
 

Multistreamed Web Transport for Developing Regions 
Preethi Natarajan

1
, Paul. D. Amer

1
 and Randall Stewart

2
 

1
Protocol Engineering Lab, CIS Dept 

University of Delaware 

{nataraja, amer}@cis.udel.edu 

2
Internet Technologies Division 

Cisco Systems 

rrs@cisco.com

  

ABSTRACT 
A multistreamed web transport has the potential to reduce head-

of-line (HOL) blocking and improve response times in high 

latency Internet browsing environments, typical of developing 

regions. In our position paper [Natarajan 2006], we proposed a 

design for HTTP over the multistreamed Stream Control 

Transmission Protocol (SCTP), and implemented the design for 

non-pipelined (HTTP 1.0) transactions in the Apache web server 

and Firefox web browser. Since [Natarajan 2006], we have 

worked on adapting the Apache and Firefox implementations to 

handle HTTP 1.1 persistent, pipelined transfers over SCTP 

streams. Initial emulation results over high latency paths reveal 

that HTTP over multistreamed SCTP benefits from faster page 

downloads, and achieves visually perceivable improvements to 

pipelined objects’ response times. Movies comparing page 

downloads of HTTP/TCP vs. HTTP/SCTP streams can be found 

on the author’s website [Movies]. The promising results have 

motivated us to propose a low cost, easily realizable, gateway 

based HTTP over SCTP deployment solution to enhance web 

users’ browsing experience in developing regions*.  

Categories and Subject Descriptors 
C.2.5 [Computer-Communication Networks]: Local and Wide-

Area Networks – Internet; C.2.6 [Computer-Communication 

Networks]: Internetworking – Standards; C.4 [Performance of 

Systems]: Design Studies; Fault Tolerance; Reliability, 

availability and serviceability.  

General Terms 

Performance, Design, Human Factors. 

Keywords 

Developing regions, web response time, head-of-line blocking, 

transport layer multistreaming, SCTP. 

1. INTRODUCTION 
HTTP [RFC2616] requires a reliable transport protocol for end-

to-end communication. While historically TCP has been used for 

this purpose, HTTP does not require TCP. TCP offers a single 

sequential bytestream to a web server. In the case of HTTP 1.1 

with persistence and pipelining, the independent HTTP responses 

are serialized and sent sequentially over a single TCP bytestream. 

In addition, TCP provides in-order delivery within the bytestream 

─  if a transport protocol data unit (TPDU) containing HTTP 
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response i is lost in the network, successive TPDUs containing 

response i+n (n≥1) will not be delivered to the web client until 

the lost TPDU is retransmitted and received. This problem, known 

as head-of-line (HOL) blocking, is due to the fact that TCP cannot 

logically separate independent HTTP responses in its transport 

and delivery mechanisms.  

Transport layer multistreaming is the ability of a transport 

protocol to support streams, where each stream is a logical data 

flow with its own sequencing space. Within each stream, the 

transport receiver delivers data in-sequence to the application, 

without regard to data arriving on other streams. The Stream 

Control Transmission Protocol (SCTP) [RFC4960] is a 

standardized reliable transport protocol which provides transport 

layer multistreaming. Independent HTTP responses transmitted 

over different SCTP streams of the same association (SCTP’s 

term for transport layer connection) can be delivered to the web 

browser without HOL blocking, enabling the browser to 

download and render multiple HTTP responses in parallel, a.k.a. 

concurrent rendering. Concurrent rendering presents the user 

with more pieces of embedded web objects compared to 

traditional sequential rendering in HTTP/TCP, especially in 

scenarios where HTTP/TCP suffers from exacerbated HOL 

blocking. Interestingly, we discovered that a multistreamed 

transport enables concurrent rendering even under no loss 

conditions [Natarajan 2007].  

 

Figure 1: Internet Connectivity via VSAT Link 

While most web users in developed nations experience end-to-end 

delays in the order of 10’s of milliseconds, a large and growing 

portion of WWW users in developing nations experience much 

higher delays, ranging from 100’s of milliseconds to a few 

seconds. Such high delays transpire from low bandwidth and/or 

high propagation delay links, such as VSAT/3G/GPRS links. For 

a multitude of factors, VSAT solutions (Figure 1) are the most 

cost-effective and efficient method of providing Internet 

connectivity for commercial customers, governments and 

consumers in developing nations, and other areas where a land-

based infrastructure does not exist. The successful deployment of 



 

VSAT systems and services in more than 120 countries provides 

communities with access to information, knowledge, education 

and business opportunities, and is crucial to socio-economic 

development [Rahman 2002].  

The propagation delay from ground station to geostationary 

satellite to ground station is ~280ms [RFC3135]. Therefore, a 

VSAT link in an end-to-end path increases the RTT by at least 

560ms. The bandwidth-limited VSAT link is most likely the 

bottleneck in the transmission path. Any resulting queuing and 

transmission delays further increase the RTT. Also, the delay 

caused by shared channel access in VSAT links can increase the 

RTT on the order of a few seconds [RFC3135].  

Apart from propagation delays, sub-optimal traffic routing 

increases web response times for users in developing nations 

[Baggaley 2007, Cottrell 2006]. For example, sub-optimal routing 

for intra-African traffic results in Internet traffic traversing 

multiple VSAT links, and/or being routed through North America 

or Europe, leading to RTTs as high as 2.5 seconds [PingERb]. 

In this work, we focus on concurrent rendering’s ability to enable 

visually perceivable response time improvements in high latency 

browsing environments. According to [Akamai 2006], 4 seconds 

is the highest acceptable response time for retail web pages. Web 

page download times above 4 seconds interrupt the user 

experience, causing the user to leave the site or system. While 

web users over a high latency path must be more tolerant to 

response times, these users will prefer to use a system that 

provides better browsing experience. 

This paper is organized as follows. Section 2 gives an overview of 

the factors affecting HOL blocking in high latency environments. 

Section 3 briefly describes our HTTP over SCTP streams design 

and implementation. Section 4 presents our emulation results and 

observations. Section 5 proposes a realistic, low cost, gradual 

deployment solution that enables web users in developing regions 

to benefit from concurrent rendering. Section 6 discusses 

solutions proposed thus far to reduce web response times. Finally, 

Section 7 summarizes the work.  

2. HOL Blocking in High Latency Networks 
We consider the following model to understand HOL blocking in 

an HTTP 1.1 persistent, pipelined transfer containing N embedded 

objects (Figure 2): 

obji = object i, 0 ≤ i ≤ N. obj0 denotes index.html, obj1..N denote 

the embedded objects in index.html. 

reqi = time when the web client generates the HTTP GET request 

for obji, and writes the request to the transport layer. 

obji
k = kth piece of obji, 0 ≤ k ≤ M;  obji

0 denotes the response 

header, and obji
1..M denote the different pieces of obji. Note that M 

depends on the size of obji. In our emulations, we assume all 

objects are the same size (M).  

rspi
k = time when transport delivers obji

k to the web client.  

reni
k = time when web client renders obji

k on user’s monitor. 

proci
k = (reni

k – rspi
k) denotes the web client’s processing time for 

obji
k, such as decoding and rendering a JPEG image. 

In TCP’s sequential rendering, if obji
k is lost and recovered after x 

time units, pieces of obj j (j > i) could be HOL blocked for x time 

units. Assuming the web client is currently rendering obji
k-1, if (x 

< proci
k-1), this instance of HOL blocking does not affect response 

time for objj+1. Otherwise, the HOL blocking increases obji+1’s 

response time by (x - proci
k-1) time units. Thus, the duration of 

HOL blocking depends on the loss recovery period, x. 

In both TCP and SCTP, the duration of loss recovery based on 

retransmission after 3 duplicate acks (fast retransmit) takes ~1 

round-trip time (RTT), and retransmission after timeout expiration 

(timeout retransmit) takes between the initial retransmission 

timeout value (RTO) of 3 seconds and the maximum of (1RTT, 

min RTO (1 second)) [RFC2988]. Note that the loss recovery 

period increases as the path’s RTT increases. Also, the frequency 

of HOL blocking increases as the loss rate on the end-to-end path 

increases. Therefore, HOL blocking could be exacerbated in a 

high RTT, lossy path.  

Apart from end-to-end path characteristics, object sizes also 

influence the degree of HOL blocking in a pipelined transfer. As 

object size increases, the probability that a piece of the object is 

lost also increases. Hence, a larger object is more likely to block 

delivery of subsequent objects than a smaller object would. 

 

 

Figure 2: HTTP 1.1 Persistent, Pipelined Transfer Timeline 

3. HTTP OVER MULTISTREAMED SCTP 
SCTP was originally designed within the IETF SIGTRAN 

working group to address the shortcomings of TCP for telephony 

signaling over IP networks. SCTP has evolved into a general 

purpose IETF transport protocol. More than 25 SCTP 

implementations currently exist, including kernel implementations 

for most UNIX-like operating systems, user-space implementation 

for Windows, and implementations on proprietary platforms for 

Cisco, Nokia, Siemens, and other vendors. Nine interoperability 

workshops over the past seven years have fine-tuned these 

implementations [sctp.org].  

We designed HTTP/SCTP streams and initially implemented the 

same for non-pipelined (HTTP 1.0) transactions in the open 

source Apache web server and Firefox browser [Natarajan 2006].  



 

As mentioned in Section 1, a multistreamed transport’s primary 

contribution to improve web response times is concurrent rending 

which enables a browser to interleave the rendering of multiple 

pipelined objects in parallel. Since [Natarajan 2006], we have 

modified Firefox to handle concurrent rendering over SCTP 

streams. During this process, we discovered that HTTP/SCTP 

streams on FreeBSD enables concurrent rendering even under no 

loss conditions.  Details of this effort can be found in [Natarajan 

2007]. 

4. EVALUATION 
The following browsing environments, typical of current high 

latency Internet connections [PingERb] are considered for 

evaluation. Results for other high latency environments such as 

High Speed Download Packet Access (HSDPA) links are 

available in [Natarajan 2007]. 

1Mbps link with 350ms RTT (1Mbps.350ms): User in South Asia, 

accessing a web server in North America over land line. 

1Mbps link with 850ms RTT (1Mbps.850ms): User in Africa, 

sharing a VSAT link to access a web server in North America. 

1Mbps link with 1100ms RTT (1Mbps.1100ms): User in Africa, 

sharing a VSAT link to access a web server within Africa. The 

web traffic traverses at least 2 VSAT links. 

4.1 Setup 
The experiment setup, shown in Figure 3 uses three nodes running 

FreeBSD 6.1: (i) a client running Firefox browser, (ii) a server 

running Apache, and (iii) a node running Dummynet [Rizzo 

1997] connects the server and client. Dummynet’s traffic shaper 

configures a full-duplex link, with a large queue size between 

client and server. Both forward and reverse paths experience 

Bernoulli losses. The loss rates vary from 0%-10%, typical of the 

browsing environments we consider [PingERb].  

 

Figure 3: Emulation Setup 

To best comprehend the behavior of concurrent rendering, we 

compare an HTTP 1.1 persistent, pipelined transfer over a single 

TCP connection with an identical transfer over a single 

multistreamed SCTP association. RFC2616 recommends web 

browsers to open a maximum of 2 transport connections to the 

same server/proxy. Splitting a pipelined transfer over 2 transport 

connections reduces the number of pipelined responses 

transmitted per connection. Therefore, our emulations consider 

varying number of objects per pipelined transfer (see below).  

We have found disparities between the RFC2616 recommended 

number of open transport connections to a server, and current 

practice. In Firefox, the number of transport connections to the 

same server is a tunable parameter, imposed for each tab. Several 

tabs downloading pages from the same server have multiple (>2) 

transport connections open to that server, and the same could be 

true with other browsers. We note that existing research 

emphasizing the negative consequences of an application opening 

multiple TCP connections to the same server [RFC3124] also 

applies to an application using multiple SCTP associations. 

Additionally, web transfers over multiple transport connections 

reduce the number of “in flight” Transport Protocol Data Units 

(TPDUs) per connection. Insufficient number of duplicate acks to 

trigger fast retransmits increases the chances of timeout based loss 

recoveries in such connections [Balakrishnan 1998]. TPDU losses 

lower congestion window (cwnd) which further decreases the 

number of “in flight” TPDUs, contributing to more timeout 

recoveries. Timeout recoveries degrade response times, especially 

in low bandwidth/high latency environments found in developing 

regions. Therefore, improving loss recovery by increasing the 

number of in flight TPDUs per transport connection could be 

crucial to improve response times in lossy low bandwidth/high 

latency environments. 

At both client and server nodes, we assume that the transport layer 

send and receive buffers are not the bottlenecks for throughput; 

they are large enough to hold all data of pipelined transfer. 

Several web workload characterization studies reveal that the file 

size distribution on web servers and the transferred file size 

distribution are heavy-tailed (Pareto) [Williams 2005]. Every 

pipelined transfer in the emulations contains equal sized objects 

of sizes: 3KB, 5KB, 10KB, and 15KB. The number of objects in 

the pipelined transfers (N) also varies: 5, 10, and 15. We believe 

these values reflect current trends in web pages. For example, the 

number of embedded images in web pages of online services such 

as maps.google.com and flickr.com vary from 8 to 20. This 

number could be higher when clients browse via a proxy. 

Page download time has been a popular metric for web response 

times. However, page download times are unaffected by the 

concurrency level (number of streams) of a multistreamed web 

transport, and do not identify improvements such as reduced HOL 

blocking. Therefore the evaluations also consider individual 

object’s response times. 

4.2 Page Rendering Time 
A web page is completely rendered when Firefox draws the last 

embedded object in the pipelined transfer. The last piece of data 

always belongs to the last pipelined object in sequential rendering, 

but could be the last piece of any pipelined object in concurrent 

rendering. In both schemes, rendering the last piece of object 

depends on the throughput of the underlying transport connection.  

Page rendering time is considered the time from when the browser 

sends the first GET request (index.html), to the time when the 

complete page is rendered on the screen. Using terminology 

defined in Section 2,  

Page rendering time (T) = )( 0reqrenM

N −  

Our initial hypotheses about SCTP and TCP’s page rendering 

times were the following:  

(i) Both SCTP and TCP have similar values for initial congestion 

window (cwnd) [RFC2414, RFC4960], and employ delayed acks 

with a 200ms timer. Therefore, we expected both TCP and 

SCTP’s page rendering times to be identical during no losses.  

 



 

 

Figure 4: Page Rendering Times (1Mbps.350ms; N=10)  

 

Figure 5: Page Rendering Times (1Mbps.850ms; N=10)  

 

Figure 6: Page Rendering Times (1Mbps.1100ms; N=10)  

 

Figure 7: PPage Values for 1Mbps.350ms; N=10 

Figure 8: PPage Values for 1Mbps.850ms; N=10 

 

Figure 9: PPage Values for 1Mbps.1100ms; N=10

(ii) Both SCTP and TCP employ selective acknowledgements 

(SACKs). Unlike TCP whose SACK info is limited by the space 

available for TCP options, the size of SCTP’s SACK chunk is 

limited by the path MTU and contains more accurate information 

about lost TPDUs than TCP. Also, FreeBSD’s SCTP stack 

implements the Multiple Fast Retransmit algorithm (MFR), which 

reduces the number of timeout recoveries at the sender [Caro 

2006]. Therefore, as loss rates increase, we expected the enhanced 

loss recovery features to help SCTP perform better than TCP. 

Figures 4-6 show the page rendering times for N=10, averaged 

over 50 runs with 95% confidence level. Similar results for N=5 

and 15 can be found in [Natarajan 2007]. Interestingly, in all 3 

graphs, the results for the no loss case, contradict (i), and TCP’s 

rendering times are slightly (but not perceivably) better than 

SCTP’s. Detailed investigation revealed the following difference 

between the FreeBSD 6.1 SCTP and TCP implementations. SCTP 

implements Appropriate Byte Counting (ABC) [RFC4960, 

RFC3465] with L=1. During slow start, the sender increments 

cwnd by 1MSS bytes for each delayed ack. The TCP stack does 

packet counting which results in a similar cwnd increase (1MSS 

per ack) during delayed acks. However, a TCP receiver sends 

extra acks in the form of window updates, which causes the TCP 

sender to grow its cwnd more aggressively than SCTP. We expect 



 

this difference to disappear when we compare the results with a 

TCP stack that implements ABC with L=1. 

As loss rate increases, SCTP’s enhanced loss recovery offsets the 

difference in SCTP vs. TCP cwnd evolution. SCTP begins to 

perform better, and the difference is more pronounced for 

transfers containing larger objects (10K and 15K). For the 

1Mbps.1100ms case, the difference between SCTP and TCP page 

rendering times for 10K and 15K transfers is ~6 seconds for 3% 

loss, and as high as ~15 seconds for 10% loss. For the same types 

of transfers, the difference is ~8-10 seconds for 10% loss in 

1Mbps.350ms scenario. To summarize, SCTP’s page rendering 

times are comparable to TCP’s during no loss, and SCTP’s 

enhanced loss recovery enables faster page rendering times during 

lossy conditions. More importantly, the improvements are 

increasingly visually perceivable as the end-to-end delay, loss 

rate, and pipelined transfer size increase. 

4.3 Response Times for Pipelined Objects 
An SCTP association with one stream provides the same 

concurrency as a single TCP connection, and results in sequential 

rendering. An SCTP association with two streams provides twice 

as much concurrency as sequential rendering. A multistreamed 

association provides maximum concurrency for a pipelined 

transfer when the number of streams equals the number of objects 

in the transfer. Note that concurrent rendering remains unaffected 

by further increase in concurrency.  

We study the pipelined objects’ response time differences 

between the following two rendering schemes: (i) concurrent 

rendering with maximum concurrency, and (ii) sequential 

rendering. We use the following metric to capture the concurrency 

and progression in the appearance of pipelined objects on a user’s 

screen. Recall terminology from Section 2, 

req0 = time when browser sends HTTP GET request for 

index.html.  

(Preni – req0) = time elapsed from the beginning of the page 

download (req0) to the earliest time when at least P% of object i is 

rendered. 

In sequential rendering, a piece of object i is rendered only after 

objects 1 through i-1 are completely rendered. However, in 

concurrent rendering, pipelined objects are displayed independent 

of each other. We define PPage as the time elapsed from the 

beginning of page download to the earliest time when at least P% 

of all pipelined objects have been rendered on the screen, i.e.,  

PPage  = MAX [(Preni – req0); 1≤ i≤ N] 

Figures 7- 9 show the 25%Page, 50%Page, 75%Page and 100%Page 

values for N=10, averaged over 50 runs with 95% confidence 

level. Results for N=5 and 15 can be found in [Natarajan 2007]. 

We first observe that, as expected, 100%Page values are equal to 

the corresponding transport’s page rendering times (T). Also, the 

PPage times in concurrent rendering (shown by pink points in the 

graphs) are spread out vs. clustered together in sequential 

rendering (shown by blue points in the graphs). Concurrent 

rendering’s dispersion in PPage values signifies the parallelism in 

the appearance of all N=10 pipelined objects.  

Both sequential and concurrent rendering schemes’ values are 

comparable at 0% loss. As noted before, our implementation of 

HTTP/SCTP on FreeBSD enables concurrent rendering even 

under no loss conditions, causing concurrent rendering’s 25%Page 

to be slightly improved than sequential rendering’s (discussed in 

detail in [Natarajan 2007]).  As loss rate increases, the difference 

in two rendering schemes’ PPage values increase. Interestingly, 

we find that concurrent rendering displays 25%-50% of all 

pipelined objects much sooner (relative difference ~4 – 2 times 

for 15K, 10K and 5K objects) than sequential rendering. This 

result holds true for N=5 and 15 as well. In the following 

subsection, we demonstrate how this result can be leveraged to 

significantly improve response times for objects such as 

progressive images, whose initial 25%-50% contain sufficient 

information for the human eye to perceive the object contents.  

4.3.1 Concurrent Rendering and Progressive Images 
Progressive images (e.g., JPEG, PNG) are coded such that the 

initial TPDUs approximate the entire image, and successive 

TPDUs gradually improve the image’s quality/resolution. Via 

simple experiments, we demonstrate how concurrent rendering 

considerably improves user perception of progressive images. 

The example web page consists of an initial 1K image of our lab’s 

logo, followed by 10 progressive JPEG images of world leaders, 

each of size 10K. Both Firefox/TCP (sequential) and 

Firefox/SCTP (concurrent) rendering schemes download the 

example web page over the 56Kbps.1080ms setup. The full page 

downloads were captured as movies, and are available online at 

[Movies]. 

 

Figure 10a: Concurrent Rendering of Progressive Images 

(56Kbps.1080ms; 4.3% loss; t=7s) 

 

Figure 10b: Concurrent Rendering of Progressive Images 

(56Kbps.1080ms; 4.3% loss; t=12s) 

In the snapshots shown in Figure 10, both sequential (left) and 

concurrent (right) runs experienced ~4.3% loss. Both rendering 

schemes start the download at t=0s. At t=6s (not shown), the 

sequential scheme rendered a complete image followed by a good 

quality 2nd image, and the concurrent scheme displayed a 

complete image on the browser window. At t=7s (Figure 10a), 

sequential rendering displays 2 complete images, vs. concurrent 

rendering’s 7 images, at least 4 of which are of good quality. At 

time=12s (Figure 10b), sequential rendering displays 4 complete 

images, whereas concurrent rendering presents the user with all 10 

images of good quality. With concurrent rendering, the complete 

page is rendered only ~23s. From 12s to 23s, all 10 images get 

refined, but the value added by the refinement is negligible to the 

human eye. Therefore, the user “perceives” all images to be 



 

complete by t=12s, while the page rendering time is actually 23s. 

In the sequential run, all 10 images appear on the screen only 

~26s. 

5. APPLICATION TO DEVELOPING 

REGIONS 
While concurrent rendering’s initial results promise better 

response times for users in high latency environments, it is 

impractical to expect all web servers to provide web over 

multistreamed SCTP in the immediate future, without which users 

in developing regions cannot leverage concurrent rendering’s 

benefits. To address this issue, we propose a realistic, low cost, 

gateway based solution that translates HTTP/TCP to HTTP/SCTP 

streams for easier and localized deployment. 

The solution assumes that the web browser is capable of 

HTTP/SCTP, similar to the SCTP-enabled, freely available 

Firefox browser used in our experiments. The gateway is 

physically positioned between the server and client, such that, the 

gateway talks SCTP to clients over a high latency network, and 

talks TCP to web servers in the outside world. For the architecture 

shown in Figure 1, the gateway is positioned between the VSAT 

ground station (on the left) and the Internet cloud. We believe that 

the “proxy” configuration in the SCTP-enabled Apache server is a 

good starting point to achieve the gateway functionality at 

minimal monetary cost [apache.org].  

At a minimum, the gateway solution provides better page 

rendering times than HTTP/TCP. This solution can also be 

extended to further enhance pipelined objects’ response times. For 

example, the gateway could use batch image conversion software 

[Gimp] to convert embedded JPEG/PNG images to the 

corresponding progressive versions before forwarding them to the 

clients. The image conversion at the gateway takes on the order of 

milliseconds per image, and can improve the user’s response 

times on the order of seconds.  

6. RELATED WORK 
Significant interest exists for designing new transport and session 

protocols that better suit the needs of HTTP-based client-server 

applications than TCP. Several experts agree (for instance, see 

[Gettys 2002]) that the best transport scheme for HTTP would be 

one that supports datagrams, provides TCP compatible congestion 

control on the entire datagram flow, and facilitates concurrency in 

GET requests.  WebMUX [Gettys 1998] was one such session 

management protocol that was a product of the (now historic) 

HTTP-NG working group [HTTP-NG]. WebMUX proposed 

using a reliable transport protocol to provide web transfers with 

“streams” for transmitting independent objects. However, the 

WebMUX effort did not mature.  

[Ford 2007] proposes the use of Structured Stream Transport 

(SST) for web transfers. SST functions similar to SCTP 

multistreaming by extending TCP to offer multiple streams over a 

TCP-friendly transport layer connection. [Ford 2007] focuses on 

design and development of SST, while this work analyzes user 

perceivable response time improvements with a multistreamed 

web transport.  

Content Delivery Networks (CDNs) replicate web content across 

geographically distributed servers, and reduce response times for 

web users by redirecting requests to a server closest to the client.  

[Krishnamurthy 2001] confirms that CDNs reduce average web 

response times for web users along USA’s east coast for static 

content. Unfortunately, little research exists on the prevalence of 

CDNs for content providers and web users outside of developed 

nations. Also, CDNs cannot lessen web response times when 

latency is due to (i) propagation delay in the last hop, as is the 

case for VSAT and 3G-HSDPA links and/or (ii) sub-optimal 

traffic routing that increases end-to-end path RTTs for Internet 

traffic on the order of seconds. 

7. SUMMARY 
In this work we examined exacerbated HOL blocking in 

HTTP/TCP for web clients in developing regions connected by 

high latency networks. A multistreamed transport such as SCTP 

delivers independent objects without HOL blocking, enabling 

concurrent rendering and improved response times at the browser. 

Using our implementation of HTTP/SCTP in Apache and Firefox, 

we showed that SCTP’s enhanced loss recovery enables 

perceivable improvements to web page rendering times in high 

latency paths.  Also, concurrent rendering of pipelined objects 

results in remarkable improvements to response times, and the 

improvements are more promising for objects such as progressive 

images. We also discussed a low cost solution for easier 

deployment of HTTP/SCTP in high latency networks. 

The authors hope that our results raise interest for using 

HTTP/SCTP to improve Internet browsing experience for users in 

developing regions, and welcome further research and 

collaboration along these lines. 

8. DISCLAIMER 
The views and conclusions contained in this document are those 

of the authors and should not be interpreted as representing the 

official policies, either expressed or implied, of the Army 

Research Laboratory or the U. S. Government. 
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