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ABSTRACT

We propose CMT - Concurrent Multipath Transfer us-
ing the Stream Control Transmission Protocol (SCTP). CMT
uses SCTP’s multihoming feature to simultaneously transfer
new data across multiple end-to-end paths to the receiver.
Through ns-2 simulations, we observe significant reordering
at the receiver due to CMT. We identify three negative
side-effects of reordering introduced by CMT that must
be managed before the full performance gains of parallel
transfer can be achieved: (i) unnecessary fast retransmissions
at the sender, (ii) reduced cwnd growth due to fewer cwnd
updates at the sender, and (iii) more ack traffic due to fewer
delayed acks. We propose three algorithms which augment
and/or modify current SCTP to counter these side-effects
and present initial simulations indicating correctness of the
proposed solutions. In this work, we operate under the strong
assumptions that the receiver’s advertised window does not
constrain the sender, and that the bottleneck queues on the
end-to-end paths used in CMT are independent of each
other.

Keywords: SCTP, CMT, Multihoming, Load Sharing, Trans-
port Protocols

1 INTRODUCTION

Multihoming among networked machines and devices is a
technologically feasible and increasingly economical propo-
sition. A host is multihomed if it can be addressed by multiple
IP addresses [7], as is the case when the host has multiple net-
work interfaces. Though feasibility alone does not determine
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adoption of an idea, multihoming can be expected to be the
rule rather than the exception in the near future. For instance,
cheaper access to the Internet may motivate a home user to
have simultaneous connectivity through multiple ISPs. Wire-
less devices may be simultaneously connected through multi-
ple access technologies. More and more machines will have
wired and wireless connections. The use of multihoming in-
creases a host’s fault tolerance at an economically feasible
cost. Multiple active interfaces also suggest the simultaneous
existence of multiple paths between the multihomed hosts.
In this paper, we propose using these multiple paths between
multihomed source and destination hosts through Concurrent
Multipath Transfer (CMT) to increase throughput for a net-
worked application. CMT is the simultaneous transfer of new
data from a source host to a destination host via two or more
end-to-end paths. In our initial efforts, we assume that the
bottleneck queues on the end-to-end paths are independent of
each other.

The current transport protocol workhorses, TCP and UDP, are
ignorant of multihoming; TCP allows binding to only one
network address at each end of a connection. At the time
TCP was designed, network interfaces were expensive com-
ponents, and hence multihoming was beyond the ken of re-
search. Increasing economical feasibility and a desire for
networked applications to be fault tolerant at an end-to-end
level, have brought multihoming within the purview of the
transport layer. In this paper, we investigate CMT at trans-
port layer, using transport layer multihoming. As opposed
to the application layer, CMT at the transport layer is desir-
able since the transport layer, being the first end-to-end layer,
has finer information about the end-to-end path(s). Further,
CMT at the application layer would increase complexity at
the transport-application interface, due to continuous infor-
mation exchange between the transport and the application.

Two recent transport layer protocols, the Stream Control
Transmission Protocol (SCTP) [22], and the Datagram Con-
gestion Control Protocol (DCCP) [16] support multihoming



at the transport layer. The motivation for multihoming in
DCCP is mobility, while SCTP is driven by a broader and
more generic application base, which includes fault tolerance
and mobility. Of the two, we use SCTP primarily because it is
a reliable protocol (and due to our expertise with it). The is-
sues presented in this paper and the corresponding algorithms
should be applicable to CMT using other reliable, SACK-
based transport layer protocols; some issues are applicable
to unreliable protocols as well.

SCTP is an IETF standards track transport layer protocol.
SCTP multihoming allows binding of one transport layer as-
sociation (SCTP’s term for a connection) to multiple IP ad-
dresses at each end of the association. This binding allows an
SCTP sender to send data to a multihomed receiver through
different destination addresses. Due primarily to insufficient
research in the area, simultaneous transfer of new data to mul-
tiple destination addresses is currently not allowed in SCTP.
In this paper, we investigate CMT at the transport layer using
SCTP as a reliable, multihome-aware, SACK-based transport
layer protocol.

In Section 2 we briefly describe SCTP mechanisms rele-
vant to CMT, our simulation setup and assumptions, and the
graphs presented here. In Sections 3, 4, and 5, we present
three negative side-effects of reordering with CMT, and pro-
pose algorithms to avoid these side-effects. Though the simu-
lations in these sections represent specific cases, they should
be viewed as illustrations of the larger issues described. Sec-
tion 6 concludes our work presented in this paper with the cur-
rent focus of our research. Section 7 describes related work
in the area of concurrent multipath transfer (or load sharing).

2 PRELIMINARIES

We first present an overview of select ideas and mechanisms
used by SCTP, also in comparison with TCP to highlight rel-
evant similarities and differences.

SCTP is defined in RFC2960 [22] with changes and additions
included in the SCTP Implementer’s Guide [21]. An SCTP
packet consists of one or more concatenated building blocks
called chunks: either control or data. For the purposes of re-
liability and congestion control, each data chunk in an asso-
ciation is assigned a unique Transmission Sequence Number
(TSN), similar in function to sequence numbers in TCP. Since
SCTP is message-oriented and chunks are atomic, TSNs are
associated only with chunks of data, as opposed to a TCP
bytestream which associates a sequence number with each
byte of data. In our simulations, we assume one data chunk
per packet for ease of illustration; each packet thus carries,
and is associated with a single TSN.

SCTP uses a selective ack scheme similar to SACK
TCP. SCTP’s congestion control algorithms are based on
RFC2581 [3], and include SACK-based mechanisms for bet-
ter performance. Similar to TCP, SCTP uses three control
variables: receiver’s advertised window (rwnd), sender’s con-
gestion window (cwnd), and sender’s slow start threshold
(ssthresh). However, unlike TCP, SCTP’s cwnd reflects how
much data can be sent, not which data to send. In SCTP,
rwnd is shared across an association. Unlike in TCP, SCTP
uses a separate set of congestion control parameters (cwnd
and ssthresh, among others) per destination since each des-
tination address may result in a different path to the destina-
tion. Currently, due to lack of research in CMT, RFC2960
does not allow a sender to simultaneously send new data on
multiple paths; an SCTP sender maintains a primary desti-
nation to which all transmissions of new data are sent (Note:
retransmissions are sent to alternate destinations).

Thus far, in our investigation of CMT, we assume indepen-
dent paths. Though we use disjoint paths from sender to re-
ceiver in the simulation results presented in this paper, our
premise of independent paths means that the paths have sep-
arate bottlenecks. Overlap in the paths is acceptable, but
bottlenecks are assumed independent. We also assume that
the rwnd is large enough to not constrain the sender. This
assumption enables us to study cwnd dynamics with CMT,
without introducing the dynamics of rwnd sharing across dif-
ferent paths. Our initial simulations also do not have any loss.
Even without loss, conventional mechanisms such as cwnd
growth and roundtrip time (RTT) estimation mechanisms, are
significantly affected by CMT. We will relax these unrealistic
constraints in our continued efforts with CMT.

The simulations presented in this paper use the University
of Delaware’s SCTP module for ns-2 [4, 8]. The simulation
setup has two dualhomed hosts, sender � with local addresses
��������� , and receiver � with local addresses �	������� . The
hosts are connected by two separate paths: Path 1 ( �	��
��� ),
and Path 2 ( ����
���� ) whose end-to-end available bandwidths
are 0.2 Mbps and 1 Mbps, respectively. The roundtrip propa-
gation delay on both paths is 70 milliseconds, which roughly
reflects the U. S. coast-to-coast delay. The CMT sender (host
� ) uses a scheduling algorithm that sends new data to a des-
tination as soon as its corresponding cwnd allows new data to
be sent.

The simulation results described in the paper (Figures 1, 3, 5,
and 7) all show cwnd evolution with time. The figures have
four curves, which show the CMT sender’s (1) cwnd evolu-
tion for destination �� ( � ), (2) cwnd evolution for destination
��� ( � ), (3) aggregate cwnd evolution (sum of (1) and (2))
( � ), and (4) expected aggregate cwnd evolution (–). The ex-



pected aggregate cwnd evolution curve is obtained as the sum
of the cwnd evolution curves of two independent SCTP runs,
using � � and � � as the primary destination, respectively.

We now introduce some notation which is used in this paper;
the meaning and usage of this notation will be clear as the
reader progresses through the paper. CMT refers to a host in-
volved in concurrent multipath transfer using current SCTP.
CMT � , CMT � , and CMT � refer to a host involved in CMT
using SCTP with the SFR-CACC algorithm (Section 3), the
Cwnd Update for CMT (CUC) Algorithm (Section 4) and the
Delayed Ack for CMT (DAC) algorithm (Section 5), respec-
tively. Using more than one subscript suggests inclusion of
more than one algorithm. For instance, CMT ��� refers to a
host using CMT with the SFR-CACC and CUC algorithms.

3 FAST RETRANSMISSIONS WITH CMT
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Figure 1: CMT with SCTP: Evolution of the different cwnds

When multiple paths being used for CMT have disparate de-
lay and bandwidth characteristics, additional packet reorder-
ing is observed at the receiver. When reordering is observed,
a receiver sends gap reports through SACKs to the sender, and
the sender uses the gap reports to detect loss through the fast
retransmission procedure [3, 22]. With CMT, the observed
reordering not due to loss can be significant enough to trigger
unnecessary fast retransmissions [14], which has two nega-
tive consequences: (1) Since each retransmission is assumed
to occur due to a congestion loss, the sender reduces its cwnd
for the destination on which the retransmitted data was out-
standing, and (2) the cwnd overgrowth problem [13] causes
a sender’s cwnd to grow aggressively for the destination on
which the retransmissions are sent, due to acks received for
original transmissions.

Figure 1 shows how unnecessary fast retransmissions can sig-

nificantly hinder cwnd growth. The aggregate cwnd growth
obtained by CMT is much slower than by even a single SCTP
association on any of the two paths (not shown). Note that all
cwnd reductions seen are due to unnecessary fast retransmis-
sions; no packet loss was simulated.

For our proposed solution, we suggest a different interpreta-
tion of SACK information. Conventional understanding of a
SACK chunk in SCTP (or ack with SACK option in TCP)
is that gap reports imply loss. The probability of a gap re-
port indicating loss increases with the number of gap reports
received for the same TSN (or sequence numbers in TCP).
With CMT, we suggest that the SACK information be treated
as a concise description of the TSNs received thus far by the
receiver. Hence, a loss may not be immediately obvious from
just SACK information. In other words, gap reports do not
necessarily imply a lost TSN; the sender infers lost TSNs us-
ing information in SACKs, and history information in the re-
transmission queue.

The proposed solution to address the side-effect of incorrect
cwnd evolution due to unnecessary fast retransmissions is the
Split Fast Retransmit Changeover Aware Congestion Control
(SFR-CACC) algorithm, shown in Figure 2. This algorithm
is based on a previous incarnation which could not handle
cycling changeover [14], and hence could not be directly ap-
plied to CMT. This revised SFR-CACC is simpler, and is ap-
plicable to CMT as well as to single changeover. SFR-CACC
introduces a virtual queue per destination within the sender’s
retransmission queue. The sender then uses SACK informa-
tion in conjunction with history information in the retrans-
mission queue to correctly deduce missing reports for a TSN
by inferring cumulative ack and gap report information per
destination.
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Figure 3: Including the SFR-CACC algorithm (CMT � ): Evo-
lution of the different cwnds



On receipt of a SACK containing gap reports [Sender side behavior]:
1) initialize cacc saw newack = FALSE for all destination addresses;
2) for each TSN

���
being acked that has not been acked in any SACK thus far do

(i) let � � be the destination to which
���

was sent;
(ii) set � ��� �	�
�	� ���� ������
���

= TRUE;
3) � destinations �
� , set ��� ������������� � �!� � �
��� "$#�% � �&� � to highest TSN being newly acked on �'� ;
4) to determine whether missing report count for a TSN

�)(
should be incremented:

(i) let � ( be the destination to which
��(

was sent;
(ii) if ( � (*� �	�
�	� ���� ������
���

= TRUE) and ( � (+�����,�����&� � �!� ���
��� "$#�% � ��� �.-/�0(
) then

increment missing report count for
��(

;
else do not increment missing report count for

� (
;

NOTE 1: The HTNA algorithm [21] does not need to be applied separately,
since step (4) covers the function of the HTNA algorithm.

NOTE 2: This SFR-CACC algorithm requires that after retransmission due to a timeout,
the retransmitted TSN must be made ineligible for a further fast retransmission.

Figure 2: SFR-CACC Algorithm – Eliminating unnecessary fast retransmissions

In SFR-CACC, two variables are introduced per destination:

1. highest in sack for dest - stores the highest TSN acked
per destination by the SACK being processed.

2. cacc saw newack - a flag used during the processing of
a SACK to infer the causative TSN(s)’s destination(s).
Causative TSNs for a SACK are those TSNs which
caused the SACK to be sent.

Figure 3 shows cwnd evolution for CMT including the SFR-
CACC algorithm, i.e., CMT � . We see that SFR-CACC elim-
inates the unnecessary fast retransmissions, reflected by the
absence of unnecessary cwnd reductions in the graph. The
aggregate cwnd growth obtained by CMT � while better, is
still slower than expected; this slower growth with CMT is
addressed in the next section.

4 CWND UPDATES WITH CMT

The cwnd evolution algorithm for SCTP [22] (and also
TCP [3]) dictates growth in cwnd only when a new cum ack
is received by the sender. In other words, when SACKs with
unchanged cum acks are received (say due to reordering), a
sender does not modify its cwnd. This mechanism again re-
flects the conventional view that a SACK which does not ad-
vance the cum ack indicates possibility of loss.

Figure 3 illustrates that there still remains reduced cwnd
growth with CMT � . The aggregate cwnd growth for CMT �

(CMT � [B1+B2] in Figure 3) is slower than expected. We will
now discuss reasons for this behavior. Since a CMT � receiver

observes reordering, many SACKs are sent containing new
gap reports but not new cum acks. When reported gaps are
later filled by a new cum ack, cwnd growth occurs, but only
for the newly acked data. The data previously acked through
gap reports will not contribute to cwnd growth. Even though
data may have reached the receiver “in-order per destination”,
without changing the current SCTP cwnd management pro-
cess, the updated cwnd will not reflect this fact.

This inefficient behavior can be attributed to SCTP’s current
design principle that the cum ack in the SACK, which tracks
the latest TSN received in-order at the receiver, applies to an
entire association, not per destination. TCP and current SCTP
use only one destination address at any given time to trans-
mit new data to, and hence, this design principle works fine.
Since CMT uses multiple destinations simultaneously, cwnd
growth in CMT demands tracking the latest TSN received in-
order per destination. This information is not coded directly
in a SACK. A sender must infer cum ack per destination, pos-
sibly through SACKs and history information in the retrans-
mission queue.

We also note from Figure 3 that of the constituent paths, cwnd
growth for destination � � (which is the higher bandwidth
path, Path 2) is stunted; in fact, the cwnd ceases to increase
after some initial growth. This behavior, which may be spe-
cific to this illustration, is attributed to the fact that though
data gets through at a faster rate to destination �� , the sender
receives most of the new cum acks (and after a while all of the
new cum acks) from destination �	� . This causes the cwnd for



Initialize find exp pseudo cumack = TRUE at beginning of the association;
On receipt of a SACK [Sender side behavior]:

1) � destinations d, reset d.new pseudo cumack = FALSE;
2) if the SACK carries a new cum ack then

for each TSN
�
� being cum acked for the first time, that was not acked through prior

gap reports do
(i) let � � be the destination to which

�
� was sent;

(ii) set � � � " �!� � � ��� � � ��� � # ����� ��� �
= TRUE;

(iii) set � � � ���� � ����� � # ����� ��� �
= TRUE;

3) if gap reports are present in the SACK then
for each TSN

�
	
being processed from the retransmission queue do

(i) let � 	 be the destination to which
��	

was sent;
(ii) if ( � 	'��" �,� � � ��� � ���� � # ����� �
���

= TRUE) and
�
	

was not acked in the past then
� 	�� � ��� � ����� � # ����� �
���

=
��	

;
� 	�� " �!� � � ��� � ����� � # ����� �
���

= FALSE;
(iii) if

� 	
is acked via gap reports for first time and ( � 	 � � ��� � ���� � # ����� �
���

=
� 	

) then
� 	 � ���� � � ��� � # ����� ��� �

= TRUE;
� 	 � " �!� � � ��� � ����� � # ����� �
���

= TRUE;
4) for each destination � do

if (d.new pseudo cumack = TRUE) then update cwnd according to [21, 22];

Figure 4: Cwnd Update gor CMT (CUC) Algorithm – Handling side-effect of reduced cwnd growth due to fewer cwnd updates

destination � � to grow considerably slower than expected.

We propose a cwnd growth algorithm to track the earliest out-
standing TSN per destination and update the cwnd, even in
the absence of new cum acks. The algorithm uses SACKs
and history information to deduce in-order delivery per des-
tination. In understanding our proposed solution, again bear
in mind that gap reports do not (necessarily) imply a missing
TSN; SACK information is treated only as a concise descrip-
tion of the TSNs received thus far by the receiver.

Figure 4 shows the proposed Cwnd Update for CMT (CUC)
algorithm. We propose the idea of a pseudo-cumack that
tracks the earliest outstanding TSN per destination at the
sender. The sender tracks changes in the pseudo-cumack of
each destination using SACKs and history information in the
retransmission queue. An advance in a pseudo-cumack is
used by a sender to trigger a cwnd update for the correspond-
ing destination. Thus, if a SACK causes the pseudo-cumack
for a destination to be advanced, then the cwnd for that des-
tination is updated, even when the actual cum ack is not ad-
vanced. The pseudo-cumack should be used only for cwnd
updates; only the actual cum ack can be used for dequeuing
data in the sender’s retransmission queue since a receiver can
reneg on data that has been acked through gap reports, but not
cumulatively acked. In the CUC algorithm (Figure 4), three

variables are introduced per destination:

1. exp pseudo cumack - maintains next expected pseudo-
cumack at a sender.

2. new pseudo cumack - flag used to indicate if a new
pseudo-cumack has been received.

3. find exp pseudo cumack - flag used to find a new ex-
pected pseudo-cumack. This flag is set after a new
pseudo-cumack has been received.

Figure 5 shows cwnd growth for CMT � � . The figure shows
that the CUC algorithm resolves the side-effect of reduced
cwnd growth due to fewer cwnd updates. Of significant inter-
est is the observation that the aggregate cwnd obtained by
CMT � � exceeds the expected aggregate cwnd. This unex-
pected behavior is discussed at the end of Section 5.

5 DELAYED ACKS WITH CMT

SCTP specifies that a receiver should use the delayed ack
algorithm as given in RFC2581 while acknowledging data.
Specifically, RFC2581 states that “Out-of-order data seg-
ments SHOULD be acknowledged immediately...” With
CMT’s frequent reordering, this rule causes an SCTP receiver
to frequently not delay acks. Hence a negative side-effect



On receipt of a data packet [Receiver side behavior]:
1) delay sending an ack as given in [22], with the additional change that

acks should be delayed even if reordering is observed.
2) in each ack, report number of data packets received since sending of previous ack.

When incrementing missing report count through SFR-CACC:Step 4(ii) (Figure 2) [Sender side behavior]:
1) let

�0(
be the TSN for which missing reports should be incremented;

2) let � ( be the destination to which
��(

was sent;
3) if ( � (+� ������� � �� ���  ��� �

= TRUE) then
if (� destinations ��� such that ��� �� � ( , ��� � ������� ���� ���  ��� �

= FALSE) then
/** all newly acked TSNs were sent to the same destination as

� (
**/

if ( � newly acked TSNs
���

,
� �

such that
���
	 � ( 	 � �

) then
(conservatively) increment missing report count for

� (
by 1;

else if (� newly acked TSNs
� �

,
� � - � (

) then
increment missing report count for

� (
by number of packets reported by receiver;

else /** Mixed SACK - newly acked TSNs were sent on multiple destinations **/
(conservatively) increment missing report count for

��(
by 1;

Figure 6: Delayed Ack for CMT (DAC) Algorithm – Handling side-effect of increased ack traffic
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Figure 5: Including the CUC algorithm (CMT ��� ): Evolution
of the different cwnds

of reordering with CMT is increased ack traffic on the re-
turn path. To prevent this increase in ack traffic, we suggest
that a CMT receiver ignore the rule mentioned above. That
is, a CMT receiver does not immediately ack an out-of-order
packet, but delays the ack. Though this modification at the re-
ceiver eliminates the observed increase in ack traffic, the rule
from RFC2581 mentioned above has another purpose which
gets hampered.

According to RFC2851, “Out-of-order data segments

SHOULD be acknowledged immediately, in order to accel-
erate loss recovery. To trigger the fast retransmit algorithm,
the receiver SHOULD send an immediate ... ACK when it re-
ceives a data segment above a gap in the sequence space.” In
SCTP, four acks with gap reports for a missing TSN (i.e., four
missing reports for a TSN) suggest that the receiver received
at least four data packets sent after the missing TSN. Receipt
of four missing reports for a TSN triggers the fast retransmit
algorithm at the sender. In other words, the sender has a re-
ordering threshold (or dupack threshold in TCP terminology)
of four packets. Since a CMT receiver cannot distinguish be-
tween loss and reordering introduced by a CMT sender, the
modification suggested above by itself would cause the re-
ceiver to delay acks even in the face of loss. Consequently,
when a loss does occur, fast retransmit would be triggered
at the CMT sender only if the receiver receives at least seven
data packets sent after a lost TSN. Thus, the effective reorder-
ing threshold at the sender increases to at least seven packets.

This effective increase in reordering threshold at the sender
can be countered by reducing the actual number of acks re-
quired to trigger a fast retransmit at the sender. In other
words, if a sender can increment the number of missing re-
ports more accurately per ack received, fewer acks will be
required to trigger a fast retransmit. The receiver can provide
more information in each ack to assist the sender in accu-
rately inferring the number of missing reports per ack for a
lost TSN.



We suggest that in each ack, a receiver report the count of
data packets received since the previous ack was sent. The
final algorithm to enable delayed acks with CMT is given in
Figure 6. This algorithm specifies a receiver’s behavior on
receipt of data, and also a sender’s behavior when the missing
report count for a TSN needs to be incremented.

Since SCTP (and TCP) acks are cumulative, loss of an ack
will result in loss of the data packet count reported by the
receiver, but the TSNs acked will be acknowledged by the
following ack. Receipt of this following ack can cause am-
biguity in inferring missing report count per destination. As
shown in Figure 6, our algorithm conservatively assumes a
single missing report count per destination in such ambigu-
ous cases.

Figure 7 shows cwnd evolution for CMT � � after including
the Delayed Ack for CMT (DAC) Algorithm, i.e., CMT � � � .
We observe that cwnd growth remains almost the same as in
Figure 5, but the amount of ack traffic (not shown) is reduced
with CMT � � � .

We still observe that aggregate cwnd growth of CMT � � � ex-
ceeds the expected aggregate cwnd growth, a surprising pos-
itive side-effect. To recap, the expected aggregate cwnd is
the sum of the cwnd growth of two independent SCTP runs,
each using one of the two destination addresses as its primary
destination. The number of acks received in the CMT � � � sim-
ulation run is the same as the total number of acks received in
both the SCTP simulation runs. In the SCTP runs, each de-
layed ack can increase the cwnd by at most one MTU during
slow start, even if the ack acknowledges more than one MTU
worth of data.
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Figure 7: Including the DAC algorithm (CMT � � � ): Evolution
of the different cwnds

On the other hand, in the CMT � � � run, if a delayed ack si-

multaneously acknowledges an MTU of data on each of the
two destinations, the sender can simultaneously increase the
two cwnds by one MTU each. Thus, a single delayed ack that
acknowledges the data flows on the two paths can cause an
aggregate cwnd growth of two MTUs. From analyzing the
traces, we conclude that such delayed acks which simultane-
ously contribute to the cwnd growth of the two destinations
cause the aggregate cwnd growth of CMT � � � to exceed the
expected aggregate cwnd growth.

Though the aggregate cwnd growth exceeds expected aggre-
gate cwnd growth, we argue that the sender is not aggressive.
The sender does not create bursts of data during slow start,
and tries to build up the ack clock as expected. The sender is
able to clock out more data due to delayed acks that acknowl-
edge data flows on multiple paths.

6 CONCLUSION AND FUTURE WORK

We have identified three negative side-effects of introducing
CMT with SCTP, and propose algorithms to avoid these side-
effects. We show that initial simulation results indicate cor-
rectness of the proposed algorithms. The side-effects pre-
sented in this paper and the corresponding algorithms should
be applicable to concurrent multipath transfer using other re-
liable, SACK-based transport layer protocols; some issues
may be applicable to unreliable protocols as well. With sim-
ulations, we are currently evaluating CMT ��� � using different
combinations of bandwidth, delay and lossrate on the paths.

There are some other effects which we feel may demand at-
tention in our continued efforts. For instance, a positive syn-
ergy exists between the paths used for CMT; acks sent later
on the faster path may reach the sender prior to acks sent ear-
lier on the slower path. The acks received on the faster path
also carry information about data received on the slower path
due to cumulative information contained in the acks. Thus,
the slower path will experience a faster cwnd growth due
to a faster return path, and consequently a smaller effective
RTT. We suspect that the impact of this phenomenon would
be higher when paths with largely different end-to-end delays
are used. This phenomenon also suggests a negative side-
effect – spurious timeouts may occur due to an inaccurate
RTT estimate for the slower path, requiring reevaluation of
the RTT estimation algorithm (see Figure 8). We plan to in-
vestigate the effects of this phenomenon on RTT estimation
at the sender.

We observe that inefficient sharing of rwnd at the sender
may reduce the performance benefits of CMT � � � . We believe
that a shared and limited receiver’s advertised window (rwnd)
will become a performance bottleneck, specifically when the
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Figure 8: Erroneous RTT Calculation at CMT Sender

paths have different loss rates. We plan to investigate different
rwnd sharing mechanisms. We are continuing work on CMT.
Currently, we are looking into different retransmission poli-
cies for a CMT sender. We then plan on investigating rwnd
sharing mechanisms, and then investigating end-to-end tech-
niques for shared bottleneck detection [12, 19] to enable the
sender to dynamically decide from either shared or distinct
congestion control across paths.

7 RELATED WORK

Mao et al. [17] extend RTP (Realtime Transport Protocol) to
support use of multiple paths in Multi-path Realtime Trans-
port Protocol (MRTP), an application layer protocol which
could use one of TCP, SCTP or UDP as transport. MRTP
specifies session establishment and maintenance mechanisms
and scheduling mechanisms over multiple paths, possibly us-
ing SCTP multihoming or UDP. The authors propose, as one
option, to use SCTP multihoming for simultaneously using
multiple paths. This work is complementary to CMT-SCTP
work, since the authors provide motivation and an applica-
tion that would benefit from using CMT-SCTP in a multipath
environment.

Al et al. [2] suggest ideas for load sharing with SCTP, but re-
quires that more metadata be added to the packets. We believe
that the SCTP (and TCP-SACK) packets already contain suf-
ficient information for the data sender to infer the information
that [2] explicitly codes as metadata into the packets. The au-
thors introduce new sequence numbers to maintain per-path
ordering information, but fail to suggest modified procedures
for mechanisms which are immediately affected, such as ini-
tialization of the per-path sequence numbers, association ini-

tialization and shutdown procedures with multiple sequence
numbering schemes, and response to reneging by a receiver.

Phatak [18] proposes distributing data at the network (IP)
layer transparent to the higher layers using IP-in-IP encap-
sulation. Under the questionable assumption that that end-to-
end delays are dominated by transmission delay, Phatak iden-
tifies conditions under which this mechanism would work
without triggering incorrect retransmission timeouts. Phatak
fails to adequately address key issues such as reordering and
relevance in propagation delay dominated paths or paths with
dynamically changing bandwidths and/or delays.

Blanton et al. [5], Zhang et al. [24] and Bohacek et al. [6]
describe algorithms to eliminate the effects of reordering due
to the network. With CMT, we discuss reordering introduced
at the sender, not in the network. The sender has more in-
formation about sender introduced reordering, and can hence
address this reordering more effectively. [5, 24] can be ap-
plied to CMT independently, since they address reordering
introduced by the network.

Gerla et al. [11] show that TCP Westwood [9], which uses a
different mechanism from TCP Reno [3] for bandwidth esti-
mation, is robust to packet reordering introduced by the net-
work. [11] also demonstrates that TCP Westwood is capable
of obtaining aggregated throughput when the network layer
uses multiple paths, but does not discuss performance in the
presence of a shared bottleneck. Gerla et al.[11] assume that
multiple paths at the network layer will be optimally utilized
by the routing infrastructure. There exist scenarios where the
end user has knowledge of and control over only the mul-
tihomed endpoints but not the intermediate routers, such as
in the Internet. In such cases the endpoint cannot dictate or
govern use of multiple paths in the network, but can certainly
distribute traffic over the multiple end-to-end paths that may
be available at the endpoint, thus motivating transport layer
CMT.

Research in link layer load balancing, also known as inverse
multiplexing or link aggregation [1, 10, 15, 20, 23] has gener-
ally not been end-to-end, and the operating conditions do not
represent the conditions that end-to-end CMT over the Inter-
net has to operate in.

8 DISCLAIMER

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government.
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