
Transport Layer Reneging
Nasif Ekiz
F5 Networks

Seattle, Washington 98119

n.ekiz@f5.com

Paul D. Amer
Computer and Information Sciences Department

University of Delaware
Newark, Delaware 19716

amer@cis.udel.edu

ABSTRACT

Reneging occurs when a transport layer data receiver first

selectively acks data, and later discards that data from its receiver

buffer prior to delivery to the receiving application or socket

buffer. Reliable transport protocols such as TCP and SCTP are

designed to tolerate reneging. We argue that this design should be

changed because: (1) reneging is a rare event in practice, and the

memory saved when reneging does occur is insignificant, and (2)

by not tolerating reneging, transport protocols have the potential

for improved performance as has been shown in the case of SCTP.

To support our argument, we analyzed TCP traces from three

different domains (Internet backbone, wireless, enterprise). We

detected reneging in only 0.05% of the analyzed TCP flows. In

each reneging case, the operating system was fingerprinted thus

allowing the reneging behavior of Linux, FreeBSD and Windows

to be more precisely characterized. The average main memory

returned each time to the reneging operating system was on the

order of two TCP segments. Reneging saves so little memory that

it is not worth the trouble. Since reneging happens rarely and

when it does happen, reneging returns insignificant memory, we

recommend designing reliable transport protocols to not tolerate

reneging.

Categories and Subject Descriptors

C.2.5 [Local and Wide-Area Networks]: Internet – TCP; C.4

[Performance of Systems]: Measurement techniques

General Terms

Measurement

Keywords

OS fingerprinting, Reneging, SACK, Selective Acknowledgment,

SCTP, TCP

1. INTRODUCTION
Transmission Control Protocol (TCP) [19] and the Stream

Control Transmission Protocol (SCTP) [23] use sequence

numbers and cumulative acks (ACKs) to achieve reliable data

transfer. A data receiver uses sequence numbers to sort arrived

data segments. Data arriving in expected order, i.e., ordered data,

are cumulatively ACKed to the data sender. With receipt of an

ACK, the data sender assumes the data receiver accepts

responsibility for delivering ACKed data to the receiving

application, and the data sender deletes all ACKed data from its

send buffer, potentially before that data are delivered.

The Selective Acknowledgment Option, RFC2018 [16], extends

TCP’s (and SCTP’s) cumulative ACK mechanism by allowing a

data receiver to ack arrived out-of-order data using selective acks

(SACKs). The intent is that SACKed data need not be

retransmitted during loss recovery. SACKs improve reliable

transport throughput when multiple losses occur within the same

window [1, 4, 9].

Transport layer data reneging (or simply reneging) occurs when a

data receiver first SACKs data, and later discards that data from

its receiver buffer prior to delivery to the receiving application or

socket buffer. TCP is designed to tolerate reneging. RFC2018

states: “The SACK option is advisory” and “the data receiver is

permitted to later discard data which have been reported in a

SACK option”. Reneging might happen, for example, when an

operating system needs to recapture previously allocated memory,

say to avoid deadlock, or to protect the operating system against

denial-of-service attacks (DoS). Reneging is possible in FreeBSD,

Linux, Mac OS, Solaris and Windows.

Because TCP is designed to tolerate reneging, a TCP data sender

must retain copies of all transmitted data in its send buffer, even

SACKed data, until they are ACKed. Then, if reneging does

occur, eventually the sender will (1) timeout on the reneged data,

(2) delete all SACK information, and (3) retransmit the retained

copies of the reneged data. The data transfer thus remains reliable.

Unfortunately, if reneging does not happen, SACKed data is

wastefully stored in the send buffer until ACKed.

A similar design to tolerate reneging is adopted by SCTP. The

main difference is that an SCTP data sender is designed to

identify a data receiver that reneges, whereas a TCP data sender is

not. When previously SACKed data are not repeatedly SACKed

in the successive ack, an SCTP data sender infers reneging and

marks reneged data for retransmission [23].

We argue that this design should be changed because: (1)

reneging is a rare event in practice, and the memory saved when

reneging does occur is insignificant, and (2) by not tolerating

reneging, reliable transport protocols have the potential for

improved performance as has been shown in the case of SCTP

[18, 26].

This paper’s goal is to present a thorough investigation into

reneging to support (1). For that purpose, we develop a model to

detect reneging instances in TCP traces and analyze traces from

three different domains using our model to report the frequency of

reneging. The amount of potential gain by designing TCP to not

tolerate reneging is currently under study [2], and beyond the

scope of this paper.

In Section 2, we further the motivation to detect reneging

instances. Then Section 3 presents our model to detect reneging

instances in TCP trace files. Section 4 presents the TCP trace

analysis and results. Section 5 identifies the only past study to

investigate reneging in TCP. Finally, Section 6 presents our

recommendation to change the design of reliable transport

protocols.

2. MOTIVATION TO NOT TOLERATE

RENEGING
If a transport protocol were designed not to tolerate reneging (i.e.,

to be non-reneging), a data sender would no longer need to retain

copies of SACKed data in its send buffer until ACKed. Just as

with ACKed data on the receipt of an ACK, if reneging was not

allowed, SACKed data could be removed from the send buffer

immediately on the receipt of a SACK. In that case, the main

memory allocated for the send buffer could be utilized for other

data.

Natarajan et al. [18] present send buffer utilization results for data

transfers using non-reneging vs. reneging SCTP under mild (~1-

2%), medium (~3-4%) and heavy (~8-9%) loss rates . For the

bandwidth-delay parameters studied, the memory wasted by

assuming SACKed data could be reneged was on average ~10%,

~20% and ~30% for the given loss rates, respectively.

A non-reneging transport protocol also can improve end-to-end

application throughput. To send new data, in TCP and SCTP, a

data sender is constrained by three factors: a congestion window

(congestion control), an advertised receive window (flow control)

and a send buffer. When the send buffer is full, no new data can

be transmitted even when congestion and flow control

mechanisms allow. When SACKed data are removed from the

send buffer in a non-reneging protocol, new application data can

be read and potentially transmitted.

Yilmaz et al. [26] investigate throughput improvements for non-

reneging vs. reneging SCTP. The authors show that the

throughput achieved with non-reneging SCTP is always ≥ the

throughput observed with reneging SCTP. For example, the

throughput for data transfer over SCTP is improved by ~14% for

a data sender with 32KB send buffer under low (~0-1%) loss rate

with non-reneging SCTP.

In summary, it has been shown if SCTP were designed to not

tolerate reneging, send buffer utilization would be always optimal,

and application throughput could be improved for data transfers

with constrained send buffers (send buffer < receive buffer). We

believe these SCTP results can apply to TCP as well with a

modified handling of TCP’s send buffer. This study is presently

ongoing and not a part of this paper [2].

The key issue for this paper is – in practice, does reneging occur

or not? No one knows what percentage of connections renege.

Our objective is to report the frequency of reneging in today’s

Internet. If we observe reneging occurs rarely or never, we will

have evidence to change the basic assumptions of transport layer

protocols. By designing non-reneging transport protocols, we

hypothesize that few (if any) connections will be penalized, and

the large majority of non-reneging connections will potentially

benefit from better send buffer utilization and increased

throughput.

3. A MODEL TO DETECT RENEGING
To empirically investigate the frequency of reneging, we present a

model and its implementation, RenegDetect, to passively detect

reneging instances occurring in TCP traces.

While TCP does not support detecting reneging at a data sender,

SCTP does. In SCTP, when previously SACKed data are not

repeatedly SACKed in successive acks as is specified, an SCTP

data sender infers reneging. Our model to detect TCP reneging is

based on SCTP’s reneging detection mechanism.

A state of the data receiver’s receive buffer is constructed at an

intermediate router and updated as new acks are observed. The

state consists of a cumulative ACK value (stateACK) and a list of

out-of-order data blocks (stateSACK blocks) known to be in the

data receiver’s receive buffer. When an inconsistency occurs

between the state of the receive buffer and a new ack, reneging is

detected. The model is fully detailed in [6].

Figure 1 illustrates an example reneging scenario, and how our

model located at an intermediate router detects reneging. Figure 1

shows a data transfer where three acks are monitored. For

simplicity, data packets are not shown. Without loss of generality,

the example assumes 1 byte of data is transmitted in each data

packet. For each SACK X-Y, X and Y represent the left edge and

right edge of the SACK, respectively.

Figure 1. Detecting reneging at an intermediate router

On seeing ACK 1 SACK 3-4, our model deduces the state of

receive buffer to be: ordered data 1 is delivered or deliverable to

the receiving application (stateACK 1), and out-of-order data 3-4

are in the receive buffer (stateSACK 3-4). ACK 1 SACK 3-6

updates this state by adding out-of-order data 5-6 as SACKed

(stateSACK 3-6). When ACK 2 SACK 7-7 is received and

compared to the state of receive buffer (stateACK 1, stateSACK

3-6), an inconsistency is observed and reneging is detected since

data 3-6 are not SACKed again as they should be had reneging

not occurred.

We implemented the model as a tool called RenegDetect and

tested RenegDetect with artificial TCP flows mimicking reneging

and non-reneging flows. RenegDetect was also verified by

analyzing 100s of TCP flows from Internet traces. Initial analysis

surprisingly showed that reneging was happening frequently. On

closer inspection, however, it turned out that reneging was not

happening; rather the generation of SACKs in monitored TCP

implementations was incorrect according to RFC2018, wrongly

giving the impression that reneging was occurring. Some TCP

implementations were generating incomplete SACKs. Sometimes

SACK information that should have been sent was not.

Sometimes wrong SACK information was sent. We refer to these

implementations as misbehaving.

Our discovery led us to a side investigation to precisely identify

five misbehaving TCP stacks. We tested 29 operating systems and

found at least one misbehaving TCP stack for each of the five

misbehaviors observed [7].

Discovering the TCP SACK generation misbehaviors led us to

extend RenegDetect. In addition to analyzing monitored acks,

RenegDetect was extended to analyze the bidirectional flow of

data, in particular, retransmissions of data, which more

definitively indicate reneging has occurred.

In misbehaviors, out-of-order data are not reneged; rather SACK

information is missing or incomplete. Eventually, when the data

between the ACK and the out-of-order data are received, the ACK

is increased beyond the out-of-order data that seemed to have

been reneged. We conclude a misbehavior is observed (no

reneging) if no retransmissions are monitored for the out-of-order

data that seemed to have been reneged, and ACK is increased

beyond the supposedly reneged data.

On the other hand, with reneging, when the data between the

ACK and reneged out-of-order data are received, the ACK would

increase to the left edge of the reneged data. Eventually, the data

sender will timeout and retransmit the reneged data. Then, the

ACK would increase steadily after each retransmission. The

updated RenegDetect v2, keeps track of retransmissions for the

out-of-order data that seems to have been reneged (MISSING).

Figure 2 illustrates how to detect reneging by analyzing

retransmissions. The example is similar to that shown in Figure 1

with the inclusion of data packets. Before packet 7 is received, the

data receiver reneges and deletes out-of-order data 3-6. When

packet 7 is received, ACK 1 SACK 7-7 is sent back to the data

sender. When this ack is compared to the state (stateACK 1

stateSACK 3-6), an inconsistency is detected. Previously

SACKed data 3-6 are not SACKed again due to possible reneging

or a misbehaving TCP stack. RenegDetect v2 marks data 3-6 as

MISSING. The ack, ACK 2, for packet 2’s fast retransmission

gives the impression that reneging happened since ACK is not

increased to 7. If ACK had been increased to 7 on the receipt of

packet 2, a SACK generation misbehavior (no retransmissions)

would be concluded. After a retransmission timeout (RTO), the

data sender retransmits packets 3-6. Since ACK increases steadily

after each retransmission, a case of possible reneging is identified

Figure 2. Detecting reneging by analyzing retransmissions

RenegDetect v2 reports possible reneging instances. We then

analyze each possible reneging instance by hand with Wireshark

[24] to conclude if reneging really happened. Wireshark can graph

a TCP flow displaying both data and ack segments. Initially,

Wireshark did not have the support to view SACK blocks. To

facilitate flow analysis, we extended Wireshark to display SACK

blocks in a flow graph [25].

4. EMPIRICAL TRACE ANALYSIS
We now report the frequency of reneging in TCP traces from three

domains: Internet backbone (CAIDA traces), a wireless network

(SIGCOMM 2008 traces), and an enterprise network (LBNL

traces). In total we analyzed 202,877 TCP flows that use SACKs.

In the flows, we confirmed 104 reneging instances (~0.05%).

With 95% confidence, the margin of error is 0.009% assuming

that the analyzed TCP flows are independent and identically

distributed (i.i.d.). That is, we estimate with 95% confidence that

the true average rate of reneging is in the interval [0.041%,

0.059%], roughly 1 flow in 2,000.

While our selection of TCP flows was random, it must be said that

some characteristics suggest that the TCP flows are not i.i.d. in

which case the confidence interval would be larger. For instance,

on a FreeBSD host when one flow is reneged, all other active

flows are reneged (a.k.a. global reneging – discussed in Section

4.3). This simultaneous reneging implies potential dependence.

Similarly, TCP flows from different operating systems may not be

identically distributed. A TCP flow from an OpenBSD host

cannot be reneged (thus its probability of reneging is 0) while a

FreeBSD flow can be reneged.

For each reneging flow, we fingerprint the operating system of the

reneging data receiver, and generalize reneging behavior per

operating system.

Trace files provided by the three domains contain thousands of

TCP flows per trace. In our analysis, trace files were filtered to

have a single trace file for each bidirectional TCP flow that uses

SACKs. This approach served two purposes: (1) to provide

reneging traces to the research community, and (2) to be able to

view a flow graph per TCP flow in Wireshark for hand analysis.

Further details of processing TCP traces can be found in [8].

RenegDetect v2 accepts a TCP trace file as an input and analyzes

a TCP flow using our model detailed in Section 3. RenegDetect

v2 logs possible reneging flows (and each individual instance per

flow) during the trace analysis. Possible reneging instances are

inspected by hand using Wireshark to conclude reneging or not.

4.1 Description of Traces
The trace files from Cooperative Association for Internet Data

Analysis (CAIDA) [5] are representative of wide area Internet

traffic, and were collected via data collection monitors set in

Equinix data centers in Chicago and San Jose, CA.

CAIDA provides 60 minute long traces for each Equinix monitor

(Chicago, San Jose) per month since 2008. In our lab, we did not

have enough processing capacity to filter all CAIDA traces.

Instead, we processed randomly chosen 2 minute traces for each

month whenever trace data was available for both directions.

When we detected reneging instances, we also processed 10

minute traces (covering the 2 minute trace) for the reneged data

receivers to analyze reneging behavior for longer durations in

more detail.

SIGCOMM traces were collected at the SIGCOMM 2008

conference, and monitored the wireless network activity during

the conference [22].

Lawrence Berkeley National Laboratory (LBNL) traces

characterize internal enterprise traffic recorded at a medium-sized

site for five days from October, 2004 to January, 2005 [14].

4.2 Results
 Table 1 presents the frequency of reneging in the TCP traces for

the three domains.

Table 1. Frequency of reneging

Trace Flows using SACKs
Total Reneged

Flows

CAIDA 161440 104

SIGCOMM 15683 0

LBNL 25754 0

TOTAL 202877 104

In CAIDA traces, 104 flows reneged out of 161,440 TCP flows

analyzed. These TCP traces can be downloaded [20]. In

SIGCOMM and LBNL traces, no reneging flows were detected.

We analyzed each reneging flow in detail and categorized

reneging instances based on the OS of the data receiver. We detail

reneging instances and behavior for Linux, FreeBSD, and

Windows in Sections 4.3, 4.4, and 4.5, respectively.

4.3 Linux Reneging Instances
Table 2 details the TCP fingerprints (characteristics) of the five

reneging data receivers. The columns show an arbitrary host id,

maximum segment size (MSS), window scale value, initial

receiver window (rwnd), maximum rwnd value observed during

the connection, if timestamps (TS) were used (RFC1323 [13]),

and if DSACKs were used (RFC2883 [11]), respectively. We

believe these data receivers were running Linux since they all

exhibited the following behaviors. First, Linux implements

dynamic right-sizing (DRS) where the rwnd dynamically changes

based on the receiver’s estimate of the sender’s congestion

window [10]. With DRS, the initial advertised rwnd of a Linux

TCP is 5840 bytes and changes dynamically over the course of the

connection. Second, Linux TCP supports DSACKs by default

(sysctl net.ipv4.tcp_dsack = 1) and DSACKs were observed for all

data receivers.

Table 2. Host characteristics of Linux data receivers

Host

id

MSS

(SYN)

Win

Scale

Rwnd

(SYN)

Rwnd

(Max)
TS DSACK

1 1460 n/a 5840 auto no yes

2 1460 n/a 5840 auto no yes

3 1460 n/a 5840 auto no yes

4 1460 n/a 5840 auto no yes

5 1460 n/a 5840 auto no yes

Table 3. Linux reneging instances

Host

id

Reneged

Flows

Reneging

Instances

Avg. Reneged

Bytes

1 4 9 2758

2 2 3 8273

3 28 74 1973

4 4 25 4088

5 2 3 3893

TOTAL 40 114 2715

Table 3 reports the reneging instances detected at the Linux data

receivers. A total of 114 reneging instances were observed

occurring in 40 flows from five different Linux data receivers.

The observation suggests that when a data receiver reneges, it

tends to renege more than once within a flow, on average 2.85

times per flow.

Definition: We define “local reneging” for operating systems that

cause reneging for each TCP connection independently. With

local reneging, reneging and non-reneging flows coexist

simultaneously. We define “global reneging” for operating

systems that cause reneging for all TCP connections

simultaneously.

Linux employs local reneging. To confirm that behavior, we

analyzed reneging times for each data receiver, and verified that

reneging instances from simultaneous flows occurred at different

times. As a result, reneging and non-reneging connections exist in

Linux simultaneously.

In [21], the authors state that reneging in Linux is expected to

happen when (a) an application is unable to read data queued up

at the receive buffer, and (b) a large number of out-of-order

segments are received. We confirm (a), but our analysis showed

that the average amount of bytes reneged per reneging instance

was 2715 bytes (~2 MSS PDUs.) This average is not large

compared to Linux’s 87380 byte default receive buffer size (sysctl

net.ipv4.tcp_rmem = 4096 (min) 87380 (default) 2605056(max)).

On average, only ~3% of the receive buffer was allocated to the

reneged out-of-order data. This behavior suggests that Linux

reneges irrespective of out-of-order data size contrary to [21]’s

claim.

4.4 FreeBSD Reneging Instances
For the two reneging data receivers listed in Table 4, both had an

initial rwnd of 65535 and used timestamps (RFC1323) by default.

Table 5 lists the initial rwnd reported in SYN segments of various

operating systems observed during our RFC2018 conformant

SACK generation testing [7]. As the reneging data receivers did,

FreeBSD, Mac OS X and Windows 2000 all initially advertised

an rwnd of 65535 bytes. The reneging data receivers could not be

running Windows 2000 because sometimes 3 or 4 SACK blocks

were reported in TCP PDUs of the reneging flows, and Windows

2000 reports at most 2 SACK blocks (Misbehavior A2) [7].

FreeBSD and Mac OS differ in the way they implement the

window scale option (RFC1323). Mac OS advertises a scaled

rwnd in the SYN segment. For example, if window scale option=1

for the connection, the rwnd reported in the SYN segment would

be 32768 for a 65535 size rwnd. FreeBSD, on the other hand,

initially advertises an rwnd of 65535 irrespective of window scale

option. If the window scale option is used, say window scale=1,

consecutive TCP segments would have rwnd value of 32768.

During the analysis, the reneging data receivers initially

advertised an rwnd of 65535 in the SYN packet and advertised

rwnds ~32K in the rest of the PDUs. Therefore, we believe these

reneging data receivers were running FreeBSD.

Table 6 reports reneging instances detected at the FreeBSD data

receivers. A total of 11 reneging instances were observed in 11

flows from two different hosts, that is, each flow reneged exactly

one time. The average bytes reneged per reneging instance was

3717 bytes (~2.5 MSS PDUs.) This amount of reneged out-of-

order data is insignificant (only ~5.6%) compared to FreeBSD’s

65535 byte default receive buffer size (sysctl

net.inet.tcp.recvspace: 65536). This behavior suggests that

FreeBSD reneges irrespective of out-of-order data size.

Table 4. Host characteristics of FreeBSD data receivers

Host

id

MSS

(SYN)

Win

Scale

Rwnd

(SYN)

Rwnd

(Max)
TS DSACK

1 1460 1 65535 65535 yes no

2 1460 1 65535 65535 yes no

Table 5. Initial advertised rwnd of various OSes

Operating System Initial Advertised Rwnd (bytes)

FreeBSD 5.3-8.0 65535

Linux 2.4.18-2.6.31 5840

Mac OS X 10.6.0 65535

OpenBSD 4.2-4.7 16384

OpenSolaris 2008-2009 49640

Solaris 10 49640

Windows 2000 65535

Windows XP, Vista, 7 64240

Table 6. FreeBSD reneging instances

Host

id

Reneged

Flows
Reneging Instances

Avg. Reneged

Bytes

1 1 1 4380

2 10 10 3650

TOTAL 11 11 3716

According to [12], FreeBSD employs global reneging. To confirm

this behavior, we analyzed reneging times for the data receiver

identified with host id 2. The reneging instances were clustered

around two times: 09:19:02.0xx and 09:19:31.5yy. These

clustered reneging times confirm that FreeBSD employs global

reneging.

4.5 Windows Reneging Instances
We believe that reneging data receivers listed in Table 7 are

Windows hosts. First, all of the reneging data receivers reported at

most 2 SACK blocks, and the data receivers identified by host ids

2 and 9 reported at most 2 SACKs when it was known that at least

3 SACK blocks existed at the receiver (Misbehavior A2).

Misbehavior A2 was observed only in Windows 2000, XP and

Server 2003 [7]. The TCP/IP implementation for these operating

systems is detailed in [15] and [17]. For the three Windows

systems, the advertised rwnd is determined based on the media

speed. [17] specifies that if the media speed is [1Mbps-100Mbps),

rwnd is set to twelve MSS segments. If the media speed is

[100Mbps-above), rwnd is set to 64KB. Only the data receivers

specified with host ids 3 and 6 did not match this specification.

But their maximum rwnd was set to 25*MSS and 45*MSS during

the course of connection, respectively. Both [15] and [17] specify

that Windows TCP adjusts rwnd to increments of the maximum

segment size (MSS) negotiated during connection setup. This

specification makes us believe those data receivers were running

Windows.

Table 8 reports 75 Windows reneging instances were observed in

53 flows from 9 different hosts, an average of 1.41 reneging

instances per reneging flow. The average bytes reneged per

reneging instance was 1371 bytes (~ 1 MSS PDU).

Table 7. Host characteristics of Windows data receivers

Host

Id

MSS

(SYN)

Win

Scale

Rwnd

(SYN)

Rwnd

(Max)
TS DSACK

1 1452 n/a 16384 17424 no no

2 n/a n/a n/a 61320 no no

3 1360 n/a 32767 34000 no no

4 1460 n/a 65535 65535 no no

5 1460 n/a 65535 65535 no no

6 1452 n/a 64240 65340 no no

7 n/a n/a n/a 65535 no no

8 1460 n/a 65535 65535 no no

9 1414 n/a 65535 65535 no no

Table 8. Windows reneging instances

Host

id

Reneged

Flows

Reneging

Instances

Avg. Reneged

Bytes

1 1 1 98

2 1 3 2920

3 6 20 754

4 1 1 4096

5 1 1 1460

6 1 1 287

7 1 2 1965

8 1 2 3550

9 40 44 1409

TOTAL 53 75 1371

Since the Windows TCP/IP stack is not open-source, it is

unknown if Windows employs local or global reneging. However,

the Windows reneging instances from different flows all happened

at different times suggesting that Windows employs local

reneging.

In general, only a single out-of-order segment was reneged in the

Windows reneging instances caused by packet reordering in the

network. This observation explains why the average reneged bytes

(1371) are less than 1 MSS PDU. The consecutive out-of-order

data packets received were not SACKed even though these data

were known to be in the receive buffer.

5. RELATED RESEARCH
To the authors’ best knowledge, the only prior study of reneging

is an MS thesis not published elsewhere [3]. The author presents a

reneging detection algorithm for a TCP data sender, and analyzes

TCP traces using the detection algorithm to report frequency of

reneging. The author hypothesized that discarding the SACK

scoreboard at a timeout may have a detrimental impact on a

connection’s ability to recover loss without unnecessary

retransmissions. To decrease unnecessary retransmissions, an

algorithm to detect reneging at a TCP sender is proposed which

clears the SACK scoreboard immediately upon detecting reneging

instead of waiting until a timeout. The reneging detection

algorithm compares existing SACK blocks (scoreboard) with

incoming ACKs. When an ACK is advanced to the middle of a

SACK block, reneging is detected. The author indicates reneging

can be detected earlier when the TCP receiver skips previously

SACKed data. In such a case, SACKs are used for reneging

detection as in our model.

Using real traces, the author analyzed TCP connections with

SACKs to report frequency of reneging. Out of 1,306,646

connections analyzed, the author identified 227 connections

(0.017%) as reneged. These results support the conclusion that

reneging is a rare event. The author also analyzed LBNL traces

and reported no instances of reneging as we did.

6. CONCLUSIONS
Trace analysis of TCP flows demonstrates that reneging rarely

occurs in practice, its frequency being in the range of one flow per

2000 (0.05%). And when reneging does occur, relatively little

memory is recovered.

Since reneging is rare and little memory is regained when

reneging does occur, we believe reliable transport protocols (e.g.,

TCP, SCTP) should be designed not to tolerate reneging. Results

have already been shown how performance for SCTP connections

can improve (and will never degrade) if reneging is not tolerated.

Using our trace results, let us compare TCP’s current design to

tolerate reneging with a TCP that does not support reneging.

Currently, TCP tolerates reneging and maintains the reliable data

transfer of 104 reneging flows. If reneging could not happen,

SACKed data are unnecessarily stored in the TCP send buffer.

The 202,773 non-reneging flows “waste” this memory. With a

revised handling of TCP’s send buffer, this memory could be used

to send new data, thus better utilizing memory and potentially

improving the connection’s throughput [2].

We suggest that the current semantics of TCP SACKs be changed

from advisory to permanent thereby prohibiting a data receiver

from reneging. In the rare event that a data receiver would need to

take back memory that has been allocated to received out-of-order

data, we propose that the data receiver must RESET the transport

connection. With this change, 104 reneging flows would be

penalized by termination. On the other hand, 202,773 non-

reneging flows could potentially benefit better send buffer

utilization and increased throughput. Note that increased TCP

throughput is only possible for data transfers with constrained

send buffers (assuming asymmetric buffer sizes (send buffer <

receive buffer)), and needs modifications in TCP’s send buffer

management [2].

Initially, reneging was thought as a utility mechanism to help an

operating system reclaim main memory under dangerous low-

memory situations. In trace analysis, we found that the average

main memory returned to a reneging operating system per

reneging instance was on the order of two TCP segments (2715,

3717, and 1371 bytes for Linux, FreeBSD, and Windows,

respectively). Reclaiming such a small amount of memory does

not seem worth the trouble, i.e., it is unlikely to help resume

normal operation.

7. ACKNOWLEDGMENTS
The authors thank Abuthahir Habeeb Rahman, Fang Yang, and

Jonathan Leighton for their valuable discussions and comments.

8. REFERENCES
[1] Allman, M., Hayes, C., Kruse H., and Ostermann, S. 1997.

TCP Performance over Satellite Links. In Proceedings of

the 5th International Conference on Telecommunication

Systems. (Mar. 1997).

[2] Amer, P. D, and Ekiz, N., Improving TCP Throughput by

Not Tolerating Reneging (in progress)

[3] Blanton, J. T. 2008. A Study of Transmission Control

Protocol Selective Acknowledgement State Lifetime

Validity. Master of Science Thesis. (Nov. 2008). Ohio

University.

[4] Bruyeron, R., Hemon, B., and Zhang, L. 1998.

Experimentations with TCP Selective Acknowledgment.

SIGCOMM Comput. Commun. Rev. 28, 2 (Apr. 1998), 54-

77. DOI=10.1145/279345.279350

http://doi.acm.org/10.1145/279345.279350.

[5] CAIDA Internet Data – Passive Data Sources.

www.caida.org/data/passive.

[6] Ekiz, N. and Amer, P. D. 2010. A Model for Detecting

Transport Layer Data Reneging. In the 8th International

Workshop on Protocols for Future, Large-Scale & Diverse

Network Transports (Lancaster, PA, November 28-29 2010).

PFLDNeT '10.

[7] Ekiz, N., Rahman, A. H., and Amer, P. D. 2011.

Misbehaviors in TCP SACK Generation. SIGCOMM

Comput. Commun. Rev. 41, 2 (April 2011), 16-23.

DOI=10.1145/1971162.1971165

http://doi.acm.org/10.1145/1971162.1971165.

[8] Ekiz, N. 2012. Transport Layer Reneging. Doctoral

Dissertation. University of Delaware.

[9] Fall, K. and Floyd, S. 1996. Simulation-based Comparisons

of Tahoe, Reno and SACK TCP. SIGCOMM Comput.

Commun. Rev. 26, 3 (July 1996), 5-21.

DOI=10.1145/235160.235162

http://doi.acm.org/10.1145/235160.235162.

[10] Fisk, M. and Feng, W. 2001. Dynamic Right-Sizing: TCP

Flow-Control Adaptation. In Proceedings of the 14th

ACM/IEEE Supercomputing Conference. (Nov. 2001).

[11] Floyd, S., Mahdavi, J., Mathis, M., and Podolsky, M. 2000.

An Extension to the Selective Acknowledgement (SACK)

Option for TCP. RFC2883. (Jul. 2000).

[12] FreeBSD TCP Implementation.

www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet.

[13] Jacobson, V., Braden, R., and Borman, D. 1992. TCP

Extensions for High Performance. RFC1323. (May 1992).

[14] LBNL/ISCI Enterprise Tracing Project.

www.icir.org/enterprise-tracing.

[15] MacDonald, D. and Barkley, W. Microsoft Windows 2000

TCP/IP Implementation Details. Microsoft.

technet.microsoft.com/en-us/library/bb726981.aspx.

[16] Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A. 1996.

TCP Selective Acknowledgment Options. RFC2018. (Oct.

1996).

[17] Microsoft. 2003. Microsoft Windows Server 2003 TCP/IP

Implementation Details. (Jun. 2003).

[18] Natarajan, P., Ekiz, N., Yilmaz, E., Amer, P. D., Iyengar, J.,

and Stewart, R. 2008. Non-Renegable Selective

Acknowledgments (NR-SACKs) for SCTP. In IEEE

International Conference on Network Protocols. (October

2008), 187-196. DOI=

http://dx.doi.org/10.1109/ICNP.2008.4697037.

[19] Postel, J. 1981. Transmission Control Protocol. RFC793.

(Sep. 1981).

[20] Reneged TCP flows traces.

www.cis.udel.edu/~amer/PEL/reneging_traces.tar.

[21] Seth, S. and Ajaykumar, V. M. 2008. TCP/IP Architecture,

Design and Implementation in Linux, John Wiley & Sons.

[22] SIGCOMM 2008 Traces,

www.cs.umd.edu/projects/wifidelity/sigcomm08_traces

[23] Stewart, R. 2007. Stream Control Transmission Protocol.

RFC4960. (Sep. 2007).

[24] Wireshark. www.wireshark.org.

[25] Wireshark patch to view SACKs:

www.cis.udel.edu/~amer/PEL/Wireshark_TCP_flowgraph_p

atch.tar.

[26] Yilmaz, E., Ekiz, N., Natarajan, P., Amer, P. D., Leighton, J.

T., Baker, F., and Stewart, R. R. 2010. Throughput Analysis

of Non-Renegable Selective Acknowledgments (NR-SACKs)

for SCTP. Comput. Commun. 33, 16 (Oct. 2010), 1982-

1991. DOI=

http://dx.doi.org/10.1016/j.comcom.2010.06.028.

