’s contributions, and concludes this dissertation.

1.1.1 Reneging and NR-SACKs

Reliable transport protocols (such as TCP and SCTP) employ two kinds of

data acknowledgment mechanisms: (i) cumulative acknowledgments (cumacks) in-

dicate data that has been received in-sequence, and (ii) selective acknowledgments

(SACKs) indicate data that has been received out-of-order. While cumacked data is a

receiver’s responsibility, SACKed data is not. SACKed out-of-order data is implicitly

renegable; that is, a receiver may SACK data and later discard it [20]. The possibility

of reneging forces a transport sender to maintain copies of SACKed data in the send

buffer until they are cumacked.

TCP is designed to tolerate reneging. This design has been challenged [18] since

(i) reneging rarely occurs in practice, and (ii) even when reneging does occur, it alone

generally does not help the operating system resume normal operation when the system

is starving for memory. If a TCP receiver never renegs, SACKed data is wastefully

stored in the send buffer until cumacked.

Non-Renegable Selective Acknowledgments (NR-SACKs) were introduced in

[17]. NR-SACKs allow a receiver to convey non-renegable information of received

out-of-order data back to the corresponding sender. NR-SACKs allow that sender to

remove NR-SACKed data from the send buffer sooner than waiting for the arrival of

corresponding cumacks. NR-SACKs have been evaluated for both SCTP, and SCTP

with Concurrent Multipath Transmission (CMT), and results show NR-SACKs not

only reduce sender’s memory requirements, but also improve the end-to-end through-

put under certain conditions [14, 15, 19, 22]. In Chapter 2, this dissertation investigates

2

potential application performance gains if a TCP receiver never renegs and likewise uses

NR-SACKs.

1.1.2 Multipath TCP

A host is multihomed if it can be addressed by multiple IP addresses. Multi-

homing has increased the interest in using multiple paths simultaneously (i.e., CMT)

for achieving higher reliable, end-to-end throughput, and increasing robustness during

time of path failure.

Multipath reliable data transfer has received a lot of recent attention as seen

by extensions to TCP and SCTP to support multihoming. However, the multihoming

extensions to TCP [39, 40, 41] have never been implemented nor deployed [5]. SCTP

with CMT is implemented but not widely deployed since many Internet middle-boxes

by default block SCTP-PDUs.

To migrate multipath data transfer from theory to practice, the IETF has cre-

ated a working group to specify a standard for Multipath TCP (MPTCP). MPTCP,

perhaps the most significant change to TCP in the past 20 years [6], simultaneously

transfers data on multiple TCP connections (subflows) between peers [1].

In the current MPTCP Linux implementation [35], an MPTCP receiver never

renegs on received out-of-order MPTCP-PDUs. In Chapter 3, this dissertation in-

troduces NR-SACKs to MPTCP, and investigates potential application performance

gains. We extended the Linux MPTCP implementation to support NR-SACKs. Pre-

liminary results show that (i) MPTCP data transfers with NR-SACKs never perform

worse than those without NR-SACKs, and (ii) NR-SACKs can improve end-to-end

throughput in MPTCP when send buffer blocking occurs.

An important component of MPTCP is the scheduler. Whenever an MPTCP

sender wants to send data, the scheduler needs to decide on which subflow to send each

byte (Figure 1.2). During Chapter 3 experiments on MPTCP NR-SACKs, we found

a problem of the default scheduler of the Linux MPTCP. In Chapters 4 and 5, this

dissertation investigates two different scheduling policies for MPTCP, and addresses

3

these two scheduling policies to improve application performance. Chapter 4 explains

problems with the default scheduler used by Linux MPTCP, and proposes the design

of a scheduler which based on not only a subflow’s ‘speed’ but also the subflow’s

congestion. Preliminary empirical results show that our proposed scheduler improves

the throughput in MPTCP by alleviating the problems caused by the default scheduler.

Chapter 5 uses one-way communication delay of a TCP connection to design

an MPTCP scheduler that transmits data out-of-order over multiple paths such that

their arrival is in-order. Our Linux implementation shows our proposed scheduler can

reduce receive buffer utilization, and increase throughput when a small receive buffer

size results in receive buffer blocking.

MPTCP Send
Buffer

subflow (TCP)
Send Buffer

Figure 1.2: MPTCP Scheduler

4

1.2 MPTCP Primer

1.2.1 MPTCP in the Networking Stack

MPTCP operates at the upper part of the transport layer, and aims to be

transparent to both higher and lower layers [1]. MPTCP provides a set of additional

features on top of standard TCP. The layering is shown in Figure 1.3.

Figure 1.3: MPTCP in the Networking Stack

1.2.2 MPTCP Connection Establishment

The connection establishment of the first subflow is same as that of a TCP con-

nection, but the SYN, SYN/ACK, and ACK TCP-PDUs carry a new MP CAPABLE

option. This MP CAPABLE option verifies whether both end hosts support MPTCP.

After the first subflow is established, additional subflows can be established, and the

SYN, SYN/ACK, and ACK TCP-PDUs contain a new MP JOIN option. Figure 1.4

shows the establishment of an MPTCP connection with two subflows between hosts

A and B. Host A is multihomed with two interfaces A1 and A2, and host B has one

interface B.

1.2.3 Data Transfer Using MPTCP

In MPTCP, each subflow is a standard TCP connection with its own sequence

number space. An MPTCP level sequence number called the Data Sequence Number

(DSN) additionally numbers bytes at the MPTCP level. A single MPTCP send buffer

and a single MPTCP receive buffer are shared among all subflows, while each subflow

5

Figure 1.4: MPTCP Connection Establishment

has its own receive buffer to hold subflow level out-of-order data (since each subflow

TCP receiver must deliver subflow level data in-order to the MPTCP receive buffer).

When an application writes a stream of bytes to an MPTCP send buffer,

MPTCP numbers each byte with a DSN. Then a scheduler runs to select which sub-

flow(s) to send the data. Bytes are then transmitted on the selected subflow(s) where

they are encapsulated into TCP-PDUs with MPTCP information placed in the TCP

option field. When a TCP-PDU is received in-order at the subflow level, the payload

is delivered to the MPTCP receive buffer immediately. The MPTCP level cumack

number, called DATA ACK (DA), advances if the delivered data are also in-order at

the MPTCP level.

The subflow receiver cumacks those delivered data using a regular TCP cumack,

and places the current DA in the TCP option field. An application consumes in-order

data from the MPTCP receive buffer. Currently, an MPTCP sender only frees data

from the MPTCP send buffer when they have been cumacked by DA received on any

subflow.

Figure 1.5 shows an example of data transfer using MPTCP with two subflows.

6

Each data PDU contains 1400 bytes of data, and is represented by an arrow with

both subflow sequence number (Seq) and DSN of the first byte. Each ACK PDU is

represented by an arrow with both subflow ACK number (Ack) and DA.

Figure 1.5: Data Transfer Using MPTCP

1.2.4 MPTCP Connection Termination

When host B wants to inform host A about the end of data transfer, host B sends

a ‘DATA FIN’ (which has the same semantics and behavior as a regular TCP FIN) at

the MPTCP level. Once all the data on the MPTCP connection has been successfully

received, all subflows close in the same manner as a regular TCP connection.

7

Chapter 2

NON-RENEGABLE SELECTIVE ACKNOWLEDGMENTS
(NR-SACKS) FOR TCP

In TCP, Selectively Acknowledged (SACKed) out-of-order data is implicitly

renegable; that is, the receiver can SACK data and later discard it [20]. The possibility

of this reneging forces the sender to maintain copies of SACKed data in the send buffer

until a later time when the data are cumulatively ACKed. Based on prior research

concluding that TCP’s tolerance of reneging is inefficient [18], we investigate what

performance gains can be obtained by assuming reneging by a TCP receiver is not

permitted, thus allowing a TCP sender to immediately free SACKed data from its

send buffer. The difficulty of implementing NR-SACKs in the Linux kernel was far

beyond our initial expectation. The TCP code, roughly 100K lines of C code, in the

Linux kernel keeps improving as the version changes. During the process to understand

the TCP implementation thoroughly, we tried several different ways to add NR-SACKs.

2.1 Reneging

TCP uses sequence numbers and cumulative acknowledgments to achieve reli-

able data transfer. A TCP data receiver uses sequence numbers to sort arrived data

segments. Data arriving in expected order, i.e., ordered data, results in a cumulative

ACK (cumack) being transmitted back to the data sender. A cumack semantically

means the data receiver accepts full responsibility of delivering the data to the receiv-

ing application. Relieved of this responsibility, the data sender therefore deletes all

cumacked data from its send buffer, possibly even before that data gets delivered from

the TCP receiver’s buffer to the appropriate receiving application.

8

The receive buffer consists of two types of data: ordered data which has been

cumacked but not yet delivered to the application, and out-of-order data that resulted

from loss or reordering in the network. A TCP data receiver must not delete cumacked

data without delivering it since the data sender will have removed cumacked data from

its send buffer. That is, a receiver must not reneg on cumacked data.

The Selective Acknowledgment Option (SACK) [20] is an extension to TCP’s

cumulative ACK mechanism, and is used by a data receiver to selectively acknowledge

arrived out-of-order data to the data sender. The intent is that SACKed data do not

need to be retransmitted by the sender during loss recovery.

Data receiver reneging (or simply reneging) occurs when a data receiver SACKs

data, and afterwards discards that data from its receive buffer without delivering the

data to the receiving application or socket buffer. TCP is designed to tolerate data

reneging. Specifically [20] states: “The SACK option is advisory, in that, while it

notifies the data sender that the data receiver has received the indicated segments, the

data receiver is permitted to later discard data which have been reported in a SACK

option”. Therefore, a TCP data sender must retain copies of all transmitted data in

its send buffer, even SACKed data, until they are cumacked.

The design of tolerating data reneging in TCP has been challenged [18] since

(i) reneging rarely occurs in practice, and (ii) even when it does occur, reneging alone

generally does not help the operating system resume normal operation when the system

is starving for memory. Based on this conclusion, SACKed data is wastefully stored in

the send buffer until cumacked. We consider the potential performance gains for TCP

if its design were not to tolerate reneging.

2.2 Potential Performance Gains by Prohibiting Reneging in TCP

To gain insight to the performance penalty incurred by TCP tolerating reneging,

consider the example in Figure 2.1. Assume the shown TCP send buffer can accom-

modate four TCP-PDUs and the TCP receive buffer can hold seven TCP-PDUs. As

the TCP sender transmits TCP-PDUs, space is allocated in the send buffer. When

9

cumacks come back to the sender, the cumacked data is released. When SACKs come

back, information is noted at the data sender, but the data itself cannot be released.

Only later when SACKed data is eventually cumacked will the allocated send buffer

space be released. During the intervals between SACKing and cumacking, the send

buffer utilization falls below 100%. For example in Figure 2.1, after the “ACK 1, SACK

3-4” arrives, half of the send buffer is storing data that has already arrived at the data

receiver. If the send buffer is small as in this illustration, a situation arrives after

TCP-PDU 5 is transmitted when no new data can be transmitted until TCP-PDU 2 is

retransmitted and later cumacked. This situation is referred to as send buffer blocking.

Figure 2.1: TCP Data Transfer: Normal

Figure 2.2 illustrates the potential performance gain if the SACKed data were

non-renegable, and thus could be removed as would be the case when reneging is

10

forbidden. The TCP sender is not blocked “wastefully” maintaining copies of SACKed

data. Instead the send buffer has room for transmitting new application data.

Figure 2.2: TCP Data Transfer: NR-SACKs

2.3 Discussion

First, unlike SCTP’s unordered data service which allows a data receiver to

deliver out-of-order data to a receiving application, a TCP receiver must not deliver out-

of-order data. Whereas SCTP’s receiver effectively advertises extra available receive

window space upon delivering out-of-order data, TCP’s receiver must keep the out-of-

order data and does not increase the receiver window size.

Second, the current semantics of a TCP send buffer define a window of contigu-

ous bytes that a sender may transmit. The lower edge of the window is defined by the

received highest cumack number. The upper edge is defined to be the highest cumack

number plus the number of bytes in the advertised receive window.

11

Under these two circumstances, there is no advantage to having a receive window

larger than the send window (as demonstrated in Figure 2.1). We propose to modify the

TCP’s send window semantics to allow a possibly non-contiguous set of bytes.

Please note, the advertised receive window semantics does not change; it remains the

number of bytes that the data sender is allowed to have outstanding starting from the

received highest cumack number. With this change, the send buffer may have gaps.

For example, in Figure 2.2, after TCP-PDU 3 is freed by NR-SACK 3-3, the send buffer

is not contiguous. Now, it makes sense to have a receiver window larger than the send

window. A smaller send buffer, which needs not to keep copies of SACKed data, can

keep a larger receive window busy (e.g., default send and receive buffer sizes for Linux

2.6.31 are 16,384 and 87,380 bytes, respectively.)

2.4 Implementation

This section describes the complexities incurred in implementing TCP NR-

SACKs in the Linux kernel. Important to note: NR-SACK changes only modify

the sender; the receiver structures are unchanged. Coding in Linux kernel is

challenging; the key is thoroughly understanding critical data structures. We start this

section by introducing two core data structures.

2.4.1 Critical Data Structure I: sk buff Structure

The sk buff structure (skb) is a central data structure in the Linux networking

code, representing data that is about to be transmitted by a sender or has been received

by a receiver. An skb comprises three elements:

• an sk buff structure which contains control information

• linear data (introduced in section 2.4.1.1.)

• nonlinear data (introduced in section 2.4.1.1.)

Figure 2.3 shows the fields related to NR-SACKs implementation in the sk buff

structure:

12

Figure 2.3: sk buff Structure

Figure 2.4: A List of skbs

next and prev : two fields link different skbs together. The kernel maintains skbs in a
doubly linked list (Figure 2.4). The sk buff head structure represents the head
of a list, and the qlen field indicates the number of skbs in the list. In TCP, both
send and receive buffers are represented by lists of skbs.

len: indicates the total data (includes both linear and nonlinear data sections) length
of this skb.

data len: indicates the nonlinear data length of this skb. Obviously, the linear data
length is len− data len.

true size: indicates the total size of this skb, including both the sk buff structure and
the data sections.

13

cb: (introduced in section 2.4.1.2.)

head : points to the start of the linear data section.

data: points to the payload of the linear data section. Protocol headers reside between
head and data pointers.

tail : points to the end of the payload. Some protocol control information (e.g.,
Ethernet checksum) is later placed after the actual payload.

end : points to the end of the linear data section. Here, end pointer also points to the
start of the nonlinear data section.

Nonlinear data section is represented by the skb shared info structure. skb shared info

contains a list of skb frag t and each skb frag t points to a memory block inside a

memory page.

skb_frag_t

prev
next
…

head
data
tail
end
…

D1 x

D3 z PAGE_SIZE

page
offset = p
size = y

q

sk_buff

page
offset = q
size = z

D2 y
PAGE_SIZE

p

skb_shared_i
nfo

skb_frag_t

TCP Header

Figure 2.5: A TCP-PDU in Linux Kernel

Figure 2.5 shows a TCP-PDU in the Linux kernel. The application layer data

is represented by shaded boxes D1, D2 and D3. The linear data section contains a

payload (D1) of size x. The nonlinear data section (represented by a skb shared info

structure) contains two skb frag ts. The payload (D2 and D3) sizes of these two

skb frag t are y and z, respectively. Thus, in this example, len = x + y + z +

14

size of the TCP Header, data len = y+z, and true size includes all memory allocated

for this TCP-PDU.

During transmission of a PDU (an skb passes down the protocol stack layers),

the header of each layer is added into the space between head and data. At the

receiver, on receipt of a PDU (an skb passes up the protocol stack layers), the header

of each lower layer is removed. In this dissertation, The words ‘skb’ and ‘PDU’ are

interchangeable, since skb is the data structure which represents PDUs in Linux. Note:

an skb can represent multiple PDUs.

2.4.1.1 Memory Allocation for an skb

Memory allocation is important for our implementation, since the key part of

NR-SACKs is memory manipulation.

prev
next
…

head
data
tail
end
…

sk_buff

D1

MTU

x

D2 y

TCP Header

Figure 2.6: Allocation of skb without Scatter/Gather I/O

First, let us see why an skb needs both the linear and nonlinear data sections.

Consider an example: the application of a TCP connection generates two small data

chunks (denoted as D1 and D2) of size x and y (x + y ≤ MSS (Maximum Segment

Size)), respectively. A TCP sender has two options to allocate an skb: (i) allocate a

15

D1 x D2

page
...

size = x

page
...

size = y

skb_frag_t skb_frag_t

y

prev
next
…

head
data
tail
end
…

sk_buff

TCP Header

Figure 2.7: Allocation of skb with Scatter/Gather I/O

linear data section of size MTU (Maximum Transmission Unit) and copy both data

chunks to the linear data section (Figure 2.6), or (ii) allocate a linear data section just

to hold protocol headers and make pointers in the nonlinear data section point to both

data chunks (Figure 2.7). The second choice is more efficient because less memory

copies are involved, but needs a support, called Scatter/Gather I/O, from the network

interfaces (e.g., the Ethernet interface). An interface, which supports Scatter/Gather

I/O, can gather these physically non-continuous data chunks and transmit the chunks

in one PDU. Nowadays, almost all network interfaces support Scatter/Gather I/O, so

an skb can use nonlinear data section to avoid memory copies.

2.4.1.2 Control Buffer Field

The sk buff structure contains a field (cb), called a ‘control buffer’, which is

used by each layer to store internal control information. The information in this field

changes as the skb traverses different layers. For example, when an skb is in the TCP

send buffer, the skb’s cb stores a tcp skb cb structure which contains information such

16

as: start and end sequence numbers, time when this skb is sent, etc (Figure 2.8).

Figure 2.8: tcp skb cb Structure

An important field in the tcp skb cb structure is sacked (8-bit), which is used

to record the state of an skb in the send buffer:

TCPCB SACKED ACKED: indicates the skb has been SACKed if the first bit is 1.

TCPCB SACKED RETRANS: indicates the skb has been retransmitted after being SACKed
if the second bit is 1.

TCPCB LOST: indicates the skb is presumed to be lost if the third bit is 1.

TCPCB EVER RETRANS: indicates the skb has been retransmitted after being presumed
to be lost if the eighth bit is 1.

The sacked of each skb is updated when an acknowledgment comes back. Based

on the states of all skbs in the send buffer, a TCP sender estimates the current state

of network, and the congestion control mechanism determines to increase or slow down

transmission.

2.4.2 Critical Data Structure II: tcp sock Structure

The tcp sock structure (Figure 2.9) describes a TCP connection. Since NR-

SACKs do not change any fields with receiver side information, this section focuses on

the fields which contain sender side information.

17

Figure 2.9: tcp sock Structure

The left edge of a TCP send buffer is denoted as snd una which is the first byte

the sender wants an ack for. snd nxt is the right edge of the retransmission queue and

denotes the first sequence number which has not been sent yet.

As stated in section 2.4.1.2, each skb in the TCP retransmission queue is tagged

by a sacked field. Based on the state of each skb, a TCP sender maintains per-

socket information to estimate current network capacity. This estimate is used by both

congestion control and flow control mechanisms. Using NR-SACKs does not modify

congestion control or flow control mechanisms, so only the fields related to NR-SACKs

are introduced:

packets out : number of TCP-PDUs in the retransmission queue.

sacked out : number of TCP-PDUs which have been SACKed. These SACKed TCP-
PDUs are tagged as TCPCB SACKED ACKED in sacked.

lost out : number of TCP-PDUs which are presumed to be lost. These TCP-PDUs
are tagged as TCPCB LOST in sacked.

fackets out : number of TCP-PDUs which are forward acknowledged (FACKed) [9].

retrans out : number of TCP-PDUs which have been retransmitted. These TCP-PDUs
are tagged as either TCPCB SACKED RETRANS or TCPCB EVER RETRANS in sacked.

As stated in [9], lost out = fackets out−sacked out. Figure 2.10 demonstrates

the relations of these fields by an example. In the figure, skbs 3 and 5 have been

18

SACKed, and skbs 7 and 8 have not been sent yet. The retransmission queue contains

skbs 1 to 6, so packets out = 6. Two skbs have been SACKed, so sacked out = 2.

SACKed skb with the highest sequence number is skb 5, so fackets out = 5 and

lost out = 5− 2 = 3.

skb1 skb2 skb3 skb4 skb5 skb6 skb7 skb8

snd_una snd_nxt

packets_out = 6
fackets_out = 5
sacked_out = 2
lost_out = 3

Figure 2.10: An Example TCP Send Queue

2.4.3 Processing of Incoming NR-SACKs

Implementation of NR-SACKs on the TCP receiver side is trivial. Reneging is

turned off by commenting out tcp collapse ofo queue() in net/ipv4/tcp input.c.

Then, all SACKs can be treated as NR-SACKs.

The TCP sender processes incoming acks in tcp ack(). If the incoming ack

contains SACKs, these SACKs may update the states of skbs in the send buffer and

corresponding fields in the tcp sock will be updated. For the example in Figure 2.10,

if skb 4 is reported by SACKs, then skb 4 is tagged as TCPCB SACKED ACKED in the

sacked. Correspondingly, sacked out and lost out are updated to 3 and 2, respectively.

To save memory space, adjacent skbs are combined if they have all been SACKed.

Therefore, skbs 3 to 5 will be combined to one skb after skb 4 is SACKed.

Now, the problem seems to be simple. Just deallocate the memory occupied by

skbs tagged as TCPCB SACKED ACKED, and we are done. This is exactly what we did at

the beginning. Then we tested this modified TCP with a file transfer. Unexpectedly,

19

the throughput by using this modified TCP was always lower than that by using the

regular TCP. The reason is: when new SACKs are received, the TCP sender updates

fackets out, sacked out and lost out. But after the SACKed skbs are deallocated, the

sacked out is updated to 0 and the lost out = fackets out. The sender infers that all

TCP-PDUs which have not been cumacked are lost, which means the network is so

congested that it just drops rather than reorders TCP-PDUs. As a result, the sender

slows down the transmission, and the throughput decreases.

After this first attempt, our thought was: the problem came from not correctly

updating fackets out and lost out after SACKed skbs are deallocated. That is, since all

SACKed skbs are deallocated, both fackets out and lost out must be 0. Similarly, if the

SACKed skbs has been retransmitted (tagged as TCPCB SACKED RETRANS), retrans out

needs to be updated also. However, when we tested this modified version, the through-

put became even worse. The reason is: since the fackets out, sacked out and lost out

are always 0, the sender infers that the network is good and all TCP-PDUs always

arrive in-order at the receiver. As a result, the sender keeps increasing the cwnd and

more losses occur.

By analyzing these two initial approaches, we see that the TCP senders in both

initial approaches had wrong estimates of the current state of the network.

These wrong estimates mislead the congestion control mechanism. The TCP sender in

the first attempt under-estimates network capacity and unnecessarily throttles trans-

mission. The TCP sender in the second implementation over-estimates network ca-

pacity and over-sends TCP-PDUs. If NR-SACKs only free data sections of a SACKed

skb but maintain the skb buff, corresponding fields (e.g., fackets out, sacked out and

lost out) in tcp sock are same as normal TCP (without NR-SACKs). A TCP sender

can have a correct estimate of the network state based on these fields. Since all in-

formation in both sk buffs and tcp sock remains unchanged but the data are freed,

ancillary data structures are needed to manage this mismatch and keep track of data

which have already been freed by NR-SACKs.

We introduce a structure nrsack block which comprises a start seq and a

20

end seq (Figure 2.11), indicating the data chunk (seq: start seq (inclusive) to end seq

(not inclusive)) has been reported and deallocated by NR-SACKs. Each TCP sender

maintains a nrsack list which is a doubly linked list of nrsack blocks (Figure 2.12).

A list head structure is a provided standard implementation of circular, doubly linked

lists in the Linux kernel.

Figure 2.11: nrsack block Structure

Figure 2.12: nrsack list Structure

2.4.4 Complexity Analysis of Implementation

Figures 2.13 shows the ultimate processing procedure of incoming NR-SACKs.

In tcp sacktag write queue(), all SACKed skbs are tagged as TCPCB SACK ACKED

and adjacent SACKed skbs are combined. Note that, an skb can be partially SACKed.

To deallocate the partially SACKed data part, the skb needs to be split into multiple

skbs. For example, if skb (seq: 12001 - 15001) is partially SACKed by SACK block

13001 - 14001, the original skb will be split into three skbs: skb1 (seq: 12001 - 13001),

skb2 (seq: 13001 - 14001) and skb3 (seq: 14001 - 15001). Then only skb2 is tagged as

TCPCB SACK ACKED. Splitting is a reverse process of the combination operation and has

constant time cost.

21

pel_nrsacks_can_free()

pel_nrsack_sk_wmem_free_nrsack()

pel_nrsacks_merge()

pel_nrsack_sk_wmem_free_cumack()

pel_nrsacks_clean_nrsacks_by_cumack()

tcp_sacktag_write_queue()

Figure 2.13: NR-SACKs Processing

In pel nrsacks can free(), for each skb in the retransmission queue, the num-

ber of bytes freed by a newly received NR-SACKs (bytes freed by nrsacks) is cal-

culated, and the corresponding memory is freed. Note that, although the memory

is deallocated, the information in the sk buff remains unchanged. Thus, for a newly

received SACK block, all existing nrsack blocks in the nrsack list need to be exam-

ined to determine which bytes already have been freed. Here, although the sequence

numbers in the sk buff are contiguous, the actual data in the send buffer are

not contiguous. The current nrsack list shows the gaps in the send buffer. For

example, assume nrsack list contains two nrsack blocks: 2000 - 3000 and 4000 -

5000, and the current snd una is 1000. A newly incoming NR-SACK block is 3500 -

4500. Figure 2.14 shows part of the retransmission queue and the nrsack list. For

22

prev
next
...

end
…

seq = 1000

skb0

1000
PAGE_SIZE

page
...

size = 1000

prev
next
...

end
…

seq = 2000

skb1

prev
next
...

end
…

seq = 3000

skb2

1000

prev
next
...

end
…

seq = 4000

skb3

start_seq = 2000
end_seq = 3000

nrsack_block0

start_seq = 4000
end_seq = 5000

nrsack_block1

page
...

size = 1000

page
...

size = 1000

page
...

size = 1000

Figure 2.14: Before Processing NR-SACK Block 3500 - 4500

the purpose of simplicity, TCP headers in the linear data sections are not shown. Al-

though the data of skb1 and skb3 has been deallocated by NR-SACKs, the information

in both sk buffs remains unchanged. The number of additional bytes freed by 3500 -

4500 is 500 bytes (seq: 3500 - 4000) since the data (seq: 4000 - 4500) has already been

freed. After this new NR-SACK block has been processed, part of the retransmission

queue is shown in Figure 2.15. All sk buffs remain unchanged, and the actual data

of skb2 reduces to 500 bytes. The send buffer has two gaps 2000 - 3000 and 3500 -

5000. Assume n existing nrsack blocks, and m skbs in the send buffer, the worst case

running time to process one newly arrived NR-SACK block is O(m + n).

23

prev
next
...

end
…

seq = 1000

skb0

1000
PAGE_SIZE

page
...

size = 1000

prev
next
...

end
…

seq = 2000

skb1

prev
next
...

end
…

seq = 3000

skb2

500

prev
next
...

end
…

seq = 4000

skb3

start_seq = 2000
end_seq = 3000

nrsack_block0

start_seq = 3500
end_seq = 5000

nrsack_block1

page
...

size = 1000

page
...

size = 1000

page
...

size = 1000

Figure 2.15: After Processing NR-SACK Block 3500 - 4500

pel nrsack sk wmem free nrsack() updates the current send queue size and

available memory space. For the above example, the send queue size is decreased by

500 bytes, and the available memory for the send queue is increased by 500 bytes. The

running time of this function is O(1).

In pel nrsacks merge(), newly received NR-SACK block are added to nrsack list

and the block is merged with existing nrsack blocks if possible. For the example in

Figure 2.14, 3500 - 4500 would be merged with 2000 - 3000 and 4000 - 5000, and

nrsack list would contain two nrsack blocks: 2000 - 3000 and 3500 - 5000 (Figure

2.15). The worst case running time of this function is O(n). Merging nrsack blocks

24

can decrease the number of nrsack blocks in the nrsack list, thus improving the

efficiency of other NR-SACK processing functions.

prev
next
...

end
…

seq = 3200

skb2

300

prev
next
...

end
…

seq = 4000

skb3

start_seq = 3500
end_seq = 5000

nrsack_block0

page
...

size = 800

page
...

size = 1000

Figure 2.16: After Receiving Cumack 3200

In pel nrsack sk wmem free cumack(), the number of bytes freed by cumacks

is calculated and the corresponding memory is freed. Note that, the sk buff is also

deallocated here. Similarly, all of the existing nrsack blocks in the nrsack list need

to be examined to determine which bytes have already been freed. Also, the send

queue size and the available memory for the send queue are updated. For the example

in Figure 2.15, assume a cumack = 3200 is received, only 1200 bytes (sequence numbers

1000 - 2000 and 3000 - 3200) plus the size of the sk buffs of skbs 0 and 1 can be freed

25

by this cumack since the sequence space 2000 - 3000 has already been freed. In Figure

2.16, both skb0 and skb1 are deallocated. Note: now skb3 has a start sequence number

= 3200 and length of data = 800, but the actual data length is 300 bytes. The worst

case running time of this function is also O(n).

In pel nrsacks clean nrsacks by cumack(), some NR-SACK blocks in the

nrsack list is freed by cumacks, since the blocks which are under the cumack are

unneeded. Use the above example, after cumack = 3200 is received, the nrsack list

contains only one nrsack block: 3500 - 5000. The worst case running time of this

function is O(m).

A possible improvement is to add shortcuts. We can observe in TCP transmis-

sion, when a TCP-PDU is lost, the TCP-PDUs after the lost one can arrive at the re-

ceiver and are reported by NR-SACKs in sequential order. In pel nrsacks can free(),

for a newly incoming NR-SACK block (Snew − Enew), the TCP sender can first deter-

mine whether Snew ≥ the end sequence (Eend) of the last nrsack block in current

nrsack list. If the answer is yes (shortcut hit), the sender does not need to traverse

the entire nrsack list. The sender just needs to traverse the send buffer to free cor-

responding memory space reported by this block. Similarly, in pel nrsacks merge(),

if Snew > Eend, the sender just needs to add the NR-SACK block (Snew − Enew) to

the tail of the nrsack list. Also, if Snew = Eend, the sender just needs to update

Eend = Enew. Assuming the possibility of shortcut hit is p, then the worst case run-

ning time of pel nrsacks can free() and pel nrsacks merge() are decreased to

O(m + (1− p) ∗ n) and O((1− p) ∗ n), respectively.

By adding this nrsack list structure and above processing functions, the mis-

match between the information in the sk buffs and the actual data is managed. More

importantly, depending on the state information in sacked of each skb, a TCP sender

always has the correct estimate of the network state.

We extended the Linux kernel (version 3.2.60) to process TCP NR-SACKs at the

data sender. We performed an experiment and thanks to promising results, we will be

performing a second experiment. Experiment I was in our lab with a simple test-bed.

26

Based on the positive results of experiment I, we then received authorization to perform

an experiment to evaluate TCP NR-SACKs over real satellite link at CNES (Centre

National d’Études Spatiales, French government space agency). These experiments are

discussed in sections 2.5 and 2.6, respectively.

2.5 Experimental Design I

Shiraz

Lenovo G770

DELL XPS 15

TCP Connection 1

TCP Connection 2

Linksys E1200

100Mbps

100Mbps

10Mbps(NR-SACK TCP)

(Normal TCP)

Figure 2.17: Test-bed Topology I

The test-bed (Figure 2.17) of experiment I is composed of a Cisco Linksys E1200

router and three computers. Shiraz and Lenovo G770 are TCP senders, and DELL

XPS 15 is the TCP receiver. Shiraz supports TCP NR-SACKs, and Lenovo G770 runs

normal TCP. Both TCP senders are connected to the router with a tethered 100Mbps

Ethernet cable, and the TCP receiver is connected to the router with a tethered 10Mbps

Ethernet cable. Two TCP connections can be established: one between Shiraz and

DELL XPS 15, and the other between Lenovo G770 and DELL XPS 15. The traffic

is generated by transferring a 50MB file from TCP senders to the receiver over these

connections. At any given time, only one TCP connection is transferring the data.

27

2.5.1 Experimental Parameters

The default upper limit of the TCP send buffer size on Shiraz/LenovoG770 is

905KB (specified by sysctl tcp wmem[2]). The performance of NR-SACKs are tested

under six different send buffer sizes {22KB, 44KB, 90KB, 181KB, 362KB, 905KB},

three different loss rates {0%, 1%, 5%} and three different delays {10ms, 50ms, 500ms}.

The extra loss and delay are configured on the outgoing direction of the senders’ Eth-

ernet interfaces by using the Linux traffic control [51].

2.5.2 Results

To evaluate the performance of TCP data transfers with NR-SACKs vs. with-

out NR-SACKs, we employ the metric throughput gain defined in [19] as (TNR−SACK−

T)/T ∗ 100% where TNR−SACK is the throughput achieved with NR-SACKs and T

is the throughput achieved without NR-SACKs for an identical set of experimental

parameters (send buffer size, loss rate, bandwidth, and delay). Throughput gain rep-

resents the percentage of improvement that results from using NR-SACKs. We also

use a region of gain [19] defined as the send buffer size interval, [a, b], where any send

buffer size between a and b results in an expected throughput gain of at least 5%.

Figure 2.18: Throughput Gain with NR-SACKs (22KB, 44K, 90KB send buffer sizes)

28

Figure 2.19: Throughput Gain with NR-SACKs (181KB, 362KB, 905KB send buffer
sizes)

NR-SACKs require extra processing time at a TCP sender. Our hypothesis

was that this overhead would be negligible, that TCP data transfers with NR-SACKs

would always perform at least as well as those without NR-SACKs [15] and under cer-

tain parameter configurations, NR-SACKs would improve the end-to-end throughput.

Figures 2.18 and 2.19 show the throughput gains for all parameter combinations tested.

With no loss, the number of runs was one or two because results were identical. With

loss being random, the number of runs was at least 30. We observed when no loss was

introduced, no NR-SACKs were generated and throughput gain was always 0. We also

observed throughput gains were zero or positive for all parameter combinations tested.

Our hypothesis was confirmed.

As stated in section 2.2, NR-SACKs can improve the end-to-end throughput

when send buffer blocking occurs (i.e., the send buffer is filled by Retransmission Queue

(RtxQ)). A RtxQ comprises PDUs which have been sent but not arrived at the receiver,

and these PDUs can be either “in flight” or lost. The size of the RtxQ is bounded by

29

both the Bandwidth-Delay Product (BDP) and the average cwnd (denoted cwnd):

RtxQ size ≤ min (BDP, cwnd) (2.1)

For a given delay, increased loss results in a smaller cwnd. For a given loss rate,

longer delay results in a larger BDP. Impacts of loss rate and delay on throughput gain

of NR-SACKs are discussed in sections 2.5.3 and 2.5.4, respectively.

2.5.3 Impact of Loss Rate

5

Figure 2.20: Throughput Gain with NR-SACKs (10ms delay)

Figures 2.20, 2.21 and 2.22 show the throughput gains with NR-SACKs when

the delay is 10ms, 50ms and 500ms, respectively. From Figure 2.20, we did not observe

obvious regions of gain for both loss rates. No send buffer blocking occurred when

delay was 10ms for both loss rates. From Figure 2.21, we did not observe region of

gain with 5% loss, and region of gain with 1% loss was [65KB, 160KB]. As stated in

section 2.5.2, cwnd with 5% loss is smaller than that with 1% loss, and no send buffer

blocking occurred with 5% loss. From Figure 2.22, we observed regions of gain for both

30

5

Figure 2.21: Throughput Gain with NR-SACKs (50ms delay)

5

Figure 2.22: Throughput Gain with NR-SACKs (500ms delay)

loss rates. Region of gain for 1% loss was [212KB, 905KB], and that for 5% loss was

[10KB, 155KB]. As the loss rate increases, cwnd decreases and hence the send buffer

blocking region becomes smaller.

31

2.5.4 Impact of Delay

5

Figure 2.23: Throughput Gain with NR-SACKs (1% loss)

5

Figure 2.24: Throughput Gain with NR-SACKs (5% loss)

Figures 2.23 and 2.24 show the throughput gain with NR-SACKs when loss rate

is 1% and 5%, respectively. From Figure 2.23, we did not observe obvious region of

32

gain with 10ms delay, and regions of gain with 50ms and 500ms delays were [65KB,

160KB] and [212KB, 905KB], respectively. As stated in section 2.5.2, longer delay

results in a larger BDP. As delay increases, BDP increases and hence the send buffer

blocking region becomes larger. From Figure 2.24, we did not observe obvious regions

of gain with 10ms and 50ms delays, and we only observed region of gain with 500ms

was [10KB, 155KB].

2.6 Future Work: Experiment Design II

Based on the positive results in our lab, a collaboration study [11] between UD

(University of Delaware) and ISAE-SUPAERO (Institut Supérieur de l’Aéronautique

et de l’Espace) of quantifying potential gains of TCP NR-SACKs in real long delay,

lossy satellite link in CNES is in progress.

ISAE is the French aerospace engineering school in Toulouse, France. SU-

PAERO is a graduate program within ISAE. SUPAERO covers all the basic engineering

disciplines while remaining based on aeronautics and space, the privileged field of appli-

cation for the most advanced methodologies and techniques. More information about

ISAE-SUPAERO can be found at http://supaero.isae.fr/en/program/supaero_

graduate_program.

Founded in 1961, the Centre National d’Études Spatiales (CNES) is the govern-

ment agency responsible for shaping and implementing France’s space policy in Europe.

Its task is to invent the space systems of the future, bring space technologies to ma-

turity and guarantee France’s independent access to space. CNES is equivalent to US

NASA (National Aeronautics and Space Administration). Figures 2.25 and 2.26 show

the satellite control center and terminals in CNES, respectively. More information

about CNES can be found at http://www.cnes.fr.

Figure 2.27 shows the test-bed. Three computers (one normal TCP sender, one

NR-SACK sender and one TCP receiver) are physically located in CNES. The TCP

senders and receiver are connected by a real satellite link. The traffic is generated by

33

http://supaero.isae.fr/en/program/supaero_graduate_program
http://supaero.isae.fr/en/program/supaero_graduate_program
http://www.cnes.fr

Figure 2.25: Satellite Control Center in CNES

Figure 2.26: Satellite Terminals in CNES

34

Normal TCP NR-SACK TCP TCP Receiver

iDirect hub
components

ST1_Blongios

Figure 2.27: Satellite Topology for TCP NR-SACKs in CNES

transferring a 50MB file from a TCP sender to the receiver. The performance of NR-

SACKs are proposed to be tested under six different send buffer sizes {22KB, 44KB,

90KB, 181KB, 362KB, 905KB} and four different loss rates {0%, 0.5%, 1%, 5%}.

As part of future work, there is a possible improvement of our implementa-

tion. The sender can store nrsack blocks in an array rather than a linked list.

Since nrsack blocks are in-order, the sender then can use a binary search to find

where to insert/free nrsack blocks. As a result, the worst case running time of

pel nrsacks can free() can further decrease to O(m + log n), and that of pel nrsacks

merge() and pel nrsacks clean nrsacks by cumack() can further decrease to O(log n).

35

Chapter 3

NON-RENEGABLE SELECTIVE ACKNOWLEDGMENTS
(NR-SACKS) FOR MPTCP

Unlike TCP, the receiver of an MPTCP connection has two level out-of-order

queues. Each subflow has its own TCP out-of-order queue to accommodate the received

out-of-order TCP-PDUs. At the MPTCP level, an out-of-order queue is also needed

to hold the received out-of-order MPTCP-PDUs. In this chapter, we introduce Non-

Renegable Selective Acknowledgments (NR-SACKs) to MPTCP and investigate their

impact1 in situations where an MPTCP receiver never discards received out-of-order

MPTCP-PDUs (i.e., an MPTCP receiver that, in this chapter, never renegs). Note

that, we only enable NR-SACKs at the MPTCP level. Changing TCP to include NR-

SACKs is investigated in chapter 2. Investigating the impact of enabling NR-SACKs

both at the MPTCP and the TCP subflow levels is beyond the scope of this dissertation,

and described in our future work.

3.1 GapAck-Induced Send Buffer Blocking in MPTCP Unordered Data

Transfer

Consider a scenario where an MPTCP receiver never renegs. In Figure 3.1, two

subflows have been established. After some initial period of data transfer (not shown),

assume both subflows have reached their congestion avoidance phase, and the two

subflows have roughly the same RTT and the same MSS of 1400 bytes. The MPTCP

send buffer, denoted by the blue rectangular box, is assumed to hold up to 11200 bytes

of application data. The entire send buffer is equally divided into 8 pieces (each 1400

1 Results reported in this chapter is published in [22].

36

bytes) and each piece is denoted by its starting Data Sequence Number (DSN) inside

a small rectangular box.

APP MPTCP TCP
subflow 1 MPTCP Send Buffer

TCP
subflow 2

MPTCP APP

A: 26401 (14001)

A: 12601 (25201)

Figure 3.1: Timeline of an Unordered MPTCP Data Transfer

The timeline slice shown in Figure 3.1 starts at a point in the data transfer when

both subflows have cwnd = 4. When bytes are then to be transmitted on a subflow,

the bytes are encapsulated into TCP-PDUs which are denoted by both the respective

subflow’s TCP sequence number (S) and the DSN (inside the parentheses) of the first

byte of the payload. TCP-PDU S: 7001 (DSN: 14001) of subflow 1 is assumed lost.

37

Upon reception of the first ack (A: 26401 (DA: 14001)) on subflow 2, the MPTCP

sender could in theory continue to transmit new data on subflow 2, since subflow 2

has available cwnd (i.e. cwnd − numpacket in flight > 0). However, the MPTCP send

buffer does not have any new data. Actually, before the ack of the retransmission

of TCP-PDU S: 7001 (DSN: 14001) arrives at the MPTCP sender, even though data

corresponding to DSNs 19601 - 25200 have been successfully received by the MPTCP

receiver, the MPTCP sender cannot free these data from the send buffer since the

DATA ACK does not advance. This scenario illustrates GapAck-Induced send buffer

blocking (hereafter called send buffer blocking). Send buffer blocking occurs when the

total cwnds of all subflows are greater than the MPTCP send buffer size. Send buffer

blocking prevents the MPTCP sender from fully utilizing the cwnds of subflows.
In the case where an MPTCP receiver never renegs, this simple timeline illus-

trates the following:

• After bytes have been received out-of-order by an MPTCP receiver, maintaining
these data in the MPTCP send buffer is unnecessary, i.e., a waste of memory.

• When send buffer blocking occurs, the MPTCP send buffer size becomes a
throughput bottleneck.

3.2 MPTCP Unordered Data Transfer with NR-SACKs

We propose using NR-SACKs to enable an MPTCP receiver to inform an

MPTCP sender about the reception and ‘non-renegability’ of out-of-order data. The

details of the proposed modified DSS option which supports NR-SACKs can be found

in Appendix A.

Figure 3.2 is analogous to Figure 3.1’s example, this time using NR-SACKs.

The MPTCP sender and receiver are assumed to have previously negotiated using

NR-SACKs during the connection establishment. As in Figure 3.1, TCP-PDU S:

7001(DSN: 14001) of subflow 1 is presumed lost. Notice the difference that the first

three acks on subflow 1 and the first four acks on subflow 2 will carry NR-SACK in-

formation. When the first ack on subflow 2 arrives, the MPTCP sender is informed

38

APP MPTCP TCP
subflow 1

TCP
subflow 2

MPTCP APP

MPTCP Send Buffer

Figure 3.2: Timeline of an Unordered MPTCP Data Transfer with NR-SACKs

that data corresponding to DSNs from 19601 to 21000 have been received and are non-

renegable. Unlike Figure 3.1 where the MPTCP sender must retain 19601 - 21000 in

case the receiver renegs, here in Figure 3.2 the MPTCP sender immediately frees these

NR-SACKed data from the MPTCP send buffer, allowing the application to write new

data to the MPTCP send buffer. This new data is transmitted on subflow 2 which has

available cwnd. Then the first ack on subflow 1 arrives, but NR-SACK information in

this ack is same as the first ack of subflow 2. On the reception of the second, third and

fourth acks on subflow 2, more new data are sent out.

39

Figure 3.2 illustrates the following observations on MPTCP data transfers with

NR-SACKs (i.e., where the receiver guarantees not to reneg on the received out-of-order

data):

• The MPTCP send buffer only contains necessary data (i.e., those data which
have not been received by the receiver), thus, NR-SACKs allow a more efficient
MPTCP send buffer usage.

• Although subflow 1 is blocked due to the loss, new application data can still be
transmitted on subflow 2. NR-SACKs alleviate send buffer blocking hence higher
throughput is achieved in Figure 3.2’s scenario than Figure 3.1’ scenario.

3.3 Implementation

Implementing MPTCP NR-SACKs in the Linux kernel is challenging. We need

to thoroughly understand the TCP implementation (roughly 100K lines of code written

in C in Linux 3.3) before we can start. A good thing is TCP has a procedure of

generating SACKs when out-of-order TCP-PDU are received, and we can imitate this

procedure to implement MPTCP NR-SACKs. However, implementation is only the

first step, and debugging our implementation is even more difficult. Even a minor bug

(e.g., try to dereference a null pointer) would halt the machine, and we need to boot

from the correct kernel, find out the problem and recompile the kernel (the recompiling

costs about 10 minutes on our machine). It takes about half a year for us to read the

whole TCP implementation and one month to implement the MPTCP NR-SACKs,

and debugging costs us three months!

In this section, we introduce the procedure of generating NR-SACKs at the

MPTCP receiver and processing NR-SACKs at the MPTCP sender.

3.3.1 Supporting NR-SACKs at the MPTCP Receiver

Figure 3.3 shows the procedure of supporting NR-SACKs at the MPTCP re-

ceiver:

tcp data queue(): This function is the entrance to process a received TCP-PDU

(represented by an skb in the Linux kernel). If a received TCP-PDU is in-order at

40

tcp_data_queue()

In order at the
subflow level

mptcp_queue_skb()

In order at the
MPTCP level

deliver skb to the
application mptcp_add_meta_ofo_queue()

mptcp_ofo_queue()

mptcp_nrsack_remove()

mptcp_nrsack_new_ofo_skb()

mptcp_nrsack_extend()

mptcp_nrsack_maybe_coalesce()

queue skb in the subflow
out-of-order queue

Y N

Y N

Figure 3.3: Procedure of Supporting NR-SACKs at the MPTCP Receiver

the subflow level, the TCP-PDU is delivered to the MPTCP receiver immediately.

Otherwise, the TCP-PDU is queued in the subflow level TCP out-of-order queue.

mptcp queue skb(): This function is the entrance to process a received MPTCP-

PDU. If a received MPTCP-PDU is in-order at the MPTCP level, the MPTCP-PDU is

delivered to the application layer (if possible) or queued in the MPTCP in-order queue.

Otherwise, the MPTCP-PDU is queued in the MPTCP level out-of-order queue.

mptcp ofo queue(): This function checks whether the received in-order MPTCP-

PDU fills the gaps in the MPTCP out-of-order queue. If some gaps are filled, all in-

order MPTCP-PDUs are moved from the out-of-order queue to the in-order queue.

41

For example, Figure 3.4 shows an MPTCP out-of-order queue. At the shown time,

MPTCP-PDUs 2000 - 3999, 5000 - 6999 and 8000 - 8999 have been received out-of-

order (in shaded boxes). Assume MPTCP-PDU 1000 - 1999 is received, then MPTCP-

PDU 2000 - 3999 can be removed from the out-of-order queue and delivered to the

application layer (Figure 3.5).

1000 2000 4000 5000 7000 8000 9000

NR-SACK blocks: 2000 - 4000, 5000 - 7000 and 8000 - 9000

Figure 3.4: An Example MPTCP Out-of-order Queue

mptcp nrsack remove(): This function updates NR-SACK blocks correspond-

ingly if some MPTCP-PDUs are removed from the MPTCP out-of-order queue by

mptcp ofo queue(). At the shown time in Figure 3.4, the NR-SACKs are 2000 - 4000,

5000 - 7000 and 8000 - 9000. After MPTCP-PDU 1000 - 1999 is received and MPTCP-

PDU 2000 - 3999 is moved from the out-of-order queue, the NR-SACKs are updated

to 5000 - 7000 and 8000 - 9000 (Figure 3.5).

4000 5000 7000 8000 9000

NR-SACK blocks: 5000 - 7000 and 8000 - 9000

Figure 3.5: MPTCP Out-of-order Queue after MPTCP-PDU 1000 - 1999 is received

42

mptcp add meta ofo queue(): This function is the entrance to process a received

out-of-order MPTCP-PDU.

mptcp nrsack new ofo skb(): This function generates an NR-SACK block for a

newly received out-of-order MPTCP-PDU. At the shown time in Figure 3.5, assume

MPTCP-PDU 7000 - 7999 is received, NR-SACK block 7000 - 8000 is generated cor-

respondingly (Figure 3.6).

4000 5000 8000 9000

NR-SACK blocks: 5000 - 7000, 7000 - 8000 and 8000 - 9000

7000

Figure 3.6: MPTCP Out-of-order Queue after MPTCP-PDU 7000 - 7999 is received

mptcp nrsack extend(): This function checks whether it is possible to extend

existing NR-SACK blocks with the newly generated NR-SACK block. At the shown

time in Figure 3.6, after NR-SACK block 7000 - 8000 is generated, NR-SACK block

5000 - 7000 can be extended to 5000 - 8000.

mptcp nrsack maybe coalesce(): This function checks whether newly extended

NR-SACK blocks can be merged with the existing NR-SACK blocks. At the shown

time in Figure 3.6, after NR-SACK block 5000 - 7000 is extended to 5000 - 8000, it

can be merged with NR-SACK block 8000 - 9000. Finally, there is only one NR-SACK

block 5000 - 9000.

Whenever an ack is sent out on the subflow level, the latest NR-SACK blocks

included in the TCP option field of the ack.

3.3.2 Supporting NR-SACKs at the MPTCP Sender

Supporting NR-SACKs at the MPTCP sender is simple, and the procedure is

shown in Figure 3.7:

43

tcp_ack()

mptcp_data_ack()

mptcp_clean_rtx_queue_by_nrsack()

Figure 3.7: Procedure of Supporting NR-SACKs at the MPTCP Sender

tcp ack(): This function is the entrance to process a received ack at the subflow

level. If an ack contains MPTCP information (e.g., DATA ACK, NR-SACKs, etc.),

these information are delivered to the MPTCP level.

mptcp data ack(): This function processes MPTCP information contained in

the received acks. For example, an MPTCP sender frees the send buffer with the

DATA ACK.

mptcp clean rtx queue by nrsack(): This function frees the send buffer with re-

ceived NR-SACKs.

3.4 Experimental Setup

We extended the Linux kernel MPTCP implementation [35] to transmit and

process NR-SACKs at the data receiver and data sender, respectively. The experiment

evaluates the performance of MPTCP data transfers (with two subflows) with NR-

SACKs vs. without NR-SACKs under various conditions (path loss rate, delay and

send buffer size). The coupled congestion control option [3] is disabled in this evaluation

since we want to focus on the impact of NR-SACKs.

44

Figure 3.8: Test-bed Topology

3.4.1 Test-bed Topology

The test-bed (Figure 3.8) is composed of a Cisco Linksys E1000 router and two

laptops running Ubuntu 11.10. A server is connected to the router with a tethered

100Mbps Ethernet cable. A multihomed client is connected to the router by both an

Ethernet cable and a wireless link. To prevent the link between the server and the

router being a bottleneck, the Ethernet cable connecting the client and the router has

a 10Mbps capacity, and 802.11b (maximum raw data rate is 11Mbps) is used for the

wireless link. An MPTCP connection with two subflows is created. Subflow 1 is a TCP

connection established over the wired-wired path, and subflow 2 is a TCP connection

established over the wired-wireless path. The traffic is generated by moving a 1.46GB

file from server to client with MPTCP.

3.4.2 Experimental Parameters

In our experiments, four different delays {5ms, 10ms, 50ms, 500ms} and three

different loss rates {0.5%, 1%, 5%} are configured on the outgoing direction of the

server’s Ethernet interface by using the Linux traffic control [51]. The performance of

NR-SACKs has been tested for Linux MPTCP send buffers ranging in size from 14KB

to 899KB.

3.5 Results

To evaluate the performance of MPTCP data transfers with NR-SACKs vs.

without NR-SACKs, we employ the metric throughput gain defined in [19] as (TNR−SACK−

45

Figure 3.9: Throughput Gain with NR-SACKs (899KB, 700K, 449KB, 224KB,
112KB send buffer sizes)

Figure 3.10: Throughput Gain with NR-SACKs (74KB, 64KB, 56KB, 28KB send
buffer sizes)

T)/T ∗100% where TNR−SACK is the throughput achieved with NR-SACKs and T is the

throughput achieved without NR-SACKs for an identical set of experimental parame-

ters (send buffer size, loss rate, bandwidth, and delay). Throughput gain represents the

46

percentage of improvement that results from using NR-SACKs. We also use a region

of gain [19] defined as the send buffer size interval, [a, b], where any send buffer size

between a and b results in an expected throughput gain of at least 5%.

NR-SACKs require a minimal amount of additional processing time at both end

hosts, and a few (roughly 0 - 20 bytes per PDU depending on the number of NR-SACK

blocks) extra bytes on the wire. Thus, our first hypothesis was that these overheads

would be negligible, and that MPTCP data transfers with NR-SACKs would always

perform at least as well as those without NR-SACKs. Figures 3.9 and 3.10 show the

throughput gain for a representative subset of the parameter combinations tested. Send

buffer sizes in the subset comprises 112KB, 224KB, 449KB, 700KB and 899KB. 899KB

is the default MPTCP send buffer size in Ubuntu 11.10. We can see the throughput

gains of all send buffer sizes in both figures are positive, so our first hypothesis is

confirmed.

Importantly, as the MPTCP send buffer size decreases, we observe a general

trend of increasing throughput gain with NR-SACKs in both Figures 3.9 and 3.10.

Based on the previous discussion, NR-SACKs can free received out-of-order data from

the send buffer prior to (i.e., sooner than) the arrival of the corresponding cum-ack.

When send buffer blocking occurs, the total cwnds of all subflows, and hence RtxQ,

grow large enough to fill the entire send buffer. NR-SACKs allow more new applica-

tion data be transmitted. Therefore, our second hypothesis was that when send buffer

blocking occurs, MPTCP data transfers with NR-SACKs would outperform those with-

out.

3.5.1 Retransmission queue evolution

To confirm our second hypothesis and gain insight into the send buffer blocking,

consider how the Retransmission Queue (RtxQ) size varies over time. Figures 3.11 and

3.12 show how the RtxQ size varies for send buffer sizes 899KB and 28KB, respectively.

In both figures, the loss rate and delay on the outgoing direction of the server’s interface

are 1% and 10ms, respectively. In Figure 3.11, the RtxQ size never reaches 899KB,

47

Figure 3.11: Retransmission Queue Evolution without NR-SACKs (899KB send
buffer size, 1% loss, 10ms delay)

Figure 3.12: Retransmission Queue Evolution without NR-SACKs (28KB send buffer
size, 1% loss, 10ms delay)

thus no send buffer blocking occurs, and no throughput gain is expected by using NR-

SACKs (as confirmed in Figure 3.9). In Figure 3.12, the RtxQ size frequently reaches

28KB, each time causing send buffer blocking. When send buffer blocking occurs,

48

significant throughput gain is expected by using NR-SACKs (as confirmed in Figure

3.10). These results confirm our second hypothesis.

3.5.2 Impact of Loss Rate

Figure 3.13: Throughput Gain with NR-SACKs (same delay different loss rates)

From Figure 3.13, we observed: as the loss rate increases, (i) the right edge of

region of gain moves to the left, and (ii) the maximum throughput gain in the region

of gain moves up. The reason for observation (i) is: higher loss rates result in smaller

total cwnds (and hence smaller RtxQ size), so right edge of the region of send buffer

blocking shrinks. The reason for observation (ii) is: higher loss rates make an MPTCP

receiver generate more NR-SACK information (and hence more received out-of-order

data can be freed from the send buffer), so the throughput gain increases.

3.5.3 Impact of Delay

For a given bandwidth, longer delays result in a larger Bandwidth-Delay Product

(BDP). When the BDP < MPTCP send buffer size, no send buffer blocking occurs since

the total cwnd size is bounded by the BDP. Send buffer blocking occurs only when BDP

49

Figure 3.14: Throughput Gain with NR-SACKs (same loss rate different delay)

≥ MPTCP send buffer size. Therefore, we hypothesized that gains from MPTCP with

NR-SACKs would be larger for a longer delay than for a shorter delay.

Our hypothesis is confirmed by Figure 3.14. As the delay increases, the right

edge of region of gain moves right. For all loss rates tested, we also observed that the

throughput gain with NR-SACKs is greater over a link with a shorter delay (consistent

with the results in [19]).

3.6 Conclusion

In this chapter, we introduced NR-SACKs to MPTCP and investigated their

impact in situations where an MPTCP receiver never renegs. We extended the Linux

MPTCP implementation to support NR-SACKs. The experiment setup was extremely

limited (only one topology). However, these preliminary results show that (i) MPTCP

data transfers with NR-SACKs never perform worse than those without NR-SACKs,

and (ii) NR-SACKs can improve end-to-end throughput in MPTCP when send buffer

blocking occurs. In an MPTCP connection with several high-BDP subflows, send

50

buffer blocking can occur and seriously decrease the end-to-end throughput. NR-

SACKs can alleviate the send buffer blocking and achieve higher throughput. We

propose an extensive experiment with more topologies and parameter (e.g., loss rate,

delay, etc) combinations setup in our future work. Based on the argument that the

design to tolerate reneging is wrong, preliminary results would indicate that NR-SACKs

SHOULD be added to the MPTCP standard.

51

Chapter 4

HOW TO DERIVE A GOOD SCHEDULER FOR MPTCP

In this chapter, we first describe problems with the default scheduler used by the

Linux kernel MPTCP implementation. Then we propose the design of a new scheduler.

Experimental results1 show that our proposed scheduler under some circumstances

improves the throughput in MPTCP by alleviating the problems caused by the default

scheduler.

4.1 Problems

The Linux kernel MPTCP implementation scheduler can be summarized as:

• when multiple subflows have available cwnd to send data, data is transmitted on
the subflow with the shortest estimated smoothed round trip time (srtt).

This default scheduler seems reasonable. Srtt reflects the time between when

an MPTCP-PDU is sent out and when its corresponding acknowledgment comes back.

The default scheduler selects the ’fastest’ subflow to send next MPTCP-PDU.

A scheduler works in cooperation with the congestion control mechanism. The

aim of the MPTCP congestion control mechanism is to move data away from congested

path(s) [4]. However, if multiple subflows have available cwnd, this aim is difficult to

achieve without a good scheduler.

Consider a hypothetical scenario of an MPTCP connection with two subflows

as shown in Figure 4.1. Subflow 1 is established on a 3G path with a large buffer

(can queue up to 200 PDUs), resulting in possible longer RTT delays but lower drop

rates. Subflow 2 is established on a Wifi path with a smaller buffer (can queue up to

1 These results have been published in [32].

52

20 PDUs), resulting in possible shorter RTT delays but potentially higher drop rates.

At the shown time, assume the Wifi path buffer is full, while that of the 3G path is

only half full. The Wifi path (subflow 2) is congested, i.e., newly arriving PDUs will

be dropped. However, if both subflows have available cwnd, the default scheduler will

choose subflow 2 to send the next PDU because subflow 2’s srtt is smaller. In this

scenario, a subflow’s srtt does not reflect the subflow’s congestion. As demonstrated

by this hypothetical scenario, a scheduler only based on srtt may be inconsistent

with the aim of the MPTCP congestion control mechanism (problem 1).

Figure 4.1: A scenario in which RTT and congestion mismatch

In above scenario, sending more PDUs on subflow 2 may cause loss due to

congestion. More seriously, once lost PDUs are detected, they need to be retransmitted

and subflow 2’s cwnd will decrease. It takes time for subflow 2 to increase its cwnd

to the value before the loss. This situation causes an inefficient usage of available

path capacity (problem 2) on subflow 2. In the above scenario, the MPTCP sender

could have sent the PDU on subflow 1 rather than subflow 2.

53

4.2 Analysis

MPTCP employs an additive-increase multiplicative-decrease (AIMD) coupled

congestion control mechanism. Each subflow continually increases its cwnd even to a

point that exceeds the available path capacity (defined as the maximum number of

PDUs in flight of this subflow) before detecting a loss. If the number of outstanding

PDUs of a subflow has reached the available path capacity, sending more PDUs through

the subflow will cause congestion loss.

To both be consistent with the aim of the congestion control mechanism and

using network resources efficiently (solving problems 1 and 2), a good scheduler needs

to select a ’fastest’ subflow without causing loss because of congestion. We propose, a

scheduler selects a subflow based on not only its srtt but also the subflow’s

congestion situation.

A scheduler needs to estimate the congestion situation of each subflow. At any

given time, a scheduler knows the number of outstanding MPTCP-PDUs on a subflow.

If the available path capacity of each subflow could be accurately estimated, the sched-

uler could tell whether sending more MPTCP-PDUs on a subflow will reach and/or

surpass the subflow’s available path capacity. Consider a per-subflow ratio Occupied

= (Number of outstanding packets + 1)/Estimated path capacity. Define two con-

gestion thresholds, γ < δ. For subflow i, when Occupiedi ≤ γ, sending one more

MPTCP-PDU on subflow i is considered not to cause congestion on the path. When

γ < Occupiedi ≤ δ, sending one more MPTCP-PDU on subflow i is considered to cause

congestion on the path. When Occupiedi > δ, sending one more MPTCP-PDU on sub-

flow i is considered to cause loss because of congestion on the path. Now, the solution

seems to be simple. For an MPTCP connection, say with two subflows, if sending one

MPTCP-PDU to both subflows will not cause congestion (i.e., Occupied ≤ γ for both

subflows), the scheduler sends the next MPTCP-PDU on the subflow with shorter srtt

(i.e., the current default). If sending one MPTCP-PDU to both subflows will cause

loss because of congestion (i.e., Occupied > δ for both subflows), the scheduler delays

sending the next MPTCP-PDU temporarily. Otherwise, the less congested subflow is

54

selected.

4.2.1 Techniques

Since the available capacities of network paths are changing all the time, accu-

rately estimating the available path capacity of a subflow is challenging. Actually, the

problem of estimating the available path capacity of a TCP connection is not new. The

aim of TCP congestion control is to dynamically adapt cwnd size to be roughly the

available path capacity. Therefore, we can employ the techniques of TCP congestion

control to estimate the available path capacity of a subflow.

Consider what parameters can be used to estimate a subflow’s available path

capacity. Available parameters include per-subflow cwnd, slow start threshold, and

RTT related values (sample RTTs, srtt, RTO values, etc).

An obvious question is why not just use per-subflow cwnd as the estimated

available path capacity? As mentioned in the previous subsection, each MPTCP sub-

flow employs a modified AIMD congestion control algorithm. A subflow’s cwnd can

temporarily exceed the available path capacity before detecting a loss. After detecting

a loss, the cwnd decreases and the new slow start threshold is below the available path

capacity. Even worse, if the available path capacity is relatively large, several round

trips may be needed for the cwnd to reach the available path capacity after a loss.

Therefore, using cwnd or slow start threshold as the estimated available path capacity

can be imprecise.

What about RTT-related values? In TCP congestion control techniques, one

preventive rather than reactive algorithm is end-to-end delay-based congestion avoid-

ance algorithm (DCA) [45]. DCA algorithms keep track of TCP-PDU RTTs (called

sample RTTs). An increase in sample RTTs presumes increased queuing delay, thus

increased congestion in intermediate routers. TCP-Vegas [43] and FAST [44] employ

this technique in their congestion control mechanisms. Can we use changes of sample

RTTs to estimate the available path capacity? The answer remains no. As argued in

[46], congestion information contained in TCP RTT samples cannot reliably predict

55

packet loss, and thus cannot be used to accurately estimate available path capacity.

The reasons are (i) the collected sample RTTs are too coarse to accurately track the

bursty congestion associated with packet loss over high-speed paths, and (ii) sometimes

short-term queue fluctuations which are not associated with losses make the changes

of sample RTTs not reliably reflect the congestion level at the router.

We need a stable method to estimate a subflow’s available path capacity. A

feasible method is using multiple parameters. Reconsider the AIMD congestion control

algorithm used by each subflow. After a loss (assume this loss is caused by congestion)

is detected on a subflow, the subflow will decrease its cwnd. The current available path

capacity can be expected somewhere between the cwnd size when the loss is detected

and the new slow start threshold. Thus the technique of BI-TCP [42] can be used. BI-

TCP uses a binary search algorithm where the cwnd grows to the mid-point between

the last cwnd size where TCP has a packet loss and the last cwnd size TCP does not

have a loss for one RTT.

4.3 A Scheduling Policy Based on Estimated Subflow Path Capacities

Estimating available path capacity of a subflow: Initially, the estimated

available path capacity of subflow i is set to a default maximum (a large constant).

If a loss is detected on subflow i, the estimated available path capacity is set to the

mid-point between the cwnd (i.e., max) before loss detection and the new slow start

threshold (i.e., min). After the number of outstanding MPTCP-PDUs of subflow i

reaches the estimated available path capacity, if subflow i does not detect further

packet loss, it means that the available path capacity is under-estimated. Then a new

min is set to the number of outstanding MPTCP-PDUs, and the estimated available

path capacity is recalculated. After the number of outstanding MPTCP-PDUs reaches

the max, if no loss has been detected, it means that the actual available path capacity

has increased since the last loss. Then a new max is set to the current cwnd size, a

new min is set to the current number of outstanding MPTCP-PDUs, and a new esti-

mated available path capacity is recalculated. The full proposed algorithm to estimate

56

if (a loss has been detected since this algorithm was last run and hence ss threshold
has been updated) then

Max = 2 ∗ ss threshold
Min = ss threshold . update both max and min
Estimated path capacity = 1

2
∗ (Max+Min)

else if (Estimated path capacity ≤ Num of outstanding < Max) then
Min = Num of outstanding . only update min
Estimated path capacity = 1

2
∗ (Max+Min)

else if (Num of outstanding ≥Max) then
Max = Cwnd
Min = Num of outstanding . update both max and min
Estimated path capacity = 1

2
∗ (Max+Min)

end if

Figure 4.2: Algorithm to Estimate Available Path Capacity of a Subflow

available path capacity is shown in Figure 4.2.

Scheduling policy: When an MPTCP-PDU is ready to be sent, the MPTCP

sender estimates the available subflows. Occupiedi is calculated for each subflow i. If

the MPTCP-PDU is an MPTCP level retransmission, that PDU will not be re-sent

on the subflow used for the original. Otherwise, subflows with Occupiedi ≤ δ can be

used to send the MPTCP-PDU. If multiple subflows can be used and some available

subflows will not be congested by sending one more MPTCP-PDU (i.e., Occupiedi ≤ γ),

the subflow with the shortest srtt is selected. When all available subflows would be

congested by sending one more MPTCP-PDU (i.e., Occupiedi > γ), the subflow with

the smallest Occupiedi is selected. The full scheduling algorithm is shown in Figure

4.3.

Just as BI-TCP, our algorithm keeps the available path capacity of a subflow

longer at the saturation point. Our proposed scheduler considers both the ’speed’ and

the congestion situation of each subflow. Thus, this proposed scheduler is consistent

with the aim of the congestion control mechanism, and using network resources more

efficiently.

57

Each time the scheduler runs:
Min srtt = 0xFFFFFFFF . initialize to be the maximal 32-bit unsigned int
Min occupied = 0xFFFFFFFF . initialize to be the maximal 32-bit unsigned int
Num uncongested path = 0 . initialize number of uncongested subflows
Num available path = 0 . initialize number of available subflows

for each subflow i do
if (next MPTCP-PDU is a retransmission originally transmitted on subflow i)

then
continue

end if
if (Num of outstandingi ≥ Cwndi) then . no available cwnd

continue
end if
Occupiedi = (Num of outstandingi + 1)/Estimated path capacityi
if (Occupiedi > δ) then . cause congestion loss

continue
end if
Num available path++ . count as available subflows
if (Occupiedi ≤ γ) then . uncongested

Num uncongested path++ . count as uncongested subflows
end if

end for

if (Num uncongested path > 0) then . select the ‘fastest’ uncongested subflow
for each uncongested subflow i do

if (Srtti < Min srtt) then
Min srtt = Srtti
Selected subflow = i

end if
end for

else if (Num available path > 0) then . select the ‘least’ congested subflow
for each available subflow i do

if (Occupiedi < Min occupied) then
Min occupied = Occupiedi
Selected subflow = i

end if
end for

else
Selected subflow = NULL . delay the scheduling of next MPTCP-PDU

end if

Figure 4.3: Algorithm of Proposed Scheduler

58

4.4 Implementation

In the Linux MPTCP, the following functions are related to the scheduler:

mptcp next segment: selects the next MPTCP-PDU to be scheduled.

get available subflow: selects a subflow to transmit the selected MPTCP-PDU.

mptcp write xmit: transmits the selected MPTCP-PDU on the selected subflow.

The algorithms in Figures 4.2 and 4.3 are implemented in get available subflow.

At a given time during the transmission, a subflow’s sender has following available vari-

ables:

snd ssthresh: current slow start threshold;

snd cwnd: current cwnd;

packets out: current number of TCP-PDUs in the retransmission queue (TCP-PDUs
which have been sent but not cumulatively acknowledged (cumacked));

sacked out: current number of TCP-PDUs which have been reported as received by
Selective Acknowledgments (SACKs) but not yet cumacked;

fackets out: current number of TCP-PDUs which have been forward acknowledged
(FACKed) [9];

retrans out: current number of TCP-PDUs which have been retransmitted and the
retransmissions are “in flight”.

1 2 3 4 5 6 7 8

retransmission queue

Figure 4.4: A Subflow’s Send Buffer During Data Transfer

Let us consider an example to better understand the later four variables. Figure

4.4 shows a subflow’s send buffer which contains 8 TCP-PDUs. TCP-PDUs 1 to 6,

59

denoted as retransmission queue, have been sent but not cumacked. TCP-PDUs 3 and

5, denoted by dashed boxes, have been reported as received by SACKs. TCP-PDUs

1 and 2, denoted by shaded boxes, have been retransmitted. TCP-PDUs 7 and 8 are

waiting to be transmitted for the first time. At the shown time, packets out = 6,

sacked out = 2, fackets out = 5 and retrans out = 2.

A scheduler needs every subflow’s three variables: ss threshold, Cwnd and Num

of outstanding. Obviously, ss threshold and Cwnd are already available. Now, the

scheduler needs to compute Num of outstanding from above available information. Can

the scheduler directly treat packets out as Num of outstanding?

Num of outstanding is the number of TCP-PDUs which are “in flight” in the

network and occupy the available path capacity. However, TCP-PDUs which have not

been cumacked include: (i) those which arrive at the receiver out-of-order (Num of ofo),

(ii) those which are lost in the network (Num of lost), and (iii) those which are “in

flight” (include both original transmissions and any retransmissions). sacked out

is the best available estimation of Num of ofo. Note that, sacked out is always ≤

Num of ofo, because some TCP-PDUs can arrive at the receiver out-of-order but

the corresponding SACKs are not received by the sender. We use the method in

[9] to compute Num of lost as fackets out − sacked out. For the example in Fig-

ure 4.4, the first transmissions of TCP-PDUs 1, 2 and 4 are considered to be lost.

Importantly, Num of outstanding also includes retransmitted TCP-PDUs. Therefore,

Num of outstanding = packets out − sacked out − (fackets out − sacked out) +

retrans out and the final formula is:

Num of outstanding = packets out− fackets out + retrans out (4.1)

Now, the scheduler has all necessary variables for the implementation.

60

Table 4.1: MPTCP Data Transfer without Cross Traffic

Default P-(0.5,1.0) P-(0.7,1.0) P-(0.9,1.0) P-(0.9,1.2) P-(0.9,1.4)
Throughput (MBps) 1.58 1.82 1.81 1.81 1.80 1.59
Retransmissions (in PDUs) 1288 4 18 13 30 838
TCP-PDUs sent on subflow 1 68123 68168 68358 68588 68927 68231
TCP-PDUs sent on subflow 2 45513 44184 44008 43773 43249 44955

4.5 Evaluation Preliminaries

We implemented our proposed scheduler in the Linux kernel, and evaluated the

performance of MPTCP data transfers with two subflows with our proposed scheduler

vs. with the default scheduler. The comparison was made with and without cross

traffic. Obviously, the coupled congestion control option is turned on.

Our test-bed is composed of two Cisco Linksys routers and three laptops running

Ubuntu 11.10 (see Figure 4.5). Both laptops 1 and 2 are multihomed by using the

tethered Ethernet interface and a Cisco USB Ethernet adapter. An MPTCP connection

is established between laptops 1 and 2. Subflow 1 is established between the two

tethered Ethernet interfaces, while subflow 2 is established between the two Cisco USB

Ethernet adapters. Each Cisco USB Ethernet adapter has a small internal buffer that

can queue up to 3 TCP-PDUs, thus the available path capacity of subflow 2 is less

than that of subflow 1. A TCP connection is established between laptops 2 and 3.

Our test-bed topology, as well as the speed of each link, are shown in Figure 4.5. The

MPTCP traffic is generated by moving a 150MB file from laptop 1 to laptop 2, while

the cross traffic is generated by moving a file of unbounded size from laptop 3 to laptop

2 with TCP.

4.6 Performance Evaluation

4.6.1 Results without Cross Traffic

Based on the analysis in Section II, we hypothesized our proposed scheduler

uses network resources more efficiently than the default scheduler. Table 4.1 shows the

61

Figure 4.5: Test-bed Topology

results for the 150MB data transfer without cross traffic. Each entry in Table 4.1 rep-

resents the average of ten transfers. The different schedulers are the default scheduler

(denoted Default) and versions of proposed scheduler with different combinations of

γ and δ. For example, a version of proposed scheduler with γ = 0.5 and δ = 1.0 is

denoted P-(0.5,1.0).

Since no artificial loss is introduced, all losses are caused by congestion. The de-

fault scheduler causes more retransmissions than our proposed scheduler with δ = 1.0.

Figures 4.6 show the one way delay of subflow 1 between 80s and 84s of data transfer

with the default scheduler and with scheduler P-(0.9,1.0). The default scheduler sends

data to subflow 1, and its one way delay increases (which means the queue length

in the router increases) until the the number of outstanding TCP-PDUs exceeds the

available path capacity and congestion loss occurs. The sender detects these losses and

62

Table 4.2: MPTCP Data Transfer with Cross Traffic

Default P-(0.5,1.0) P-(0.9,1.0) P-(0.5,1.2) P-(0.9,1.2)
Throughput (MBps) 0.92 0.99 0.98 0.97 0.96
Retransmissions (in PDUs) 1684 11 10 47 29
TCP-PDUs sent on subflow 1 44459 32060 31270 32138 20110
TCP-PDUs sent on subflow 2 69573 80299 81086 80257 92267

Figure 4.6: One Way Delay of Subflow 1 with Different Schedulers

decreases the cwnd so that the one way delay decreases. Consequently, the default

scheduler is continually over-sending TCP-PDUs to a subflow and creating losses. We

call this phenomenon over-feeding. Over-feeding is avoided by using P-(0.9,1.0) which

prevents the number of outstanding TCP-PDUs from exceeding the estimated available

path capacity so that the one way delay does not vacillate up and down.

When δ = 1.0, our proposed scheduler gains roughly 14.5% throughput over the

default scheduler. When δ > 1.0, the number of retransmitted TCP-PDUs increases

and over-feeding occurs. In our proposed scheduler, the default value of δ is 1.0.

Therefore, our first hypothesis is confirmed by the results in Table 4.1. By alleviating

over-feeding, our proposed scheduler can use network resources more efficiently.

63

4.6.2 Results with Cross Traffic

Our second hypothesis was that our proposed scheduler would be consistent

with the aim of the MPTCP congestion control mechanism. That is, our proposed

scheduler moves data away from congested links. This hypothesis is confirmed by the

results in Table 4.2, which shows the results for the 150MB data transfer with cross

traffic. When δ = 1.0, our proposed scheduler gains roughly 6.5% throughput over

the default scheduler. More importantly, our proposed scheduler sends more data to

subflow 2 than the default scheduler since subflow 2 is less congested than subflow 1.

4.7 Discussions

Obviously, the efficiency of our proposed scheduler depends on γ and δ. If we can

perfectly estimate subflows’ available path capacities, over-feeding will be alleviated by

setting δ = 1.0. What should the proper value of γ be? On one hand, γ cannot be

too large (i.e., approaching δ). Reconsider the problem reported in [22] (the topology

is shown in Figure 3.8). Obviously, the srtt of subflow 1 is always shorter than that of

subflow 2. If the default scheduler is used, subflow 1 is selected to send data whenever

the subflow has available cwnd, while subflow 2 is only selected when subflow 1 has no

available cwnd. If the available path capacity of subflow 1 ≥ the send buffer size, sub-

flow 2 will only be used at the beginning of the data transfer. We call this phenomenon

biased-feeding. If only subflow 1 is used, the maximum throughput is 10Mbps. While if

both subflows are used, the maximum throughput is 21Mbps. Biased-feeding seriously

decreases the parallelism of data transfer. If our proposed scheduler is used, a large γ

also causes biased-feeding, since our proposed scheduler becomes the default scheduler

when all subflows’ Occupiedi ≤ γ.

On the other hand, γ cannot be too small (i.e., approaching 0). Consider an

MPTCP connection with two subflows where the total available path capacity of both

subflows ≤ the send buffer size. Assume subflow 1 is established on a satellite link with

longer delay and higher loss rate. Assume subflow 2 is established on a 3G path with

shorter delay and lower loss rate. As γ approaches 0, more TCP-PDUs will be sent

64

on subflow 1. Although biased-feeding is alleviated, at the MPTCP receiver side, the

data arriving in-order on subflow 2 will not be delivered to the application layer since

MPTCP level in-order data sent on subflow 1 has not arrived. The throughput using

both subflows can be worse than only using subflow 2. This phenomenon is similar

to the problem reported in [37]. This phenomenon decreases the throughput and can

cause GapAck-Induced send buffer blocking [21].

Currently, in our proposed scheduler, the default values of γ and δ are 0.5 and

1.0, respectively. Ideally, the value of γ should be dynamically determined based on

the characteristics (i.e., delay, packet loss and bandwidth) of subflows. Future work is

proposed to investigate the dynamic determination of the value of γ.

4.8 Conclusion

To achieve successful deployment of MPTCP, one of the key problems is the

cooperation of the scheduler and the congestion control mechanism. We admit the ex-

periment setup was extremely limited (only one topology). However, these preliminary

results demonstrate that the designs of both the scheduler and the congestion control

mechanism cannot be separated, and it is important to design a scheduler which is

consistent with the congestion control mechanism.

65

Chapter 5

USING ONE-WAY COMMUNICATION DELAY FOR IN-ORDER
ARRIVAL MPTCP SCHEDULING

In this chapter, we use one-way communication delay of a TCP connection

to design an MPTCP scheduler that transmits data out-of-order over multiple paths

such that their arrivals are in-order. Our Linux implementation shows our proposed

scheduler can reduce receive buffer utilization, and increase overall throughput when

a small receive buffer size results in receive buffer blocking1.

5.1 Motivations

Consider a hypothetical scenario of an MPTCP connection with two subflows

as shown in Figure 5.1. Both subflows 1 and 2 have cwnd = 4, and the round trip

time (RTTs) of subflows 1 and 2 are 200ms and 20ms, respectively. At a given time,

assume 4 MPTCP-PDUs are outstanding on subflow 2, and MPTCP-PDU 5 is ready

to be sent. The scheduler must decide on which subflow to send MPTCP-PDU 5?

According to both the default (used by the Linux MPTCP implementation)

and our proposed schedulers in chapter 4, MPTCP-PDU 5 will be scheduled and sent

on subflow 1 because subflow 2 has no available cwnd. For simplicity, assume the

transmission delay of MPTCP-PDUs is ignored, and a subflow’s one-way propagation

delay is half of the subflow’s RTT. It would take 10ms and 100ms for MPTCP-PDUs 1

to 4 and MPTCP-PDU 5 to arrive the receiver, respectively. The time between when

MPTCP-PDU 1 is sent and when all 5 MPTCP-PDUs are delivered to the application

layer would be 100ms, and a time interval of 90ms exists between the delivery time of

MPTCP-PDUs 4 and 5 (Figure 5.2).

1 These results have been published in [33] and [34].

66

Cwnd = 4
RTT = 200ms

Cwnd = 4
RTT = 20ms

Figure 5.1: An MPTCP Connection with Two Subflows with Asymmetric RTTs

By applying a playout buffer to mitigate the jitter, this situation might not

cause a problem for online streaming, where PDUs are sent out consistently. However,

in some applications (e.g., online games), delay is sensitive, and PDUs are generated

in short bursts. Relatively long time intervals between the delivery time of PDUs can

occur periodically and negatively affect the user experience.

However, if MPTCP-PDU 5 was scheduled to subflow 2, that PDU just needs

to wait for at most 1 RTT to be sent out. The time between when MPTCP-PDU 1 is

sent and when all 5 MPTCP-PDUs are delivered to the application layer would be only

30ms and a time interval of 20ms exists between the delivery time of MPTCP-PDUs

4 and 5 (Figure 5.3).

Analogously, assume the application in Figure 5.1 has 34 MPTCP-PDUs ready

67

1 - 4

5
90ms

0
10ms

100ms

Figure 5.2: MPTCP Data Transfer (5 MPTCP-PDUs) with Two Subflows with
Asymmetric RTTs

to be sent at the beginning. The timeline of data transfer with the default and our

proposed schedulers in chapter 4 is shown in Figure 5.4. Although the total delivery

delay of these 34 MPTCP-PDUs is 100ms, MPTCP-PDUs 9 to 34 received on subflow

2 have to reside in the MPTCP receive buffer and cannot be delivered until MPTCP-

PDUs 5 to 8 are received on subflow 1. This situation causes an inefficient usage of

the MPTCP receive buffer. Since an MPTCP receive buffer can be filled with out-of-

order MPTCP-PDUs, receive buffer blocking occurs and the whole transmission stops

eventually.

However, if MPTCP-PDUs 5 to 30 are sent on subflow 2 and MPTCP-PDUs

31 to 34 are sent on subflow 1, the total delivery delay remains 100ms, but the receive

buffer only contains in-order MPTCP-PDUs at any given time.

Based on above example, if a scheduler can make all MPTCP-PDUs arrive in-

order at the MPTCP receiver, both minimal jitter and more efficient usage of the

MPTCP receive buffer can be achieved. However, the question is how difficult is it to

design such a scheduler?

68

1 - 4

5

20ms

0
10ms

30ms
5

Figure 5.3: Improved MPTCP Data Transfer (5 MPTCP-PDUs) with Two Subflows
with Asymmetric RTTs

5.2 Schedule MPTCP-PDUs to All Established Subflows

Reconsider the task of a scheduler [32]. Whenever an MPTCP sender wants to

send data, the sender needs to make three decisions. First, which subflow(s) can be

used (i.e., has available cwnd) to send data? Second, if several subflows have available

cwnds, which subflow should be chosen? Third, after selecting a subflow, how much

data should be scheduled to it? The third decision concerns the granularity of the

allocation. For the purpose of simplicity, we just temporarily assume each subflow has

the same maximum segment size (MSS), and an MPTCP sender allocates one MSS

at a time in step 3. We will discuss the implementation problems in the situation

where subflows have different MSS at the end of this chapter. Now, we focus on the

scheduler’s first two decisions.

Note that, all existing schedulers (including the default) only schedule MPTCP-

PDUs to subflows with available cwnds. That is, at any given time, only subflows with

available cwnd can be used to schedule data. This default policy is why MPTCP-PDUs

5 to 8 are scheduled to subflow 1 in Figure 5.4. However, to achieve in-order arrival

69

Figure 5.4: MPTCP Data Transfer (32 MPTCP-PDUs) with Two Asymmetric Sub-
flows

scheduling, in answering the first decision, all established subflows can be used

to schedule data, even those with no available cwnd.

To make MPTCP-PDUs arrive in-order at the receiver side, the answer to

the second decision is derived as follows. We define the time range between when

an MPTCP-PDU is scheduled to a subflow and when that PDU arrives in-order at

the subflow’s receive buffer as delivery delay (DeD). DeDi
j is the delivery delay of

MPTCP-PDU i if scheduled to subflow j. Note that, “MPTCP-PDU i is scheduled to

subflow j” does not mean “MPTCP-PDU i can be sent immediately on subflow j”, since

subflow j may have no available cwnd currently. At any given time, if MPTCP-PDU i is

ready to be scheduled and the scheduler knows DeDi for all subflows, MPTCP-PDU

i will be scheduled to the subflow with the smallest DeDi. Each subflow will

send out scheduled MPTCP-PDUs whenever the subflow has available cwnd. With

this policy, if the network does not drop or reorder PDUs, all MPTCP-PDUs will ar-

rive ‘perfectly’ in-order at the MPTCP receiver. Note: although MPTCP-PDUs are

scheduled in-order, they can be sent out out-of-order.

70

5.3 One-way Communication Delay

One problem is “how to calculate DeDj
i”. DeDj

i comprises two parts: (i) the time

which MPTCP-PDU i spends in subflow j’s send buffer, and (ii) the time range between

when MPTCP-PDU i is sent out (for the first time) and when it is received in-order

at subflow j’s receive buffer. Obviously, part (i) is 0 if subflow j has available cwnd

when MPTCP-PDU i is scheduled. Part (ii) actually represents how long it takes for

a subflow sender to truly communicate its data to the receiver, and is denoted One-

Way Communication Delay (CommD). CommD is not the same as traditional

one-way delay [52, 53, 54] which measures propagation, transmission and queueing

delays without taking into account delays due to retransmissions.

Please note, CommD is the characteristic of a subflow. However, DeD is the

delivery delay of a specific MPTCP-PDU on a specific subflow. Suppose MPTCP-

PDU i is scheduled to subflow j. If subflow j has available cwnd, DeDi
j = CommDj.

Otherwise, DeDi
j = Timei

spent in sndbuf j + CommDj.

We introduce how to measure CommD of a subflow in this section and how to

compute Timespent in sndbuf in section 5.4.

A negative aspect of using a subflow’s CommD is its difficulty to measure in

practice since the metric is distributed: the start and stop times of the CommD interval

occur on different machines. But since the start and end hosts are identical for all

subflows, in our proposed measurement scheme, the end point clocks need not be

synchronized. A scheduler only needs to know which subflow has the shortest CommD

not the specific values of all subflows. The scheduler can easily measure a CommD′

which is defined as CommD + C. Here, C is the time difference between the end host

clocks.

Let us present a hypothetical example to demonstrate how to measure the

CommD′ of a subflow in MPTCP. Similar to TCP’s measurement of RTT, only one

CommD′ measurement sample can be in progress at any time. We denote CommDk
i

and CommDi as the jth measured sample and smoothed average CommD′ of subflow

i, respectively. Here, ‘sample’ and ‘smoothed’ have the analogous meaning as those in

71

Subflow 1 Subflow 2

Figure 5.5: Example of CommD Measurement for MPTCP

traditional TCP RTT measurement. si is the time when an MPTCP-PDU (seq: Ss -

Se) is transmitted for the first time, and is recorded by subflow i’s sender as the start

time of a sample measurement. Subflow i’s receiver constantly updates a variable ri to

72

be the time when a PDU is received in-order. The receiver echos the latest value of ri

to the sender in the acknowledgments. The sender pairs the ri in the first received ac-

knowledgment (with acknowledgment number ≥ Se) with current si. Figure 5.5 shows

an MPTCP connection with two subflows. Two samples are collected for subflow 1,

and only one sample is collected for subflow 2.

1. Subflow 1’s first CommD′ measurement starts when TCP-PDU (Sub seq:

1401 - 2800) is sent, and s1 is updated correspondingly. No CommD′ measurement

starts for the next TCP-PDU (Sub seq: 2801 - 4200) because a measurement is already

in progress.

2. Subflow 1’s receiver updates r1 to be the time when TCP-PDU (Sub seq:

1401 - 2800) is received. Then, r1 is included in ACK (ack: 2801).

3. When ACK (ack: 2801) arrives at subflow 1’s sender, it computes CommD1
1 = r1 − s1.

Also, CommD1 = CommD1
1. The sender then clears the value of s1 to indicate that no

measurement is in progress.

4. s1 is updated to be the time when TCP-PDU (Sub seq: 4201 - 5600) is sent

out. In this example, this TCP-PDU is presumed lost.

5. Subflow 1’s receiver does not update r1 until the retransmission (either by

time out or fast retransmission) of the lost TCP-PDU is ultimately received.

6. Subflow 1’s sender does not compute CommD2
1 until the arrival of ACK (ack:

9801) which is the first received acknowledgment with ack ≥ 5600. Also,

CommD1 = (7/8 ∗ CommD1) + (1/8 ∗ CommD2
1).

7. Similarly, subflow 2’s first CommD′ measurement starts when TCP-PDU

(Sub seq: 20001 - 21400) is sent out. CommD2 = CommD1
2 = r2 − s2.

Note that, the accuracy of CommD′ measurement is influenced by not only

delayed acknowledgment but also acknowledgment losses. CommD is an one-way delay

and also accurately accounts for losses of a subflow.

73

5.4 Time Spent in the Send Buffer

Now, let us see how a scheduler can calculate the time (Timei
spent in sndbuf j)

which MPTCP-PDU i spends in the send buffer if MPTCP-PDU i is scheduled to

subflow j. The send buffer of subflow j comprises (i) newly scheduled data waiting

to be transmitted for the first time, and (ii) data that is outstanding (i.e., already

transmitted at least once and awaiting to be cum-acked). In Figure 5.6, these data are

called Not yet sent and Outstanding, respectively.

Figure 5.6: Send Buffer of a Subflow

For subflow j, Outstandingj can be ≤ Cwndj (assume subflow j is not in fast

recovery state). Therefore, some PDUs can be sent immediately, then:

Number of packets can be sentj = Cwndj −Outstandingj (5.1)

The number of RTTs which MPTCP-PDU i needs to wait to be sent out is:

Number of RTTs waitj
i =

⌊
Not yet sentj − Num packets can be sentj

Cwndj

⌋
(5.2)

74

Therefore, the time which MPTCP-PDU i spends in subflow j’s send buffer is:

Timespent in sndbuf = Number of RTTs waitj
i ∗ RTTj (5.3)

Unlike the CommD measurement, the calculation of Timespent in sndbuf does not account

for losses. Accounting losses in the calculation of Timespent in sndbuf is beyond the scope

of this dissertation and will be included in our future work.

5.5 Two Designs of In-order Arrival Scheduling

Figure 5.7: Design 1: MPTCP-PDUs are Always Scheduled In-order

Now, we know the delivery delay of MPTCP-PDU i if it is scheduled to subflow

75

j is:

DeDi
j = (Number of RTTs waitj

i ∗ RTTj) + CommDj (5.4)

Reconsider the target of our scheduler: to transmit MPTCP-PDUs on different

subflows possibly out-of-order so that they arrive in-order at the MPTCP receive buffer.

To achieve this target, two problems need to be solved: one is how to select the next

MPTCP-PDU to be scheduled, and the other is on which subflow should this selected

MPTCP-PDU be transmitted. We have the answer to the second problem: If MPTCP-

PDU i is ready to be scheduled, a scheduler needs to compute DeDi
j for each subflow

j, and then schedule MPTCP-PDU i to the subflow with the shortest DeDi
j.

A quick, yet inefficient answer to the first problem (Design 1) is “just select the

next not yet scheduled MPTCP-PDU in the MPTCP send buffer”. Assume MPTCP-

PDU i is selected and scheduled to subflow j. MPTCP-PDU i is encapsulated in

a TCP-PDU and placed in subflow j’s send buffer. At a given time, all scheduled

MPTCP-PDUs will have two copies. As shown in Figure 5.7, although MPTCP-PDU

5 cannot be sent out immediately, a second copy is placed in subflow 2’s send buffer.

However, for the default MPTCP scheduler, only in-flight MPTCP-PDUs have two

copies. Please note, this first design always schedules MPTCP-PDUs in-order. Doing

so brings a result: a more efficient usage of the receive buffer which incurs a less efficient

usage of the send buffer. We cannot say this solution is beneficial.

A preferable solution (Design 2) would be to only maintain two copies of in-flight

MPTCP-PDUs, and still achieve in-order arrival. We need to modify the quick answer

to the first problem to be “select an unscheduled MPTCP-PDU which can be sent out

now”. For example, MPTCP-PDU i is the next as yet unscheduled MPTCP-PDU, and

subflow j has the shortest DeDi
j. If subflow j has available cwnd, MPTCP-PDU i is

scheduled and sent out on subflow j. If subflow j has no available cwnd, MPTCP-PDU

i is ‘assumed’ to be scheduled (what we refer to as ‘dummy scheduling’) to subflow j

but will not be copied just yet to subflow j’s send buffer.

The scheduler continues to consider MPTCP-PDU i + 1 until an unscheduled

76

Figure 5.8: Design 2: MPTCP-PDUs can be Scheduled Out-of-order

MPTCP-PDU k is found, and a subflow l has both available cwnd and the shortest

DeDk
l . Then, MPTCP-PDU k is copied to the send buffer of subflow l and transmitted

immediately. Dummy scheduling is necessary to maintain the correctness of the DeD

calculation. As shown in Figure 5.8, the scheduler continues searching in the send buffer

until MPTCP-PDU 31 (which is as yet unscheduled and can be sent out immediately

on subflow 1) is found, then MPTCP-PDU 31 is copied to subflow 1’s send buffer.

Compared to Design 1, Design 2 schedules MPTCP-PDUs out-of-order and avoids

duplicates of MPTCP-PDUs. In the next section, we describe the implementation

pseudo-code for Design 2.

77

5.6 Implementation

We implemented this scheduler in Linux kernel based on the Linux MPTCP
[35]. The following functions are related to the scheduler:

mptcp next segment: selects the next MPTCP-PDU to be scheduled.

get available subflow: selects a subflow to transmit a selected MPTCP-PDU.

mptcp write xmit: transmits a selected MPTCP-PDU on a selected subflow.

Below, we present the pseudo-code of modified mptcp next segment to achieve
scheduling MPTCP-PDUs out-of-order. The following variables are used:

skb: a pointer to an MPTCP-PDU;

meta sk: the MPTCP level socket structure;

subsk(subtp): a subflow level socket(tcp socket) structure;

path mask: a variable recording an MPTCP-PDU has been scheduled to which sub-
flow(s);

path index: index of a subflow;

pre sched path index: a variable indicating which subflow should an MPTCP-PDU
be scheduled to;

DeD: delivery delay of an MPTCP-PDU;

CommD: communication delay of a subflow;

dummy sched packets: number of MPTCP-PDUs which are assumed to be scheduled
to a subflow.

Pseudo code

skb = tcp send head(meta sk); . get 1st MPTCP-PDU in send buffer

for each subtp do . initialize the number of ‘dummy’ scheduled MPTCP-PDUs

subtp->dummy sched packets = 0;

end for

while skb is not NULL do

78

subsk = get available subflow(meta sk);

if subsk is NULL then . no subflow is available

return NULL; . delay the scheduling

end if

if TCP SKB CB(skb)->path mask then . this MPTCP-PDU has been scheduled

goto next skb;

end if

min DeD = 0xFF; . initialize to be the maximal 8-bit unsigned int

min DeD subtp = NULL; . initialize the selected subflow

for each subtp do

if subtp has no available cwnd then

DeD = (subtp->dummy sched packets / subtp->snd cwnd + 1) *

subtp->srtt + subtp->CommD; . equation 5.4

else if subtp has available cwnd then

DeD = subtp->CommD; . DeD equals CommD when has available cwnd

end if

if DeD < min DeD then . select subflow with shortest DeD

min DeD = DeD;

min DeD tp = subtp;

end if

end for

if min DeD tp has available cwnd then . schedule selected MPTCP-PDU

TCP SKB CB(skb)->pre sched path index = min DeD tp->mptcp->path index;

return skb;

else

79

subtp->dummy sched packets++; . ‘dummy’ scheduling

end if

next skb:

if tcp skb is last(meta sk, skb) then . reach send buffer end

skb = NULL;

else

skb = tcp write queue next(meta sk, skb); . check next MPTCP-PDU

end if

end while

This modified mptcp next segment returns both the unscheduled MPTCP-PDU

and the corresponding subflow. Therefore, mptcp write xmit just needs to transmit

the returned MPTCP-PDU on the subflow.

5.7 Results of In-order Arrival Scheduling

5.7.1 Test-bed Topology

Our test-bed, depicted in Figure 5.9, consists of two Cisco Linksys routers and

two laptops running the MPTCP (v0.88) kernel. We use Opportunistic Linked In-

creases Algorithm (OLIA) as the default congestion control mechanism [47]. Both

laptops are multihomed by using their tethered Ethernet interface and a Cisco USB

Ethernet adapter. An MPTCP connection is established between the two laptops.

Subflow 1 is established over the two tethered Ethernet interfaces, while subflow 2 is

established between the two Cisco USB Ethernet adapters. Each Cisco USB Ethernet

adapter comes with a small internal buffer that can only queue up to 3 PDUs, thus the

intermediate buffer size of subflow 2 is smaller than that of subflow 1. If the interme-

diate buffers of both subflows are full, the RTT of subflow 2 will be shorter than that

of subflow 1. We use FTP to generate MPTCP traffic to confirm the in-order arrival

of our proposed scheduler.

80

Sender Receiver

Subflow 1

Subflow 2

Cisco
Linksys
Router 1

Cisco
Linksys
Router 2

100 Mbps

100 Mbps

10 Mbps

100 Mbps

Figure 5.9: Test-bed Topology

5.7.2 Receive Buffer Usage

We hypothesized that our proposed scheduler would occupy less receive buffer

space than the default scheduler. Figure 5.10 shows the size of occupied receive buffer

size for the default and our proposed schedulers) during the time interval from 20s to

105s of a data transfer. The default scheduler can occupy as much as 342KB which

is 38% of the entire allocated receive buffer space. The default scheduler reaches the

steady state after 95s and occupies 83KB in average. Our proposed scheduler always

occupies 25KB, roughly 2.8% of the available buffer space. Our hypothesis is confirmed

and our proposal can reduce the usage of the receive buffer for up to 35.2% for this

topology.

5.7.3 Throughput with Reduced Receive Buffer

In an MPTCP data transfer, if the sender always has enough traffic to fill all

subflows (i.e., Sbuf ≥
∑

all subflow i w̄i (where w̄i is the average cwnd of subflow i in

81

Figure 5.10: Receive Buffer Usage

Table 5.1: Throughput Comparison with Reduced Receive Buffers

Receive Buffer (KB) 889 796 707 619 530 442 354 265 177
Default Scheduler (MBps) 1.47 1.47 1.47 1.47 1.47 1.47 1.21 1.20 1.14
In-order Arrival Scheduler (MBps) 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47 1.47

equilibrium status)) and the receiver always has enough space to accommodate out-of-

order MPTCP-PDUs, the scheduler cannot influence the throughput. However, when

the receive buffer decreases, we hypothesize our proposed scheduler will provide greater

throughput than the default scheduler. Table 5.1 shows the throughput achieved by

both schedulers for a variety of receive buffer sizes. Each shown throughput value in

the table is the average throughput of 50 data transfers with specified scheduler under

specified receive buffer size. We can see the throughput of the default scheduler starts

decreasing when the receive buffer is 354KB or smaller, while that with our proposed

scheduler remains steady even the receive buffer is reduced to only 177KB.

82

5.8 Limitations

5.8.1 Subflows with Different MSS

These experimental results are promising. However, our current implementation

has a strong assumption that all subflows have the same Maximum Segment Size (MSS).

If the subflows of an MPTCP connection have different MSS, the scheduling problem

becomes more complicated.

The simplest method is a scheduler always schedules MPTCP-PDUs of the

smallest MSS to subflows. Obviously, this method is inefficient. We need to find out

other possible solutions.

In the MPTCP Linux implementation, each skb (detailed introduction of skb

can be found in Chapter 2) in the MPTCP send buffer is allocated with data section

size of minimal MSS of all subflows. Please note, skbs and MPTCP-PDUs do not

necessarily have an one-to-one correspondence. In other words, an skb can represent

multiple MPTCP-PDUs, and an MPTCP-PDU may comprise several skbs. As a special

case, when the subflows have the same MSS, an skb exactly represents an MPTCP-

PDU.

prev
next
...

…
seq = 1000

skb0

906

prev
next
...

…
seq = 1906

skb1

data
...

frags

prev
next
...

…
seq = 2812

skb2

data
...

frags

906 906

1000 - 1905 1906 - 2811 2812 - 3717

data
...

frags

Figure 5.11: skbs in the MPTCP Send Buffer

83

Let us consider an example: an MPTCP connection is established with two

subflows. Subflow 1 has an MSS = 1400 bytes and subflow 2 has an MSS = 906 bytes.

Figure 5.11 shows the skbs (each has a data section of size 906 bytes) in the MPTCP

send buffer. At the shown time, assume subflow 1 has no available cwnd and subflow

2 has available cwnd = 2.

The size of a scheduled MPTCP-PDU depends on the corresponding subflow’s

MSS. Assume MPTCP-PDU whose Data Sequence Number (DSN) starts from 1000

has the shortest DeD on subflow 1. This scheduling is delayed since subflow 1 has

no available cwnd. The start DSN of next not yet scheduled MPTCP-PDU is 2400,

because the MSS of subflow 1 is 1400 bytes. Assume this MPTCP-PDU has the shortest

DeD on subflow 2. Since subflow 2 has available cwnd, MPTCP-PDU 2400 - 3305 is

scheduled and sent out. The scheduler needs to maintain a list (scheduled DSN list)

to record scheduled blocks of DSNs.

The pseudo-code in section 5.6 needs to be modified:

Modified pseudo code

Start from DSN of the MPTCP send buffer’s left edge

Find the start DSN (DSNnext) of next not yet scheduled MPTCP-PDU from the

scheduled DSN list

min DeD = 0xFF; . initialize to be the maximal 8-bit unsigned int

min DeD subtp = NULL; . initialize the selected subflow

for each subtp do

if subtp has no available cwnd then

DeD = (subtp->dummy sched packets / subtp->snd cwnd + 1) *

subtp->srtt + subtp->CommD; . equation 5.4

else if subtp has available cwnd then

DeD = subtp->CommD; . DeD equals CommD when has available cwnd

end if

84

if DeD < min DeD then . select subflow with shortest DeD

min DeD = DeD;

min DeD tp = subtp;

end if

end for

if min DeD tp has available cwnd then

schedule MPTCP-PDU (DSNnext to DSNnext + MSSmin DeD tp) to min DeD tp

else if min DeD tp has no available cwnd then

min DeD tp->dummy sched packets++; . ‘dummy’ scheduling

DSNnext += MSSmin DeD tp . increase DSNnext by this subflow’s MSS

else

return

end if

However, this solution has a problem if the network situation changes. Take

the above example, after MPTCP-PDU 2400 - 3305 is sent out on subflow 2, assume

MPTCP-PDU whose DSN starts from 1000 now has the shortest DeD on subflow 2.

Since subflow 2 still has available cwnd (= 1), MPTCP-PDU 1000 - 1905 is scheduled

and sent out. As shown in Figure 5.12, MPTCP-PDUs 1000 - 1905 and 2400 - 3305

have been scheduled and sent out (shaded rectangles). However, duplicate data will be

sent when the MPTCP-PDU whose DSN starts from 1906 is scheduled (to no matter

which subflow). If subflow 1 is selected, MPTCP-PDU 1906 - 4305 would be sent with

906 bytes duplicated. If subflow 2 is selected, MPTCP-PDU 1906 - 2811 would be sent

with 412 bytes duplicated.

5.8.2 Only Accounting for Losses in CommD

If our proposed scheduler can ‘perfectly’ make MPTCP-PDUs arrive in-order

at the receiver and the application always consumes all in-order MPTCP-PDUs, the

85

1000 - 1905 2400 - 33051906 -
2439

Figure 5.12: Blocks of DSNs in the MPTCP Send Buffer

occupied receive buffer size in Figure 5.10 should be 0. Obviously, the efficiency of

our proposed scheduler depends on the accuracy of the algorithm to estimate DeDi
j

(equation 5.4). However, our proposed algorithm to calculate DeDi
j only accounts for

losses in computing CommDi
j but not Timei

spent in sndbuf j.

From equations 5.2 and 5.3, a scheduler has at any given moment accurate

information for Not yet sent and Num packets can be sent. However, a subflow’s RTT

keeps changing as the intermediate queues on the subflow’s path expand or shrink. A

subflow’s cwnd increases when acknowledgments come back and decreases when losses

occur. Using a subflow’s current RTT and cwnd to determine the future scheduling

would be inaccurate when losses occur, or congestion changes on the network path.

Extensive experiments are needed to determine under what circumstances (e.g., loss

rate ranges of subflows) our proposed scheduler will outperform the default one.

This investigation is just a beginning in moving in-order arrival scheduling from

theory to practice, and future research is needed to achieve a complete solution.

86

Chapter 6

PRIOR COLLABORATIVE RESEARCH

Prior to the research contributions of this dissertation, I was involved with

deriving an appropriate initial dictionary for SPDY to compress HTTP headers using

the dictionary data compression method zlib. I have also been involved with a project

to support past PhD student Nasif Ekiz. The activity extended the wireshark flow

graph to help analyzing TCP flows. This chapter presents these two contributions.

6.1 Methodology to derive SPDY’s Initial Dictionary

Google is proposing a new application-layer protocol SPDY (pronounced ”SPeeDY”)

as a way of making browsing the Internet faster [55]. HTTP is the application level

protocol providing basic request/reply semantics. Unfortunately, HTTP was not de-

signed to minimize latency. One particular HTTP feature, the use of uncompressed

request and reply headers, inhibits optimal performance.

SPDY compresses HTTP request and reply headers using zlib [56], a widely-used

dictionary-based compression method. Zlib is a lossless data compression library which

provides in-memory compression and decompression functions. The current zlib library

defines methods ‘deflate’ and ‘inflate’ which provide compression and decompression,

respectively.

Several design issues were considered in developing a methodology to derive an

initial dictionary:

Size of the initial dictionary : The current implementation of zlib’s deflate

method will use at most the window size (number of bytes that can be compressed

at the same time) minus 262 bytes of the provided dictionary. The number of bits of

window size in SPDY is 11, thus the size of initial dictionary should not exceed 1786

87

bytes (i.e., 211 − 262). This size limitation prevents including all HTTP specification

keywords in the initial dictionary. Some specified HTTP keywords are rarely used in

practice. Thus in our methodology, only keywords regularly used in practice should be

included. If and when HTTP keywords change in popularity in the future, a revised

initial dictionary can be derived at that time.

Popular websites/browsers not included : A conscious decision was made not to

include specific popular websites (e.g., facebook, yahoo, Google) or browsers (e.g., fire-

fox), since we do not want to bias the SPDY protocol against new companies/software

trying to enter the future marketplace.

Frequency to update the initial dictionary : An update of zlib’s initial dictionary

for SPDY requires modifying both peer end points (client browser and server), so

changes are problematic. If the initial dictionary is not permitted to change or can

only change infrequently (e.g., every few years), we want today’s initial dictionary to

be appropriate in the future. An obvious example is that the year frequently appears

in HTTP headers, so 2014 appears frequently in today’s HTTP headers. In two years,

however, 2016 will appear frequently and perhaps 2014 not at all. To allow for our initial

dictionary to be applicable for several years, we exclude time-dependant keywords (e.g.,

2014) from the initial dictionary.

The methodology used to derive SPDY’s initial dictionary for zlib compression

was as follows:

1. Collect HTTP reply headers (in ASCII form) from the main page of the top

1000 websites based on [57] as our training set of HTTP replies. Our training set of

HTTP requests was provided by Mike Belshe (Google). These two training sets can

be found in [58], [59], respectively.

2. Use punctuation (i.e., blank, comma, newline, semicolon) to parse the headers

in both training sets into keywords.

3. Calculate a weight for each keyword in HTTP reply headers by considering

the frequency of page views for the top 1000 websites (6th column in [57]). For example,

suppose we have three HTTP reply headers (with HTTP version ‘HTTP/1.1’) which are

88

replies from the main pages of facebook.com, youtube.com and yahoo.com, respectively.

Then the weight of the keyword ‘HTTP/1.1’ is sum of the frequency of page views of

these three websites. Calculate the count of each keyword in HTTP request headers

based on the number of appearances of the keyword. For example, suppose we have

three HTTP request headers (with method ‘GET’), then the count of keyword ‘GET’

is three.

4. Build an initial dictionary for HTTP replies based on the weight of each

keyword in HTTP reply headers. Build an initial dictionary for HTTP requests based

on the count of each keyword in HTTP request headers. Since the SPDY designers

preferred to have just a single dictionary for both headers and replies, we then concate-

nate these two dictionaries. For HTTP header field names and some fixed length values

(e.g., HTTP/1.1, 200 OK), we include the 32-bit length prefix before the word. (Note:

a separate initial dictionary optimized for either HTTP requests or replies would likely

provide better compression, but would in turn make SPDY’s implementation more

complex.)

5. Add some ‘known’ common non keywords in the dictionary. Example words

include HTTP status codes (e.g., 100, 101, 201), months (e.g., Jan, Feb) and days

(e.g., Mon, Tue). These words can be called ‘metadata’, which repeat often in HTTP

headers and are unlikely to change in the future.

After applying our methodology, and by using our proposed initial dictionary,

an additional 8% compression of the first HTTP request header and an additional 15%

compression of first HTTP reply header on a SPDY connection is gained over SPDY’s

current default initial dictionary. For the 2nd, 3rd, and further HTTP request (or

reply) headers transmitted over the same SPDY connection, compression using our

proposed initial dictionary is practically identical to that achieved by SPDY’s default

initial dictionary. This result suggests zlib’s adaptive dictionary evolves to roughly the

same state after compressing the first HTTP header regardless of the initial dictionary.

89

6.2 Wireshark Extensions

Reneging occurs when a data receiver first selectively acknowledges data, and

later discards that data from the receiver buffer before delivery to the receiving appli-

cation. When Nasif Ekiz was analyzing TCP flows to find reneging instances, the flow

graph (which can display TCP-PDUs in a timeline (Figure 6.1)) in wireshark was a

good tool. However, the default flow graph has these drawbacks:

Figure 6.1: Default Flow Graph in Wireshark

Displaying information of both directions at the same column: The default flow

graph displays ‘Seq’ and ‘Ack’ information of both directions in the same ‘Comment’

column, which is really unclear and confusing.

TCP SACK information not displayed : TCP SACK information is crucial for

analyzing reneging instances, but the default flow graph does not display TCP SACKs.

Based on these drawbacks, I extended the flow graph in wireshark to support

following features (Figure 6.2):

90

Figure 6.2: Extended Flow Graph in Wireshark

Dividing the ‘Comments’ column to two columns based on which direction the

TCP-PDUs flow : The ‘Comments’ column is divided into two columns. The left col-

umn displays the information of TCP-PDUs represented by right-pointing arrows, and

the right column displays the information of TCP-PDUs represented by left-pointing

arrows.

Displaying TCP SACK information: TCP SACK information is displayed.

Also, when an ack (which contains SACKs) is clicked, those TCP-PDUs which are

SACKed by the clicked ack are highlighted. In Figure 6.2, when the ack which con-

tains SACK 1629058989 - 1629061987 is clicked (highlighted in green color), three

TCP-PDUs are highlighted in red color.

Displaying space between TCP-PDUs to emphasize gaps in time: Based on the

time intervals between TCP-PDUs, vertical spaces are added between arrows.

These updates to wireshark made it significantly easier to analyze a TCP flow

and decide which case holds for a candidate reneging instance [18]. This exten-

sion can be downloaded at: http://www.cis.udel.edu/~amer/PEL/Wireshark_TCP_

91

http://www.cis.udel.edu/~amer/PEL/Wireshark_TCP_flowgraph_patch.tar
http://www.cis.udel.edu/~amer/PEL/Wireshark_TCP_flowgraph_patch.tar

flowgraph_patch.tar

92

http://www.cis.udel.edu/~amer/PEL/Wireshark_TCP_flowgraph_patch.tar
http://www.cis.udel.edu/~amer/PEL/Wireshark_TCP_flowgraph_patch.tar

Chapter 7

SUMMARY AND CONCLUSIONS

This dissertation investigated two issues related to the transport layer and pro-

posed solutions to address these issues. Each chapter ended with a discussion of corre-

sponding future work. This chapter summarizes our contributions for each issue, and

concludes the dissertation.

7.1 Issue I: Reneging and NR-SACKs

TCP is designed to tolerate reneging. This design has been challenged since

(i) reneging rarely occurs in practice, and (ii) even when reneging does occur, it alone

generally does not help the operating system resume normal operation when the sys-

tem is starving for memory. In current MPTCP standard, an MPTCP receiver cannot

report the reception of out-of-order data to an MPTCP sender. We investigated how

freeing received out-of-order PDUs from the send buffer can improve end-to-end per-

formance when send buffer blocking occurs in both TCP and MPTCP. We introduced

and implemented NR-SACKs for both TCP and MPTCP in the Linux kernel.

Preliminary result for TCP NR-SACKs showed that (i) TCP data transfers with

NR-SACKs never perform worse than those without NR-SACKs, and (ii) NR-SACKs

can improve end-to-end throughput when send buffer blocking occurs. We are currently

doing a collaboration study between UD and ISAE-SUPAERO of quantifying potential

gains of TCP NR-SACKs over an actual long delay, lossy satellite link in CNES.

Preliminary result for MPTCP NR-SACKs showed that (i) MPTCP data trans-

fers with NR-SACKs never perform worse than those without NR-SACKs, and (ii)

NR-SACKs can improve end-to-end throughput in MPTCP when send buffer blocking

occurs.

93

7.2 Issue II: MPTCP Scheduling

An important component of MPTCP is the scheduler. Whenever an MPTCP

sender wants to send data, the scheduler needs to decide on which subflow to send

each byte. During experiments on MPTCP NR-SACKs, we found a problem of the

default scheduler of the Linux MPTCP. We investigated two different scheduling poli-

cies for MPTCP, and addressed these two scheduling policies to improve application

performance.

We explained problems with the default scheduler used by Linux MPTCP, and

proposed the design of a scheduler which based on not only a subflow’s ‘speed’ but

also the subflow’s congestion. Preliminary empirical result showed that our proposed

scheduler improves the throughput in MPTCP by alleviating the problems caused by

the default scheduler.

We also used one-way communication delay of a TCP connection to design an

MPTCP scheduler that transmits data out-of-order over multiple paths such that their

arrival is in-order. Our Linux implementation showed our proposed scheduler can

reduce receive buffer utilization, and increase throughput when a small receive buffer

size results in receive buffer blocking.

94

BIBLIOGRAPHY

[1] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Extensions for
Multipath Operation with Multiple Addresses, draft-ietf-mptcp-multiaddressed-09.
IETF Internet draft, June 2012.

[2] M. Scharf, A. Ford, MPTCP Application Interface Considerations, draft-ietf-
mptcp-api-07, IETF Internet draft, January 2013.

[3] C. Raiciu, M. Handley, D. Wischik, Coupled Congestion Control for Multipath
Transport Protocols, RFC 6356, October 2011.

[4] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, Design, Implementation
and Evaluation of Congestion Control for Multipath TCP. 8th USENIX Sympo-
sium on Networked Systems Design and Implementation, Boston, Massachusetts,
USA, March 2011.

[5] S. Barré, C. Paasch, and O. Bonaventure, MPTCP: From Theory to Practice.
Networking 2011, Valencia, Spain, May 2011.

[6] O. Bonaventure, M. Handley and C. Raiciu, An overview of Multipath TCP.
USENIX login;, October 2012.

[7] S. Barré, Implementation and assessment of Modern Host-based Multipath Solu-
tions. PhD Dissertation, Universit catholique de Louvain, 2011.

[8] A. Kostopoulos, H. Warma, T. Leva, B. Heinrich, A. Ford and L. Eggert, To-
wards Multipath TCP Adoption: Challenges and Opportunities, 6th EURO-NF
Conference on Next Generation Internet (NGI), 2010.

[9] M. Mathis and J. Mahdavi, Forward Acknowledgement: Refining TCP Congestion
Control. ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, New York, NY, USA, 1996.

[10] J. Postel, Discard Protocol. RFC 863, May 1983.

[11] P. Amer, E. Lochin, F. Yang and S. Trang, TCP with Non-Renegable SACKs over
Satellite Links, UD-ISAE Collaboration Study (in progress).

[12] J. Iyengar, P. Amer, and R. Stewart, Concurrent Multipath Transfer Using SCTP
Multihoming Over Independent End-to-end Paths. IEEE/ACM Trans on Net-
working, 14(5), October 2006.

95

[13] P. Amer, M. Becke, T. Dreibholz, N. Ekiz, J. Iyengar, P. Natarajan, R. Stew-
art, and M. Tüxen, Load Sharing for the Stream Control Transmission Protocol
(SCTP), draft-tuexen-tsvwg-sctp-multipath-05. IETF Internet draft, September
2012.

[14] N. Ekiz, P. Amer, P. Natarajan, R. Stewart and J. Iyengar, SCTP Data Acknowl-
edgement with Non-renegable Selective Acks (NR-SACKs), draft-natarajan-tsvwg-
sctp-nrsack. IETF Internet draft, February 2011.

[15] P. Natarajan, N. Ekiz, E. Yilmaz, P. Amer, J. Iyengar, and R. Stewart, Non-
Renegable Selective Acks (NR-SACKs) for SCTP. IEEE International Conference
on Network Protocols, Orlando, Florida, USA, October 2008.

[16] N. Ekiz and P. Amer, Transport Layer Reneging (submitted for publication).

[17] P. Natarajan, Leveraging Transport Services for Improved Application Perfor-
mance. PhD Dissertation, CIS Department, University of Delaware, 2009.

[18] N. Ekiz, Transport Layer Reneging. PhD Dissertation, CIS Department, Univer-
sity of Delaware, May 2012.

[19] E. Yilmaz, N. Ekiz, P. Amer, J. Leighton, F. Baker, and R. Stewart, Throughput
Analysis of Non-Renegable Selective Acknowledgments (NR-SACKs) for SCTP.
Computer Communications, 33(16):1982–1991, October 2010.

[20] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Selective Acknowledg-
ment Options. RFC 2018, October 1996.

[21] H. Adhari, T. Dreibholz, M. Becke, E.P. Rathgeb and M. Tüxen, Evaluation of
Concurrent Multipath Transfer over Dissimilar Paths. 1st International Workshop
on Protocols and Applications with Multi-Homing Support, Singapore, 2011.

[22] F. Yang and P. Amer, Non-renegable Selective Acks (NR-SACKs) for MPTCP.
The 3rd International Workshop on Protocols and Applications with Multi-
Homing Support, Barcelona, Spain, March, 2013.

[23] N. Ekiz, P. Amer and F. Yang, Causing remote hosts to reneg. The 7th Workshop
on Performance Modeling and Evaluation in Computer and Telecommunication
Networks, Nassau, Bahamas, July 2013.

[24] C. Cetinkaya and E. Knightly, Opportunistic traffic scheduling over multiple net-
work paths. 23rd AnnualJoint Conference of the IEEE Computer and Communi-
cations Societies, INFOCOM 2004.

[25] C. Cetinkaya, Improving the efficiency of multipath traffic via opportunistic traffic
scheduling. Computer Networks, 2007.

96

[26] A. Singh, C. Goerg, A. Timm-Giel, M. Scharf and T.R. Banniza, Performance
Comparison of Scheduling Algorithms for Multipath Transfer. .

[27] D. Sarkar, A concurrent multipath TCP and its markov model, IEEE International
Conference on Communications (ICC’06), 2006.

[28] Y. Dong, D. Wang, N. Pissinou and J. Wang, Multi-path load balancing in transport
layer, 3rd EuroNGI Conference on Next Generation Internet Networks, 2007.

[29] P. Key, L. Massoulié and D. Towsley, Path selection and multipath congestion
control, 26th IEEE International Conference on Computer Communications, IN-
FOCOM 2007.

[30] W. Zhang, Q. Wu, W. Yang and H. Li, Reliable Multipath Transfer Scheduling
Algorithm Research and Prototype Implementation. 34th Proceedings of the
Asia Pacific Advanced Network, Colombo, Sri Lanka, August 2012.

[31] B. Wang, W. Wei, J. Kurose, D. Towsley, K.R. Pattipati, Z. Guo and Z. Peng,
Application-layer multipath data transfer via TCP: schemes and performance
tradeoffs. Performance Evaluation, 2007.

[32] F. Yang, P. Amer and N. Ekiz, A Scheduler for MPTCP. 22nd International
Conference on Computer Communications and Networks, Nassau, Bahamas, July
2013.

[33] F. Yang, Q. Wang and P. Amer, Out-of-order Transmission for In-order Arrival
Scheduling for MPTCP. 4th International Workshop on Protocols and Applica-
tions with Multi-Homing Support, Victoria, Canada, May, 2014.

[34] F. Yang and P. Amer, Using One-way Communication Delay for In-order Arrival
MPTCP Scheduling. 9th EAI ChinaCom 2014, Maoming, China, August, 2014.

[35] MultiPath TCP - Linux Kernel Implementation. http://mptcp.info.ucl.ac.

be/.

[36] S. Nguyen, X. Zhang, T. Nguyen and G. Pujolle, Evaluation of Throughput Opti-
mization and Load Sharing of Multipath TCP in Heterogeneous Networks. WOCN
2011, New Orleans, Louisiana, 2011.

[37] A.S. Carmelita Görg, A. Timm-Giel, and M. Thomas-Ralf Banniza, Performance
Evaluation of Multipath TCP Linux Implementations. Wrzburg Workshop on
IP: Joint ITG and Euro-NF Workshop Visions of Future Generation Networks.
2011.

[38] H. Adhari, T. Dreibholz, M. Becke, E.P. Rathgeb and M. Tüxen, Evaluation of
Concurrent Multipath Transfer over Dissimilar Paths. 1st International Workshop
on Protocols and Applications with Multi-Homing Support, Singapore, 2011.

97

http://mptcp.info.ucl.ac.be/
http://mptcp.info.ucl.ac.be/

[39] H. Hsieh and R. Sivakumar, pTCP: An End-to-end Transport Layer Protocol for
Striped Connections. IEEE International Conference on Network Protocols, Paris,
France, November 2002.

[40] K. Rojviboonchai, T. Osuga, and H. Aida, R-M/TCP: Protocol for Reliable Mul-
tipath Transport Over the Internet. AINA 2005, Taiwan, 2005.

[41] M. Zhang, J. Lai, and A. Krishnamurthy, A Transport Layer Approach for Im-
proving End-to-end Performance and Robustness Using Redundant Paths. 2004
USENIX Annual Technical Conference, Boston, MA, USA.

[42] L. Xu, K. Harfoush, and I. Rhee, Binary Increase Congestion Control for Fast,
Long Distance Networks. 23th AnnualJoint Conference of the IEEE Computer
and Communications Societies, Hong Kong, China, March, 2004.

[43] L.S. Brakmo, and L.L. Peterson, TCP Vegas: End to End Congestion Avoidance
on a Global Internet. IEEE Journal on Selected Areas in Communications,
October 1995.

[44] C. Jin, D.X. Wei, S.H. Low, FAST TCP: Motivation, Architecture, Algorithms,
Performance. 23rd AnnualJoint Conference of the IEEE Computer and Com-
munications Societies, Hong Kong, China, March, 2004.

[45] R. Jain, A Delay-based approach for Congestion Avoidance in Interconnected het-
erogeneous computer networks. Comput. Commun. Rev. October, 1989.

[46] J. Martin, A. Nilsson, and I. Rhee. Delay-Based Congestion Avoidance for TCP.
IEEE/ACM Transactions on Networking, June 2003.

[47] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, J.Y. Le Boudec, Non Pareto-
Optimality of MPTCP: Performance Issues and a Possible Solution, ACM
CoNEXT, 11/2012.

[48] J. Iyengar, P. Amer and R. Stewart, Receive Buffer Blocking in Concurrent Mul-
tipath Transfer. IEEE Global Telecommunications Conference, 2005.

[49] M. Li, A. Lukyanenko and Y. Cui, Network Coding Based Multipath TCP, IEEE
Conference on omputer Communications Workshops, 2012.

[50] NorNet Project. http://www.nornet-testbed.no/.

[51] Linux Advanced Routing and Traffic Control. http://www.lartc.org/.

[52] Q. Pan, X. Luo, H. Xiao, An Approach to Improve the Accuracy of One-Way Delay
Measurements, Communications in Computer and Information Science, 2011

[53] A. Hernandez, E. Magana, One-way Delay Measurement and Characterization,
ICNS 2007, Pamplona, Spain, 08/2007

98

http://www.nornet-testbed.no/
http://www.lartc.org/

[54] J. Hee, C. Yoo, One-way Delay Estimation and its Application, Computer Com-
munications, 2005

[55] M. Belshe, R. Peon, SPDY Protocol, http://mbelshe.github.com/

SPDY-Specification/draft-mbelshe-spdy-00.xml

[56] Zlib: A Massively Spiffy Yet Delicately Unobtrusive Compression Library, http:
//www.zlib.net/

[57] The 1000 Most-Visited Sites on the Web by Google, http://www.google.com/
adplanner/static/top1000/

[58] Training Data: HTTP Request Headers, http://www.cis.udel.edu/~amer/PEL/
SPDY/HTTP_requests_training

[59] Training Data: HTTP Reply Headers, http://www.cis.udel.edu/~amer/PEL/
SPDY/HTTP_replies_training

[60] Evaluation Data: HTTP Request Headers, http://www.cis.udel.edu/~amer/

PEL/SPDY/HTTP_requests_evaluation

[61] Evaluation Data: HTTP Reply Headers, http://www.cis.udel.edu/~amer/

PEL/SPDY/HTTP_replies_evaluation

99

http://mbelshe.github.com/SPDY-Specification/draft-mbelshe-spdy-00.xml
http://mbelshe.github.com/SPDY-Specification/draft-mbelshe-spdy-00.xml
http://www.zlib.net/
http://www.zlib.net/
http://www.google.com/adplanner/static/top1000/
http://www.google.com/adplanner/static/top1000/
http://www.cis.udel.edu/~amer/PEL/SPDY/HTTP_requests_training
http://www.cis.udel.edu/~amer/PEL/SPDY/HTTP_requests_training
http://www.cis.udel.edu/~amer/PEL/SPDY/HTTP_replies_training
http://www.cis.udel.edu/~amer/PEL/SPDY/HTTP_replies_training
http://www.cis.udel.edu/~amer/PEL/SPDY/HTTP_requests_evaluation
http://www.cis.udel.edu/~amer/PEL/SPDY/HTTP_requests_evaluation
http://www.cis.udel.edu/~amer/PEL/SPDY/HTTP_replies_evaluation
http://www.cis.udel.edu/~amer/PEL/SPDY/HTTP_replies_evaluation

Appendix A

PACKET FORMATS OF NON-RENEGABLE SELECTIVE
ACKNOWLEDGMENTS (NR-SACKS) FOR MPTCP

A.1 Modified Multipath Capable (MP CAPABLE) Option

Before sending/receiving NR-SACKs, two end hosts must negotiate NR-SACK

usage during the connection initiation phase. A proposed modified MP CAPABLE

option is shown in Figure A.1. Two bits — ’N ’ and ’n’ — are used. During the three-

way handshake, N bits of the two SYNs (SYN and SYN/ACK) indicates ”NR-SACK

capability of the SYN’s sender”. The decision of using NR-SACKs in data transfer is

confirmed by the setting of N bit in the third packet (the ACK). N bit in the ACK

packet = NSY NANDNSY N/ACK , which means NR-SACK is used only if both endpoints

are NR-SACK capable.

In a packet, the n bit has meaning only if N = 1, otherwise the n bit MUST be

ignored. n = 1 indicates the size of one NR-SACK block is 6 bytes, and n = 0 means

the size of one NR-SACK block is 8 bytes. The reason for using variant NR-SACK

block size is explained in section 3.2. The decision of the size of one NR-SACK block

in data transfer is confirmed by the setting of n bit in the ACK packet. n bit in the

ACK = nSY NANDnSY N/ACK , which means the size of one NR-SACK block is 6 bytes

only if both endpoints set n = 1 in their SYNs, else the size is 8 bytes.

A.2 Modified Data Sequence Signal (DSS) Option including NR-SACK

Before talking about the proposed DSS option, consider how many NR-SACK

blocks can be present in the TCP option field. During unidirectional MPTCP data

transfers, the NR-SACKs are carried by pure acks (acks without application data). The

maximum size of the TCP option field is 40 bytes. A timestamp option occupies 12

100

Figure A.1: Modified MP CAPABLE Option

bytes (with padding) leaving 28 bytes. Assuming no SACK information, a DATA ACK

needs 8 or 12 bytes (depending on flag ’a’), thus only up to 20 bytes can be used for

NR-SACKs. To decrease the number of bytes needed to represent one NR-SACK block,

the left and right edge values of a reported NR-SACK block can be defined relative to

the DATA ACK value. For example, if the MPTCP receiver receives out-of-order data

with DSNs from DSNstart to DSNend, the left and right edge values of the reported NR-

SACK block are DSNstart−DATAACK and DSNend +1−DATAACK, respectively.

With 6-byte NR-SACK block, up to 3 blocks can be present and out-of-order bytes

within 224 (16MB) from the DATA ACK can be reported. When an MPTCP receive

buffer size is <= 16MB, 6 bytes is sufficient. However, when an MPTCP receive buffer

size is >= 16MB, 6 bytes may not be enough. In this situation, the size of one NR-

SACK block can be negotiated to be 8 bytes during connection establishment. Only 2

NR-SACK blocks will fit if the size of one NR-SACK block is 8 bytes.

The proposed modified DSS options with NR-SACKs are shown in Figure A.2

(each NR-SACK is 6 bytes) and A.3 (each NR-SACK is 8 bytes). A 2-bit unsigned

integer — ’C’ — is used to indicate the number of presented NR-SACK blocks. When

the size of one NR-SACK block is 6 bytes and 1 or 3 NR-SACK blocks are present,

two bytes paddings are used for alignment. The NR-SACKs can be present only when

DATA ACK is present, and NR-SACKs yield the TCP option space to all TCP and

101

Figure A.2: Modified DSS Option (each NR-SACK is 6 bytes)

other MPTCP options. As specified for SACKs in TCP, NR-SACKs always report

the block containing the most recently received data, because this approach provides

a MPTCP sender with the most up-to-date information about the state of a MPTCP

receive buffer.

102

Figure A.3: Modified DSS Option (each NR-SACK is 8 bytes)

103

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Dissertation Scope
	1.1.1 Reneging and NR-SACKs
	1.1.2 Multipath TCP

	1.2 MPTCP Primer
	1.2.1 MPTCP in the Networking Stack
	1.2.2 MPTCP Connection Establishment
	1.2.3 Data Transfer Using MPTCP
	1.2.4 MPTCP Connection Termination

	2 Non-Renegable Selective Acknowledgments (NR-SACKs) for TCP
	2.1 Reneging
	2.2 Potential Performance Gains by Prohibiting Reneging in TCP
	2.3 Discussion
	2.4 Implementation
	2.4.1 Critical Data Structure I: sk_buff Structure
	2.4.1.1 Memory Allocation for an skb
	2.4.1.2 Control Buffer Field

	2.4.2 Critical Data Structure II: tcp_sock Structure
	2.4.3 Processing of Incoming NR-SACKs
	2.4.4 Complexity Analysis of Implementation

	2.5 Experimental Design I
	2.5.1 Experimental Parameters
	2.5.2 Results
	2.5.3 Impact of Loss Rate
	2.5.4 Impact of Delay

	2.6 Future Work: Experiment Design II

	3 Non-Renegable Selective Acknowledgments (NR-SACKs) for MPTCP
	3.1 GapAck-Induced Send Buffer Blocking in MPTCP Unordered Data Transfer
	3.2 MPTCP Unordered Data Transfer with NR-SACKs
	3.3 Implementation
	3.3.1 Supporting NR-SACKs at the MPTCP Receiver
	3.3.2 Supporting NR-SACKs at the MPTCP Sender

	3.4 Experimental Setup
	3.4.1 Test-bed Topology
	3.4.2 Experimental Parameters

	3.5 Results
	3.5.1 Retransmission queue evolution
	3.5.2 Impact of Loss Rate
	3.5.3 Impact of Delay

	3.6 Conclusion

	4 How to Derive a Good Scheduler for MPTCP
	4.1 Problems
	4.2 Analysis
	4.2.1 Techniques

	4.3 A Scheduling Policy Based on Estimated Subflow Path Capacities
	4.4 Implementation
	4.5 Evaluation Preliminaries
	4.6 Performance Evaluation
	4.6.1 Results without Cross Traffic
	4.6.2 Results with Cross Traffic

	4.7 Discussions
	4.8 Conclusion

	5 Using One-way Communication Delay for In-order Arrival MPTCP Scheduling
	5.1 Motivations
	5.2 Schedule MPTCP-PDUs to All Established Subflows
	5.3 One-way Communication Delay
	5.4 Time Spent in the Send Buffer
	5.5 Two Designs of In-order Arrival Scheduling
	5.6 Implementation
	5.7 Results of In-order Arrival Scheduling
	5.7.1 Test-bed Topology
	5.7.2 Receive Buffer Usage
	5.7.3 Throughput with Reduced Receive Buffer

	5.8 Limitations
	5.8.1 Subflows with Different MSS
	5.8.2 Only Accounting for Losses in CommD

	6 Prior Collaborative Research
	6.1 Methodology to derive SPDY's Initial Dictionary
	6.2 Wireshark Extensions

	7 Summary and Conclusions
	7.1 Issue I: Reneging and NR-SACKs
	7.2 Issue II: MPTCP Scheduling

	Bibliography
	A Packet Formats of Non-Renegable Selective Acknowledgments (NR-SACKs) for MPTCP
	A.1 Modified Multipath Capable (MP_CAPABLE) Option
	A.2 Modified Data Sequence Signal (DSS) Option including NR-SACK

