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ABSTRACT 

Reneging occurs when a transport layer data receiver first 

selectively acks data, and later discards that data from its receiver 

buffer prior to delivery to the receiving application or socket 

buffer. Reliable transport protocols such as TCP (Transmission 

Control Protocol) and SCTP (Stream Control Transmission 

Protocol) are designed to tolerate reneging. We argue that this 

design should be changed because: (1) reneging is a rare event in 

practice, and the memory saved when reneging does occur is 

insignificant, and (2) by not tolerating reneging, transport 

protocols have the potential for improved performance as has 

been shown in the case of SCTP. To support our argument, we 

analyzed TCP traces from three different domains (Internet 

backbone, wireless, enterprise). We detected reneging in only 

0.05% of the analyzed TCP flows. In each reneging case, the 

operating system was fingerprinted thus allowing the reneging 

behavior of Linux, FreeBSD and Windows to be more precisely 

characterized. The average main memory returned each time to 

the reneging operating system was on the order of two TCP 

segments. Reneging saves so little memory that it is not worth the 

trouble. Since reneging happens rarely and when it does happen, 

reneging returns insignificant memory, we recommend designing 

reliable transport protocols to not permit reneging. 

Categories and Subject Descriptors 

C.2.5 [Local and Wide-Area Networks]: Internet – TCP; C.4 

[Performance of Systems]: Measurement techniques 

General Terms 

Measurement 

Keywords 

OS fingerprinting, Reneging, SACK, Selective Acknowledgment, 

SCTP, TCP 

1. INTRODUCTION 
Transmission Control Protocol (TCP) [19] and the Stream 

Control Transmission Protocol (SCTP) [23] use sequence 

numbers and cumulative acks (ACKs) to achieve reliable data 

transfer. A data receiver uses sequence numbers to sort arrived 

data segments. Data arriving in expected order, i.e., ordered data, 

are cumulatively ACKed to the data sender. With receipt of an 

ACK, the data sender assumes the data receiver accepts 

responsibility for delivering ACKed data to the receiving 

application, and the data sender deletes all ACKed data from its 

send buffer, potentially before that data are delivered. 

The Selective Acknowledgment Option, RFC2018 [16], extends 

TCP’s (and SCTP’s) cumulative ACK mechanism by allowing a 

data receiver to ack arrived out-of-order data using selective acks 

(SACKs). The intent is that SACKed data need not be 

retransmitted during loss recovery. SACKs improve throughput 

when multiple losses occur within the same window [1, 4, 9]. 

Transport layer data reneging (simply, reneging) occurs when a 

data receiver first SACKs data, and later discards that data from 

its receiver buffer prior to delivery to the receiving application or 

socket buffer. TCP is designed to tolerate reneging. RFC2018 

states: “The SACK option is advisory” and “the data receiver is 

permitted to later discard data which have been reported in a 

SACK option”. Reneging might happen, for example, when an 

operating system needs to recapture previously allocated memory, 

say to avoid deadlock, or to protect the operating system against 

denial-of-service attacks (DoS). As will be discussed in detail in 

this paper, reneging is implemented in FreeBSD, Linux, Mac OS, 

and Windows.  

Because TCP tolerates reneging, a TCP data sender must retain 

copies of all transmitted data in its send buffer, even SACKed 

data, until they are ACKed. Then, if reneging does occur, 

eventually the sender will (1) timeout on the reneged data, (2) 

delete all SACK information, and (3) retransmit the retained 

copies of the reneged data. The data transfer thus remains reliable. 

Unfortunately, if reneging does not happen, SACKed data is 

wastefully stored in the send buffer until ACKed. 

A similar design to tolerate reneging is adopted by SCTP. The 

main difference is that an SCTP data sender is designed to 

identify a data receiver that reneges, whereas a TCP data sender is 

not. When previously SACKed data are not repeatedly SACKed 

in the successive ack, an SCTP data sender infers reneging and 

marks reneged data for retransmission [23]. 

We argue that the transport protocol design to allow reneging 

should be changed because: (1) reneging is a rare event in 

practice, and the memory saved when reneging does occur is 

insignificant, and (2) by not allowing reneging, reliable transport 

 



protocols have the potential for improved performance as has 

been shown in the case of SCTP [18, 26]. 

This paper presents a thorough investigation into reneging to 

support (1). For that purpose, we herein extend an earlier model 

[6] to detect reneging instances in TCP traces. Then we use the 

extended model to analyze over 200,000 TCP connections from 

three different domains to report the frequency of reneging. For 

those connections that do renege, we fingerprint the OS to better 

understand how today's major OS deal with reneging. The amount 

of potential gain (i.e., item (2)) by designing TCP to not tolerate 

reneging is currently under study [2], and beyond the scope of this 

paper. 

In Section 2, we further the motivation to detect reneging 

instances and present the only past study to investigate reneging 

in TCP. Then Section 3 presents our model to detect reneging 

instances in TCP trace files. Section 4 presents the TCP trace 

analysis and results. Finally, Section 5 presents our 

recommendation to change the design of reliable transport 

protocols.  

2. BACKGROUND AND MOTIVATION 
If a transport protocol were designed not to tolerate reneging (i.e., 

to be non-reneging), a data sender would no longer need to retain 

copies of SACKed data in its send buffer until ACKed. In that 

case, the main memory allocated for the send buffer could be 

utilized for other data or connections. 

Natarajan et al. [18] present send buffer utilization results for data 

transfers using non-reneging vs. reneging SCTP under mild (~1-

2%), medium (~3-4%) and heavy (~8-9%) loss rates . For the 

bandwidth-delay parameters studied, the memory wasted by 

assuming SACKed data could be reneged was on average ~10%, 

~20% and ~30% for the given loss rates, respectively. 

A non-reneging transport protocol also can improve end-to-end 

application throughput. To send new data, in TCP and SCTP, a 

data sender is constrained by three factors: a congestion window 

(congestion control), an advertised receive window (flow control) 

and a send buffer. When the send buffer is full, no new data can 

be transmitted even when congestion and flow control 

mechanisms allow. When SACKed data are removed from the 

send buffer in a non-reneging protocol, new application data can 

be read and potentially transmitted earlier increasing throughput.  

Yilmaz et al. [26] investigate throughput improvements for non-

reneging vs. reneging SCTP. The authors show that the 

throughput achieved with non-reneging SCTP is always ≥ the 

throughput observed with reneging SCTP. For example, the 

throughput for data transfer over SCTP is improved by ~14% for 

a data sender with 32KB send buffer under low (~0-1%) loss rate 

with non-reneging SCTP. 

In summary, it has been shown if SCTP were designed to not 

tolerate reneging, send buffer utilization would be always optimal, 

and application throughput could be improved for data transfers 

with constrained send buffers (send buffer < receive buffer). We 

believe these SCTP results can apply to TCP as well with a 

modified handling of TCP’s send buffer. This study is presently 

ongoing and not a part of this paper [2]. 

The key issue for this paper is – in practice, does reneging occur 

or not? No one knows what percentage of connections renege. To 

the authors’ best knowledge, the only prior study of reneging is an 

MS thesis not published elsewhere [3]. The author presents a 

reneging detection algorithm for a TCP data sender, and analyzes 

TCP traces using the detection algorithm to report frequency of 

reneging. The author hypothesized that discarding the SACK 

scoreboard at a timeout may have a detrimental impact on a 

connection’s ability to recover loss without unnecessary 

retransmissions. To decrease unnecessary retransmissions, an 

algorithm to detect reneging at a TCP sender is proposed which 

clears the SACK scoreboard immediately upon detecting reneging 

instead of waiting until a timeout. The reneging detection 

algorithm compares existing SACK blocks (scoreboard) with 

incoming ACKs. When an ACK is advanced to the middle of a 

SACK block, reneging is detected. The author indicates reneging 

can be detected earlier when the TCP receiver skips previously 

SACKed data. In such a case, SACKs are used for reneging 

detection as in our model detailed in Section 3.  

Using traces, the author analyzed TCP connections with SACKs 

to report frequency of reneging. Out of 1,306,646 connections 

analyzed, the author identified 227 connections (0.017%) as 

reneged. These results suggest that reneging is a rare event.  

Our objective is to report the frequency of reneging in today’s 

Internet. If we observe reneging occurs rarely or never, we will 

have evidence to change the basic assumptions of transport layer 

protocols. By designing non-reneging transport protocols, we 

hypothesize that few (if any) connections will be penalized, and 

the large majority of non-reneging connections will potentially 

benefit from better send buffer utilization and throughput.  

3. A MODEL TO DETECT RENEGING 
To empirically investigate the frequency of reneging, we present 

our extended model and its implementation, RenegDetectv2, to 

passively detect reneging instances occurring in TCP traces.  

While TCP does not support detecting reneging at a data sender, 

SCTP does. In SCTP, when previously SACKed data are not 

repeatedly SACKed in successive acks as is specified, an SCTP 

data sender infers reneging. Our initial model to detect TCP 

reneging extends SCTP’s reneging detection mechanism [6].  

A state of the data receiver’s receive buffer is constructed at an 

intermediate router and updated as new acks are observed. The 

state consists of a cumulative ACK value (stateACK) and a list of 

out-of-order data blocks (stateSACK blocks) known to be in the 

data receiver’s buffer. When an inconsistency occurs between the 

state of the receive buffer and a new ack, reneging is detected. 

Our initial model was introduced in [6], and is now described so 

as to understand how and why we needed to extend it. 

Figure 1 illustrates an example reneging scenario, and how our 



 

 

 

 

 

 

 

 

 

Figure 1. Detecting reneging at an intermediate router [6] 

initial model located at an intermediate router detects reneging. 

Three acks are monitored within a data transfer. For simplicity, 

data packets are not shown. Without loss of generality, the 

example assumes 1 byte of data is transmitted in each data packet. 

For each SACK X-Y, X and Y represent the left edge and right 

edge of the SACK, respectively. 

On seeing ACK 1 SACK 3-4, our model deduces the state of 

receive buffer to be: ordered data 1 is delivered or deliverable to 

the receiving application (stateACK 1), and out-of-order data 3-4 

are in the receive buffer (stateSACK 3-4). ACK 1 SACK 3-6 

updates this state by adding out-of-order data 5-6 as SACKed 

(stateSACK 3-6). When ACK 2 SACK 7-7 is received and 

compared to the state of receive buffer (stateACK 1, stateSACK 

3-6), an inconsistency is observed and reneging is detected since 

data 3-6 are not SACKed again as they should be had reneging 

not occurred. 

In [6], we implemented the initial model as a tool called 

RenegDetect and tested it with artificial TCP flows mimicking 

reneging and non-reneging flows. RenegDetect was also verified 

by analyzing 100s of TCP flows from Internet traces. Initial 

analysis surprisingly showed that reneging was happening 

frequently. On closer inspection, however, it turned out that 

reneging was not happening; rather the generation of SACKs in 

monitored TCP implementations was incorrect according to 

RFC2018, wrongly giving the impression that reneging was 

occurring. Some TCP implementations were generating 

incomplete SACKs. Sometimes SACK information that should 

have been sent was not. Sometimes wrong SACK information was 

sent. We refer to these implementations as misbehaving.  

Our discovery led us to a side investigation to precisely identify 

five misbehaving TCP stacks. We tested 29 operating systems and 

found at least one misbehaving TCP stack for each of the five 

misbehaviors observed [7].  

Discovering the TCP SACK generation misbehaviors required us 

to extend our model in [6] to a second version, RenegDetectv2. In 

addition to analyzing monitored acks, RenegDetectv2 analyzes the 

bidirectional flow of data, in particular, retransmissions of data, 

which more definitively indicate reneging has occurred. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Detecting reneging by analyzing retransmissions 

In misbehaviors, out-of-order data are not reneged; rather SACK 

information is missing or incomplete. Eventually, when the data 

between the ACK and the out-of-order data are received, the ACK 

is increased beyond the out-of-order data that seemed to have 

been reneged. RenegDetectv2 concludes a misbehavior is 

observed (no reneging) if no retransmissions are monitored for the 

out-of-order data that seemed to have been reneged, and ACK is 

increased beyond the supposedly reneged data. 

With reneging, when the data between the ACK and reneged out-

of-order data are received, the ACK would increase to the left 

edge of the reneged data. Eventually, the data sender will timeout 

and retransmit the reneged data. Then, the ACK would increase 

steadily after each retransmission. RenegDetectv2 keeps track of 

retransmissions for the out-of-order data that seems to have been 

reneged (MISSING). 

Figure 2 illustrates how RenegDetectv2 works. The example is 

similar to that shown in Figure 1 with the inclusion of data 

packets. Before packet 7 is received, the data receiver reneges and 

deletes out-of-order data 3-6. When packet 7 is received, ACK 1 

SACK 7-7 is sent back to the data sender. When this ack is 

compared to the state (stateACK 1 stateSACK 3-6), an 

inconsistency is detected. Previously SACKed data 3-6 are not 

SACKed either due to reneging or a misbehaving TCP stack. 

RenegDetectv2 marks data 3-6 as MISSING. The ack, ACK 2, for 

packet 2’s fast retransmission gives the impression that reneging 

happened since ACK is not increased to 7. If ACK had been 

increased to 7 on the receipt of packet 2, a SACK generation 

misbehavior (no retransmissions) would be concluded. After a 

retransmission timeout (RTO), the data sender retransmits packets 

3-6. Since ACK increases steadily after each retransmission, a 

case of possible reneging is identified. 

RenegDetectv2 reports possible reneging instances. We then 

analyze each possible reneging instance by hand with Wireshark 

[24] to conclude if reneging really happened. Wireshark can graph 

a TCP flow displaying both data and ack segments. Initially, 

Wireshark did not have the support to view SACK blocks. To 



facilitate flow analysis, we extended Wireshark to display SACK 

blocks in a flow graph [25].  

4. EMPIRICAL TRACE ANALYSIS 
We now report the frequency of reneging in TCP traces from three 

domains: Internet backbone (CAIDA traces), a wireless network 

(SIGCOMM 2008 traces), and an enterprise network (LBNL 

traces). In total RenegDetectv2 analyzed 202,877 TCP flows that 

use SACKs. In the flows, we confirmed 104 reneging instances 

(~0.05%). With 95% confidence, the margin of error is 0.009% 

assuming that the analyzed TCP flows are independent and 

identically distributed (i.i.d.). That is, we estimate with 95% 

confidence that the true average rate of reneging is in the interval 

[0.041%, 0.059%], roughly 1 flow in 2,000.  

While our selection of TCP flows was random, it must be said that 

some characteristics suggest that the TCP flows are not i.i.d. in 

which case the confidence interval would be larger. For instance, 

on a FreeBSD host when one flow is reneged, all other active 

flows are reneged (a.k.a. global reneging – discussed in Section 

4.3). This simultaneous reneging implies potential dependence. 

Similarly, TCP flows from different operating systems may not be 

identically distributed. A TCP flow from an OpenBSD host 

cannot be reneged (thus its probability of reneging is 0) while a 

FreeBSD flow can be reneged. 

For each reneging flow, we fingerprint the operating system of the 

reneging data receiver, and generalize reneging behavior per 

operating system. 

Trace files provided by the three domains contain thousands of 

TCP flows per trace. In our analysis, trace files were filtered to 

have a single trace file for each bidirectional TCP flow that uses 

SACKs. This approach served two purposes: (1) to provide 

reneging traces to the research community, and (2) to be able to 

view a flow graph per TCP flow in Wireshark for hand analysis. 

Further details of processing TCP traces can be found in [8]. 

4.1 Description of Traces 
The trace files from Cooperative Association for Internet Data 

Analysis (CAIDA) [5] are representative of wide area Internet 

traffic, and were collected via data collection monitors set in 

Equinix data centers in Chicago and San Jose, CA.  

CAIDA provides 60 minute long traces for each Equinix monitor 

(Chicago, San Jose) per month since 2008. In our lab, we did not 

have enough processing capacity to filter all CAIDA traces. 

Instead, we processed randomly chosen 2 minute traces for each 

month whenever trace data was available for both directions. 

When we detected reneging instances, we also processed 10 

minute traces (covering the 2 minute trace) for the reneged data 

receivers to analyze reneging behavior for longer durations in 

more detail. 

SIGCOMM traces were collected at the SIGCOMM 2008 

conference, and monitored the wireless network activity during 

the conference [22].  

Lawrence Berkeley National Laboratory (LBNL) traces 

characterize internal enterprise traffic recorded at a medium-sized 

site for five days from October, 2004 to January, 2005 [14]. 

4.2 Results 
Table 1 presents the frequency of reneging in the TCP traces for 

the three domains. 

Table 1. Frequency of reneging 

Trace Flows using SACKs 
Total Reneged  

Flows 

CAIDA 161440 104 

SIGCOMM 15683 0 

LBNL 25754 0 

TOTAL 202877 104 

 

In CAIDA traces, 104 flows reneged out of 161,440 TCP flows 

analyzed. These TCP traces can be downloaded [20]. In 

SIGCOMM and LBNL traces, no reneging flows were detected. 

In [3], the author also analyzed LBNL traces and reported no 

instances of reneging as we did. 

We analyzed each reneging flow in detail and categorized 

reneging instances based on the OS of the data receiver. We detail 

reneging instances and behavior for Linux, FreeBSD, and 

Windows in Sections 4.3, 4.4, and 4.5, respectively. 

4.3 Linux Reneging Instances 
Table 2 details the TCP fingerprints (characteristics) of the five 

reneging data receivers. The columns show an arbitrary host id, 

maximum segment size (MSS), window scale value, initial 

receiver window (rwnd), maximum rwnd value observed during 

the connection, if timestamps (TS) were used (RFC1323 [13]), 

and if DSACKs were used (RFC2883 [11]), respectively. We 

believe these data receivers were running Linux since they all 

exhibited the following behaviors. First, Linux implements 

dynamic right-sizing (DRS) where the rwnd dynamically changes 

based on the receiver’s estimate of the sender’s congestion 

window [10]. With DRS, the initial advertised rwnd of a Linux 

TCP is 5840 bytes and changes dynamically over the course of the 

connection. Second, Linux TCP supports DSACKs by default 

(sysctl net.ipv4.tcp_dsack = 1) and DSACKs were observed for all 

data receivers. 

Table 2. Host characteristics of Linux data receivers 

Host 

id 

MSS 

(SYN) 

Win 

Scale 

Rwnd 

(SYN) 

Rwnd 

(Max) 
TS DSACK 

1 1460 n/a 5840 auto no yes 

2 1460 n/a 5840 auto no yes 

3 1460 n/a 5840 auto no yes 

4 1460 n/a 5840 auto no yes 

5 1460 n/a 5840 auto no yes 

 



Table 3 reports the reneging instances detected at the Linux data 

receivers. A total of 114 reneging instances were observed 

occurring in 40 flows from five different Linux data receivers. 

The observation suggests that when a data receiver reneges, it 

tends to renege more than once within a flow, on average 2.85 

times per flow. 

Table 3. Linux reneging instances 

Host 

id 

Reneged  

Flows 

Reneging 

Instances 

Avg. Reneged 

Bytes 

1 4 9 2758 

2 2 3 8273 

3 28 74 1973 

4 4 25 4088 

5 2 3 3893 

TOTAL 40 114 2715 

 

Definition: We define “local reneging” for operating systems that 

cause reneging for each TCP connection independently. With 

local reneging, reneging and non-reneging flows coexist 

simultaneously. We define “global reneging” for operating 

systems that cause reneging for all TCP connections 

simultaneously. 

Linux employs local reneging. To confirm that behavior, we 

analyzed reneging times for each data receiver, and verified that 

reneging instances from simultaneous flows occurred at different 

times. As a result, reneging and non-reneging connections exist in 

Linux simultaneously. 

In [21], the authors state that reneging in Linux is expected to 

happen when (a) an application is unable to read data queued up 

at the receive buffer, and (b) a large number of out-of-order 

segments are received. We confirm (a), but our analysis showed 

that the average amount of bytes reneged per reneging instance 

was 2715 bytes (~2 MSS PDUs.) This average is not large 

compared to Linux’s 87380 byte default receive buffer size (sysctl 

net.ipv4.tcp_rmem = 4096 (min) 87380 (default) 2605056(max)). 

On average, only ~3% of the receive buffer was allocated to the 

reneged out-of-order data. This behavior suggests that Linux 

reneges irrespective of out-of-order data size contrary to [21]’s 

claim.  

4.4 FreeBSD Reneging Instances 
For the two reneging data receivers listed in Table 4, both had an 

initial rwnd of 65535 and used timestamps (RFC1323) by default. 

Table 5 lists the initial rwnd reported in SYN segments of various 

operating systems observed during our RFC2018 conformant 

SACK generation testing [7]. As the reneging data receivers did, 

FreeBSD, Mac OS X and Windows 2000 all initially advertised 

an rwnd of 65535 bytes. The reneging data receivers could not be 

running Windows 2000 because sometimes 3 or 4 SACK blocks 

were reported in TCP PDUs of the reneging flows, and Windows 

2000 reports at most 2 SACK blocks (Misbehavior A2) [7]. 

FreeBSD and Mac OS differ in the way they implement the 

window scale option (RFC1323). Mac OS advertises a scaled 

rwnd in the SYN segment. For example, if window scale option=1 

for the connection, the rwnd reported in the SYN segment would 

be 32768 for a 65535 size rwnd. FreeBSD, on the other hand, 

initially advertises an rwnd of 65535 irrespective of window scale 

option. If the window scale option is used, say window scale=1, 

consecutive TCP segments would have rwnd value of 32768. 

During the analysis, the reneging data receivers initially 

advertised an rwnd of 65535 in the SYN packet and advertised 

rwnds ~32K in the rest of the PDUs. Therefore, we believe these 

reneging data receivers were running FreeBSD. 

Table 4. Host characteristics of FreeBSD data receivers 

Host 

id 

MSS 

(SYN) 

Win 

Scale 

Rwnd 

(SYN) 

Rwnd 

(Max) 
TS DSACK 

1 1460 1 65535 65535 yes no 

2 1460 1 65535 65535 yes no 

 

Table 5. Initial advertised rwnd of various OSes 

Operating System Initial Advertised Rwnd (bytes) 

FreeBSD 5.3-8.0 65535 

Linux 2.4.18-2.6.31 5840 

Mac OS X 10.6.0 65535 

OpenBSD 4.2-4.7 16384 

OpenSolaris 2008-2009 49640 

Solaris 10 49640 

Windows 2000 65535 

Windows XP, Vista, 7 64240 

 

Table 6 reports reneging instances detected at the FreeBSD data 

receivers. A total of 11 reneging instances were observed in 11 

flows from two different hosts, that is, each flow reneged exactly 

one time. The average bytes reneged per reneging instance was 

3717 bytes (~2.5 MSS PDUs.) This amount of reneged out-of-

order data is insignificant (only ~5.6%) compared to FreeBSD’s 

65535 byte default receive buffer size (sysctl 

net.inet.tcp.recvspace: 65536). This behavior suggests that 

FreeBSD reneges irrespective of out-of-order data size. 

Table 6. FreeBSD reneging instances 

Host 

id 

Reneged  

Flows 
Reneging Instances 

Avg. Reneged 

Bytes 

1 1 1 4380 

2 10 10 3650 

TOTAL 11 11 3716 

 

According to [12], FreeBSD employs global reneging. To confirm 

this behavior, we analyzed reneging times for the data receiver 



identified with host id 2. The reneging instances were clustered 

around two times: 09:19:02.0xx and 09:19:31.5yy. These 

clustered reneging times confirm that FreeBSD employs global 

reneging.  

4.5 Windows Reneging Instances 
We believe that reneging data receivers listed in Table 7 are 

Windows hosts. First, all of the reneging data receivers reported at 

most 2 SACK blocks, and the data receivers identified by host ids 

2 and 9 reported at most 2 SACKs when it was known that at least 

3 SACK blocks existed at the receiver (Misbehavior A2). 

Misbehavior A2 was observed only in Windows 2000, XP and 

Server 2003 [7]. The TCP/IP implementation for these operating 

systems is detailed in [15] and [17]. For the three Windows 

systems, the advertised rwnd is determined based on the media 

speed. [17] specifies that if the media speed is [1Mbps-100Mbps), 

rwnd is set to twelve MSS segments. If the media speed is 

[100Mbps-above), rwnd is set to 64KB. Only the data receivers 

specified with host ids 3 and 6 did not match this specification. 

But their maximum rwnd was set to 25*MSS and 45*MSS during 

the course of connection, respectively. Both [15] and [17] specify 

that Windows TCP adjusts rwnd to increments of the maximum 

segment size (MSS) negotiated during connection setup. This 

specification makes us believe those data receivers were running 

Windows. 

Table 8 reports 75 Windows reneging instances were observed in 

53 flows from 9 different hosts, an average of 1.41 reneging 

instances per reneging flow. The average bytes reneged per 

reneging instance was 1371 bytes (~ 1 MSS PDU). 

Table 7. Host characteristics of Windows data receivers 

Host 

Id 

MSS 

(SYN) 

Win 

Scale 

Rwnd 

(SYN) 

Rwnd 

(Max) 
TS DSACK 

1 1452 n/a 16384 17424 no no 

2 n/a n/a n/a 61320 no no 

3 1360 n/a 32767 34000 no no 

4 1460 n/a 65535 65535 no no 

5 1460 n/a 65535 65535 no no 

6 1452 n/a 64240 65340 no no 

7 n/a n/a n/a 65535 no no 

8 1460 n/a 65535 65535 no no 

9 1414 n/a 65535 65535 no no 

 

Since the Windows TCP/IP stack is not open-source, it is 

unknown if Windows employs local or global reneging. However, 

the Windows reneging instances from different flows all happened 

at different times suggesting that Windows employs local 

reneging. 

In general, only a single out-of-order segment was reneged in the 

Windows reneging instances caused by packet reordering in the 

network. This observation explains why the average reneged bytes 

(1371) are less than 1 MSS PDU. The consecutive out-of-order 

data packets received were not SACKed even though these data 

were known to be in the receive buffer. 

Table 8. Windows reneging instances 

Host 

id 

Reneged  

Flows 

Reneging 

Instances 

Avg. Reneged 

Bytes 

1 1 1 98 

2 1 3 2920 

3 6 20 754 

4 1 1 4096 

5 1 1 1460 

6 1 1 287 

7 1 2 1965 

8 1 2 3550 

9 40 44 1409 

TOTAL 53 75 1371 

5. CONCLUSIONS 
Trace analysis of TCP flows demonstrates that reneging rarely 

occurs in practice, its frequency being in the range of one flow per 

2000 (0.05%). And when reneging does occur, memory recovered 

is on the order of two TCP segments (2715, 3717, and 1371 bytes 

for Linux, FreeBSD, and Windows, respectively), and is unlikely 

to help resume normal operation. Therefore, we believe new 

transport protocols should not permit reneging, and any next 

generation version of existing reliable transport protocols (TCP, 

SCTP) should be designed not to permit reneging. Additionally, 

results have already been shown how performance for SCTP 

connections can improve (and will never degrade) if reneging is 

not permitted. 

For example, using our trace results, let us compare TCP’s current 

design to tolerate reneging with a TCP that does not support 

reneging. Currently, TCP tolerates reneging and maintains the 

reliable data transfer of 104 reneging flows. If reneging was not 

permitted, SACKed data would be unnecessarily stored in the 

TCP send buffer. The 202,773 non-reneging flows “waste” this 

memory. With a revised handling of TCP’s send buffer, this 

memory could be used to send new data, thus better utilizing 

memory and potentially improving throughput [2]. 

For a next generation TCP, we suggest that the semantics of TCP 

SACKs be changed from advisory to permanent thereby 

prohibiting a data receiver from reneging. In the rare event that a 

data receiver would need to take back memory that has been 

allocated to received out-of-order data, we propose that the data 

receiver must RESET the transport connection. With this change, 

104 reneging flows would be terminated (i.e., RESET). In these 

cases, termination is not a penalty. If the reneging was due to 

memory stress, given that little memory is recovered by reneging, 

RESETing the existing connections would help the stressed host 

better since more memory is reclaimed back by terminating 



connections compared to reneging. If the reneging was due to a 

DoS attack, then RESETing the connection is again a better 

response than reneging. 

On the other hand, 202,773 non-reneging flows benefit with better 

send buffer utilization, and could potentially achieve increased 

throughput. Note that increased TCP throughput is only possible 

for data transfers with constrained send buffers (assuming 

asymmetric buffer sizes (send buffer < receive buffer)), and needs 

modifications in TCP’s send buffer management [2]. Increasing 

the data sender’s send buffer size to the data receiver’s receive 

buffer size makes throughput no longer limited by the send buffer 

size. However, with this change, a host can support fewer TCP 

connections. For future study, we propose to investigate the 

tradeoff of a host supporting fewer connections as a result of 

increased send buffer size vs. supporting more connections by not 

allowing reneging. 

We believe current protocols (TCP, SCTP) need not tolerate 

reneging, but recognize that the hurdle of deploying any change to 

these existing protocols can only be justified by a significant 

performance gain. Our current efforts [2] are to quantify those 

gains. 

The primary contribution of this work is empirical evidence 

arguing that future transport protocols should be not designed to 

permit reneging. There is simply no gain by reneging, and with 

small send buffers, there can be a performance penalty. Simply 

RESETing connections that might need to be reneged is a better 

solution. If a next generation TCP, SCTP is proposed, removing 

the tolerance of reneging should be one of several incorporated 

improvements. 
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