
1

Concurrent Multipath Transfer Using SCTP
Multihoming Over Independent End-to-End Paths
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Abstract— Concurrent Multipath Transfer (CMT) uses the
Stream Control Transmission Protocol’s (SCTP) multihoming
feature to distribute data across multiple end-to-end paths in
a multihomed SCTP association. We identify three negative side-
effects of reordering introduced by CMT that must be managed
before efficient parallel transfer can be achieved: (i) unnecessary
fast retransmissions by a sender, (ii) overly conservative cwnd
growth at a sender, and (iii) increased ack traffic due to fewer
delayed acks by a receiver. We propose three algorithms which
augment and/or modify current SCTP to counter these side-
effects. Presented with several choices as to where a sender should
direct retransmissions of lost data, we propose five retransmission
policies for CMT. We demonstrate spurious retransmissions in
CMT with all five policies, and propose changes to CMT to allow
the different policies. CMT is evaluated against AppStripe, an
idealized application that stripes data over multiple paths using
multiple SCTP associations. The different CMT retransmission
policies are then evaluated with varied constrained receive buffer
sizes. In this foundation work, we operate under the strong
assumption that the bottleneck queues on the end-to-end paths
used in CMT are independent.

Index Terms— Load balancing, load sharing, multipath, SCTP,
transport layer, end-to-end.

I. INTRODUCTION

A host is multihomed if it can be addressed by multiple IP
addresses, as is the case when the host has multiple network in-
terfaces. Though feasibility alone does not determine adoption
of an idea, multihoming is increasingly economically feasible
and can be expected to be the rule rather than the exception
in the near future, particularly when fault tolerance is crucial.
Multihomed nodes may be simultaneously connected through
multiple access technologies, and even multiple end-to-end
paths to increase resilience to path failure. For instance, a
mobile user could have simultaneous Internet connectivity via
a wireless local area network using 802.11b and a wireless
wide area network using GPRS.

We propose using Concurrent Multipath Transfer (CMT)
between multihomed source and destination hosts to increase
an application’s throughput. CMT is the concurrent transfer of
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new data from a source to a destination host via two or more
end-to-end paths.

The current transport protocol workhorses, TCP and UDP,
do not support multihoming; TCP allows binding to only
one network address at each end of a connection. At the
time TCP was designed, network interfaces were expensive
components, and hence multihoming was beyond the ken of
research. Changing economics and an increased emphasis on
end-to-end fault tolerance have brought multihoming within
the purview of the transport layer. While concurrency can be
arranged at other layers (as discussed in Sections IV-D and
VI), the transport layer has the best knowledge to estimate
end-to-end paths’ characteristics.

The Stream Control Transmission Protocol (SCTP) [1], [2]
is an IETF standards track protocol that natively supports
multihoming at the transport layer. SCTP multihoming allows
binding of one transport layer association (SCTP’s term for
a connection) to multiple IP addresses at each end of the
association. This binding allows a sender to transmit data to a
multihomed receiver through different destination addresses.
Simultaneous transfer of new data to multiple destination
addresses is currently not allowed due primarily to insufficient
research. This research attempts to provide that needed work.

Though CMT uses SCTP in our analysis, our goal is to
study CMT at the transport layer in general. The issues
and algorithms considered in this research would apply to
any multihome-aware transport protocol. We chose SCTP
primarily due to lack of mature multihoming mechanisms in
any other practical transport layer protocol, and partly due to
our expertise with it. We note that the Datagram Congestion
Control Protocol (DCCP) [3] does provide “primitive multi-
homing” at the transport layer, but only for mobility support.
DCCP multihoming is useful only for connection migration,
and cannot be leveraged for CMT.

Following preliminary concepts and terminology in Sec-
tion II, Section III specifies three algorithms resulting in
CMTscd - a protocol that uses SCTP’s multihoming feature
for correctly transferring data between multihomed end hosts
using multiple independent end-to-end paths. A CMT sender
can direct retransmissions to one of several destinations that
are receiving new transmissions. In Section IV, we present an
evaluation of CMT versus an “idealized” hypothetical appli-
cation which stripes data across multiple SCTP associations
(AppStripe). We also propose and evaluate five retransmission
policies for CMT. We conclude our discussion of CMT in
Section V, and discuss related work in Section VI.
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II. PRELIMINARIES

We first overview several ideas and mechanisms used by
SCTP; some are compared with TCP to highlight similarities
and differences. SCTP is defined in RFC2960 [2] with changes
and additions included in the Specification Errata [1]. An
SCTP packet, or protocol data unit (PDU), consists of one
or more concatenated building blocks called chunks: either
control or data. For the purposes of reliability and congestion
control, each data chunk in an association is assigned a unique
Transmission Sequence Number (TSN). Since chunks are
atomic, TSNs are associated with chunks of data, as opposed
to TCP which associates a sequence number with each data
octet in the bytestream. In our simulations, we assume one
data chunk per PDU for ease of illustration; each PDU thus
carries, and is associated with a single TSN.

SCTP uses a selective ack scheme similar to SACK TCP [4].
SCTP’s congestion control algorithms are based on RFC
2581 [5], and include SACK-based mechanisms for bet-
ter performance. Similar to TCP, SCTP uses three control
variables: a receiver’s advertised window (rwnd), a sender’s
congestion window (cwnd), and a sender’s slow start threshold
(ssthresh). However, unlike TCP’s cwnd which reflects which
data to send, SCTP’s cwnd dictates only how much data
can be sent. In SCTP, rwnd is shared across an association.
Since an SCTP association allows multihomed source and
destination endpoints, a source maintains several parameters
on a per destination basis: cwnd, ssthresh, and roundtrip time
(RTT) estimates. An SCTP sender also maintains a separate
retransmission timer per destination. RFC 2960 does not allow
a sender to simultaneously send new data on multiple paths.
New data must be sent to a single primary destination, while
retransmissions may be sent to any alternate destination.

We operate under the assumption that the bottleneck queues
on the end-to-end paths used in CMT are independent. Overlap
in the paths is acceptable, but again bottlenecks are assumed
independent. Two motivating examples where this assumption
holds are telephony networks and battlefield networks.

(i) Signaling communication in telephony networks is being
migrated to IP, and uses SCTP for transport. Given the
stringent availability requirements on these networks, signaling
devices are multihomed and are inter-connected via multiple,
independent end-to-end paths for reasons of fault tolerance.
The end-to-end paths share no network resource, thus avoiding
any single point of failure [6].

(ii) The US Army’s proposed Future Combat System for
battlefield networks will equip mobile hosts with multiple
interfaces, often connecting to independent wireless networks,
for example, a terrestrial short-range radio, and a long-range
communication to either low-flying or geostationary satellites.
These different communication technologies will provide mul-
tiple independent paths between nodes [7].

We recognize that our assumption of independent paths is a
strong one. If used in the presence of a shared bottleneck, CMT
will be as aggressive as multiple SCTP associations sharing a
bottleneck. This assumption can be dropped by employing an
end-to-end bottleneck detection technique [8]–[12]. We will
pursue this line of work in the future.

CMT schedules new data to different destinations as band-
width becomes available on corresponding paths, i.e., as
corresponding cwnds allow. When cwnd space is available
simultaneously for two or more destinations, data is sent to
these destinations in arbitrary order - a reasonable transmission
policy when the CMT sender has no apriori knowledge of the
paths’ characteristics. Our choice to use the full cwnd of a
path before using the other path was to reduce reordering.

For CMT, we do not disable heartbeats (HBs) or any
other SCTP feature. As long as the application has some
data to send, CMT will send data on all paths. Should the
application stall in providing data, then even with CMT, HBs
should be sent on idle paths. CMT does not need any feature
modifications other than the ones described in this paper.

A note on language and terminology. A reference to “cwnd
for destination X” means the cwnd maintained at the sender
for destination X, and “timeout on destination X” refers to
the expiration of a sender’s retransmission timer maintained
for destination X. Since bottleneck queues on the end-to-
end paths are assumed independent, each destination in our
topology uniquely maps to an independent path. Thus, “cwnd
for destination X” may be used interchangeably with “cwnd
for path Y”, where path Y ends in destination X. SCTP
acks carry cumulative and selective ack (also called gap ack)
information and are called SACKs. In the paper, sometimes
“SACK” is used rather than “ack” to emphasize when an ack
carries both cumulative and selective acks.

The simulations presented in this paper use the University
of Delaware’s SCTP module for ns-2 [13], [14].

III. CMT ALGORITHMS

As is the case with TCP [15]–[17], reordering introduced
in an SCTP flow degrades performance. When multiple paths
being used for CMT have different delay and/or bandwidth
characteristics, significant packet reordering can be introduced
in the flow by a CMT sender. Reordering is a natural conse-
quence of CMT, and is difficult to eliminate in an environment
where the end-to-end path characteristics are changing or
unknown apriori, as in the Internet. In this section, we identify
and resolve the negative side-effects of sender-introduced
reordering by CMT in SCTP.

Several algorithms propose to eliminate the effects of re-
ordering due to the network [15]–[17]. In this paper, we
discuss reordering introduced at the sender, not in the net-
work. The sender has more information about sender-induced
reordering, and can address this reordering more effectively.

To demonstrate the effects of reordering introduced in SCTP
by CMT, we use a simple simulation setup. Two dualhomed
hosts, sender A with local addresses A1, A2, and receiver B

with local addresses B1, B2, are connected by two separate
paths: Path 1 (A1 −B1), and Path 2 (A2 −B2) having end-to-
end available bandwidths 0.2 Mbps and 1 Mbps, respectively.
The roundtrip propagation delay on both paths is 90 ms,
roughly reflecting the U. S. coast-to-coast delay. CMT sender
A sends data to destinations B1 and B2 concurrently, and uses
a scheduling algorithm that sends new data to a destination
when allowed by the corresponding cwnd.
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The simulation results described in this section (Figures 1
and 5) both show cwnd evolution over time. The figures show
the CMT sender’s (1) observed cwnd evolution for destination
B1 (+), (2) observed cwnd evolution for destination B2 (×),
(3) calculated aggregate cwnd evolution (sum of (1) and (2))
(4), and (4) expected aggregate cwnd evolution (–). This last
curve represents our initial performance goal for CMT - the
sum of the cwnd evolution curves of two independent SCTP
runs, using B1 and B2 as the primary destination, respectively.
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Fig. 1. CMT with SCTP: Evolution of the different cwnds

Figure 1 shows how, when using SCTP without any mod-
ifications, CMT reordering significantly hinders both B1 and
B2’s cwnd growth. Normally cwnd reductions are seen when
a sender detects loss, but for Figure 1, no packet loss was
simulated. The aggregate cwnd evolution (4) is significantly
below the expected aggregate cwnd evolution (–).

We identify and resolve three negative side-effects of re-
ordering introduced by CMT that must be managed before
the full performance gains of parallel transfer can be achieved:
(i) unnecessary fast retransmissions at the sender (Section III-
A), (ii) reduced cwnd growth due to fewer cwnd updates at
the sender (Section III-B), and (iii) increased ack traffic due to
fewer delayed acks (Section III-C) [18]. While designing these
algorithms, we implicitly assumed that any retransmission will
be sent to the same destination as the original transmission.
We revisit this assumption in Section IV.

A note on notation: CMT refers to a host performing
concurrent multipath transfer using current SCTP. CMTs,
CMTc, and CMTd refer to a host performing CMT with Split
Fast Retransmit (SFR) (Section III-A), Cwnd Update for CMT
(CUC) (Section III-B) and Delayed Ack for CMT (DAC)
(Section III-C), respectively. Multiple subscripts indicates use
of more than one algorithm.

A. Preventing Unnecessary Fast Retransmissions

When reordering is observed, a receiver sends gap reports
(i.e., gap acks) to the sender which uses the reports to detect
loss through a fast retransmission procedure similar to the
one used by TCP [2], [5]. With CMT, unnecessary fast
retransmissions can be caused due to reordering [19], with

two negative consequences: (1) since each retransmission is as-
sumed to occur due to a congestion loss, the sender reduces its
cwnd for the destination on which the retransmitted data was
outstanding, and (2) a cwnd overgrowth problem explained
in [19] causes a sender’s cwnd to grow aggressively for the
destination on which the retransmissions are sent, due to acks
received for original transmissions. In Figure 1, each cwnd
reduction observed for B1 and B2 is due to an unnecessary fast
retransmission. These unnecessary retransmissions are due to
sender-introduced reordering, and not spurious retransmissions
due to network effects [20], [21].

Conventional interpretation of a SACK chunk in SCTP (or
SACK options in TCP) is that gap reports imply possible
loss. The probability that a TSN is lost, as opposed to being
reordered, increases with the number of gap reports received
for that TSN. Due to sender-induced reordering, a CMT sender
needs additional information to infer loss. Gap reports alone
do not (necessarily) imply loss; but a sender can infer loss
using gap reports and knowledge of each TSN’s destination.

Algorithm Details: The proposed solution to address the
side-effect of incorrect cwnd evolution due to unnecessary fast
retransmissions is the Split Fast Retransmit (SFR) algorithm
(Figure 2). SFR extends a previous incarnation which could
not handle cycling changeover [19]. SFR introduces a vir-
tual queue per destination within the sender’s retransmission
queue. A sender then deduces missing reports for a TSN
correctly using SACK information in conjunction with state
maintained about the transmission destination for each TSN
in the retransmission queue. Thus, SFR enables a multihomed
sender to correctly apply the fast retransmission procedure on
a per destination basis. An advantage of SFR is that only the
sender’s behavior is affected. SFR introduces two additional
variables per destination at a sender:
1) highest in sack for dest - stores the highest TSN acked per

destination by the SACK being processed.
2) saw newack - a flag used during the processing of a SACK

to infer the causative TSN(s)’s destination(s). Causative
TSNs for a SACK are those TSNs which caused the SACK
to be sent (or TSNs that are acked in this SACK, and are
acked for the first time).

In Figure 2, step (2) sets saw newack to TRUE for the
destinations to which the newly acked TSNs were sent. Step
(3) tracks on a per destination basis, the highest TSN being
acked. Step (4) uses information gathered in steps (2) and (3)
to aid in inferring missing TSNs. Two conditions in step (4)
ensure correct missing reports: (a) TSNs to be marked should
be outstanding on the same destination(s) as TSNs which have
been newly acked, and (b) at least one TSN, sent later than
the missing TSN, but to the same destination address, should
be newly acked.

B. Avoiding Reduction in Cwnd Updates

The cwnd evolution algorithm for SCTP [2] (and analo-
gously for SACK TCP [4], [5]) allows growth in cwnd only
when a new cum ack is received by a sender. When SACKs
with unchanged cum acks are generated (say due to reordering)
and later arrive at a sender, the sender does not modify its
cwnd. This mechanism again reflects the conventional view
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On receipt of a SACK containing gap reports [Sender side behavior]:
1) ∀ destination addresses di initialize di.saw newack = FALSE;
2) for each TSN ta being acked that has not been acked in any SACK thus far do

let da be the destination to which ta was sent;
set da.saw newack = TRUE;

3) ∀ destinations dn, set dn.highest in sack for dest to highest TSN being newly acked on dn;
4) to determine whether missing report count for a TSN tm should be incremented:

let dm be the destination to which tm was sent;
if (dm.saw newack = TRUE) and (dm.highest in sack for dest > tm) then

increment missing report count for tm;
else do not increment missing report count for tm;

Fig. 2. SFR Algorithm – Eliminating unnecessary fast retransmissions

At beginning of an association [Sender side behavior]:
∀ destinations d, reset

d.find pseudo cumack = TRUE;
On receipt of a SACK [Sender side behavior]:

1) ∀ destinations d, reset d.new pseudo cumack = FALSE;
2) if the SACK carries a new cum ack then

for each TSN tc being cum acked for the first time, that was not acked through prior
gap reports do

(i) let dc be the destination to which tc was sent;
(ii) set dc.find pseudo cumack = TRUE;
(iii) set dc.new pseudo cumack = TRUE;

3) if gap reports are present in the SACK then
for each TSN tp being processed from the retransmission queue do

(i) let dp be the destination to which tp was sent;
(ii) if (dp.find pseudo cumack = TRUE) and tp was not acked in the past then

dp.pseudo cumack = tp;
dp.find pseudo cumack = FALSE;

(iii) if tp is acked via gap reports for first time and (dp.pseudo cumack = tp) then
dp.new pseudo cumack = TRUE;
dp.find pseudo cumack = TRUE;

4) for each destination d do
if (d.new pseudo cumack = TRUE) then update cwnd [1], [2];

Fig. 3. Cwnd Update for CMT (CUC) Algorithm – Handling side-effect of reduced cwnd growth due to fewer cwnd updates

that a SACK which does not advance the cum ack indicates
possibility of loss due to congestion.

Since a CMT receiver naturally observes reordering, many
SACKs are sent containing new gap reports but not new cum
acks. When these gaps are later acked by a new cum ack, cwnd
growth occurs, but only for the data newly acked in the most
recent SACK. Data previously acked through gap reports will
not contribute to cwnd growth. This behavior prevents sudden
increases in the cwnd resulting in bursts of data being sent.
Even though data may have reached the receiver “in-order per
destination”, without changing the current handling of cwnd,
the updated cwnd will not reflect this fact.

This inefficiency can be attributed to the current design
principle that the cum ack in a SACK, which tracks the latest
TSN received in-order at the receiver, applies to an entire
association, not per destination. TCP and current SCTP use
only one destination address at any given time to transmit

new data to, and hence, this design principle works fine. Since
CMT uses multiple destinations simultaneously, cwnd growth
in CMT demands tracking the latest TSN received in-order
per destination, information not coded directly in a SACK.

We propose a cwnd growth algorithm to track the earliest
outstanding TSN per destination and update the cwnd, even
in the absence of new cum acks. The algorithm uses SACKs
and knowledge of transmission destination for each TSN to
deduce in-order delivery per destination. The crux of the
CUC algorithm is to track the earliest outstanding data per
destination, and use SACKs which ack this data to update the
corresponding cwnd. In understanding our proposed solution,
we remind the reader that gap reports alone do not (necessar-
ily) imply congestion loss; SACK information is treated only
as a concise description of the TSNs received by the receiver.

Algorithm Details: Figure 3 shows the proposed Cwnd
Update for CMT (CUC) algorithm. A pseudo-cumack tracks



5

On receipt of a data PDU [Receiver side behavior]:
1) delay sending an ack as given in [2], with the additional change that

acks should be delayed even if reordering is observed.
2) in each ack, report number of data PDUs received since sending of previous ack.

When incrementing missing report count through SFR:Step (4) (Figure 2) [Sender side behavior]:
4) to determine whether missing report count for a TSN tm should be incremented:

let dm be the destination to which tm was sent;
if (dm.saw newack = TRUE) and (dm.highest in sack for dest > tm) then

(i) if (∀ destinations do such that do 6= dm, do.saw newack = FALSE) then
/** all newly acked TSNs were sent to the same destination as tm **/
(a) if (∃ newly acked TSNs ta, tb such that ta < tm < tb) then

(conservatively) increment missing report count for tm by 1;
(b) else if (∀ newly acked TSNs ta, such that ta > tm) then

increment missing report count for tm by number of PDUs reported by receiver;
(ii) else

/** Mixed SACK - newly acked TSNs were sent to multiple destinations **/
(conservatively) increment missing report count for tm by 1;

Fig. 4. Delayed Ack for CMT (DAC) Algorithm – Handling side-effect of increased ack traffic

the earliest outstanding TSN per destination at the sender. An
advance in a pseudo-cumack triggers a cwnd update for the
corresponding destination, even when the actual cum ack is
not advanced. The pseudo-cumack is used for cwnd updates;
only the actual cum ack can dequeue data in the sender’s
retransmission queue since a receiver can reneg on data that is
not cumulatively acked. An advantage of CUC is that only the
sender’s behavior is affected. The CUC algorithm introduces
three variables per destination at a sender:
1) pseudo cumack - maintains earliest outstanding TSN.
2) new pseudo cumack - flag to indicate if a new pseudo-

cumack has been received.
3) find pseudo cumack - flag to trigger search for a new

pseudo-cumack. This flag is set after a new pseudo-cumack
has been received.

In Figure 3, step (2) initiates a search for a new
pseudo cumack by setting find pseudo cumack to TRUE for
the destinations on which TSNs newly acked were outstanding.
A cwnd update is also triggered by setting new pseudo cumack
to TRUE for those destinations. Step (3) then processes the
outstanding TSNs at a sender, and tracks on a per destination
basis, the TSN expected to be the next pseudo cumack. Step
(4) finally updates the cwnd for a destination if a new
pseudo cumack was seen for that destination.

C. Curbing Increase in Ack Traffic

Sending an ack after receiving every 2 data PDUs (i.e.,
delayed acks) in SCTP (and TCP) reduces ack traffic in the
Internet, thereby saving processing and storage at routers on
the ack path. SCTP specifies that a receiver should use the
delayed ack algorithm as given in RFC 2581, where acks
are delayed only as long as the receiver receives data in
order. Reordered PDUs should be acked immediately [5]. With
CMT’s frequent reordering, this rule causes an SCTP receiver
to frequently not delay acks. Hence a negative side-effect of
reordering with CMT is increased ack traffic.

To prevent this increase, we propose that a CMT receiver
ignore the rule mentioned above. That is, a CMT receiver
does not immediately ack an out-of-order PDU, but delays the
ack. Thus, a CMT receiver always delays acks, irrespective
of whether or not data is received in order1. Though this
modification eliminates the increase in ack traffic, RFC 2581’s
rule has another purpose which gets hampered.

An underlying assumption that pervades SCTP’s (and
TCP’s) design is that data in general arrives in order; data
received out-of-order indicates possible loss. According to
RFC 2581, a receiver should immediately ack data received
above a gap in the sequence space to accelerate loss recovery
by triggering the fast retransmit algorithm [5]. In SCTP, four
acks with missing reports for a TSN indicate that a receiver
received at least four data PDUs sent after the missing TSN.
Receipt of four missing reports for a TSN triggers the sender’s
fast retransmit algorithm. In other words, the sender has a
reordering threshold (or dupack threshold) of four PDUs.
Since a CMT receiver cannot distinguish between loss and
reordering introduced by a CMT sender, the modification
suggested above by itself would cause the receiver to delay
acks even in the face of loss. When a loss does occur with our
modification to a receiver, fast retransmit would be triggered
by a CMT sender only after the receiver receives eight(!) data
PDUs sent after a lost TSN - an overly conservative behavior.

The effective increase in reordering threshold at a sender
can be countered by reducing the actual number of acks
required to trigger a fast retransmit at the sender, i.e., by
increasing the number of missing reports registered per ack. In
other words, if a sender can increment the number of missing
reports more accurately per ack received, fewer acks will be
required to trigger a fast retransmit. A receiver can provide
more information in each ack to assist the sender in accurately

1We do not modify a receiver’s behavior when an ack being delayed can
be piggybacked on reverse path data, or when the delayed ack timer expires.
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inferring the number of missing reports per ack for a lost TSN.
We propose that in each ack, a receiver report the number of
data PDUs received since the previous ack was sent. A sender
then infers the number of missing reports per TSN based on
the TSNs being acked in a SACK, number of PDUs reported
by the receiver, and knowledge of transmission destination for
each TSN. We note that additionally, heuristics (as proposed
in [15]) may be used at a CMT sender to address network
induced reordering.

Algorithm Details: The proposed Delayed Ack for CMT
(DAC) algorithm (Figure 4) specifies a receiver’s behavior on
receipt of data, and also a sender’s behavior when the missing
report count for a TSN needs to be incremented2. Since SCTP
(and TCP) acks are cumulative, loss of an ack will result
in loss of the data PDU count reported by the receiver, but
the TSNs will be acked by the following ack. Receipt of this
following ack can cause ambiguity in inferring missing report
count per destination. Our algorithm conservatively assumes a
single missing report count per destination in such ambiguous
cases. The DAC algorithm requires modifications to both the
sender and the receiver.

No new variables are introduced in this algorithm, as we
build on the SFR algorithm. An additional number is reported
in the SACKs for which we use the first bit of the flags field
in the SACK chunk header - 0 indicates a count of one PDU
(default SCTP behavior), and 1 indicates two PDUs.

In Figure 4, at the receiver side, steps (1) and (2) are self
explanatory. The sender side algorithm modifies step (4) of
SFR, which determines whether missing report count should
be incremented for a TSN. The DAC algorithm dictates how
many to increment by. Step (4-i) checks if only one destination
was newly acked, and allows incrementing missing reports
by more than one for TSNs outstanding to that destination.
Further, all newly acked TSNs should have been sent later than
the missing TSN. If there are newly acked TSNs that were sent
before the missing TSN, step (4-i-a) conservatively increments
by only one. If more than one destinations are newly acked,
step (4-ii) conservatively increments by only one.

Figure 5 shows cwnd evolution for CMT after including
the SFR, CUC and DAC algorithms, i.e., CMTscd. With the
negative side-effects addressed, we hoped to see CMTscd’s
cwnd growth to come close to the expected aggregate cwnd
growth. In fact, we observed that CMTscd cwnd growth
exceeded the expected aggregate cwnd growth!

To explain this surprising result, we remind the reader that
the expected aggregate cwnd is the sum of the cwnd growth
of two independent SCTP runs, each using one of the two
destination addresses as its primary destination. In each SCTP
run, one delayed ack can increase the cwnd by at most one
MSS during slow start, even if the ack acks more than one
MSS worth of data. On the other hand, we observe with
CMTscd that if a delayed ack simultaneously acks an MSS of
data on each of the two destinations, the sender simultaneously
increases each of two cwnds by one MSS. Thus, a single
delayed ack in CMTscd that acks data flows on two paths

2The DAC algorithm also can be used when ack traffic lesser than with
delayed acks is desirable, such as in data center environments [22].
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Fig. 5. CMTscd: Evolution of the different cwnds

causes an aggregate cwnd growth of two MSS. With delayed
acks during slow start, each SCTP association grows its cwnd
by 1.5 times each RTT, whereas CMTscd can increase its cwnd
by more than 1.5 times in each RTT (upto two times in the
best case where every delayed ack acks an MSS on each path).
Delayed acks which simultaneously contribute to the cwnd
growth of two destinations helped the aggregate cwnd growth
of CMTscd exceed expected aggregate cwnd growth.

This phenomenon occurs in slow start, therefore benefiting
CMTscd initially and during some timeout recovery periods.
Though the aggregate cwnd growth exceeds expected aggre-
gate cwnd growth, we argue that the sender is not overly
aggressive, i.e., not TCP-unfriendly. The sender is able to
clock out more data due to delayed acks that ack data flows on
multiple paths. The sender does not create bursts of data during
slow start, and builds up the ack clock as expected. Though
it does not improve CMTscd’s performance significantly, this
phenomenon demonstrates a benefit of sequence space sharing
among flows on different paths that occurs within a CMTscd

association.

IV. CMT PERFORMANCE EVALUATION

With correct behavior ensured by CMTscd (henceforth re-
ferred to simply as CMT), we now evaluate its performance.
In Section IV-A, we discuss our methodology for evaluating
CMT. In Section IV-B, we present five retransmission policies
for CMT. In Section IV-C, we identify two modifications
that must be made to CMT to accomodate the different
retransmission policies. In Section IV-D, we evaluate CMT
against AppStripe - our reference application for performance
evaluation of CMT. In Section IV-E, we compare and analyze
the different retransmission policies to decide upon a recom-
mended policy for CMT.

A. Evaluation Methodology

As a reference, we use AppStripe - a hypotheti-
cal multihome-aware application that achieves the highest
throughput possible by an application that distributes data
across multiple SCTP associations (see Figure 6). We em-
phasize that AppStripe performs idealized scheduling at the
application layer, and is not doable in practice. End-to-end load
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Fig. 6. Schematic - AppStripe and CMT

sharing is performed at the application layer by AppStripe, and
at the transport layer by CMT.

We simulate AppStripe by post-processing simulation
traces. We simulate separate file transfers over multiple sepa-
rate SCTP associations, each on a separate path to the receiver.
To find an “optimal” transfer time, we use these two traces to
extract the time when the total amount of data transferred,
across the two associations, equals the desired transfer size.

AppStripe hypothetically assumes the ability of an appli-
cation to schedule data to each transport association imme-
diately when a transport association is able to send data to
a receiver. Such an ability requires a complex application-
transport interface, which to our knowledge, is not realized
in practice today. A typical application distributing data over
multiple associations would have to use a heuristic to decide
the fraction of data to be scheduled on each association.
Thus AppStripe’s performance in our paper represents the best
achievable separation of data over multiple paths.

A B

Sender ReceiverR1,0

R2,0

R1,1

R2,1

100Mbps 1
us

100Mbps 1us

100Mbps 1us

100Mbps 1
us

10 Mbps, 45 ms
1 % uniform loss

10 Mbps, 45 ms
1 – 10 % uniform loss

A1

A2

B1

B2

Path 1

Path 2
Fig. 7. Simulation topology used for evaluation

The simulation topology (see Figure 7) is simple - the edge
links represent the last hop, and the core links represent end-
to-end conditions on the Internet. This simulation topology
does not account for effects seen in the Internet and other real
networks such as network induced reordering, delay spikes,
etc.; these effects are beyond the scope of this study. Our
simulation evaluation provides insight into the fundamental
differences between AppStripe and CMT, and between the

different retransmission policies in a constrained environment.
We chose a simple topology to avoid influence of other effects,
and to focus on performance differences which we believe
should hold true in a real environment as well3. The loss rate
on Path 1 is maintained at 1%, and on Path 2 is varied from
1 to 10%. A loss rate of 1% means a forward path loss rate
of 1%, and a reverse path loss rate of 1%.

Our choice of simulation parameters was based on our
understanding that end-to-end throughput is influenced by
loss rate and delay. We focus on loss rate differences since
we believe loss rate has a more significant impact on the
retransmission policy. We are currently studying the influence
of different delays, and delay combinations on CMT [23].

The absolute bandwidths were chosen to be high enough
so that end-to-end delays are dominated by propagation delay.
The relative bandwidths of the links were chosen so that any
queuing happens at intermediate routers where a uniform loss
rate is applied to the packets. End-to-end delay was chosen as
45ms to represent a typical US coast-to-coast delay.

B. CMT Retransmission Policies

Multiple paths present an SCTP sender with several choices
where to send a retransmission. But these choices are not well-
informed since SCTP restricts sending new data, which can act
as probes for information (such as available bandwidth, loss
rate and RTT), to only one primary destination. Consequently,
an SCTP sender has minimal information about other paths to
a receiver. On the other hand, a CMT sender maintains more
accurate information about all paths, since new data is being
sent to all destinations concurrently. This information allows
a CMT sender to better decide where to retransmit.

We present five retransmission policies for CMT [24]. In
four policies, a retransmission may be sent to a destination
other than the one used for the original transmission. Pre-
vious research on SCTP retransmission policies shows that
sending retransmissions to an alternate destination degrades
performance primarily because of the lack of sufficient traffic
on alternate paths [25]. With CMT, data is concurrently sent
on all paths, thus the results in [25] are not applicable. The
five retransmission policies for CMT are:
• RTX-SAME - Once a new data chunk is scheduled and

sent to a destination, all retransmissions of the chunk are
sent to the same destination (until the destination is deemed
inactive due to failure [2]).

• RTX-ASAP - A retransmission of a data chunk is sent to
any destination for which the sender has cwnd space avail-
able at the time of retransmission. If multiple destinations
have available cwnd space, one is chosen randomly.

• RTX-CWND - A retransmission is sent to the destination
for which the sender has the largest cwnd. A tie is broken
by random selection.

• RTX-SSTHRESH - A retransmission is sent to the desti-
nation for which the sender has the largest ssthresh. A tie
is broken by random selection.

3The simulation topology is clearly simplistic. We are currently doing fur-
ther study involving more complex topologies with variable cross-traffic [23].
Our initial results support our conclusions in this paper.
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At beginning of an association [Sender side behavior]:
∀ destinations d, reset

d.find pseudo cumack = d.find rtx pseudo cumack = TRUE;
On receipt of a SACK [Sender side behavior]:

1) ∀ destinations d, reset
d.new pseudo cumack = d.new rtx pseudo cumack = FALSE;

2) if the ack carries a new cum ack then
for each TSN tc being cum acked for the first time, that was not acked through prior
gap reports do

(i) let dc be the destination to which tc was sent;
(ii) set dc.find pseudo cumack = dc.find rtx pseudo cumack = TRUE;
(iii) set dc.new pseudo cumack = dc.new rtx pseudo cumack = TRUE;

3) if gap reports are present in the ack then
for each TSN tp being processed from the retransmission queue do

(i) let dp be the destination to which tp was sent;
(ii) if (dp.find pseudo cumack = TRUE) and tp was not acked in the past

and tp was not retransmitted then
dp.pseudo cumack = tp;
dp.find pseudo cumack = FALSE;

(iii) if tp is acked via gap reports for first time and (dp.pseudo cumack = tp) then
dp.new pseudo cumack = TRUE;
dp.find pseudo cumack = TRUE;

(iv) if (dp.find rtx pseudo cumack = TRUE) and tp was not acked in the past
and tp was retransmitted then

dp.rtx pseudo cumack = tp;
dp.find rtx pseudo cumack = FALSE;

(v) if tp is acked via gap reports for first time and (dp.rtx pseudo cumack = tp) then
dp.new rtx pseudo cumack = TRUE;
dp.find rtx pseudo cumack = TRUE;

4) for each destination d do
if (d.new pseudo cumack = TRUE) or (d.new rtx pseudo cumack = TRUE) then

Update cwnd [1], [2];

Fig. 8. CUCv2 Algorithm - Modified Cwnd Update for CMT (CUC) Algorithm

• RTX-LOSSRATE - A retransmission is sent to the destina-
tion with the lowest loss rate path. If multiple destinations
have the same loss rate, one is selected randomly.
Of the policies, RTX-SAME is simplest. RTX-ASAP is a

“hot-potato” policy - retransmit as soon as possible without
regard to loss rate. RTX-CWND and RTX-SSTHRESH prac-
tically track, and attempt to move retransmissions onto the path
with the estimated lowest loss rate. Since ssthresh is a slower
moving variable than cwnd, the values of ssthresh may better
reflect the conditions of the respective paths. RTX-LOSSRATE
uses information about loss rate provided by an “oracle” -
information that RTX-CWND and RTX-SSTHRESH estimate.
This policy represents a hypothetically ideal case; hypothetical
since in practice, a sender typically does not know apriori path
loss rates; ideal since the path with the lowest loss rate has
highest chance of having a packet delivered. We hypothesized
that retransmission policies that take loss rate into account
would outperform ones that do not.

C. Modifications to Protocol Mechanisms

Two modifications are needed to allow redirecting retrans-
missions to a different destination than the original.

1) CUCv2: Modified CUC Algorithm: The CUC algorithm
(Figure 3) enables correct cwnd updates in the face of in-
creased reordering due to CMT. To recap, this algorithm
recognizes a set of TSNs outstanding per destination, and the
per-destination pseudo cumack traces the left edge of this list
of TSNs, per destination. CUC assumes that retransmissions
are sent to the same destination as the original transmission.
The per-destination pseudo cumack therefore moves whenever
the corresponding left edge is acked; the TSN on the left edge
being acked may or may not have been retransmitted.

If the assumption about the retransmission destination is
violated, and a retransmission is made to a different destination
from the original, CUC cannot faithfully track the left edge on
either destination. We modify CUC to permit the different re-
transmission policies. The modified algorithm, named CUCv2
is shown in Figure 8.

CUCv2 recognizes that a distinction can be made about
the TSNs outstanding on a destination - those that have been
retransmitted, and those that have not. CUCv2 maintains two
left edges for these two sets of TSNs - rtx pseudo cumack
and pseudo cumack. Whenever either of the left edges moves,
a cwnd update is triggered.
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Timeout on dest B2
- TSN X is rtxd
- TSNs Y+2  & Y+3 
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through Y. This SACK indicates that TSN X has not been received.

- TSN Y+2 indicates a packet containing one data chunk with TSN Y+2. A data chunk is the smallest 
indivisible unit of data in an SCTP packet.

Fig. 9. Example of spurious retransmissions after timeout in CMT

2) Spurious Timeout Retransmissions: When a timeout oc-
curs, an SCTP sender is expected to bundle and send as many
of the earliest TSNs outstanding on the destination for which
the timeout occurred as can fit in an MSS (Maximum Segment
Size) PDU. Per RFC 2960, more TSNs that are outstanding
on that destination “should be marked for retransmission
and sent as soon as cwnd allows (normally when a SACK
arrives)”. This rule is intuitive. While sending, retransmissions
are generally given priority over new transmissions. As in TCP,
the cwnd is also collapsed to 1 MSS for the destination on
which a timeout occurs.

A timeout retransmission can occur in SCTP (as in TCP) for
several reasons. One reason is loss of the fast retransmission
of a TSN. Consider Figure 9. When a timeout occurs due
to loss of a fast retransmission, some TSNs that were just
sent to the destination on which the timeout occurred are
likely awaiting acks (in Figure 9, TSNs Y+2 and Y+3).
These TSNs get incorrectly marked for retransmission on
timeout. With the different CMT retransmission policies, these
retransmissions may be sent to a different destination than the
original transmission. In Figure 9, spurious retransmissions of
TSNs Y+2 and Y+3 are sent to destination B1, on receipt
of acks freeing up cwnd space for destination B1. Spurious
retransmissions are exacerbated in CMT, as shown through this
illustration, due to the possibility of sending data (including
retransmissions) to multiple destinations concurrently.

We simulated the occurrence of such spurious retransmis-
sions with the different retransmission policies in CMT. The
simulation topology used was the one described in Section IV-
A. Figure 10(a) shows the ratio of retransmissions relative to
the number of actual packet drops at the router. Ideally, the two
numbers should be equal; all curves should be straight lines at
y = 1. Figure 10(a) shows that spurious retransmissions occur
commonly in CMT with the different retransmission policies.

We propose a heuristic to avoid these spurious retransmis-
sions. Our heuristic assumes that a timeout cannot be triggered
on a TSN until the TSN has been outstanding for at least
one RTT. Thus, if a timeout is triggered, TSNs which were

sent within one RTT are not marked for retransmission. We
use an average measure of the RTT for this purpose - the
smoothed RTT, which is maintained at a sender. This heuristic
requires the sender to maintain a timestamp for each TSN
indicating the time at which the TSN was last transmitted (or
retransmitted). Figure 10(b) shows how the application of this
heuristic dramatically reduces spurious retransmissions.

D. Performance of CMT vs. AppStripe

Figure 11(a) compares the time taken to transfer an 8MB
file using CMT with the five retransmission policies, vs. using
AppStripe. The x-axis represents different loss rates on Path
2. Each plotted value is the mean of at least 30 simulation
runs. Overall, AppStripe (× in Figure 11(a)) performs worst,
and CMT using any of the retransmission policies performs
better than AppStripe; some policies better than others. At
a 7% loss rate on Path 2, AppStripe takes 40.4 seconds to
transfer an 8 MB file, whereas CMT using RTX-SAME or
RTX-CWND takes 35.5 or 33.2 seconds, respectively. We first
discuss the performance difference between CMT in general
and AppStripe.

CMT using any retransmission policy performs better than
AppStripe, particularly as the loss rate on Path 2 increases.
Note that our AppStripe represents the best possible perfor-
mance expected by an application that stripes data over multi-
ple SCTP associations. AppStripe is an idealized case; CMT’s
performance gain over a practical AppStripe implementation
would be even larger since a practical implementation has
to optimally stripe data across paths that have different and
changing delays and loss rates. Such striping may require
information from the transport layer (such as current cwnd and
RTT), that may not be readily available to the application.

CMT performs better than AppStripe for two reasons. First,
and significant, CMT is more resilient to reverse path loss
than AppStripe. CMT uses a single sequence space (TSN
space, used for congestion control and loss detection and
recovery) across an association’s multiple paths, whereas
AppStripe by design uses an independent sequence space per
path. Since acks are cumulative, sharing of sequence spaces
across paths helps a CMT sender receive ack info on either
of the return paths. Thus, CMT effectively uses both return
paths for communicating ack info to the sender, whereas each
association in AppStripe cannot help the other “ack-wise”.
These results demonstrate the significant result that CMT’s
sharing of sequence space across paths is an inherent benefit
that performing load sharing at the transport layer has over
performing it at the application layer.

We emphasize that ack loss can cause throughput degrada-
tion, especially at higher loss rates. Ack loss can delay fast
retransmissions by one or more RTTs, thus delaying cwnd
increase. Increased ack loss can also increase the number of
timeout retransmissions when the window is small (say during
the initial part of an association, or after timeout recovery).
These performance penalties add up over the lifetime of an
association. (See Figures 6 and 7(a) in [24], for a demonstra-
tion of throughput degradation due to ack loss.)

Second, CMT gets faster overall cwnd growth than App-
Stripe in slow start (See Section III-C). As loss increases, the
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Fig. 10. Spurious retransmissions in CMT: (a) Without RTT heuristic (b) With RTT heuristic
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Fig. 11. Path 1 loss rate = 1%, performance of AppStripe vs. CMT with different policies, under (a) equal path delays (Path 1 = 45ms, Path 2 = 45ms),
and (b) unequal path delays (Path 1 = 45 ms, Path 2 = 90 ms)

number of timeouts increases, and since slow start follows a
timeout, the sender spends more time overall in slow start.

Extensive simulations with unequal path delays (results not
included), show that unequal path delays do not impact the
relative performance of AppStripe and CMT with the different
policies. Figure 11(b) demonstrates this consistent behavior
with unequal path delays of 45 ms on Path 1, and 90 ms on
Path 2. Note that these results are consistent with Figure 11(a)
which has equal delays of 45 ms on both paths.

E. Performance of different retransmission policies for CMT

Of the retransmission policies for CMT in Figures 11(a)
and (b), RTX-SAME (	) performs marginally but consis-
tently worse than RTX-ASAP (�), which in turn performs
as well as the loss rate based policies - RTX-SSTHRESH
(4), RTX-CWND (5), and RTX-LOSSRATE (♦). While the
performance difference between the retransmission policies in
Figure 11 is not significant, these results use an 8MB receiver’s
buffer (rbuf) that does not constrain the sender - an unrealistic
assumption which we will now drop [26].

Figure 12(a) shows the time taken for a CMT sender to

transfer an 8MB file when the rbuf is set to 64KB, using the
five retransmission policies. RTX-SAME is the simplest to
implement, but performs worst. The performance difference
between RTX-SAME and other policies increases as the loss
rate on Path 2 increases. RTX-ASAP performs better than
RTX-SAME, but still worse than RTX-LOSSRATE, RTX-
SSTHRESH and RTX-CWND. The three loss rate based
policies perform equally.

Figure 12(b) shows the number of retransmission time-
outs experienced when using the different policies. This
figure shows that performance improvement in using RTX-
LOSSRATE, RTX-CWND, and RTX-SSTHRESH is due to
the reduced number of timeouts. A lost transmission may
be recovered via a fast retransmission, but a lost fast re-
transmission can be recovered only through a timeout. RTX-
SAME does not consider loss rate in choosing a retransmission
destination and consequently experiences the largest number
of timeouts due to increased loss of retransmissions.

RTX-ASAP does not consider loss rate, and performs
better than RTX-SAME. This improved performance with
RTX-ASAP is attributed to cwnd space availability on both
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Fig. 12. rbuf = 64KB, and Path 1 loss rate = 1%: (a) CMT time to transfer 8MB file, (b) Retransmission timeouts for CMT with different policies
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Fig. 13. Path 1 loss rate = 1%, CMT time to transfer 8MB file using: (a) rbuf=32KB, (b) rbuf=128KB

destinations most of the times a retransmission is triggered
- (i) one retransmission is normally allowed to be sent to
the destination that has just suffered loss, and (ii) the ack
that triggers a retransmission (in case of fast retransmission)
may have created cwnd space for the other destination. From
(i) and (ii), RTX-ASAP has cwnd space availability on both
destinations to send a retransmission. Consequently, RTX-
ASAP randomly chooses a destination causing a reduction
in timeouts over RTX-SAME which pins its TSNs to the
same destination. The three loss rate based policies effectively
choose the better destination to redirect retransmissions to, and
thus show fewer timeouts than RTX-ASAP.

Figures 13(a) and (b) show performance of the retransmis-
sion policies with rbuf sizes of 32KB and 128KB respectively.
Together with Figure 12(a), we can see that the smaller the
rbuf, the more important the choice of retransmission policy.
These results show that a retransmission policy that considers
loss outperforms policies that do not, particularly in the
practical reality where rbuf is constrained.

Figures 12 and 13 show that rbuf size has a strong impact
on CMT performance. When CMT is used over paths with

different loss rates, a constrained rbuf that is shared within
an association causes performance degradation due to rbuf
blocking. Degradation increases with a reduction in rbuf size,
and/or an increase in the number of timeouts [26], [27]. Using
loss rate based policies alleviates rbuf blocking since the
number of timeouts is reduced. From Figure 12(a) and 13, as
rbuf size decreases, rbuf blocking increases, and loss rate based
policies perform increasingly better than the other policies.
(See [26], [27] for an extensive discussion of rbuf blocking.)

Figures 12 and 13 suggest that any retransmission policy
that takes loss rate into account will likely improve load
distribution for both new transmissions and retransmissions.
Retransmissions will be redirected to a lower loss rate path,
avoiding inactive timeout recovery periods, and allowing new
transmissions to be sent on the higher loss rate path, thus
maintaining a flow of data on both paths. Policies that take loss
rate into account avoid repeated retransmissions and timeouts
- thus also improving the timeliness of data.

Of three loss rate based policies, the practical ones to imple-
ment are RTX-CWND and RTX-SSTHRESH. Both perform
equally under all conditions considered. Of these two policies,
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we arbitrarily select RTX-SSTHRESH as the recommended
retransmission policy for CMT.

V. SUMMARY AND DISCUSSION

We identified three negative side-effects of introducing
CMT with SCTP, and proposed algorithms to avoid these side-
effects. We compared CMT against AppStripe, an idealized
data striping application, and showed that a shared sequence
space in CMT improves performance and increases resilience
to reverse path loss. We also presented and evaluated five
retransmission policies for CMT. Our results reveal that a
retransmission policy that considers loss rate performs better
than one that does not, particularly in the practical reality
where rbuf is constrained. We recommend the RTX-SSTHRESH
retransmission policy for CMT.

CMT also inherently adds to SCTP’s fault tolerance, which
is a major motivation for, and benefit of multihoming. An
SCTP sender gathers information about paths to alternate
destination addresses through explicit probes. Since explicit
probes are infrequent, a sender has inadequate information
and consequently, is unable to make an informed decision
about which destination to use when the primary destination
becomes unreachable. A CMT sender avoids this problem
because data sent concurrently on all paths act as frequent
implicit probes, reflecting current conditions of paths to all
destinations. This information will better assist a CMT sender
in detecting and responding to network failures.
Alternative design
Another approach to accomplishing CMT would be to define
a separate sequence space per destination. This solution sim-
plifies some issues, but also introduces its own complications.
• What sequence number is used for a packet that is re-

transmitted to a destination other than the original? What
happens to the sequence number used for the original des-
tination (is it reused, or is it discarded thereby introducing
a gap?) Any solution will likely require additional reliable
signaling between sender and receiver.

• During association closure, the final sequence number must
be agreed upon by sender and receiver to ensure complete
reliable transfer. Introducing multiple sequence number
spaces complicates this issue.

• Several mechanisms are understood with a single sequence
space, for example, reneging. Managing per destination
sequence numbering for these mechanisms requires careful
examination.

• Separating sequence spaces causes separation of ack info
per path. This separation cannot provide CMT’s increased
resilience to reverse path loss and reverse path failure as
shown in Section IV-D.

We believe that the complexities introduced by such a design
outweigh the benefits.
CMT in other environments
Small file transfers: Small file transfers (web transfers) suffer
from the problem that they are more prone to timeouts because
the number of packets in the transfer may be insufficient
to trigger a fast retransmission. We have not tested CMT
behavior with small files, but note the following. Spreading

a small file transfer over multiple paths further decreases the
ability to have fast retransmit, and thus will decrease expected
throughput. At the same time, using the aggregated bandwidth
of multiple paths should tend to increase throughput. We
suspect that the performance degradation due to timeouts may
dominate with small file transfers using CMT.
Failure scenarios: SCTP uses k consecutive timeouts as an
indication of failure (recommended value of k is 6 [2]).
CMT’s failure detection/response mechanisms and latency are
currently the same as those of SCTP. In the presence of failure,
we observed that CMT’s behavior is the same as that of SCTP
with a failed primary path (brief transmission periods followed
by long silence periods). We believe that further optimization
is possible to improve CMT performance during failures, and
is part of our future work.
Future work
Several items can be pursued in the future: (i) Our assumption
of independent paths is a strong one. To drop this assump-
tion, we plan to employ an end-to-end bottleneck detection
technique in CMT [8]–[11]. (ii) Since CMT sends data to
all receiver destinations, a CMT sender has more accurate
information about paths to a receiver than SCTP does. We
believe this information can be leveraged for improving failure
detection and response latency. (iii) CMT may increase the
end-to-end delay seen by an application due to increased
reordering at a sender. We plan to study CMT’s impact on
this delay, and mechanisms to mitigate it. (iv) TCP aware
load balancers at the network layer, which make sure that
packets belonging to one connection take the same path, are
commonplace. A performance comparison of CMT against
such load balancing would be interesting. (v) With the RTX-
SSTHRESH policy, retransmissions are all sent to the lower
loss rate path. It would be interesting to investigate if this
policy creates oscillatory behavior, as the extra retransmissions
may increase the loss rate of the lower loss rate path.

VI. RELATED WORK

A. Load Balancing at the Application Layer

Several applications [28], [29] use multiple TCP connec-
tions to increase throughput in high bandwidth networks.
These applications load balance over the same path to a
receiver, whereas CMT distributes data over multiple inde-
pendent paths.

Content Networks [30] provide an infrastructure for con-
nection level load balancing at the granularity of TCP con-
nections. Connection level load balancing is useful for short
TCP connections such as web requests and responses, but can
be suboptimal for long bulk data transfers, where the server
is constrained to a single path throughout the transfer. CMT
provides load balancing within a transport connection.

B. Load Balancing at the Transport Layer

Load balancing is desirable at the transport layer since it
has the most accurate information about end-to-end path(s).
CMT uses loss and delay information for redirection of
retransmissions - such decisions are best made in the transport
layer. We believe that load balancing at the application layer
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increases code redundancy and room for error by requiring
independent implementations in each application.

Hsieh et al. [31] propose pTCP (parallel TCP) which
provides an infrastructure for data striping within the trans-
port layer. pTCP has two components - Striped connection
Manager (SM) and TCP-virtual (TCP-v). The TCP-v’s are
separate connections that are managed by the SM. TCP-v
probes the path and performs congestion control and loss
detection/recovery, while the SM decides which data is sent
on which TCP-v. This decoupling of functionality avoids
some pitfalls of application layer approaches, and allows for
intelligent scheduling of transmissions and retransmissions. A
significant issue with pTCP is its complexity. As the authors
note, maintenance of multiple Transmission Control Blocks
at a sender can be a resource sink [31]. Implementation is
also complex, since pTCP replicates transport layer function-
ality such as connection establishment/teardown and checksum
calculations. Further, pTCP has several unresolved issues. If
both sender and receiver are multihomed with two IP addresses
each, pTCP does not address how a sender decides on which
sender-receiver pairs to establish TCP connections - a complex
problem. Plugging transport protocols into pTCP also requires
non-trivial modifications to the transport protocols themselves.
CMT, on the other hand, modifies SCTP, a transport protocol
which has built-in mechanisms for multihoming.

mTCP [32], an effort parallel with ours, implements a trans-
port layer solution to aggregate bandwidth across multiple end-
to-end paths. mTCP, like CMT, uses a single sequence space
across paths. mTCP significantly modifies TCP to use multiple
paths provided by an overlay network (RON [33]), and also
employs mechanisms to handle reordering side-effects. mTCP
also uses a shared bottleneck detection mechanism to detect
and respond to shared bottlenecks, but [32] lacks extensive
testing of the proposed method. RON is assumed as the
underlying routing layer, and is required for obtaining multiple
paths; that is, mTCP cannot be used on an arbitrary IP network.
On the other hand, CMT leverages SCTP’s multihoming
mechanisms and can be used on any IP network. mTCP also
uses a single reverse path for ack traffic, thereby requiring
additional mechanisms to detect failure of the single ack path,
and causing performance degradation during failure.

Al et al. [34] suggest ideas for load sharing that requires
additional metadata in the SCTP PDUs. We believe that
the SCTP (and TCP-SACK) PDUs already contain sufficient
information for the data sender to infer the per-path ordering
information that [34] explicitly codes as metadata. [34] fails to
suggest modified procedures for mechanisms which are imme-
diately affected, such as initialization of the per-path sequence
numbers, association initialization and shutdown procedures
with multiple sequence numbering schemes, and response
to reneging by a receiver. We have also seen that sharing
sequence number space across paths improves performance
whereas [34] uses a separate sequence number space per
path, and will therefore not see CMT’s performance benefits.
Further, [34] assumes that the rbuf does not constrain a sender
which is unrealistic in practice.

Argyriou et al. [35] provide techniques for bandwidth
aggregation with SCTP, but do not present and analyze their

protocol modifications to SCTP. The modified fast retransmis-
sion algorithm is simplistic and assumes information that is
not available to an SCTP receiver. For instance, the implicit
assumption that a receiver will be able to differentiate a packet
loss from reordering is unrealistic. [35] also ignores the impact
of a bounded rbuf.

C. Load Balancing at the Network Layer

Phatak and Goff [36] propose distributing data at the
network layer transparent to the higher layers using IP-in-IP
encapsulation. The authors identify conditions under which
this mechanism avoids incorrect retransmission timeouts. The
proposed solutions assume end-to-end delays are dominated
by fixed transmission delay, and do not apply to propagation
delay dominated paths, or paths with dynamically changing
bandwidths and delays. CMT’s algorithms do not require such
assumptions, and will operate under dynamic and propagation
delay dominated conditions.

Several proposals exist for multipath routing - routing
packets from a source to a destination network over multiple
paths. However, different paths are likely to exhibit different
RTTs, thus introducing packet reordering. TCP’s performance
degrades in the presence of increased reordering. To enable
optimal load balancing at intermediate routers without affect-
ing end-to-end TCP performance, modifications to TCP have
also been proposed [15]–[17], [37]. These proposals augment
and/or modify TCP’s congestion control mechanisms to cope
with reordering introduced by network layer load balancing;
the burden of actually using multiple paths in the network is
left to the intermediate routers.

In the Internet, the end user has knowledge of, and control
over, only the multihomed end hosts, not the intermediate
routers. In such cases the end host cannot dictate or govern
use of multiple paths in the network. But the end host can
use multiple end-to-end paths available to the host [38], thus
motivating CMT at the transport layer.

ACKNOWLEDGMENTS

We sincerely thank the editor and the anonymous reviewers
for their careful reviews and useful suggestions.

DISCLAIMER
The views and conclusions contained in this document

are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.

REFERENCES

[1] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, and M. Tuexen,
“Stream Control Transmission Protocol Specification Errata and Issues,”
draft-ietf-tsvwg-sctpimpguide-16.txt, Oct. 2005, (work in progress).

[2] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson, “Stream Control
Transmission Protocol,” RFC2960, Oct. 2000.

[3] E. Kohler, M. Handley, and S. Floyd, “Designing DCCP: Congestion
Control Without Reliability,” Tech. Rep., ICIR, 2004.

[4] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to
the Selective Acknowledgement (SACK) Option for TCP,” RFC2883,
IETF, July 2000.

[5] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
RFC2581, IETF, Apr. 1999.



14

[6] K. D. Gradisching and M. Tuexen, “Signalling Transport Over IP-based
Networks using IETF Standards,” in International Workshop on Design
of Reliable Comm Networks (DRCN), Budapest, Oct. 2001.

[7] “Future combat systems website,”
www.globalsecurity.org/military/systems/ground/fcs.htm.

[8] M. S. Kim, T. Kim, Y. Shin, S. S. Lam, and E. J. Powers, “A Wavelet-
based Approach to Detect Shared Congestion,” in ACM SIGCOMM,
Oregon, Aug. 2004.

[9] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting Shared Congestion
of Flows Via End-to-End Measurement,” IEEE/ACM Transactions on
Networking, vol. 10, no. 3, June 2002.

[10] D. Katabi, I. Bazzi, and X. Yang, “A Passive Approach for Detecting
Shared Bottlenecks,” in ICCCN, Arizona, Oct. 2001.

[11] K. Harfoush, A. Bestavros, and J. Byers, “Robust Identification of
Shared Losses Using End-to-End Unicast Probes,” in ICNP 2000, Osaka,
Oct. 2000.

[12] A. Akella, S. Seshan, and H. Balakrishnan, “The Impact of False Sharing
on Shared Congestion Management,” in ICNP, Georgia, Nov. 2003.

[13] UC Berkeley, LBL, USC/ISI, and Xerox Parc, “ns-2 documentation and
software,” Version 2.1b8, 2001, www.isi.edu/nsnam/ns.

[14] A. Caro and J. Iyengar, “ns-2 SCTP module,” Version 3.2, December
2002, http://pel.cis.udel.edu.

[15] E. Blanton and M. Allman, “On Making TCP More Robust to Packet
Reordering,” ACM Computer Comm. Review, vol. 32, no. 1, Jan. 2002.

[16] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: A Reordering-
Robust TCP with DSACK,” in ICNP, Georgia, Nov. 2003.

[17] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka, “TCP-PR:
TCP for Persistent Packet Reordering,” in ICDCS, Rhode Island, May
2003.

[18] J. Iyengar, K. Shah, P. Amer, and R. Stewart, “Concurrent Multipath
Transfer Using SCTP Multihoming,” in SPECTS, California, July 2004.

[19] J. Iyengar, A. Caro, P. Amer, G. Heinz, and R. Stewart, “Making SCTP
More Robust to Changeover,” in SPECTS, Montreal, July 2003.

[20] R. Ludwig and R. Katz, “The Eifel Algorithm: Making TCP Robust
Against Spurious Retransmissions,” ACM Computer Communications
Review, vol. 30, no. 21, pp. 30–36, Jan. 2000.

[21] S. Ladha, S. Baucke, R. Ludwig, and P. Amer, “On Making SCTP
Robust to Spurious Retransmissions,” ACM Computer Communication
Review, vol. 34, no. 2, pp. 123–135, Apr. 2004.

[22] N. Jani and Krishna Kant, “SCTP Performance in Data Center Envi-
ronments,” Tech. Rep., Intel Corporation, 2005.

[23] J. Iyengar, End-to-end Load Balancing using Transport Layer Multihom-
ing, Ph.D. thesis, CISC Dept, University of Delaware, (in progress).

[24] J. Iyengar, P. Amer, and R. Stewart, “Retransmission Policies For
Concurrent Multipath Transfer Using SCTP Multihoming,” in IEEE
ICON, Singapore, Nov. 2004.

[25] A. Caro, P. Amer, and R. Stewart, “Retrans Policies for Multihomed
Transport Protocols,” Computer Communications, (to appear).

[26] J. Iyengar, P. Amer, and R. Stewart, “Receive Buffer Blocking In
Concurrent Multipath Transport,” Tech Report TR2005-10, CIS Dept,
University of Delaware, Jan. 2005.

[27] J. Iyengar, P. Amer, and R. Stewart, “Receive Buffer Blocking In
Concurrent Multipath Transport,” in GLOBECOM, Missouri, Nov. 2005.

[28] T. Hacker and B. Athey, “The End-to-End Performance Effects of
Parallel TCP Sockets on a Lossy Wide-Area Network,” in IEEE IPDPS,
Florida, Apr. 2002.

[29] H. Sivakumar, S. Bailey, and R. Grossman, “PSockets: The Case For
Application-Level Network Striping For Data Inttensive Applications
Using High Speed Wide Area Networks,” in IEEE Supercomputing
(SC), Texas, Nov. 2000.

[30] M. Day, B. Cain, G. Tomlinson, and P. Rzewski, “A Model For Content
Internetworking (CDI),” RFC3466, IETF, Feb. 2003.

[31] H.Y. Hsieh and R. Sivakumar, “A Transport Layer Approach for
Achieving Aggregate Bandwidths on Multihomed Mobile Hosts,” in
MOBICOM, Georgia, Sept. 2002.

[32] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang, “A
Transport Layer Approach for Improving End-to-End Performance and
Robustness Using Redundant Paths,” in USENIX, June 2004.

[33] D. Andersen, H. Balakrishnan, and R. Morris M. Kaashoek, “Resilient
Overlay Networks,” in 18th ACM Symposium on Operating Systems
Principles (SOSP 2001), Banff, Oct. 2001.

[34] A. Abd El Al, T. Saadawi, and M. Lee, “LS-SCTP: A Bandwidth
Aggregation Technique For Stream Control Transmission Protocol,”
Computer Communications, vol. 27, no. 10, 2004.

[35] A. Argyriou and V. Madisetti, “Bandwidth Aggregation With SCTP,”
in IEEE GLOBECOM 2003, California, Dec. 2003.

[36] D. S. Phatak and T. Goff, “A Novel Mechanism for Data Streaming
Across Multiple IP Links for Improving Throughput and Reliability in
Mobile Environments,” in INFOCOM, New York, June 2002.

[37] M. Gerla, S. S. Lee, and G. Pau, “TCP Westwood Simulation Studies
in Multiple-Path Cases,” in SPECTS, California, July 2002.

[38] R. Teixeira, K. Marzullo, S. Savage, and G.M. Voelker, “In Search of
Path Diversity in ISP Networks,” in USENIX/ACM Internet Measurement
Conference, Florida, Oct. 2003.


