

Multistreamed Web Transport for Developing Regions
Preethi Natarajan

1
, Paul. D. Amer

1
 and Randall Stewart

2

1
Protocol Engineering Lab, CIS Dept

University of Delaware

{nataraja, amer}@cis.udel.edu

2
Internet Technologies Division

Cisco Systems

rrs@cisco.com

ABSTRACT
A multistreamed web transport has the potential to reduce head-

of-line (HOL) blocking and improve response times in high

latency Internet browsing environments, typical of developing

regions. In our position paper [Natarajan 2006], we proposed a

design for HTTP over the multistreamed Stream Control

Transmission Protocol (SCTP), and implemented the design for

non-pipelined (HTTP 1.0) transactions in the Apache web server

and Firefox web browser. Since [Natarajan 2006], we have

worked on adapting the Apache and Firefox implementations to

handle HTTP 1.1 persistent, pipelined transfers over SCTP

streams. Initial emulation results over high latency paths reveal

that HTTP over multistreamed SCTP benefits from faster page

downloads, and achieves visually perceivable improvements to

pipelined objects’ response times. Movies comparing page

downloads of HTTP/TCP vs. HTTP/SCTP streams can be found

on the author’s website [Movies]. The promising results have

motivated us to propose a low cost, easily realizable, gateway

based HTTP over SCTP deployment solution to enhance web

users’ browsing experience in developing regions*.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-

Area Networks – Internet; C.2.6 [Computer-Communication

Networks]: Internetworking – Standards; C.4 [Performance of

Systems]: Design Studies; Fault Tolerance; Reliability,

availability and serviceability.

General Terms

Performance, Design, Human Factors.

Keywords

Developing regions, web response time, head-of-line blocking,

transport layer multistreaming, SCTP.

1. INTRODUCTION
HTTP [RFC2616] requires a reliable transport protocol for end-

to-end communication. While historically TCP has been used for

this purpose, HTTP does not require TCP. TCP offers a single

sequential bytestream to a web server. In the case of HTTP 1.1

with persistence and pipelining, the independent HTTP responses

are serialized and sent sequentially over a single TCP bytestream.

In addition, TCP provides in-order delivery within the bytestream

─ if a transport protocol data unit (TPDU) containing HTTP

* Prepared through collaborative participation in the Communication and Networks Consortium

sponsored by the US Army Research Lab under Collaborative Tech Alliance Program, Coop

Agreement DAAD19-01-2-0011. The US Gov’t is authorized to reproduce and distribute reprints

for Gov’t purposes notwithstanding any copyright notation thereon.

Supported by the University Research Program, Cisco Systems, Inc.

response i is lost in the network, successive TPDUs containing

response i+n (n≥1) will not be delivered to the web client until

the lost TPDU is retransmitted and received. This problem, known

as head-of-line (HOL) blocking, is due to the fact that TCP cannot

logically separate independent HTTP responses in its transport

and delivery mechanisms.

Transport layer multistreaming is the ability of a transport

protocol to support streams, where each stream is a logical data

flow with its own sequencing space. Within each stream, the

transport receiver delivers data in-sequence to the application,

without regard to data arriving on other streams. The Stream

Control Transmission Protocol (SCTP) [RFC4960] is a

standardized reliable transport protocol which provides transport

layer multistreaming. Independent HTTP responses transmitted

over different SCTP streams of the same association (SCTP’s

term for transport layer connection) can be delivered to the web

browser without HOL blocking, enabling the browser to

download and render multiple HTTP responses in parallel, a.k.a.

concurrent rendering. Concurrent rendering presents the user

with more pieces of embedded web objects compared to

traditional sequential rendering in HTTP/TCP, especially in

scenarios where HTTP/TCP suffers from exacerbated HOL

blocking. Interestingly, we discovered that a multistreamed

transport enables concurrent rendering even under no loss

conditions [Natarajan 2007].

Figure 1: Internet Connectivity via VSAT Link

While most web users in developed nations experience end-to-end

delays in the order of 10’s of milliseconds, a large and growing

portion of WWW users in developing nations experience much

higher delays, ranging from 100’s of milliseconds to a few

seconds. Such high delays transpire from low bandwidth and/or

high propagation delay links, such as VSAT/3G/GPRS links. For

a multitude of factors, VSAT solutions (Figure 1) are the most

cost-effective and efficient method of providing Internet

connectivity for commercial customers, governments and

consumers in developing nations, and other areas where a land-

based infrastructure does not exist. The successful deployment of

VSAT systems and services in more than 120 countries provides

communities with access to information, knowledge, education

and business opportunities, and is crucial to socio-economic

development [Rahman 2002].

The propagation delay from ground station to geostationary

satellite to ground station is ~280ms [RFC3135]. Therefore, a

VSAT link in an end-to-end path increases the RTT by at least

560ms. The bandwidth-limited VSAT link is most likely the

bottleneck in the transmission path. Any resulting queuing and

transmission delays further increase the RTT. Also, the delay

caused by shared channel access in VSAT links can increase the

RTT on the order of a few seconds [RFC3135].

Apart from propagation delays, sub-optimal traffic routing

increases web response times for users in developing nations

[Baggaley 2007, Cottrell 2006]. For example, sub-optimal routing

for intra-African traffic results in Internet traffic traversing

multiple VSAT links, and/or being routed through North America

or Europe, leading to RTTs as high as 2.5 seconds [PingERb].

In this work, we focus on concurrent rendering’s ability to enable

visually perceivable response time improvements in high latency

browsing environments. According to [Akamai 2006], 4 seconds

is the highest acceptable response time for retail web pages. Web

page download times above 4 seconds interrupt the user

experience, causing the user to leave the site or system. While

web users over a high latency path must be more tolerant to

response times, these users will prefer to use a system that

provides better browsing experience.

This paper is organized as follows. Section 2 gives an overview of

the factors affecting HOL blocking in high latency environments.

Section 3 briefly describes our HTTP over SCTP streams design

and implementation. Section 4 presents our emulation results and

observations. Section 5 proposes a realistic, low cost, gradual

deployment solution that enables web users in developing regions

to benefit from concurrent rendering. Section 6 discusses

solutions proposed thus far to reduce web response times. Finally,

Section 7 summarizes the work.

2. HOL Blocking in High Latency Networks
We consider the following model to understand HOL blocking in

an HTTP 1.1 persistent, pipelined transfer containing N embedded

objects (Figure 2):

obji = object i, 0 ≤ i ≤ N. obj0 denotes index.html, obj1..N denote

the embedded objects in index.html.

reqi = time when the web client generates the HTTP GET request

for obji, and writes the request to the transport layer.

obji
k = kth piece of obji, 0 ≤ k ≤ M; obji

0 denotes the response

header, and obji
1..M denote the different pieces of obji. Note that M

depends on the size of obji. In our emulations, we assume all

objects are the same size (M).

rspi
k = time when transport delivers obji

k to the web client.

reni
k = time when web client renders obji

k on user’s monitor.

proci
k = (reni

k – rspi
k) denotes the web client’s processing time for

obji
k, such as decoding and rendering a JPEG image.

In TCP’s sequential rendering, if obji
k is lost and recovered after x

time units, pieces of obj j (j > i) could be HOL blocked for x time

units. Assuming the web client is currently rendering obji
k-1, if (x

< proci
k-1), this instance of HOL blocking does not affect response

time for objj+1. Otherwise, the HOL blocking increases obji+1’s

response time by (x - proci
k-1) time units. Thus, the duration of

HOL blocking depends on the loss recovery period, x.

In both TCP and SCTP, the duration of loss recovery based on

retransmission after 3 duplicate acks (fast retransmit) takes ~1

round-trip time (RTT), and retransmission after timeout expiration

(timeout retransmit) takes between the initial retransmission

timeout value (RTO) of 3 seconds and the maximum of (1RTT,

min RTO (1 second)) [RFC2988]. Note that the loss recovery

period increases as the path’s RTT increases. Also, the frequency

of HOL blocking increases as the loss rate on the end-to-end path

increases. Therefore, HOL blocking could be exacerbated in a

high RTT, lossy path.

Apart from end-to-end path characteristics, object sizes also

influence the degree of HOL blocking in a pipelined transfer. As

object size increases, the probability that a piece of the object is

lost also increases. Hence, a larger object is more likely to block

delivery of subsequent objects than a smaller object would.

Figure 2: HTTP 1.1 Persistent, Pipelined Transfer Timeline

3. HTTP OVER MULTISTREAMED SCTP
SCTP was originally designed within the IETF SIGTRAN

working group to address the shortcomings of TCP for telephony

signaling over IP networks. SCTP has evolved into a general

purpose IETF transport protocol. More than 25 SCTP

implementations currently exist, including kernel implementations

for most UNIX-like operating systems, user-space implementation

for Windows, and implementations on proprietary platforms for

Cisco, Nokia, Siemens, and other vendors. Nine interoperability

workshops over the past seven years have fine-tuned these

implementations [sctp.org].

We designed HTTP/SCTP streams and initially implemented the

same for non-pipelined (HTTP 1.0) transactions in the open

source Apache web server and Firefox browser [Natarajan 2006].

As mentioned in Section 1, a multistreamed transport’s primary

contribution to improve web response times is concurrent rending

which enables a browser to interleave the rendering of multiple

pipelined objects in parallel. Since [Natarajan 2006], we have

modified Firefox to handle concurrent rendering over SCTP

streams. During this process, we discovered that HTTP/SCTP

streams on FreeBSD enables concurrent rendering even under no

loss conditions. Details of this effort can be found in [Natarajan

2007].

4. EVALUATION
The following browsing environments, typical of current high

latency Internet connections [PingERb] are considered for

evaluation. Results for other high latency environments such as

High Speed Download Packet Access (HSDPA) links are

available in [Natarajan 2007].

1Mbps link with 350ms RTT (1Mbps.350ms): User in South Asia,

accessing a web server in North America over land line.

1Mbps link with 850ms RTT (1Mbps.850ms): User in Africa,

sharing a VSAT link to access a web server in North America.

1Mbps link with 1100ms RTT (1Mbps.1100ms): User in Africa,

sharing a VSAT link to access a web server within Africa. The

web traffic traverses at least 2 VSAT links.

4.1 Setup
The experiment setup, shown in Figure 3 uses three nodes running

FreeBSD 6.1: (i) a client running Firefox browser, (ii) a server

running Apache, and (iii) a node running Dummynet [Rizzo

1997] connects the server and client. Dummynet’s traffic shaper

configures a full-duplex link, with a large queue size between

client and server. Both forward and reverse paths experience

Bernoulli losses. The loss rates vary from 0%-10%, typical of the

browsing environments we consider [PingERb].

Figure 3: Emulation Setup

To best comprehend the behavior of concurrent rendering, we

compare an HTTP 1.1 persistent, pipelined transfer over a single

TCP connection with an identical transfer over a single

multistreamed SCTP association. RFC2616 recommends web

browsers to open a maximum of 2 transport connections to the

same server/proxy. Splitting a pipelined transfer over 2 transport

connections reduces the number of pipelined responses

transmitted per connection. Therefore, our emulations consider

varying number of objects per pipelined transfer (see below).

We have found disparities between the RFC2616 recommended

number of open transport connections to a server, and current

practice. In Firefox, the number of transport connections to the

same server is a tunable parameter, imposed for each tab. Several

tabs downloading pages from the same server have multiple (>2)

transport connections open to that server, and the same could be

true with other browsers. We note that existing research

emphasizing the negative consequences of an application opening

multiple TCP connections to the same server [RFC3124] also

applies to an application using multiple SCTP associations.

Additionally, web transfers over multiple transport connections

reduce the number of “in flight” Transport Protocol Data Units

(TPDUs) per connection. Insufficient number of duplicate acks to

trigger fast retransmits increases the chances of timeout based loss

recoveries in such connections [Balakrishnan 1998]. TPDU losses

lower congestion window (cwnd) which further decreases the

number of “in flight” TPDUs, contributing to more timeout

recoveries. Timeout recoveries degrade response times, especially

in low bandwidth/high latency environments found in developing

regions. Therefore, improving loss recovery by increasing the

number of in flight TPDUs per transport connection could be

crucial to improve response times in lossy low bandwidth/high

latency environments.

At both client and server nodes, we assume that the transport layer

send and receive buffers are not the bottlenecks for throughput;

they are large enough to hold all data of pipelined transfer.

Several web workload characterization studies reveal that the file

size distribution on web servers and the transferred file size

distribution are heavy-tailed (Pareto) [Williams 2005]. Every

pipelined transfer in the emulations contains equal sized objects

of sizes: 3KB, 5KB, 10KB, and 15KB. The number of objects in

the pipelined transfers (N) also varies: 5, 10, and 15. We believe

these values reflect current trends in web pages. For example, the

number of embedded images in web pages of online services such

as maps.google.com and flickr.com vary from 8 to 20. This

number could be higher when clients browse via a proxy.

Page download time has been a popular metric for web response

times. However, page download times are unaffected by the

concurrency level (number of streams) of a multistreamed web

transport, and do not identify improvements such as reduced HOL

blocking. Therefore the evaluations also consider individual

object’s response times.

4.2 Page Rendering Time
A web page is completely rendered when Firefox draws the last

embedded object in the pipelined transfer. The last piece of data

always belongs to the last pipelined object in sequential rendering,

but could be the last piece of any pipelined object in concurrent

rendering. In both schemes, rendering the last piece of object

depends on the throughput of the underlying transport connection.

Page rendering time is considered the time from when the browser

sends the first GET request (index.html), to the time when the

complete page is rendered on the screen. Using terminology

defined in Section 2,

Page rendering time (T) =)(0reqrenM

N −

Our initial hypotheses about SCTP and TCP’s page rendering

times were the following:

(i) Both SCTP and TCP have similar values for initial congestion

window (cwnd) [RFC2414, RFC4960], and employ delayed acks

with a 200ms timer. Therefore, we expected both TCP and

SCTP’s page rendering times to be identical during no losses.

Figure 4: Page Rendering Times (1Mbps.350ms; N=10)

Figure 5: Page Rendering Times (1Mbps.850ms; N=10)

Figure 6: Page Rendering Times (1Mbps.1100ms; N=10)

Figure 7: PPage Values for 1Mbps.350ms; N=10

Figure 8: PPage Values for 1Mbps.850ms; N=10

Figure 9: PPage Values for 1Mbps.1100ms; N=10

(ii) Both SCTP and TCP employ selective acknowledgements

(SACKs). Unlike TCP whose SACK info is limited by the space

available for TCP options, the size of SCTP’s SACK chunk is

limited by the path MTU and contains more accurate information

about lost TPDUs than TCP. Also, FreeBSD’s SCTP stack

implements the Multiple Fast Retransmit algorithm (MFR), which

reduces the number of timeout recoveries at the sender [Caro

2006]. Therefore, as loss rates increase, we expected the enhanced

loss recovery features to help SCTP perform better than TCP.

Figures 4-6 show the page rendering times for N=10, averaged

over 50 runs with 95% confidence level. Similar results for N=5

and 15 can be found in [Natarajan 2007]. Interestingly, in all 3

graphs, the results for the no loss case, contradict (i), and TCP’s

rendering times are slightly (but not perceivably) better than

SCTP’s. Detailed investigation revealed the following difference

between the FreeBSD 6.1 SCTP and TCP implementations. SCTP

implements Appropriate Byte Counting (ABC) [RFC4960,

RFC3465] with L=1. During slow start, the sender increments

cwnd by 1MSS bytes for each delayed ack. The TCP stack does

packet counting which results in a similar cwnd increase (1MSS

per ack) during delayed acks. However, a TCP receiver sends

extra acks in the form of window updates, which causes the TCP

sender to grow its cwnd more aggressively than SCTP. We expect

this difference to disappear when we compare the results with a

TCP stack that implements ABC with L=1.

As loss rate increases, SCTP’s enhanced loss recovery offsets the

difference in SCTP vs. TCP cwnd evolution. SCTP begins to

perform better, and the difference is more pronounced for

transfers containing larger objects (10K and 15K). For the

1Mbps.1100ms case, the difference between SCTP and TCP page

rendering times for 10K and 15K transfers is ~6 seconds for 3%

loss, and as high as ~15 seconds for 10% loss. For the same types

of transfers, the difference is ~8-10 seconds for 10% loss in

1Mbps.350ms scenario. To summarize, SCTP’s page rendering

times are comparable to TCP’s during no loss, and SCTP’s

enhanced loss recovery enables faster page rendering times during

lossy conditions. More importantly, the improvements are

increasingly visually perceivable as the end-to-end delay, loss

rate, and pipelined transfer size increase.

4.3 Response Times for Pipelined Objects
An SCTP association with one stream provides the same

concurrency as a single TCP connection, and results in sequential

rendering. An SCTP association with two streams provides twice

as much concurrency as sequential rendering. A multistreamed

association provides maximum concurrency for a pipelined

transfer when the number of streams equals the number of objects

in the transfer. Note that concurrent rendering remains unaffected

by further increase in concurrency.

We study the pipelined objects’ response time differences

between the following two rendering schemes: (i) concurrent

rendering with maximum concurrency, and (ii) sequential

rendering. We use the following metric to capture the concurrency

and progression in the appearance of pipelined objects on a user’s

screen. Recall terminology from Section 2,

req0 = time when browser sends HTTP GET request for

index.html.

(Preni – req0) = time elapsed from the beginning of the page

download (req0) to the earliest time when at least P% of object i is

rendered.

In sequential rendering, a piece of object i is rendered only after

objects 1 through i-1 are completely rendered. However, in

concurrent rendering, pipelined objects are displayed independent

of each other. We define PPage as the time elapsed from the

beginning of page download to the earliest time when at least P%

of all pipelined objects have been rendered on the screen, i.e.,

PPage = MAX [(Preni – req0); 1≤ i≤ N]

Figures 7- 9 show the 25%Page, 50%Page, 75%Page and 100%Page

values for N=10, averaged over 50 runs with 95% confidence

level. Results for N=5 and 15 can be found in [Natarajan 2007].

We first observe that, as expected, 100%Page values are equal to

the corresponding transport’s page rendering times (T). Also, the

PPage times in concurrent rendering (shown by pink points in the

graphs) are spread out vs. clustered together in sequential

rendering (shown by blue points in the graphs). Concurrent

rendering’s dispersion in PPage values signifies the parallelism in

the appearance of all N=10 pipelined objects.

Both sequential and concurrent rendering schemes’ values are

comparable at 0% loss. As noted before, our implementation of

HTTP/SCTP on FreeBSD enables concurrent rendering even

under no loss conditions, causing concurrent rendering’s 25%Page

to be slightly improved than sequential rendering’s (discussed in

detail in [Natarajan 2007]). As loss rate increases, the difference

in two rendering schemes’ PPage values increase. Interestingly,

we find that concurrent rendering displays 25%-50% of all

pipelined objects much sooner (relative difference ~4 – 2 times

for 15K, 10K and 5K objects) than sequential rendering. This

result holds true for N=5 and 15 as well. In the following

subsection, we demonstrate how this result can be leveraged to

significantly improve response times for objects such as

progressive images, whose initial 25%-50% contain sufficient

information for the human eye to perceive the object contents.

4.3.1 Concurrent Rendering and Progressive Images
Progressive images (e.g., JPEG, PNG) are coded such that the

initial TPDUs approximate the entire image, and successive

TPDUs gradually improve the image’s quality/resolution. Via

simple experiments, we demonstrate how concurrent rendering

considerably improves user perception of progressive images.

The example web page consists of an initial 1K image of our lab’s

logo, followed by 10 progressive JPEG images of world leaders,

each of size 10K. Both Firefox/TCP (sequential) and

Firefox/SCTP (concurrent) rendering schemes download the

example web page over the 56Kbps.1080ms setup. The full page

downloads were captured as movies, and are available online at

[Movies].

Figure 10a: Concurrent Rendering of Progressive Images

(56Kbps.1080ms; 4.3% loss; t=7s)

Figure 10b: Concurrent Rendering of Progressive Images

(56Kbps.1080ms; 4.3% loss; t=12s)

In the snapshots shown in Figure 10, both sequential (left) and

concurrent (right) runs experienced ~4.3% loss. Both rendering

schemes start the download at t=0s. At t=6s (not shown), the

sequential scheme rendered a complete image followed by a good

quality 2nd image, and the concurrent scheme displayed a

complete image on the browser window. At t=7s (Figure 10a),

sequential rendering displays 2 complete images, vs. concurrent

rendering’s 7 images, at least 4 of which are of good quality. At

time=12s (Figure 10b), sequential rendering displays 4 complete

images, whereas concurrent rendering presents the user with all 10

images of good quality. With concurrent rendering, the complete

page is rendered only ~23s. From 12s to 23s, all 10 images get

refined, but the value added by the refinement is negligible to the

human eye. Therefore, the user “perceives” all images to be

complete by t=12s, while the page rendering time is actually 23s.

In the sequential run, all 10 images appear on the screen only

~26s.

5. APPLICATION TO DEVELOPING

REGIONS
While concurrent rendering’s initial results promise better

response times for users in high latency environments, it is

impractical to expect all web servers to provide web over

multistreamed SCTP in the immediate future, without which users

in developing regions cannot leverage concurrent rendering’s

benefits. To address this issue, we propose a realistic, low cost,

gateway based solution that translates HTTP/TCP to HTTP/SCTP

streams for easier and localized deployment.

The solution assumes that the web browser is capable of

HTTP/SCTP, similar to the SCTP-enabled, freely available

Firefox browser used in our experiments. The gateway is

physically positioned between the server and client, such that, the

gateway talks SCTP to clients over a high latency network, and

talks TCP to web servers in the outside world. For the architecture

shown in Figure 1, the gateway is positioned between the VSAT

ground station (on the left) and the Internet cloud. We believe that

the “proxy” configuration in the SCTP-enabled Apache server is a

good starting point to achieve the gateway functionality at

minimal monetary cost [apache.org].

At a minimum, the gateway solution provides better page

rendering times than HTTP/TCP. This solution can also be

extended to further enhance pipelined objects’ response times. For

example, the gateway could use batch image conversion software

[Gimp] to convert embedded JPEG/PNG images to the

corresponding progressive versions before forwarding them to the

clients. The image conversion at the gateway takes on the order of

milliseconds per image, and can improve the user’s response

times on the order of seconds.

6. RELATED WORK
Significant interest exists for designing new transport and session

protocols that better suit the needs of HTTP-based client-server

applications than TCP. Several experts agree (for instance, see

[Gettys 2002]) that the best transport scheme for HTTP would be

one that supports datagrams, provides TCP compatible congestion

control on the entire datagram flow, and facilitates concurrency in

GET requests. WebMUX [Gettys 1998] was one such session

management protocol that was a product of the (now historic)

HTTP-NG working group [HTTP-NG]. WebMUX proposed

using a reliable transport protocol to provide web transfers with

“streams” for transmitting independent objects. However, the

WebMUX effort did not mature.

[Ford 2007] proposes the use of Structured Stream Transport

(SST) for web transfers. SST functions similar to SCTP

multistreaming by extending TCP to offer multiple streams over a

TCP-friendly transport layer connection. [Ford 2007] focuses on

design and development of SST, while this work analyzes user

perceivable response time improvements with a multistreamed

web transport.

Content Delivery Networks (CDNs) replicate web content across

geographically distributed servers, and reduce response times for

web users by redirecting requests to a server closest to the client.

[Krishnamurthy 2001] confirms that CDNs reduce average web

response times for web users along USA’s east coast for static

content. Unfortunately, little research exists on the prevalence of

CDNs for content providers and web users outside of developed

nations. Also, CDNs cannot lessen web response times when

latency is due to (i) propagation delay in the last hop, as is the

case for VSAT and 3G-HSDPA links and/or (ii) sub-optimal

traffic routing that increases end-to-end path RTTs for Internet

traffic on the order of seconds.

7. SUMMARY
In this work we examined exacerbated HOL blocking in

HTTP/TCP for web clients in developing regions connected by

high latency networks. A multistreamed transport such as SCTP

delivers independent objects without HOL blocking, enabling

concurrent rendering and improved response times at the browser.

Using our implementation of HTTP/SCTP in Apache and Firefox,

we showed that SCTP’s enhanced loss recovery enables

perceivable improvements to web page rendering times in high

latency paths. Also, concurrent rendering of pipelined objects

results in remarkable improvements to response times, and the

improvements are more promising for objects such as progressive

images. We also discussed a low cost solution for easier

deployment of HTTP/SCTP in high latency networks.

The authors hope that our results raise interest for using

HTTP/SCTP to improve Internet browsing experience for users in

developing regions, and welcome further research and

collaboration along these lines.

8. DISCLAIMER
The views and conclusions contained in this document are those

of the authors and should not be interpreted as representing the

official policies, either expressed or implied, of the Army

Research Laboratory or the U. S. Government.

9. REFERENCES
[Akamai 2006] “Akamai and JupiterResearch Identify 4 Seconds

as the New Threshold of Acceptability for Retail Web Page

Response Times,” Press Release, Akamai Technologies Inc, Nov

2006. URL: http://www.akamai.com/html/about/press/releases/

2006/press_110606.html.

 [Baggaley 2007] J. Baggaley, B. Batpurev, J. Klaas, “Technical

Evaluation Report 61: The World-Wide Inaccessible Web, Part 2:

Internet routes,” International Review of Research in Open and

Distance Learning, 8(2), 2007.

[Balakrishnan 1998] H. Balakrishnan, V. N. Padmanabhan, S.

Seshan, M. Stemm, R. Katz, “TCP behavior of a busy Internet

server: Analysis and Improvements,” IEEE INFOCOM, San

Francisco, Mar 1998.

[Caro 2006] A. Caro, P. Amer, R. Stewart, "Retransmission

Policies for Multihomed Transport Protocols," Computer

Communications, 29(10), Jun 2006.

[Cottrell 2006] L. Cottrell, A. Rehmatullah, J. Williams, A. Khan,

"Internet Monitoring and Results for the Digital Divide,"

International ICFA Workshop on Grid Activities within Large

Scale International Collaborations, Sinaia, Romania, Oct 2006.

[Ford 2007] B. Ford, "Structured Streams: A New Transport

Abstraction," ACM SIGCOMM 2007, Kyoto, Japan, August

2007.

[Gettys 1998] J. Gettys, H. Nielsen, "The WebMUX Protocol,"

Internet Draft, August, 1998.

[Gettys 2002] J. Gettys, Email to End2end-interest Mailing List,

October, 2002. www.postel.org/pipermail/end2end-interest/2002-

October/002436.html.

[Gimp] The GNU Image Manipulation Program, URL:

www.gimp.org

[HTTP-NG] HTTP-NG working group (historic). URL:

www.w3.org/Protocols/HTTP-NG/

[Jurvansuu 2007] M. Jurvansuu, J. Prokkola, M. Hanski, P.

Perala, "HSDPA Performance in Live Networks," IEEE

International Conference on Communications (ICC) 2007,

Glasgow, Scotland, Jun 2007.

[Krishnamurthy 2001] B. Krishnamurthy, C. Wills, Y. Zhang,

"On the Use and Performance of Content Distribution Networks,"

ACM SIGCOMM Internet Measurement Workshop, California,

USA, Nov 2001.

[Movies] HTTP/SCTP vs. HTTP/TCP Movies, URL:

http://www.cis.udel.edu/~amer/PEL/leighton.movies/index.html

[Natarajan 2006] P. Natarajan, J. Iyengar, P. Amer, R. Stewart,

"SCTP: An Innovative Transport Layer Protocol for the Web,"

15th International conference on WWW, Edinburgh, May 2006.

[Natarajan 2007] P. Natarajan, P. Amer, R. Stewart, "The Case for

Multistreamed Web Transport in High Latency Networks,"

Technical Report #2007-342, Computer & Information Sciences

Dept, Univ. of Delaware, Oct 2007.

[PingERa] The PingER Project, URL: http://www-

iepm.slac.stanford.edu/pinger/

[PingERb] PingER Detail Reports, URL: http://www-

wanmon.slac.stanford.edu/cgi-wrap/pingtable.pl

[Rahman 2002] S. Rahman, M. Pipattanasomporn, "Alternate

Technologies for Telecommunications and Internet Access in

Remote Locations," 3rd Mediterranean Conference and

Exhibition on Power Generation, Transmission, Distribution and

Energy Conversion, Greece, Nov 2002.

[Rizzo 1997] L. Rizzo, "Dummynet: A simple approach to the

evaluation of network protocols," ACM Computer

Communications Review, 27(1):31-41, Jan 1997.

[Williams 2005] A. Williams, M. Arlitt, C. Williamson, K.

Barker, "Web workload Characterization: Ten years later," Book

Chapter in "Web Content Delivery," Springer, 2005. ISBN: 0-

387-24356-9.

