A Model for Detecting Transport Layer Data
Reneging

Nasif Ekiz, Paul D. Amer
Computer and Information Sciences Department
University of Delaware
Newark, Delaware 19716
{nekiz, amer}@udel.edu

Abstract—Data reneging occurs when a data receiver first SBKs
data, and later discards that data from its receivebuffer prior to
delivering it to the receiving application or sockébuffer. Today’s
reliable transport protocols such as TCP and SCTP aréesigned
to tolerate data reneging. We argue that this desigassumption is
wrong, in part based on a hypothesis that data remgng rarely if
ever occurs in practice. To support our hypothesisye present a
model for detecting instances of data reneging by nalyzing
traces of TCP traffic. Using this model, we will inestigate the
frequency of data reneging in Internet traces prowied by
CAIDA.

Keywords- Data Reneging; SACK; SCTP; TCP

. INTRODUCTION

Transmission Control Protocol (TCP) [1] uses seqaen
numbers and cumulative acknowledgments (ACKs) toeae
reliable data transfer. A TCP data receiver usapiesge
numbers to sort arrived data segments. Data agrivim
expected order, i.egrdered data, is cumulatively ACKed
(herein ACKed) to the data sender. The data seasrmes
the data receiver accepts responsibility of deiingeACKed
data to the receiving application, and deletesA@lKed data
from its send buffer, potentially even before thtta is
delivered to a receiving application.

The receive buffer consists of two types of datatemed
data which has been ACKed but not yet deliveredthi®
application, and out-of-order data that resultemhfrloss or
reordering in the network. A correct TCP data reeei
implementation must not delete ACKed data withowst f
delivering it to the receiving application since thata sender
may remove ACKed data from its send buffer.

The Selective Acknowledgment Option (SACK), spexdifi
in RFC 2018 [2], is an extension to TCP’s cumuatf&CK
mechanism, and is used by a data receiver to adkdges
(herein SACK) arrived out-of-order data to the datander.
The intent is that SACKed data do not need to ramemitted
during loss recovery. Previous research [3, 4,heed that
SACK improves TCP throughput when multiple lossesuo
within the same window.

Deployment of the SACK option in TCP connectiongiis
increasing trend. In 2001, 41% of the web servestet were
SACK-enabled [6]. In 2005, SACK-enabled web servers
increased to 68% [7]. All recent versions of FreBB&inux,
Mac OS, OpenBSD, OpenSolaris, Solaris, and Windmeate
SACK-enabled TCP connections by default.

Data receiver reneging (hereindata reneging) occurs when
a data receiver SACKs data, and later discardsdta from
its receiver buffer prior to delivering it to thesceiving
application or socket buffer. TCP is designed ferade data
reneging. Specifically RFC 2018 stateshé SACK option is
advisory, in that, while it notifies the data sender that the data
receiver has received the indicated segments, the data receiver
is permitted to later discard data which have been reported in
a SACK option”. Data reneging might happen, for example,
when an operating system needs to recapture psdyiou
allocated memory for another process, say to asdeatllock.

Because TCP is designed to tolerate data renegifg;P
data sender must retain copies of all transmitted th its send
buffer, even SACKed data, until they are ACKed. A,Hédata
reneging does occur, eventually the sender wiletiot on the
reneged data, delete all SACK information, andaretmit the
reneged data. The data transfer thus remains Ieeliab
Unfortunately if data reneging does not happen, K&dCdata
is wastefully stored in the send buffer until ACKed

We argue that SACK'’s design assumption to toledaia
reneging is wrong. This opinion is based on a bypsis that
data reneging rarely if ever occurs in practice] aesearch
demonstrating potential improved performance if 8&@ data
were not renegable.

To support our hypothesis, in this paper we preagenbdel
for detecting instances of data reneging by anadyhiaces of
TCP traffic. Our current research is applying thisdel to
Internet traces, with the plan to document theudeegy of data
reneging in practice.

In Section Il, we further present the motivationdetect
data reneging instances. Then Section Il predéetsnodel to
detect data reneging instances based on Interae¢ files
provided by Cooperative Association for Internet tdba

Analysis (CAIDA) [8]. Section IV presents resultswerifying
our model. Section V identifies several past metthagies to
infer TCP behavior, and Section VI presents ourgoimg
research to apply the model to TCP traces.

Data reneging is a transport layer behavior of tvhie
know little about its frequency of occurrence imgiice. This
section provides motivation to detect data renegistances in
reliable transport protocols such as TCP and SCTP.

DOESDATA RENEGINGHAPPEN?

To motivate the study of data reneging, we firsechéo
understand the potential gains of a transport pobtthat does
not tolerate data reneging. For that, we presenbriaf
background on Non-Renegable Selective Acks (NR-S#CK

[9].

A. NR-SACKs

employing SACKs (TCP, SCTP) suffer because of the
assumption that data reneging may happen.

If we can document that data reneging never happens
happens rarely, we can argue that reliable trahggotocols
should be modified to assume all selectively aakad is non-
renegable. As a simple example, assume that datgirey
happens rarely, say once in a million TCP flows.

Case A (current practice): TCP tolerates data riegetp
achieve the reliable data transfer of the singla daneging
connection. 999,999 non-reneging connectiquentially
waste main memory allocated for send buffer, ankieae
lower application throughput. One reneging coniecti
operates correctly.

Changing transport protocols that currently suppmtata
reneging into non-reneging transport protocols ireguminor
modification. First, the semantics for SACK are redped from
advisory to permanent. Second, if a data receiver does have to

NR-SACK is a new acknowledgment (ack) mechanisrh tharenege, we propose the data receiver must RESET the

has been proposed for the Stream Control Trangmissi
Protocol (SCTP) [10]. With the NR-SACK extension,2CTP
data receiver takes responsibility for selectivatked data
(NR-SACKed). In that case, an SCTP data senderonget
needs to retain copies of NR-SACKed data in itsddeuffer
until ACKed. Just as with ACKed data, NR-SACKedadean
be removed from the send buffer immediately onréoeipt of
the NR-SACK.

With NR-SACKs, the main memory allocated for thede
buffer is better utilized. Natarajan et al. [11]epent send
buffer utilization results for unordered data tfens over
SCTP under mild (~1-2%), medium (~3-4%) and heawg- (
9%) loss rates for NR-SACKs vs. SACKs. For the bedth-
delay parameters studied, the memory wasted bymésgu
SACKed data could be reneged was on average ~12086~
and ~30% for the given loss rates, respectively.

NR-SACKs also can
throughput. To send new data, in TCP and SCTP{aas#ender
is constrained by three factors: the congestion doun
(congestion control), the advertised receive windlew
control) and the send buffer. When the send bugfdull, no
new data can be transmitted even when congestidrflaw
control mechanisms allow. When NR-SACKed data
removed from the send buffer, new application data be
read and potentially transmitted.

Yilmaz et al. [12] investigate throughput improvertsefor
NR-SACK vs. SACK. The authors show that the thrgugh
achieved with NR-SACKs is alwaysthe throughput observed
with SACKs. For example, using NR-SACKSs, the thrioogt
for an unordered data transfer over SCTP is imptdoye~14%
for a data sender with 32KB send buffer under le@-1%)
loss rate.

B. Moativation to Sudy Data Reneging

Consider designing reliable transport protocolsNOT
tolerate data reneging. In such a case, the serifitrbu
utilization would be always optimal, and the apation
throughput could be improved for data transfers hwit
constrained send buffers. Current transport prdsoco

improve end-to-end application

connection.

Case B (proposed change): TCP does not tolerag dat
reneging. 999,999 non-reneging connections potgntiave
improved performance, and 1 reneging connecticabated.
(Given the dire situations requiring a receiver remege,
aborting the reneging connection is unlikely to makatters
worse.)

We hypothesize that few (if any) connections wik b
penalized, and the large majority of non-renegiognections
will potentially benefit from better send bufferilization and
increased throughput. The problem is that datagiagehas
never been studied by the research community. Nokapws
what percentage of connections renege. The keg isstdoes
data reneging occur or not?

. AMODELTODETECTDATA RENEGING

This section presents a model to passively deteta d
reneging instances occurring in Internet tracesstFiwe
present how a TCP or SCTP data sender infers eiataing in
sections IlIA and IlIB, respectively. In sectionl@] we
introduce our model to detect data reneging ingsnc

is

A. Detecting Data Reneging at TCP Data Sender

In the current TCP and TCP SACK specifications,GPT
data sender has no design to infer data renegingol€rate
data reneging, a TCP data sender keeps copies@K&Adata
in its send buffer until that data is ACKed. To iasfe reliable
data transfer, the following retransmission pol&gpecified in
[2] for a data sender in order to maintain reliadidga transfer
in the case of reneging.

For each segment in the send buffer that is SAClaed,
associated flag called “SACKed” is set. The segmenith
“SACKed” bit set are not retransmitted until a tooé
happens. At the timeout, the TCP data sender clalrs
“SACKed” information due to possible data renegirmd
retransmits the segment at the left edge of the baffer.

B. Detecting Data Reneging at SCTP Data Sender

SCTP, on the other hand, supports data renegiregtoat
at the data sender. Unlike TCP’s constrained nunopethe

C. A Mode to Detect Data Reneging at an Intermediate
Router

To detect an SCTP data reneging instance, a datierse

reported SACK options (4 at maximum), an SCTP datanfers the state of the data receiver's receivefebuhrough

receiver can generate SACK chunks with a large mund
SACK options. For example, for a path with MTU=3ies,
a SACK chunk can report 116 SACK options (20 bytedP
header, 12 bytes for SCTP common header, 16 byte3ACK
chunk header + 116 * 4 byte SACK options).

Thus, an SCTP data sender receives a more acaigate
of the data receiver's buffer, and can accurataefgri data
reneging by inspecting SACK options. If a new SA@iives
and previously SACKed data is not present, the S@aR
sender infers data reneging, and marks the rendgt for
retransmission.

Let us look at an example data reneging scenarkignl
and see how an SCTP data sender infers data rgriegietail.

For simplicity, the example assumes that 1 byteaié is
transmitted in each data packet. A data sendersgeackets 1
through 6 to a data receiver. Assume packet 2sis The data
receiver receives packets 3 through 6, and sendssAdhd
SACKs to notify the data sender about the out-dkordata.
When ACK 1 SACK 3-6 arrives at the data sender sthte of
the receive buffer is known to be as follows: oededata 1 is
delivered or deliverable to the receiving applizatiand out-
of-order data 3-6 is in the receive buffer.

Before packet 2 is retransmitted via a fast retrassion,
assume the data receiver’s operating system runsfamain
memory, and reneges all of the out-of-order dathénreceive
buffer. When packet 2's retransmission arrives hat tlata
receiver, ACK 2 is sent back to the data sendeh wib
SACKs.

When the data sender receives ACK 2, data reneging

detected. Previously SACKed out-of-order data 3-@at still
being SACKed. Data 3-6 is marked for retransmission

ACK 2 SACK 7-7 is sent when data 7 arrives out-afes.
This SACK also implies data reneging (for data 3f6)he
previous ACK 2 was lost.

-—
Receive Buffer

Data Sender Data Receiver

CITTTTT]
[1]
2] ACK 1 LT T[]
I CITTTT]
[3]
0 ACK 1, SACK 3-3 (3T T [[]
s ACK 1, SACK 3-4 [Isf4] [[]
0 ACK 1, SACK 3-5 [[aTals] T 1
ACK 1, SACK 3-6 [T3]a]5]e]]
OS needs memory, shrinks I 1
[z] the window and RENEGEs! |_ H

LT T]

ACK 2, SACK7-7

Figure 1. Detecting data reneging at SCTP data sender

ACKs and SACKs. Even though TCP has no mechanism t
detect data reneging instances, data reneginghoegacan be
detected by analyzing TCP ack traffic and inferriihg state of
the receiver’s buffer.

For a TCP data receiver, the state of the recaiffehbcan
be learned with the ACKs and SACKs, and updatedutj
the new acks observed at an intermediate routee. Sthte
consists of two items: a cumulative ACK value @ftK) and
a list of out-of-order data blocks (stateSACK bigcknown to
be in the receive buffer.

The example in Fig. 1 assumed all ack traffic asito the
data sender and data reneging is detected. Contide
example scenario when the ack traffic is monitobsd an
intermediate router. In the example, the data regeigstance
is detected when all of the acks arrive at the datader. In
practice, acks may traverse different paths, arié@ethe
intermediate router out-of-order, or get lost ire thetwork
before reaching the router.

Fig. 2 shows the same data transfer where onle thoks
are monitored at the intermediate rouddtith ACK 1 SACK
3-4, the state of receive buffer is as follows:evedl data 1 is
delivered or deliverable to the receiving applicat{state ACK
1) and out-of-order data 3-4 is in the receive é&ufétate SACK
3-4). ACK 1 SACK 3-6, updates the state by addingrad-
order data 5-6 as SACKed (stateSACK 3-6). When AZK
SACK 7-7 is received and compared to the stateeoéive
buffer (stateACK 1, stateSACK 3-6), an inconsisieris
observed and data reneging is detected since éat¬ in
the SACK option.

‘[-

[— . Router’s view of
Data Sender Router DataReceiver Receive Buffer Receive Buffer
CTITTTT]
= AT
= (T
= (I T 1T
. hewt,sackaa [[s14] | |] [[3T4] []
= CslaTel]
] }—"]
__—poxusackss [[alalsle] | [[sTalsle] |
OS needs memory, I 1
El — shrinks the window I:l' !
and RENEGEs! 2
/ACKZ,SACK7-7 [T [17 1i=[4]5]eli7
| Sepp————-

Figure 2. Detecting data reneging by an intermediate router

Even though the number of acks observed at the

intermediate router was limited, the state of theeive buffer
is the as for Fig. 1. Because a SACK option repaits
consecutive out-of-order segments as a block,ntezrmediate
router can infer the complete state of the reckiviéer most of
the time.

Constructing the state of the receive buffer asiate as
possible is based on the actual number of SACKKslat the

data receiver. If the number of SACK blocks is &ignore Fig. 3 presents our model for constructing and tipgahe
than four), it would be more difficult to construzh accurate SACK block state of the receive buffer. The statgibs
state at the intermediate router due to the fattabks may be construction with the first TCP ack observed in flogv. If the
lost or traverse different paths. ack has no SACK option(s), only the cumulative AGXue is

. . ecorded. If the ack includes SACK option(s), eacte is
Table 1 presents the number of SACK options in TCF(Ejldded as a SACK block to the state.

segments based on a few randomly selected trasefifdm the
Internet backbone captured in June 2008. Recafl #ia When the next TCP ack is observed, each reporta@kSA
maximum 4 SACK options can be included in a TCRrsag. option (corresponding to a New SACK Block (N) irgFB) is
For segments with 1, 2, or 3 SACK option(s), thePTi@zader compared with the SACK blocks in the receive buftate.
length is checked to determine if another SACKapttould Each SACK block in the receive buffer state is espnted by
have been appended to the TCP header. TCP segwidm$ Current SACK Block (C) in Fig. 3.

SACK options already have a full TCP header. Lbhas 0.5%
of the TCP segments that include SACK options dbhawe
enough space for another SACK option. AssumingT&alP
traces follow a similar pattern, the state of theeive buffer
can be constructed accurately most of the time.

The comparison of a new SACK block (N) and a curren
SACK block (C) is done both on the left (L) andhtigR)
edges. If each SACK block is thought of as a segraparison
of two sets must result in exactly one of four sase

1. Nis asuperset of CN(2)

TABLE I. NUMBER OF SACK OPTIONS INTCP SEGMENTS 2. Nis a proper subset of V(< C)
TCP segments with Enough space for Not enough space for 3. Nintersects with C, and N and C each have at [ehste
n SACK options another SACK option another SACK option of data not in C and N, respectively
n=1 ~88% 0% (NNC=B)ANN2C) AN L)
n=2 ~11% 0% 4. N does not intersect with GV N € = @).

Note that the above cases are mutually exclusigeh Ease

n=3 0.7% 0.20% is described in detail below. For examples givdoweassume

n=a n/a 0.15% that an initial receive buffer state as followse tbumulative
ACK value is 8 (stateACK 8), and there is one SABI&ck

Total number of TCP segments 780,798 (100%) (stateSACK 12-15) with left and right edges 12 atfl
respectively.

Case 1: When a new SACK block (e.g., SACK 12-13 is
superset of a current SACK block (e.g., stateSACKL1]), it
means more out-of-order data had been receiveeatidta
receiver. The current SACK block is updated toeetfthe new
SACK block. The update may be in terms of a lefgead
extension, a right edge extension or both. After tipdate
operation, the new SACK block is compared with the
following SACK blocks in the state. The reasonisgthat a
new SACK block may be the superset of a numberAgZIS

Our software to detect data reneging instand@hef- blocks in the receive buffer state due to the ilitgi of ack
detect) constructs the state of the receive buffer foPTows reordering and filling a gap between two SACK biack

that ack traffic is available, and analyses eaclP TOw to . :

detect data reneging. To infer data reneging, tate of the Case 2: When a new SACK block (e.g., SACK 12-13) is

receive buffer is compared with new acks to cheok f Proper subset of a current SACK block (e.g., s@@S 12-
15), the comparison implies data reneging (outrd&o data

consistency. When the comparison is consistentstage of . ;
receive buffer is updated. When the comparisondsrisistent, +4-15 had been deleted from the receive buffer)inatance of
data reneging is logged for future deeper analysis.

data reneging instance is detected and reported.

Even though the state of receive buffer may becate,
having a partial state of the out-of-order datatia receive
buffer would be still enough to detect data renggirstances.
The reasoning is that we expect a reneging datsvescwill
purge all of the out-of-order data as occurs ineB&D [13].
Since the intermediate router has state informagioout out-
of-order data, data reneging instance will be deteavhen
acks with no SACK option are observed.

We now describe how the state of receive buffer is. Casé 3: Data reneging is detected similarly whemea
constructed at an intermediate router. The receufter state SACK block (e.g., SACK 14-20) intersects with a rent
consists of two items: a cumulative ACK value antisaof ~ SACK block (stateSACK 12-15). Such a case wouldiltes
ordered out-of-order data blocks (SACK blocks) know be ~ When & data receiver purges some, but not allp@fout-of-
in the receive buffer. order data, and later receives more out-of-ord&. dehe new

ack informs the arrival of new out-of-order daté;2D, as well

The cumulative ACK value holds the highest ACK alu as the removal of previously SACKed data, 1278 state is
observed for the TCP flow, and is updated wherghdtiACK not updated (to catch more inconsistencies) urtig t
value is observed. When the cumulative ACK valugpdated, cumulative ACK is advanced beyond the SACK blodkat t
any SACK blocks less than the cumulative ACK vahre trigger data reneging instances.

deleted from the state.
eleted irom the state Case 4: If a new SACK block (e.g., SACK 22-25) and
current SACK block (e.g., stateSACK 12-15) do nmeiisect,

the new SACK block is compared with the next SAAKck

in the state. If the new SACK block reported igadigt with all

of the SACK blocks in the state, the new SACK blexkdded
to the receive buffer state. The updated receiftebatate is
now: stateACK 8, stateSAGKL2-15, stateSACK22-25.

The model detects data reneging instances only wbee
SACK options are included in the acks. If a dateeieer
purges all out-of-order data in the receive buffes, SACK
options are reported. In such a case, the recaifferbstate
would have a number of SACK blocks, and the newrapbrts
no SACK blocks (even though TCP options field hasugh
space to report at least one SACK optidrRgneg-detect also
infers such data reneging instances.

Data reneging may be inferred spuriously if acke ar
reordered before they arrive at the intermediat#ero To cope
with this ack reordering, a check is performed gsthe
protocol fields: IP ID and TCP ACK. When one ortbof the
fields (IP ID, TCP ACK) of an ack is smaller tha®tprevious
ack’s values, reordering is detected. Reordered ack not
used to update the receive buffer state; theyiaoaled.

IV. MODEL VERIFICATION

Reneg-detect was tested by analyzing 100s of TCP flows
from Internet traces provided by CAIDA. Initially seemed
that data reneging was happening frequently. Qosecl
inspection however, it turned out that the genenatif SACKs
in many TCP implementations was incorrect accortinBFC
2018. Sometimes SACK information that should haeerb
sent was not. Sometimes the wrong SACK informatias
sent. These misbehaviors wrongly gave the imprestiat
data reneging was occurring.

Our discovery led us to verify SACK generation bhabia
of TCP data receivers for a wide range of operasiygtems
[14]. Now, we are developing a methodology for fyéniy
SACK behavior, and we will apply the methodologyréport
misbehaving TCP stacks.

Based on the results of the model verification réffove
updatedReneg-detect to identify these misbehaviors and not
report them as instances of data reneging.

V. RELATED WORK

Previous studies employed passive measurementseo i
specific protocol behavior by analyzing large numbeTCP
flows. In those passive measurement studies, tetletace
files were analyzed to infer the specific TCP bétwav

Paxson [15] presentspanaly, a tool which automatically
analyses the correctness of TCP implementationsgpecting
traces collected for bulk data transfers.

Fraleigh [16] describes the architecture and cditiabiof
the IPMON system which is used for IP monitoringatint IP
backbone network. IPMON consists of passive moinigor
entities, a data repository to store collectedetrfiles and an
offline analysis platform to analyze the collectddta. The
authors analyze individual flows and traffic gereda by
different protocols and applications and preseaistics such
as traffic load (weekly and daily), traffic load lapplications

(web, mail, file transfer, p2p, streaming), traffi@d in flows.
Also TCP related statistics such as packet siztrilwlion,
RTT, out-of-sequence rate, and delay distributiome
presented.

In Jaiswal [17], the authors introduce a passive
measurement technique to infer and keep track nfiestion
window (cwnd) and round trip time (RTT) of a TCPtala
sender. To infer data senders’ cwnd, the authonstogct a
replica of the data sender's TCP state using defistate
machine (FSM). FSM is updated through ACKs and
retransmissions seen at the data collection point.

VI. WORK IN PROGRESS

To detect data reneging instances, we need T@ fin
which some SACK options are observed during thea dat
transfer. For that, we are filtering CAIDA tracesdbtain only
TCP flows with SACK options to analyze them wieneg-
detect.

The summary of Internet trace files provided by BAlby
(year/data collection machine/number of traceslabi) is as
follows:

1. 2008/equinix-chicago/10
2008/equinix-sanjose/6
2009/equinix-chicago/12

4,

2009/equinix-sanjose/12
5. 2010/equinix-chicago/3
6. 2010/equinix-sanjose/3

The total duration of each trace is 1 hour and istssf 60
traces each 1 minute long. In our lab we do noehawough
computation power to analyze all of the traces ioiex.
Instead we are planning to analyze TCP flows frathedata
set with total duration of 2-3 minutes. The minutebe used
will be chosen randomly.

We are also looking for TCP trace files from ottlemains
such as wireless networks where the loss rategisehi Our
goal is to analyze millions of TCP flows usifgneg-detect,
and document the frequency of data reneging ineanBased
on these empirical observations, we will provide tfirst
documentation of transport layer data renegingénliterature.

ACKNOWLEDGMENTS

The authors would like to thank Abuthahir Habeeb
Rahman, Jonathan Leighton, Aasheesh Kolli and Edgikan
for the valuable discussions and comments whilesld@ing
this paper.

REFERENCES
[1] J. Postel, “Transmission Control Protocol”, RFC ,79/81.
[2] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, “TCRel&tive
Acknowledgment Options”, RFC 2018, 10/96.
[3] K. Fall, S. Floyd, “Simulation-based comparisonsTahoe, Reno, and

SACK TCP”, ACM Computer Communication Review, 26(3)96, pp.
5-21.

(4]

(5]
6l
(7]

8l

19

R. Bruyeron, B. Hemon, L. Zhang, “Experimentationsth TCP

selective acknowledgment”, ACM Computer CommunaatReview,

28(2), 4/98, pp. 54-77.

M. Allman, C. Hayes, H. Kruse, S. Ostermann, "T@®fgrmance over
satellite links", 5th Int’l Conf on Telecommunicatis Systems, 3/97.

J. Padhye, S. Floyd, “On inferring TCP behaviorCM SIGCOMM,

6/01, pp. 287-298.

A. Medina, M. Allman, S. Floyd, “Measuring the ewtibn of transport
protocols in the internet”, ACM SIGCOMM Computer i@munication
Review, 4/05.

The CAIDA Anonymized 2008, 2009, 2010
Colleen Shannon, Emile Aben, KC Claffy,
http://www.caida.org/data/passive/

N. Ekiz, P. Amer, P. Natarajan, R. Stewart, J. §ggn “Non-renegable
selective acks (NR-SACKs) for SCTP,” IETF Interrizxaft, (work in

progress) http://tools.ietf.org/id/draft-natarafsmwg-sctp-nrsack-06.txt

Internet EBmC
Dan Andarse

[10] R. Stewart, “Stream Control Transmission Protod@FC 4960, 9/07.

Moveto

A

R R R
Left Both Right Same Right Both Left
edge edges edge block edge edges edge
’ shrinks shrink extends shrinks extend extends
< = > <=
R R R R
yes
. Rightedge :
Missing Rightedge - Adda
block || xiendsleft shrinks left | | "SI0 new
edge shrinks edge extends block
no
—

A J

nextC
block

<

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C.L:

P. Natarajan, N. Ekiz, E. Yilmaz, P. Amer, J. lyandR. Stewart, “Non-
renegable selective acks (NR-SACKSs) for SCTP,! @nf on Network
Protocols (ICNP), Orlando, 10/08

E. Yilmaz, N. Ekiz, P. Natarajan, P. D. Amer, J.L€ighton, F. Baker,
R. Stewart, "Throughput analysis of non-renegablelective
acknowledgments (NR-SACKSs) for SCTP", Computer Camications,
33(16), 10/10. doi:10.1016/j.comcom.2010.06.028
FreeBSD TCP
www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/

N. Ekiz, A. H. Rahman, P. D. Amer, “Misbehaviors BACK
generation” (in progress).

V. Paxson, “Automated packet trace analysis of Ti@plementations”,
ACM SIGCOMM, 9/97

C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, Moll, R.
Rockell, T. Seely, C. Diot, “Packet-Level Trafficedsurements from
the Sprint IP Backbone”, IEEE Network, 11/03

S. Jaiswal, G. lannaccone, C. Diot, J. Kurose, dwsley, “Inferring
TCP connection characteristics through passivasorements”, IEEE
INFOCOMM, 3/04

Implementation

Current Sack Block (C)
New Sack Block (N)
Reneging (R}

N.L

A

>

Add a
new
block

—-

Moveto next M block,
movetothe first C block

no

Figure 3. Data Reneging Detection Model

