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ABSTRACT 

Reneging occurs when a transport layer data receiver first 

selectively acks data, and later discards that data from its receiver 

buffer prior to delivery to the receiving application or socket 

buffer. Reliable transport protocols such as TCP and SCTP are 

designed to tolerate reneging. We argue that this design should be 

changed because: (1) reneging is a rare event in practice, and the 

memory saved when reneging does occur is insignificant, and (2) 

by not tolerating reneging, transport protocols have the potential 

for improved performance as has been shown in the case of SCTP. 

To support our argument, we analyzed TCP traces from three 

different domains (Internet backbone, wireless, enterprise). We 

detected reneging in only 0.05% of the analyzed TCP flows. In 

each reneging case, the operating system was fingerprinted thus 

allowing the reneging behavior of Linux, FreeBSD and Windows 

to be more precisely characterized. The average main memory 

returned each time to the reneging operating system was on the 

order of two TCP segments. Reneging saves so little memory that 

it is not worth the trouble. Since reneging happens rarely and 

when it does happen, reneging returns insignificant memory, we 

recommend designing reliable transport protocols to not tolerate 

reneging.   

Categories and Subject Descriptors 

C.2.5 [Local and Wide-Area Networks]: Internet – TCP; C.4 

[Performance of Systems]: Measurement techniques 

General Terms 

Measurement 

Keywords 

OS fingerprinting, Reneging, SACK, Selective Acknowledgment, 

SCTP, TCP 

1. INTRODUCTION 
Transmission Control Protocol (TCP) [19] and the Stream 

Control Transmission Protocol (SCTP) [23] use sequence 

numbers and cumulative acks (ACKs) to achieve reliable data 

transfer. A data receiver uses sequence numbers to sort arrived 

data segments. Data arriving in expected order, i.e., ordered data, 

are cumulatively ACKed to the data sender. With receipt of an 

ACK, the data sender assumes the data receiver accepts 

responsibility for delivering ACKed data to the receiving 

application, and the data sender deletes all ACKed data from its 

send buffer, potentially before that data are delivered. 

The Selective Acknowledgment Option, RFC2018 [16], extends 

TCP’s (and SCTP’s) cumulative ACK mechanism by allowing a 

data receiver to ack arrived out-of-order data using selective acks 

(SACKs). The intent is that SACKed data need not be 

retransmitted during loss recovery. SACKs improve reliable 

transport throughput when multiple losses occur within the same 

window [1, 4, 9]. 

Transport layer data reneging (or simply reneging) occurs when a 

data receiver first SACKs data, and later discards that data from 

its receiver buffer prior to delivery to the receiving application or 

socket buffer. TCP is designed to tolerate reneging.  RFC2018 

states: “The SACK option is advisory” and “the data receiver is 

permitted to later discard data which have been reported in a 

SACK option”. Reneging might happen, for example, when an 

operating system needs to recapture previously allocated memory, 

say to avoid deadlock, or to protect the operating system against 

denial-of-service attacks (DoS). Reneging is possible in FreeBSD, 

Linux, Mac OS, Solaris and Windows.  

Because TCP is designed to tolerate reneging, a TCP data sender 

must retain copies of all transmitted data in its send buffer, even 

SACKed data, until they are ACKed. Then, if reneging does 

occur, eventually the sender will (1) timeout on the reneged data, 

(2) delete all SACK information, and (3) retransmit the retained 

copies of the reneged data. The data transfer thus remains reliable. 

Unfortunately, if reneging does not happen, SACKed data is 

wastefully stored in the send buffer until ACKed. 

A similar design to tolerate reneging is adopted by SCTP.  The 

main difference is that an SCTP data sender is designed to 

identify a data receiver that reneges, whereas a TCP data sender is 

not. When previously SACKed data are not repeatedly SACKed 

in the successive ack, an SCTP data sender infers reneging and 

marks reneged data for retransmission [23]. 

We argue that this design should be changed because: (1) 

reneging is a rare event in practice, and the memory saved when 

reneging does occur is insignificant, and (2) by not tolerating 

reneging, reliable transport protocols have the potential for 

improved performance as has been shown in the case of SCTP 

[18, 26]. 

 



This paper’s goal is to present a thorough investigation into 

reneging to support (1). For that purpose, we develop a model to 

detect reneging instances in TCP traces and analyze traces from 

three different domains using our model to report the frequency of 

reneging.  The amount of potential gain by designing TCP to not 

tolerate reneging is currently under study [2], and beyond the 

scope of this paper. 

In Section 2, we further the motivation to detect reneging 

instances. Then Section 3 presents our model to detect reneging 

instances in TCP trace files. Section 4 presents the TCP trace 

analysis and results. Section 5 identifies the only past study to 

investigate reneging in TCP. Finally, Section 6 presents our 

recommendation to change the design of reliable transport 

protocols.  

2. MOTIVATION TO NOT TOLERATE 

RENEGING 
If a transport protocol were designed not to tolerate reneging (i.e., 

to be non-reneging), a data sender would no longer need to retain 

copies of SACKed data in its send buffer until ACKed. Just as 

with ACKed data on the receipt of an ACK, if reneging was not 

allowed, SACKed data could be removed from the send buffer 

immediately on the receipt of a SACK. In that case, the main 

memory allocated for the send buffer could be utilized for other 

data. 

Natarajan et al. [18] present send buffer utilization results for data 

transfers using non-reneging vs. reneging SCTP under mild (~1-

2%), medium (~3-4%) and heavy (~8-9%) loss rates . For the 

bandwidth-delay parameters studied, the memory wasted by 

assuming SACKed data could be reneged was on average ~10%, 

~20% and ~30% for the given loss rates, respectively. 

A non-reneging transport protocol also can improve end-to-end 

application throughput. To send new data, in TCP and SCTP, a 

data sender is constrained by three factors: a congestion window 

(congestion control), an advertised receive window (flow control) 

and a send buffer. When the send buffer is full, no new data can 

be transmitted even when congestion and flow control 

mechanisms allow. When SACKed data are removed from the 

send buffer in a non-reneging protocol, new application data can 

be read and potentially transmitted.  

Yilmaz et al. [26] investigate throughput improvements for non-

reneging vs. reneging SCTP. The authors show that the 

throughput achieved with non-reneging SCTP is always ≥ the 

throughput observed with reneging SCTP. For example, the 

throughput for data transfer over SCTP is improved by ~14% for 

a data sender with 32KB send buffer under low (~0-1%) loss rate 

with non-reneging SCTP. 

In summary, it has been shown if SCTP were designed to not 

tolerate reneging, send buffer utilization would be always optimal, 

and application throughput could be improved for data transfers 

with constrained send buffers (send buffer < receive buffer). We 

believe these SCTP results can apply to TCP as well with a 

modified handling of TCP’s send buffer.  This study is presently 

ongoing and not a part of this paper [2]. 

The key issue for this paper is – in practice, does reneging occur 

or not?  No one knows what percentage of connections renege. 

Our objective is to report the frequency of reneging in today’s 

Internet. If we observe reneging occurs rarely or never, we will 

have evidence to change the basic assumptions of transport layer 

protocols. By designing non-reneging transport protocols, we 

hypothesize that few (if any) connections will be penalized, and 

the large majority of non-reneging connections will potentially 

benefit from better send buffer utilization and increased 

throughput.  

3. A MODEL TO DETECT RENEGING 
To empirically investigate the frequency of reneging, we present a 

model and its implementation, RenegDetect, to passively detect 

reneging instances occurring in TCP traces.  

While TCP does not support detecting reneging at a data sender, 

SCTP does. In SCTP, when previously SACKed data are not 

repeatedly SACKed in successive acks as is specified, an SCTP 

data sender infers reneging. Our model to detect TCP reneging is 

based on SCTP’s reneging detection mechanism.  

A state of the data receiver’s receive buffer is constructed at an 

intermediate router and updated as new acks are observed. The 

state consists of a cumulative ACK value (stateACK) and a list of 

out-of-order data blocks (stateSACK blocks) known to be in the 

data receiver’s receive buffer. When an inconsistency occurs 

between the state of the receive buffer and a new ack, reneging is 

detected. The model is fully detailed in [6]. 

Figure 1 illustrates an example reneging scenario, and how our 

model located at an intermediate router detects reneging. Figure 1 

shows a data transfer where three acks are monitored. For 

simplicity, data packets are not shown. Without loss of generality, 

the example assumes 1 byte of data is transmitted in each data 

packet. For each SACK X-Y, X and Y represent the left edge and 

right edge of the SACK, respectively.  

 

 

 

 

 

 

 

 

 

Figure 1. Detecting reneging at an intermediate router 

On seeing ACK 1 SACK 3-4, our model deduces the state of 

receive buffer to be: ordered data 1 is delivered or deliverable to 



the receiving application (stateACK 1), and out-of-order data 3-4 

are in the receive buffer (stateSACK 3-4). ACK 1 SACK 3-6 

updates this state by adding out-of-order data 5-6 as SACKed 

(stateSACK 3-6). When ACK 2 SACK 7-7 is received and 

compared to the state of receive buffer (stateACK 1, stateSACK 

3-6), an inconsistency is observed and reneging is detected since 

data 3-6 are not SACKed again as they should be had reneging 

not occurred. 

We implemented the model as a tool called RenegDetect and 

tested RenegDetect with artificial TCP flows mimicking reneging 

and non-reneging flows. RenegDetect was also verified by 

analyzing 100s of TCP flows from Internet traces. Initial analysis 

surprisingly showed that reneging was happening frequently. On 

closer inspection, however, it turned out that reneging was not 

happening; rather the generation of SACKs in monitored TCP 

implementations was incorrect according to RFC2018, wrongly 

giving the impression that reneging was occurring. Some TCP 

implementations were generating incomplete SACKs. Sometimes 

SACK information that should have been sent was not. 

Sometimes wrong SACK information was sent. We refer to these 

implementations as misbehaving.  

Our discovery led us to a side investigation to precisely identify 

five misbehaving TCP stacks. We tested 29 operating systems and 

found at least one misbehaving TCP stack for each of the five 

misbehaviors observed [7].  

Discovering the TCP SACK generation misbehaviors led us to 

extend RenegDetect. In addition to analyzing monitored acks, 

RenegDetect was extended to analyze the bidirectional flow of 

data, in particular, retransmissions of data, which more 

definitively indicate reneging has occurred. 

In misbehaviors, out-of-order data are not reneged; rather SACK 

information is missing or incomplete. Eventually, when the data 

between the ACK and the out-of-order data are received, the ACK 

is increased beyond the out-of-order data that seemed to have 

been reneged. We conclude a misbehavior is observed (no 

reneging) if no retransmissions are monitored for the out-of-order 

data that seemed to have been reneged, and ACK is increased 

beyond the supposedly reneged data. 

On the other hand, with reneging, when the data between the 

ACK and reneged out-of-order data are received, the ACK would 

increase to the left edge of the reneged data. Eventually, the data 

sender will timeout and retransmit the reneged data. Then, the 

ACK would increase steadily after each retransmission. The 

updated RenegDetect v2, keeps track of retransmissions for the 

out-of-order data that seems to have been reneged (MISSING). 

Figure 2 illustrates how to detect reneging by analyzing 

retransmissions. The example is similar to that shown in Figure 1 

with the inclusion of data packets. Before packet 7 is received, the 

data receiver reneges and deletes out-of-order data 3-6. When 

packet 7 is received, ACK 1 SACK 7-7 is sent back to the data 

sender. When this ack is compared to the state (stateACK 1 

stateSACK 3-6), an inconsistency is detected. Previously 

SACKed data 3-6 are not SACKed again due to possible reneging 

or a misbehaving TCP stack. RenegDetect v2 marks data 3-6 as 

MISSING. The ack, ACK 2, for packet 2’s fast retransmission 

gives the impression that reneging happened since ACK is not 

increased to 7. If ACK had been increased to 7 on the receipt of 

packet 2, a SACK generation misbehavior (no retransmissions) 

would be concluded. After a retransmission timeout (RTO), the 

data sender retransmits packets 3-6. Since ACK increases steadily 

after each retransmission, a case of possible reneging is identified 

 

 

 

 

 

 

 

 

 

 

Figure 2. Detecting reneging by analyzing retransmissions 

RenegDetect v2 reports possible reneging instances. We then 

analyze each possible reneging instance by hand with Wireshark 

[24] to conclude if reneging really happened. Wireshark can graph 

a TCP flow displaying both data and ack segments. Initially, 

Wireshark did not have the support to view SACK blocks. To 

facilitate flow analysis, we extended Wireshark to display SACK 

blocks in a flow graph [25].  

4. EMPIRICAL TRACE ANALYSIS 
We now report the frequency of reneging in TCP traces from three 

domains: Internet backbone (CAIDA traces), a wireless network 

(SIGCOMM 2008 traces), and an enterprise network (LBNL 

traces). In total we analyzed 202,877 TCP flows that use SACKs. 

In the flows, we confirmed 104 reneging instances (~0.05%). 

With 95% confidence, the margin of error is 0.009% assuming 

that the analyzed TCP flows are independent and identically 

distributed (i.i.d.). That is, we estimate with 95% confidence that 

the true average rate of reneging is in the interval [0.041%, 

0.059%], roughly 1 flow in 2,000.  

While our selection of TCP flows was random, it must be said that 

some characteristics suggest that the TCP flows are not i.i.d. in 

which case the confidence interval would be larger.  For instance, 

on a FreeBSD host when one flow is reneged, all other active 

flows are reneged (a.k.a. global reneging – discussed in Section 

4.3). This simultaneous reneging implies potential dependence. 

Similarly, TCP flows from different operating systems may not be 

identically distributed. A TCP flow from an OpenBSD host 

cannot be reneged (thus its probability of reneging is 0) while a 

FreeBSD flow can be reneged.   



For each reneging flow, we fingerprint the operating system of the 

reneging data receiver, and generalize reneging behavior per 

operating system. 

Trace files provided by the three domains contain thousands of 

TCP flows per trace. In our analysis, trace files were filtered to 

have a single trace file for each bidirectional TCP flow that uses 

SACKs. This approach served two purposes: (1) to provide 

reneging traces to the research community, and (2) to be able to 

view a flow graph per TCP flow in Wireshark for hand analysis. 

Further details of processing TCP traces can be found in [8]. 

RenegDetect v2 accepts a TCP trace file as an input and analyzes 

a TCP flow using our model detailed in Section 3. RenegDetect 

v2 logs possible reneging flows (and each individual instance per 

flow) during the trace analysis. Possible reneging instances are 

inspected by hand using Wireshark to conclude reneging or not.  

4.1 Description of Traces 
The trace files from Cooperative Association for Internet Data 

Analysis (CAIDA) [5] are representative of wide area Internet 

traffic, and were collected via data collection monitors set in 

Equinix data centers in Chicago and San Jose, CA.  

CAIDA provides 60 minute long traces for each Equinix monitor 

(Chicago, San Jose) per month since 2008. In our lab, we did not 

have enough processing capacity to filter all CAIDA traces. 

Instead, we processed randomly chosen 2 minute traces for each 

month whenever trace data was available for both directions. 

When we detected reneging instances, we also processed 10 

minute traces (covering the 2 minute trace) for the reneged data 

receivers to analyze reneging behavior for longer durations in 

more detail. 

SIGCOMM traces were collected at the SIGCOMM 2008 

conference, and monitored the wireless network activity during 

the conference [22].  

Lawrence Berkeley National Laboratory (LBNL) traces 

characterize internal enterprise traffic recorded at a medium-sized 

site for five days from October, 2004 to January, 2005 [14]. 

4.2 Results 
 Table 1 presents the frequency of reneging in the TCP traces for 

the three domains. 

Table 1. Frequency of reneging 

Trace Flows using SACKs 
Total Reneged  

Flows 

CAIDA 161440 104 

SIGCOMM 15683 0 

LBNL 25754 0 

TOTAL 202877 104 

 

In CAIDA traces, 104 flows reneged out of 161,440 TCP flows 

analyzed. These TCP traces can be downloaded [20]. In 

SIGCOMM and LBNL traces, no reneging flows were detected.  

We analyzed each reneging flow in detail and categorized 

reneging instances based on the OS of the data receiver. We detail 

reneging instances and behavior for Linux, FreeBSD, and 

Windows in Sections 4.3, 4.4, and 4.5, respectively. 

4.3 Linux Reneging Instances 
Table 2 details the TCP fingerprints (characteristics) of the five 

reneging data receivers. The columns show an arbitrary host id, 

maximum segment size (MSS), window scale value, initial 

receiver window (rwnd), maximum rwnd value observed during 

the connection, if timestamps (TS) were used (RFC1323 [13]), 

and if DSACKs were used (RFC2883 [11]), respectively. We 

believe these data receivers were running Linux since they all 

exhibited the following behaviors. First, Linux implements 

dynamic right-sizing (DRS) where the rwnd dynamically changes 

based on the receiver’s estimate of the sender’s congestion 

window [10]. With DRS, the initial advertised rwnd of a Linux 

TCP is 5840 bytes and changes dynamically over the course of the 

connection. Second, Linux TCP supports DSACKs by default 

(sysctl net.ipv4.tcp_dsack = 1) and DSACKs were observed for all 

data receivers. 

Table 2. Host characteristics of Linux data receivers 

Host 

id 

MSS 

(SYN) 

Win 

Scale 

Rwnd 

(SYN) 

Rwnd 

(Max) 
TS DSACK 

1 1460 n/a 5840 auto no yes 

2 1460 n/a 5840 auto no yes 

3 1460 n/a 5840 auto no yes 

4 1460 n/a 5840 auto no yes 

5 1460 n/a 5840 auto no yes 

 

Table 3. Linux reneging instances 

Host 

id 

Reneged  

Flows 

Reneging 

Instances 

Avg. Reneged 

Bytes 

1 4 9 2758 

2 2 3 8273 

3 28 74 1973 

4 4 25 4088 

5 2 3 3893 

TOTAL 40 114 2715 

 

Table 3 reports the reneging instances detected at the Linux data 

receivers. A total of 114 reneging instances were observed 

occurring in 40 flows from five different Linux data receivers. 

The observation suggests that when a data receiver reneges, it 

tends to renege more than once within a flow, on average 2.85 

times per flow.  

Definition: We define “local reneging” for operating systems that 

cause reneging for each TCP connection independently. With 

local reneging, reneging and non-reneging flows coexist 



simultaneously. We define “global reneging” for operating 

systems that cause reneging for all TCP connections 

simultaneously. 

Linux employs local reneging. To confirm that behavior, we 

analyzed reneging times for each data receiver, and verified that 

reneging instances from simultaneous flows occurred at different 

times. As a result, reneging and non-reneging connections exist in 

Linux simultaneously. 

In [21], the authors state that reneging in Linux is expected to 

happen when (a) an application is unable to read data queued up 

at the receive buffer, and (b) a large number of out-of-order 

segments are received. We confirm (a), but our analysis showed 

that the average amount of bytes reneged per reneging instance 

was 2715 bytes (~2 MSS PDUs.) This average is not large 

compared to Linux’s 87380 byte default receive buffer size (sysctl 

net.ipv4.tcp_rmem = 4096 (min) 87380 (default) 2605056(max)). 

On average, only ~3% of the receive buffer was allocated to the 

reneged out-of-order data. This behavior suggests that Linux 

reneges irrespective of out-of-order data size contrary to [21]’s 

claim.  

4.4 FreeBSD Reneging Instances 
For the two reneging data receivers listed in Table 4, both had an 

initial rwnd of 65535 and used timestamps (RFC1323) by default. 

Table 5 lists the initial rwnd reported in SYN segments of various 

operating systems observed during our RFC2018 conformant 

SACK generation testing [7]. As the reneging data receivers did, 

FreeBSD, Mac OS X and Windows 2000 all initially advertised 

an rwnd of 65535 bytes. The reneging data receivers could not be 

running Windows 2000 because sometimes 3 or 4 SACK blocks 

were reported in TCP PDUs of the reneging flows, and Windows 

2000 reports at most 2 SACK blocks (Misbehavior A2) [7]. 

FreeBSD and Mac OS differ in the way they implement the 

window scale option (RFC1323). Mac OS advertises a scaled 

rwnd in the SYN segment. For example, if window scale option=1 

for the connection, the rwnd reported in the SYN segment would 

be 32768 for a 65535 size rwnd. FreeBSD, on the other hand, 

initially advertises an rwnd of 65535 irrespective of window scale 

option. If the window scale option is used, say window scale=1, 

consecutive TCP segments would have rwnd value of 32768. 

During the analysis, the reneging data receivers initially 

advertised an rwnd of 65535 in the SYN packet and advertised 

rwnds ~32K in the rest of the PDUs. Therefore, we believe these 

reneging data receivers were running FreeBSD. 

Table 6 reports reneging instances detected at the FreeBSD data 

receivers. A total of 11 reneging instances were observed in 11 

flows from two different hosts, that is, each flow reneged exactly 

one time. The average bytes reneged per reneging instance was 

3717 bytes (~2.5 MSS PDUs.)  This amount of reneged out-of-

order data is insignificant (only ~5.6%) compared to FreeBSD’s 

65535 byte default receive buffer size (sysctl 

net.inet.tcp.recvspace: 65536). This behavior suggests that 

FreeBSD reneges irrespective of out-of-order data size. 

Table 4. Host characteristics of FreeBSD data receivers 

Host 

id 

MSS 

(SYN) 

Win 

Scale 

Rwnd 

(SYN) 

Rwnd 

(Max) 
TS DSACK 

1 1460 1 65535 65535 yes no 

2 1460 1 65535 65535 yes no 

 

Table 5. Initial advertised rwnd of various OSes 

Operating System Initial Advertised Rwnd (bytes) 

FreeBSD 5.3-8.0 65535 

Linux 2.4.18-2.6.31 5840 

Mac OS X 10.6.0 65535 

OpenBSD 4.2-4.7 16384 

OpenSolaris 2008-2009 49640 

Solaris 10 49640 

Windows 2000 65535 

Windows XP, Vista, 7 64240 

 

Table 6. FreeBSD reneging instances 

Host 

id 

Reneged  

Flows 
Reneging Instances 

Avg. Reneged 

Bytes 

1 1 1 4380 

2 10 10 3650 

TOTAL 11 11 3716 

 

According to [12], FreeBSD employs global reneging. To confirm 

this behavior, we analyzed reneging times for the data receiver 

identified with host id 2. The reneging instances were clustered 

around two times: 09:19:02.0xx and 09:19:31.5yy. These 

clustered reneging times confirm that FreeBSD employs global 

reneging.  

4.5 Windows Reneging Instances 
We believe that reneging data receivers listed in Table 7 are 

Windows hosts. First, all of the reneging data receivers reported at 

most 2 SACK blocks, and the data receivers identified by host ids 

2 and 9 reported at most 2 SACKs when it was known that at least 

3 SACK blocks existed at the receiver (Misbehavior A2). 

Misbehavior A2 was observed only in Windows 2000, XP and 

Server 2003 [7]. The TCP/IP implementation for these operating 

systems is detailed in [15] and [17]. For the three Windows 

systems, the advertised rwnd is determined based on the media 

speed. [17] specifies that if the media speed is [1Mbps-100Mbps), 

rwnd is set to twelve MSS segments. If the media speed is 

[100Mbps-above), rwnd is set to 64KB. Only the data receivers 

specified with host ids 3 and 6 did not match this specification. 

But their maximum rwnd was set to 25*MSS and 45*MSS during 

the course of connection, respectively. Both [15] and [17] specify 

that Windows TCP adjusts rwnd to increments of the maximum 

segment size (MSS) negotiated during connection setup. This 



specification makes us believe those data receivers were running 

Windows. 

Table 8 reports 75 Windows reneging instances were observed in 

53 flows from 9 different hosts, an average of 1.41 reneging 

instances per reneging flow. The average bytes reneged per 

reneging instance was 1371 bytes (~ 1 MSS PDU). 

Table 7. Host characteristics of Windows data receivers 

Host 

Id 

MSS 

(SYN) 

Win 

Scale 

Rwnd 

(SYN) 

Rwnd 

(Max) 
TS DSACK 

1 1452 n/a 16384 17424 no no 

2 n/a n/a n/a 61320 no no 

3 1360 n/a 32767 34000 no no 

4 1460 n/a 65535 65535 no no 

5 1460 n/a 65535 65535 no no 

6 1452 n/a 64240 65340 no no 

7 n/a n/a n/a 65535 no no 

8 1460 n/a 65535 65535 no no 

9 1414 n/a 65535 65535 no no 

 

Table 8. Windows reneging instances 

Host 

id 

Reneged  

Flows 

Reneging 

Instances 

Avg. Reneged 

Bytes 

1 1 1 98 

2 1 3 2920 

3 6 20 754 

4 1 1 4096 

5 1 1 1460 

6 1 1 287 

7 1 2 1965 

8 1 2 3550 

9 40 44 1409 

TOTAL 53 75 1371 

 

Since the Windows TCP/IP stack is not open-source, it is 

unknown if Windows employs local or global reneging. However, 

the Windows reneging instances from different flows all happened 

at different times suggesting that Windows employs local 

reneging. 

In general, only a single out-of-order segment was reneged in the 

Windows reneging instances caused by packet reordering in the 

network. This observation explains why the average reneged bytes 

(1371) are less than 1 MSS PDU. The consecutive out-of-order 

data packets received were not SACKed even though these data 

were known to be in the receive buffer.  

5. RELATED RESEARCH 
To the authors’ best knowledge, the only prior study of reneging 

is an MS thesis not published elsewhere [3]. The author presents a 

reneging detection algorithm for a TCP data sender, and analyzes 

TCP traces using the detection algorithm to report frequency of 

reneging.  The author hypothesized that discarding the SACK 

scoreboard at a timeout may have a detrimental impact on a 

connection’s ability to recover loss without unnecessary 

retransmissions. To decrease unnecessary retransmissions, an 

algorithm to detect reneging at a TCP sender is proposed which 

clears the SACK scoreboard immediately upon detecting reneging 

instead of waiting until a timeout. The reneging detection 

algorithm compares existing SACK blocks (scoreboard) with 

incoming ACKs. When an ACK is advanced to the middle of a 

SACK block, reneging is detected. The author indicates reneging 

can be detected earlier when the TCP receiver skips previously 

SACKed data. In such a case, SACKs are used for reneging 

detection as in our model.  

Using real traces, the author analyzed TCP connections with 

SACKs to report frequency of reneging. Out of 1,306,646 

connections analyzed, the author identified 227 connections 

(0.017%) as reneged. These results support the conclusion that 

reneging is a rare event. The author also analyzed LBNL traces 

and reported no instances of reneging as we did. 

6. CONCLUSIONS 
Trace analysis of TCP flows demonstrates that reneging rarely 

occurs in practice, its frequency being in the range of one flow per 

2000 (0.05%). And when reneging does occur, relatively little 

memory is recovered. 

Since reneging is rare and little memory is regained when 

reneging does occur, we believe reliable transport protocols (e.g., 

TCP, SCTP) should be designed not to tolerate reneging. Results 

have already been shown how performance for SCTP connections 

can improve (and will never degrade) if reneging is not tolerated. 

Using our trace results, let us compare TCP’s current design to 

tolerate reneging with a TCP that does not support reneging. 

Currently, TCP tolerates reneging and maintains the reliable data 

transfer of 104 reneging flows. If reneging could not happen, 

SACKed data are unnecessarily stored in the TCP send buffer. 

The 202,773 non-reneging flows “waste” this memory.  With a 

revised handling of TCP’s send buffer, this memory could be used 

to send new data, thus better utilizing memory and potentially 

improving the connection’s throughput [2]. 

We suggest that the current semantics of TCP SACKs be changed 

from advisory to permanent thereby prohibiting a data receiver 

from reneging. In the rare event that a data receiver would need to 

take back memory that has been allocated to received out-of-order 

data, we propose that the data receiver must RESET the transport 

connection. With this change, 104 reneging flows would be 

penalized by termination. On the other hand, 202,773 non-

reneging flows could potentially benefit better send buffer 

utilization and increased throughput. Note that increased TCP 



throughput is only possible for data transfers with constrained 

send buffers (assuming asymmetric buffer sizes (send buffer < 

receive buffer)), and needs modifications in TCP’s send buffer 

management [2]. 

Initially, reneging was thought as a utility mechanism to help an 

operating system reclaim main memory under dangerous low-

memory situations. In trace analysis, we found that the average 

main memory returned to a reneging operating system per 

reneging instance was on the order of two TCP segments (2715, 

3717, and 1371 bytes for Linux, FreeBSD, and Windows, 

respectively). Reclaiming such a small amount of memory does 

not seem worth the trouble, i.e., it is unlikely to help resume 

normal operation. 
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