
Concurrent Multipath Transfer Using SCTP Multihoming�

Janardhan R. Iyengar, Keyur C. Shah, Paul D. Amer

Protocol Engineering Lab, Computer and Information Sciences, University of Delaware

fiyengar, shah, amerg@cis.udel.edu

Randall Stewart

Cisco Systems, rrs@cisco.com

Abstract

We propose Concurrent Multipath Transfer (CMT) using
the Stream Control Transmission Protocol (SCTP). CMT
uses SCTP’s multihoming feature to simultaneously trans-
fer new data across multiple end-to-end paths to the re-
ceiver. Through ns-2 simulations, we observe significant
reordering at the receiver due to CMT. We identify three
negative side-effects of reordering introduced by CMT
that must be managed before the full performance gains
of parallel transfer can be achieved: (i) unnecessary fast
retransmissions at the sender, (ii) reduced cwnd growth
due to fewer cwnd updates at the sender, and (iii) more
ack traffic due to fewer delayed acks. We propose three
algorithms which augment and/or modify current SCTP
to counter these side-effects, and present initial simula-
tions indicating correctness of the proposed solutions. In
this initial work, we operate under the strong assumptions
that the receiver’s advertised window does not constrain
the sender, and that the bottleneck queues on the end-to-
end paths used in CMT are independent of each other.

1 Introduction

Multihomingamong networked machines and devices is
a technologically feasible and increasingly economical
proposition. A host ismultihomedif it can be addressed
by multiple IP addresses [5], as is the case when the
host has multiple network interfaces. Though feasibil-
ity alone does not determine adoption of an idea, mul-
tihoming can be expected to be the rule rather than the
exception in the near future. For instance, cheaper ac-
cess to the Internet may motivate a home user to have si-
multaneous connectivity through multiple ISPs. Wireless

�Prepared through collaborative participation in the Communications
and Networks Consortium sponsored by the U. S. Army Research Lab-
oratory under the Collaborative Technology Alliance Program, Coop-
erative Agreement DAAD19-01-2-0011. The U. S. Government is au-
thorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

devices may be simultaneously connected through multi-
ple access technologies. More and more machines will
have wired and wireless connections. The use of multi-
homing increases a host’s fault tolerance at an economi-
cally feasible cost. Multiple active interfaces also suggest
thesimultaneousexistence of multiple paths between the
multihomed hosts. In this paper, we propose using these
multiple paths between multihomed source and destina-
tion hosts throughConcurrent Multipath Transfer (CMT)
to increase throughput for a networked application.CMT
is the simultaneous transfer of new data from a source host
to a destination host via two or more end-to-end paths. In
our initial efforts, we assume that the bottleneck queues
on the end-to-end paths are independent of each other.

The current transport protocol workhorses, TCP and UDP,
are ignorant of multihoming; TCP allows binding to only
one network address at each end of a connection. At the
time TCP was designed, network interfaces were expen-
sive components, and hence multihoming was beyond the
ken of research. Increasing economical feasibility and a
desire for networked applications to be fault tolerant at
an end-to-end level, have brought multihoming within the
purview of the transport layer. In this paper, we investi-
gate CMT at transport layer, using transport layer multi-
homing. As opposed to the application layer, CMT at the
transport layer is desirable since the transport layer, being
the first end-to-end layer, has finer information about the
end-to-end path(s). Further, CMT at the application layer
would increase complexity at the transport-application in-
terface, due to continuous information exchange between
the transport and the application.

Two recent transport layer protocols, the Stream Control
Transmission Protocol (SCTP) [13], and the Datagram
Congestion Control Protocol (DCCP) [10] support mul-
tihoming at the transport layer. The motivation for mul-
tihoming in DCCP is mobility, while SCTP is driven by
a broader and more generic application base, which in-
cludes fault tolerance and mobility. Of the two, we use
SCTP primarily because it is a reliable protocol (and due

1

to our expertise with it). The issues presented in this pa-
per and the corresponding algorithms should be applica-
ble to CMT using other reliable, SACK-based transport
layer protocols; some issues are applicable to unreliable
protocols as well.

SCTP is an IETF standards track transport layer proto-
col. SCTP multihoming allows binding of one transport
layerassociation(SCTP’s term for a connection) to mul-
tiple IP addresses at each end of the association. This
binding allows an SCTP sender to send data to a mul-
tihomed receiver through different destination addresses.
Due primarily to insufficient research in the area, simul-
taneous transfer of new data to multiple destination ad-
dresses is currently not allowed in SCTP. In this paper,
we investigateCMT-SCTP– CMT at the transport layer
using SCTP as a reliable, multihome-aware, SACK-based
transport layer protocol.

In related work, [1] suggests ideas forload sharing with
SCTP, but requires that more metadata be added to the
packets. We believe that the SCTP (and TCP-SACK)
packets already contain sufficient information for the data
sender to infer the information that [1] explicitly codes as
metadata into the packets. Work also exists in application
layer load balancing, but we discuss CMT at the transport
layer. [4, 14] describe algorithms to eliminate the effects
of reordering due to the network. With CMT, we discuss
reordering introduced at the sender, not in the network.
The sender has more information about sender introduced
reordering, and can hence address this reordering more
effectively. [4, 14] can be applied to CMT independently,
since they address reordering introduced by the network.

In Section 2 we briefly describe SCTP mechanisms rel-
evant to CMT, our simulation setup and assumptions,
and the graphs presented here. In Sections 3, 4, and 5,
we present three negative side-effects of reordering with
CMT-SCTP, and propose algorithms to avoid these side-
effects. Though the simulations in these sections repre-
sent specific cases, they should be viewed as illustrations
of the larger issues described. Section 6 concludes the
paper with the current direction of our work.

2 Preliminaries

We first present an overview of select ideas and mech-
anisms used by SCTP, also in comparison with TCP to
highlight relevant similarities and differences.

SCTP is defined in RFC2960 [13] with changes and addi-

tions included in the SCTP Implementer’s Guide [12]. An
SCTP packet consists of one or more concatenated build-
ing blocks calledchunks: either control or data. For the
purposes of reliability and congestion control, each data
chunk in an association is assigned a unique Transmis-
sion Sequence Number (TSN), similar in function to se-
quence numbers in TCP. Since SCTP is message-oriented
and chunks are atomic, TSNs are associated only with
chunks of data, as opposed to a TCP bytestream which
associates a sequence number with each byte of data. In
our simulations, we assume one data chunk per packet for
ease of illustration; each packet thus carries, and is asso-
ciated with a single TSN.

SCTP uses a selective ack scheme similar to SACK
TCP. SCTP’s congestion control algorithms are based on
RFC2581 [2], and include SACK-based mechanisms for
better performance. Similar to TCP, SCTP uses three
control variables: receiver’s advertised window (rwnd),
sender’s congestion window (cwnd), and sender’s slow
start threshold (ssthresh). However, unlike TCP, SCTP’s
cwnd reflects how much data can be sent, not which data
to send. In SCTP, rwnd is shared across an association.
Unlike in TCP, SCTP uses a separate set of congestion
control parameters (cwnd and ssthresh, among others)per
destinationsince each destination address may result in a
different path to the destination. Currently, due to lack of
research in CMT, RFC2960 does not allow a sender to si-
multaneously sendnewdata on multiple paths; an SCTP
sender maintains aprimary destinationto which all trans-
missions of new data are sent (Note: retransmissions are
sent to alternate destinations).

Thus far, in our investigation of CMT, we assume inde-
pendent paths. Though we use disjoint paths from sender
to receiver in the simulation results presented in this pa-
per, our premise of independent paths means that the paths
have separate bottlenecks. Overlap in the paths is accept-
able, but bottlenecks are assumed independent. We also
assume that the rwnd is large enough to not constrain the
sender. This assumption enables us to study cwnd dy-
namics with CMT, without introducing the dynamics of
rwnd sharing across different paths. Our initial simula-
tions also do not have any loss. Even without loss, con-
ventional mechanisms such as cwnd growth and roundtrip
time (RTT) estimation mechanisms, are significantly af-
fected by CMT. We will relax these unrealistic constraints
in our continued efforts with CMT.

The simulations presented in this paper use the University
of Delaware’s SCTP module for ns-2 [3, 6]. The simu-
lation setup has two dualhomed hosts, senderA with lo-
cal addressesA1; A2, and receiverB with local addresses
B1; B2. The hosts are connected by two separate paths:

2

Path 1 (A1 � B1), and Path 2 (A2 � B2) whose end-to-
end available bandwidths are 0.2 Mbps and 1 Mbps, re-
spectively. The roundtrip propagation delay on both paths
is 70 milliseconds, which roughly reflects the U. S. coast-
to-coast delay. The CMT-SCTP sender (hostA) uses a
scheduling algorithm that sends new data to a destination
as soon as its corresponding cwnd allows new data to be
sent.

The simulation results described in the paper (Figures 1,
3, 5, and 7) all show cwnd evolution with time. The
figures have four curves, which show the CMT-SCTP
sender’s (1) cwnd evolution for destinationB1 (+), (2)
cwnd evolution for destinationB2 (�), (3) net cwnd evo-
lution (sum of (1) and (2)) (�), and (4) expected net cwnd
evolution. The expected net cwnd evolution curve is ob-
tained as the sum of the cwnd evolution curves of two
independent SCTP runs, usingB1 andB2 as the primary
destination, respectively.

We now introduce some notation which is used in this pa-
per; the meaning and usage of this notation will be clear
as the reader progresses through the paper. CMT-SCTP
refers to a host involved in CMT using current SCTP.
CMT-SCTPs, CMT-SCTPc, and CMT-SCTPd refer to a
host involved in CMT using SCTP with the SFR-CACC
algorithm (Section 3), the CMT Cwnd Update Algorithm
(Section 4) and the CMT Delayed Ack algorithm (Sec-
tion 5), respectively. Using more than one subscript sug-
gests inclusion of more than one algorithm. For instance,
CMT-SCTPsc refers to a CMT-SCTP host involved in
CMT using SCTP with the SFR-CACC and CMT Cwnd
Update algorithms.

3 Fast Retransmissions with CMT

When multiple paths being used for CMT have disparate
delay and bandwidth characteristics, additional packet re-
ordering is observed at the receiver. When reordering is
observed, a receiver sends gap reports through SACKs
to the sender, and the sender uses the gap reports to de-
tect loss through the fast retransmission procedure [2, 13].
With CMT, the observed reordering not due to loss can be
significant enough to trigger unnecessary fast retransmis-
sions [9], which has two negative consequences: (1) Since
each retransmission is assumed to occur due to a conges-
tion loss, the sender reduces its cwnd for the destination
on which the retransmitted data was outstanding, and (2)
the cwnd overgrowth problem [8] causes a sender’s cwnd
to grow aggressively for the destination on which the re-
transmissions are sent, due to acks received for original

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT-SCTP(B1)
CMT-SCTP(B2)

CMT-SCTP Net Cwnd
Expected Net Cwnd

Figure 1: CMT with current SCTP (CMT-SCTP): Evolu-
tion of the different cwnds

transmissions.

Figure 1 shows how unnecessary fast retransmissions can
significantly hinder net cwnd growth. The net cwnd
growth obtained by CMT-SCTP is much slower than by
even a single SCTP association on any of the two paths
(not shown). Note that all cwnd reductions seen are due
to unnecessary fast retransmissions; no packet loss was
simulated.

For our proposed solution, we suggest a different interpre-
tation of SACK information. Conventional understand-
ing of a SACK chunk in SCTP (or ack with SACK op-
tion in TCP) is that gap reports imply loss. The prob-
ability of a gap report indicating loss increases with the
number of gap reports received for the same TSN (or se-
quence numbers in TCP). With CMT, we suggest that the
SACK information be treated as a concise description of
the TSNs received thus far by the receiver. Hence, a loss
may not be immediately obvious from just SACK infor-
mation. In other words, gap reports do not necessarily
imply a lost TSN; the sender infers lost TSNs using infor-
mation in SACKs,andhistory information in the retrans-
mission queue.

The proposed solution to address the side-effect of incor-
rect cwnd evolution due to unnecessary fast retransmis-
sions is the Split Fast Retransmit Changeover Aware Con-
gestion Control (SFR-CACC) algorithm, shown in Fig-
ure 2. This algorithm is based on a previous incarnation
which could not handlecycling changeover[9], and hence
could not be directly applied to CMT. This revised SFR-
CACC is simpler, and is applicable to CMT as well as to
single changeover. SFR-CACC introduces avirtual queue
per destination within the sender’s retransmission queue.

3

On receipt of a SACK containing gap reports [Sender side behavior]:
1) initializecaccsawnewack= FALSE for all destination addresses;
2) for each TSNta being acked that has not been acked in any SACK thus fardo

(i) let da be the destination to whichta was sent;
(ii) setda:cacc saw newack = TRUE;

3) 8 destinationsdn, setdn:highest in sack for dest to highest TSN being newly acked ondn;
4) to determine whether missing report count for a TSNtm should be incremented:

(i) let dm be the destination to whichtm was sent;
(ii) if (dm:cacc saw newack = TRUE)and (dm:highest in sack for dest > tm) then

increment missing report count fortm;
elsedo not increment missing report count fortm;

NOTE 1: The HTNA algorithm [12] does not need to be applied separately,
since step (4) covers the function of the HTNA algorithm.

NOTE 2: This SFR-CACC algorithm requires that after retransmission due to a timeout,
the retransmitted TSN must be made ineligible for a further fast retransmission.

Figure 2: SFR-CACC Algorithm – Eliminating unnecessary fast retransmissions

The sender then uses SACK information in conjunction
with history information in the retransmission queue to
correctly deduce missing reports for a TSN by inferring
cumulative ack and gap report information per destina-
tion.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT-SCTP_s (B1)
CMT-SCTP_s (B2)

CMT-SCTP_s Net Cwnd
Expected Net Cwnd

Figure 3: Including the SFR-CACC algorithm (CMT-
SCTPs): Evolution of the different cwnds

In SFR-CACC, two variables are introduced per destina-
tion:

1. highestin sackfor dest - stores the highest TSN
acked per destination by the SACK being processed.

2. caccsawnewack- a flag used during the processing
of a SACK to infer the causative TSN(s)’s destina-
tion(s). Causative TSNs for a SACK are those TSNs
which caused the SACK to be sent.

Figure 3 shows cwnd evolution for CMT-SCTP includ-
ing the SFR-CACC algorithm, i.e., CMT-SCTPs. We see
that SFR-CACC eliminates the unnecessary fast retrans-
missions, reflected by the absence of unnecessary cwnd
reductions in the graph. The net cwnd growth obtained by
CMT-SCTPs while better, is still slower than expected;
this slower growth with CMT is addressed in the next sec-
tion.

4 Cwnd Updates with CMT

The cwnd evolution algorithm for SCTP [13] (and also
TCP [2]) dictates growth in cwnd only when a new cum
ack is received by the sender. In other words, when
SACKs with unchanged cum acks are received (say due
to reordering), a sender does not modify its cwnd. This
mechanism again reflects the conventional view that a
SACK which does not advance the cum ack indicates pos-
sibility of loss.

Figure 3 illustrates that there still remains reduced cwnd
growth with CMT-SCTPs. The net cwnd growth for
CMT-SCTPs is slower than expected. We will now dis-
cuss reasons for this behavior. Since a CMT-SCTPs re-
ceiver observes reordering, many SACKs are sent con-
taining new gap reports but not new cum acks. When
reported gaps are later filled by a new cum ack, cwnd
growth occurs, but only for the newly acked data. The data
previously acked through gap reports will not contribute
to cwnd growth. Even though data may have reached

4

Initialize find exp pseudocumack= TRUE at beginning of the association;
On receipt of a SACK [Sender side behavior]:

1) 8 destinations d, resetd.newpseudocumack= FALSE;
2) if the SACK carries a new cum ackthen

for each TSNtc being cum acked for the first time, that was not acked through prior
gap reportsdo

(i) let dc be the destination to whichtc was sent;
(ii) setdc:find exp pseudo cumack = TRUE;
(iii) set dc:new pseudo cumack = TRUE;

3) if gap reports are present in the SACKthen
for each TSNtp being processed from the retransmission queuedo

(i) let dp be the destination to whichtp was sent;
(ii) if (dp:find exp pseudo cumack = TRUE)and tp was not acked in the pastthen

dp:exp pseudo cumack = tp;
dp:find exp pseudo cumack = FALSE;

(iii) if tp is acked via gap reports for first timeand (dp:exp pseudo cumack = tp) then
dp:new pseudo cumack = TRUE;
dp:find exp pseudo cumack = TRUE;

4) for each destinationd do
if (d.newpseudocumack= TRUE) then update cwnd according to [12, 13];

Figure 4: CMT Cwnd Update Algorithm – Handling side-effect of reduced cwnd growth due to fewer cwnd updates

the receiver “in-order per destination”, without changing
the current SCTP cwnd management process, the updated
cwnd will not reflect this fact.

This inefficient behavior can be attributed to SCTP’s cur-
rent design principle that the cum ack in the SACK, which
tracks the latest TSN received in-order at the receiver, ap-
plies to an entire association, not per destination. TCP
and current SCTP use only one destination address at any
given time to transmit new data to, and hence, this de-
sign principle works fine. Since CMT-SCTP uses mul-
tiple destinations simultaneously, cwnd growth in CMT-
SCTP demands tracking the latest TSN received in-order
per destination. This information is not coded directly in
a SACK. A sender must infer cum ack per destination,
possibly through SACKs and history information in the
retransmission queue.

We also note from Figure 3 that of the constituent paths,
cwnd growth for destinationB2 (which is the higher band-
width path, Path 2) is stunted; in fact, the cwnd ceases to
increase after some initial growth. This behavior, which
may be specific to this illustration, is attributed to the fact
that though data gets through at a faster rate to destination
B2, the sender receives most of the new cum acks (and af-
ter a while all of the new cum acks) from destinationB1.
This causes the cwnd for destinationB2 to grow consid-

erably slower than expected.

We propose a cwnd growth algorithm to track the earli-
est outstanding TSNper destinationand update the cwnd,
even in the absence of new cum acks. The algorithm uses
SACKs and history information to deduce in-order deliv-
ery per destination. In understanding our proposed solu-
tion, again bear in mind that gap reports do not (necessar-
ily) imply a missing TSN; SACK information is treated
only as a concise description of the TSNs received thus
far by the receiver.

Figure 4 shows the proposed CMT Cwnd Update algo-
rithm. We propose the idea of apseudo-cumackthat tracks
the earliest outstanding TSN per destination at the sender.
The sender tracks changes in the pseudo-cumack of each
destination using SACKs and history information in the
retransmission queue. An advance in a pseudo-cumack
is used by a sender to trigger a cwnd update for the corre-
sponding destination. Thus, if a SACK causes the pseudo-
cumack for a destination to be advanced, then the cwnd
for that destination is updated, even when the actual cum
ack is not advanced. The pseudo-cumack should be used
only for cwnd updates; only the actual cum ack can be
used for dequeueing data in the sender’s retransmission
queue since a receiver can reneg on data that has been
acked through gap reports, but not cumulatively acked. In

5

the CMT Cwnd Update algorithm (Figure 4), three vari-
ables are introduced per destination:

1. exp pseudocumack - maintains next expected
pseudo-cumack at a sender.

2. newpseudocumack- flag used to indicate if a new
pseudo-cumack has been received.

3. find exp pseudocumack- flag used to find a new ex-
pected pseudo-cumack. This flag is set after a new
pseudo-cumack has been received.

Figure 5 shows net cwnd growth for CMT-SCTPsc. The
figure shows that the CMT Cwnd Update Algorithm re-
solves the side-effect of reduced cwnd growth due to
fewer cwnd updates. Of significant interest is the observa-
tion that the net cwnd obtained by CMT-SCTPsc exceeds
the expected net cwnd. This unexpected behavior is dis-
cussed at the end of Section 5.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT-SCTP_sc (B1)
CMT-SCTP_sc (B2)

CMT-SCTP_sc Net Cwnd
Expected Net Cwnd

Figure 5: Including the Cwnd Update Algorithm (CMT-
SCTPsc): Evolution of the different cwnds

5 Delayed Acks with CMT

SCTP specifies that a receiver should use the delayed
ack algorithm as given in RFC2581 while acknowledg-
ing data. Specifically, RFC2581 states that “Out-of-
order data segments SHOULD be acknowledged immedi-
ately...” With CMT’s frequent reordering, this rule causes
an SCTP receiver to frequently not delay acks. Hence a
negative side-effect of reordering with CMT is increased
ack traffic on the return path. To prevent this increase
in ack traffic, we suggest that a CMT-SCTP receiver ig-
nore the rule mentioned above. That is, a CMT-SCTP re-
ceiver does not immediately ack an out-of-order packet,
but delays the ack. Though this modification at the re-
ceiver eliminates the observed increase in ack traffic, the
rule from RFC2581 mentioned above has another purpose
which gets hampered.

According to RFC2851, “Out-of-order data segments
SHOULD be acknowledged immediately, in order to ac-
celerate loss recovery. To trigger the fast retransmit algo-
rithm, the receiver SHOULD send an immediate ... ACK
when it receives a data segment above a gap in the se-
quence space.” In SCTP, four acks with gap reports for a
missing TSN (i.e., four missing reports for a TSN) sug-
gest that the receiver received at least four data packets
sent after the missing TSN. Receipt of four missing re-
ports for a TSN triggers the fast retransmit algorithm at
the sender. In other words, the sender has areordering
threshold(or dupack thresholdin TCP terminology) of
four packets. Since a CMT-SCTP receiver cannot distin-
guish between loss and reordering introduced by CMT,
the modification suggested above by itself would cause
a CMT-SCTP receiver to delay acks even in the face of
loss. Consequently, when a loss does occur, fast retrans-
mit would be triggered at the CMT-SCTP sender only if
the receiver receives at least seven data packets sent after
a lost TSN. Thus, the effective reordering threshold at the
sender would increase to at least seven packets.

This effective increase in reordering threshold at the
sender can be countered by reducing the actual number
of acks required to trigger a fast retransmit at the sender.
In other words, if a sender can increment the number of
missing reports more accurately per ack received, fewer
acks will be required to trigger a fast retransmit. The re-
ceiver can provide more information in each ack to assist
the sender in accurately inferring the number of missing
reports per ack for a lost TSN.

We suggest that in each ack, a receiver report the count of
data packets received since the previous ack was sent. The
final algorithm to enable delayed acks with CMT is given
in Figure 6. This algorithm specifies a receiver’s behavior
on receipt of data, and also a sender’s behavior when the
missing report count for a TSN needs to be incremented.

Since SCTP (and TCP) acks are cumulative, loss of an
ack will result in loss of the data packet count reported by
the receiver, but the TSNs acked will be acknowledged by
the following ack. Receipt of this following ack can cause
ambiguity in inferring missing report count per destina-
tion. As shown in Figure 6, our algorithm conservatively
assumes a single missing report count per destination in
such ambiguous cases.

Figure 7 shows cwnd evolution for CMT-SCTPsc after
including the CMT Delayed Ack Algorithm, i.e., CMT-
SCTPscd. We observe that cwnd growth remains almost
the same as in Figure 5, but the amount of ack traffic (not
shown) is reduced with CMT-SCTPscd.

6

On receipt of a data packet [Receiver side behavior]:
1) delay sending an ack as given in [13], with the additional change that

acks should be delayed even if reordering is observed.
2) in each ack, report number of data packets received since sending of previous ack.

When incrementing missing report count through SFR-CACC:Step 4(ii) (Figure 2) [Sender side behavior]:
1) let tm be the TSN for which missing reports should be incremented;
2) letdm be the destination to whichtm was sent;
3) if (dm:cacc saw newack = TRUE) then

if (8 destinationsdo such thatdo 6= dm, do:cacc saw newack = FALSE) then
/** all newly acked TSNs were sent to the same destination astm **/

if (9 newly acked TSNstb, ta such thattb < tm < ta) then
(conservatively) increment missing report count fortm by 1;

else if(8 newly acked TSNsta, ta > tm) then
increment missing report count fortm by number of packets reported by receiver;

else/** Mixed SACK - newly acked TSNs were sent on multiple destinations **/
(conservatively) increment missing report count fortm by 1;

Figure 6: CMT Delayed Ack Algorithm – Handling side-effect of increased ack traffic

We still observe that net cwnd growth of CMT-SCTP ex-
ceeds expected net cwnd growth, a surprising positive
side-effect. To recap, the expected net cwnd is the sum
of the cwnd growth of two independent SCTP runs, each
using one of the two destination addresses as its primary
destination. The number of acks received in the CMT-
SCTPscd simulation run is the same as the total number
of acks received in both the SCTP simulation runs. In the
SCTP runs, each delayed ack can increase the cwnd by at
most one MTU during slow start, even if the ack acknowl-
edges more than one MTU worth of data.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10 12 14 16

cw
nd

 (
by

te
s)

time (seconds)

CMT-SCTP_scd (B1)
CMT-SCTP_scd (B2)

CMT-SCTP_scd Net Cwnd
Expected Net Cwnd

Figure 7: Including the Delayed Ack Algorithm (CMT-
SCTPscd): Evolution of the different cwnds

On the other hand, in the CMT-SCTPscd run, if a de-
layed ack simultaneously acknowledges an MTU of data
on each of the two destinations, the sender can simultane-
ously increase the two cwnds by one MTU each. Thus,
a single delayed ack that acknowledges the data flows
on the two paths can cause a net cwnd growth of two
MTUs. From analyzing the traces, we conclude that such
delayed acks which simultaneously contribute to the cwnd
growth of the two destinations cause the net cwnd growth
of CMT-SCTP to exceed the expected net cwnd growth.

Though the net cwnd growth exceeds expected net cwnd
growth, we argue that the sender is not aggressive. The
sender does not create bursts of data during slow start, and
tries to build up the ack clock as expected. The sender
is able to clock out more data due to delayed acks that
acknowledge data flows on multiple paths.

6 Conclusion and Future Work

We have identified three potential negative side-effects
of introducing CMT with SCTP, and propose algorithms
to avoid these side-effects. We show that initial simu-
lation results indicate correctness of the proposed algo-
rithms. The side-effects presented in this paper and the
corresponding algorithms should be applicable to CMT
using other reliable, SACK-based transport layer proto-
cols; some issues may be applicable to unreliable proto-
cols as well. We are currently in the process of testing

7

the robustness of the proposed algorithms using differ-
ent combinations of bandwidth, delay and lossrate on the
paths.

There are some other effects which we feel may demand
attention in our continued efforts. For instance, a posi-
tive synergy exists between the paths used for CMT; acks
sent later on the faster path can reach the sender prior to
acks sent earlier on the slower path. The acks received
on the faster path also carry information about data re-
ceived on the slower path due to cumulative information
contained in the acks. Thus, the slower path will experi-
ence a faster cwnd growth due to a faster return path, and
consequently a smaller effective RTT. We suspect that the
impact of this phenomenon would be higher when paths
with largely different end-to-end delays are used. This
phenomenon also suggests a negative side-effect – spuri-
ous timeouts may occur due to an inaccurate RTT estimate
for the slower path, requiring reevaluation of the RTT es-
timation algorithm. We plan to investigate the effects of
this phenomenon on RTT estimation at the sender.

We observe that inefficient sharing of rwnd at the sender
may reduce the performance benefits of CMT-SCTPscd.
We believe that a shared finite rwnd will become a perfor-
mance bottleneck, specifically when the paths have dif-
ferent loss rates. We plan to investigate rwnd reserva-
tion mechanisms per destination at the sender. We plan
on continuing work with CMT, starting with relaxation of
the constraint of a large rwnd. We then plan on incorpo-
rating an end-to-end technique for shared bottleneck de-
tection [7, 11] to enable the sender to dynamically decide
from either shared or distinct congestion control across
paths.

7 Disclaimer

The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Govern-
ment.

References

[1] A. Abd El Al, T. Saadawi, and M. Lee. Load
Sharing in Stream Control Transmission Protocol.
draft-ahmed-lssctp-00.txt, Internet Draft (work in
progress), Internet Engineering Task Force (IETF),
May 2003.

[2] M. Allman, V. Paxson, and W. Stevens. TCP Con-
gestion Control. RFC2581, Internet Engineering
Task Force (IETF), April 1999.

[3] UC Berkeley, LBL, USC/ISI, and Xerox Parc. ns-
2 documentation and software, Version 2.1b8, 2001.
http://www.isi.edu/nsnam/ns.

[4] E. Blanton and M. Allman. On Making TCP More
Robust to Packet Reordering.ACM Computer Com-
munication Review, 32(1), January 2002.

[5] R. Braden. Requirements for Internet hosts–
communication layers. RFC1122, Internet Engi-
neering Task Force (IETF), October 1989.

[6] A. Caro and J. Iyengar. ns-2 SCTP module, Version
3.2, December 2002. http://pel.cis.udel.edu.

[7] K. Harfoush, A. Bestavros, and J. Byers. Robust
Identification of Shared Losses Using End-to-End
Unicast Probes. InICNP 2000, Osaka, Japan, Oc-
tober 2000.

[8] J. Iyengar, A. Caro, P. Amer, G. Heinz, and R. Stew-
art. SCTP Congestion Window Overgrowth During
Changeover. InSCI 2002, Orlando, FL, July 2002.

[9] J. Iyengar, A. Caro, P. Amer, G. Heinz, and R. Stew-
art. Making SCTP More Robust to Changeover. In
SPECTS 2003, Montreal, Canada, July 2003.

[10] E. Kohler, S. Floyd, M. Handley, and J. Padhye.
Datagram Congestion Control Protocol (DCCP).
draft-ietf-dccp-spec-04.txt, Internet Draft (work in
progress), Internet Engineering Task Force (IETF),
June 2003.

[11] D. Rubenstein, J. Kurose, and D. Towsley. Detecting
Shared Congestion of Flows Via End-to-end Mea-
surement.IEEE/ACM Transactions on Networking,
10(3), June 2002.

[12] R. Stewart, L. Ong, I. Arias-Rodriguez, K. Poon,
P. Conrad, A. Caro, and M. Tuexen. Stream Con-
trol Transmission Protocol (SCTP) Implementer’s
Guide. draft-ietf-tsvwg-sctpimpguide-08.txt, Inter-
net Draft (work in progress), Internet Engineering
Task Force (IETF), March 2003.

[13] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang, and V. Paxson. Stream Control Transmis-
sion Protocol. RFC2960, Internet Engineering Task
Force (IETF), October 2000.

[14] M. Zhang, B. Karp, S. Floyd, and L. Peterson.
RR-TCP: A Reordering-Robust TCP with DSACK.
Technical Report TR-02-006, ICSI, July 2002.

8

