
Concurrent Multipath Transfer using SCTP

Multihoming: Introducing the Potentially-failed

Destination State

Preethi Natarajan
1
, Nasif Ekiz

1
, Paul D. Amer

1
, Janardhan R. Iyengar

2
,

and Randall Stewart
3

1Protocol Engineering Lab, CIS Dept, University of Delaware

{nataraja, nekiz, amer}@cis.udel.edu
2Dept of Math & Computer Science, Connecticut College

iyengar@conncoll.edu
3Internet Technologies Division, Cisco Systems

rrs@cisco.com

Abstract. Previously, we identified the failure-induced receive buffer (rbuf)

blocking problem in Concurrent Multipath Transfer using SCTP multihoming

(CMT), and proposed CMT with a Potentially-failed destination state (CMT-

PF) to alleviate rbuf blocking. In this paper, we complete our evaluation of

CMT vs. CMT-PF. Using ns-2 simulations we show that CMT-PF performs on

par or better than CMT during more aggressive failure detection thresholds than

recommended by RFC4960. We also examine whether the modified sender

behavior in CMT-PF degrades performance during non-failure scenarios. Our

evaluations consider: (i) realistic loss model with symmetric and asymmetric

path loss, (ii) varying path RTTs. We find that CMT-PF performs as well as

CMT during non-failure scenarios, and interestingly, outperforms CMT when

the paths experience asymmetric rbuf blocking conditions. We recommend that

CMT be replaced by CMT-PF in future CMT implementations and RFCs1.

Keywords: Stream Control Transmission Protocol (SCTP), Concurrent

Multipath Transfer (CMT), Path failure, Receive buffer blocking.

1 Introduction

Unlike TCP and UDP, the Stream Control Transmission Protocol (SCTP) [RFC4960]

natively supports multihoming at the transport layer. SCTP multihoming allows

binding of a transport layer association (SCTP’s term for a connection) to multiple IP

addresses at each end of the association. This binding allows transmission of data to

different destination addresses of a multihomed receiver. Multiple destination

addresses imply the possibility of independent end-to-end paths. Concurrent

1
Prepared through collaborative participation in the Communication and Networks Consortium sponsored by the US Army Research Lab under

Collaborative Tech Alliance Program, Coop Agreement DAAD19-01-2-0011. The US Gov’t is authorized to reproduce and distribute reprints

for Gov’t purposes notwithstanding any copyright notation thereon.

Supported by the University Research Program, Cisco Systems, Inc.

Multipath Transfer (CMT) [5] leverages SCTP’s multihoming support, and increases

an application’s throughput via simultaneous transfer of new data over independent

paths between multihomed source and destination hosts.

Reference [4] explores the receive buffer (rbuf) blocking problem in CMT, where

transport protocol data unit (TPDU) losses throttle a sender once the transport

receiver’s buffer is filled with out-of-order data. Even though the congestion window

would allow new data transmission, rbuf blocking (i.e., flow control) stalls the sender,

causing throughput degradation. To reduce rbuf blocking effects during congestion,

[4] proposes different retransmission policies that use heuristics for faster loss

recovery, such as, sending retransmissions on the path with the largest congestion

window (RTX_CWND policy), or the largest slow-start threshold (RTX_SSTHRESH

policy). Both RTX_CWND and RTX_SSTHRESH perform equally well during

congestion-induced rbuf blocking, and therefore [4] arbitrarily selected and

recommended the RTX_SSTHRESH policy for CMT. In [9], we show how CMT

with RTX_SSTHRESH policy suffers from consecutive instances of failure-induced

rbuf blocking.

To mitigate rbuf blocking during path failures, we modified CMT’s failure

detection process to include a new “potentially-failed” (PF) destination state. CMT

with a modified set of retransmission policies that consider the PF state is called

CMT-PF. CMT-PF is based on the rationale that loss detected by a timeout implies

either severe congestion or failure en route. After a single timeout on a path, a sender

is unsure, and marks the corresponding destination as PF. A PF destination is not used

for data transmission or retransmission. Only heartbeats are sent to the PF destination.

If a heartbeat-ack returns, the PF destination returns to active state. Note that CMT-PF

retransmission policies are applied only for timeout based loss recoveries. One of

CMT’s current retransmission policies, such as RTX_SSTHRESH, is applied for

TPDU losses detected by RFC4960’s threshold number of missing reports (fast

retransmits). Details of CMT-PF can be found in [9].

2 Evaluation in Failure Scenarios

We implemented CMT-PF in the University of Delaware’s SCTP/CMT ns-2 module

[2]. Our previous evaluation [9] considered only the RTX_SSTHRESH variants of

CMT and CMT-PF. Our current evaluations include the RTX_CWND variants as

well since RTX_CWND appears to be a better policy than RTX_SSTHRESH during

failure (more details follow). The four variations considered for evaluations are:

1) CMT-CWND: CMT with RTX_CWND retransmission policy.

2) CMT-SSTHRESH: CMT with RTX_SSTHRESH retransmission policy.

3) CMT-PF-CWND: CMT-PF with RTX_CWND retransmission policy for fast

retransmissions.

4) CMT-PF-SSTHRESH: CMT-PF with RTX_SSTHRESH policy for fast

retransmissions.

To achieve faster yet robust failure detection, [1] argues for varying

Path.Max.Retransmit (PMR) based on a network’s loss rate, and suggests PMR=3 for

the Internet. Lowering the PMR for CMT flows reduces the number of rbuf blocking

episodes, and thus CMT’s throughput degradation during failures. However, a

tradeoff exists on deciding the value of PMR – a lower value reduces rbuf blocking

but causes spurious failure detection, whereas a higher value increases rbuf blocking

but avoids spurious failure detection for a wide range of environments.

We first investigate how CMT-PF improvements are affected by the failure

detection threshold. We evaluate CMT vs. CMT-PF for PMR values ranging from 0 –

5. The simulation topology is shown in Figure 1. A multihomed sender, A, has two

independent paths to a multihomed receiver, B. The edge links between A or B to the

routers represent last hop link characteristics. The end-to-end one-way delay is 45ms

on both paths, representing typical U.S. coast-to-coast delays experienced by a

significant fraction of today’s Internet flows [7].

Figure 1: Topology with Bernoulli Loss Model

Each simulation run is a bulk file transfer from A to B. Rbuf=64KB and both paths

experience 1% loss rate with Bernoulli loss model. Path 2 fails 10 seconds after the

file transfer commences. Sender A detects this path failure after PMR+1 consecutive

timeouts. Figure 2 plots the different variations’ goodput during failure detection

(application data received ÷ failure detection time), with a 5% error margin. Note that

the failure detection period decreases with smaller PMR values.

As mentioned in Section 1, [4] arbitrarily recommends RTX_SSTHRESH policy

over RTX_CWND during congestion-induced rbuf blocking. Interestingly, the two

policies exhibit performance differences during failure-induced rbuf blocking (Figure

2a). Ssthresh is a more historic account of a path’s congestion conditions than cwnd.

When path 2’s loss rate swiftly changes from 1% to 100% (failure), ssthresh

converges slower to path 2’s current conditions than cwnd. For CMT, RTX_CWND

appears to be a better policy than RTX_SSTHRESH during failure scenarios.

The dashed line in Figure 2b denotes the maximum attainable goodput of an SCTP

file transfer (application data received ÷ transfer time) using path 1 alone. When the

failure detection threshold is most aggressive (PMR=0), all senders detect path 2

failure after the first timeout. The 4 variations experience similar rbuf blocking during

this failure detection and perform almost equally (Figure 2b). As PMR increases, the

number of rbuf blocking instances during failure detection increases, resulting in

increasing performance benefits from CMT-PF. As seen in Figure 2b as PMR

increases, CMT-PF’s goodput increases, whereas CMT’s goodput decreases. Starting

from PMR=3, CMT-PF’s goodput is comparable or equal to the maximum attainable

SCTP goodput. Unlike the two CMT variations, both CMT-PF-SSTHRESH and CMT-

PF-CWND perform equally well during failure, and better than CMT for PMR > 0.

(a) CMT; CWND vs. SSTHRESH

(b) CMT vs. CMT-PF

Figure 2: Goodput during Failure Detection for varying PMR values

3 Evaluation in Non-Failure Scenarios

Section 2 confirms that transitioning a destination to the PF state after timeout caused

by path failure alleviates rbuf blocking, and improves CMT-PF performance.

However, it is necessary to evaluate whether the PF state transition impairs

performance during timeouts caused by non-failure scenarios such as congestion. In

[9], our congestion experiments assumed a simple loss model with uniformly

distributed loss rates. Here, we consider the more realistic topology and loss model

shown in Figure 3.

Figure 3: Bursty Loss Created by Cross-traffic

In this dual-dumbbell topology, each router, R, is attached to five edge nodes.

Dual-homed edge nodes A and B are the transport sender and receiver, respectively.

The other edge nodes are single-homed, and introduce cross-traffic that instigates

bursty periods of congestion and bursty congestion losses at the routers. Their last-

hop propagation delays are randomly chosen from a uniform distribution between 5-

20 ms, resulting in end-to-end one-way propagation delays ranging ~35-65ms [7]. All

links (both edge and core) have a buffer size twice the link's bandwidth-delay product,

which is a reasonable setting in practice. Each single-homed edge node has eight

traffic generators, introducing cross-traffic with a Pareto distribution. The cross-traffic

packet sizes are chosen to resemble the distribution found on the Internet: 50% are

44B, 25% are 576B, and 25% are 1500B [3, 8]. The result is a data transfer between

A to B, over a network with self-similar cross-traffic, which resembles the observed

nature of traffic on data networks [10]. We simulate a 32MB file transfer between

sender A and receiver B, under different loss conditions. Rbuf=64KB, PMR=5, and

loss rates are controlled by varying the cross-traffic load.

3.1 Symmetric Loss Conditions

The aggregate cross-traffic load on both paths are similar and vary from 40%-100%

of the core link’s bandwidth. Figure 4 plots the average goodput (file size ÷ transfer

time), of the 4 variations with 5% error margin. The 4 variations exhibit similar

performance during low loss rates (i.e., minimal cross-traffic), since most of the

TPDU losses are recovered via fast retransmits as opposed to timeouts. As cross-

traffic and hence loss rate increases, the number of timeouts on each path increases.

Under such conditions, the probability and time duration that both paths are

simultaneously marked “potentially-failed” increases in CMT-PF. To ensure that

CMT-PF performs well even if all destinations get marked PF, CMT-PF transitions

the destination with the smallest number of consecutive timeouts back to the active

state, allowing data to be sent to that destination [9]. This modification guarantees that

CMT-PF performs on par with CMT even when both paths experience high loss rates

(Figure 4).

Under symmetric loss conditions, we study how a path’s RTT affects the

throughput differences between CMT and CMT-PF. Note that any difference between

CMT and CMT-PF transpires only after a timeout on a path. Let us assume that a path

experiences a timeout event, and the next TPDU loss on the path takes place after n

RTTs. After the timeout, CMT slow starts on the path, and the number of TPDUs

transmitted on the path at the end of n RTTs = 1 + 2 + 4 … + 2n = (2(n +1) – 1).

CMT-PF uses the first RTT for a heartbeat transmission, and slow starts with initial

cwnd=2 after receiving the heartbeat-ack. In CMT-PF, the number of TPDUs

transmitted by end of n RTTs on the path = 0 + 2 + 4 … + 2n = (2(n +1) – 2). Thus, in

n RTTs, CMT transmits 1 TPDU more than CMT-PF, and the 1 TPDU difference is

unaffected by the path’s RTT. Therefore, when paths experience symmetric RTTs

(a.k.a. symmetric RTT conditions), we expect the performance ratio between CMT

and CMT-PF to remain unaffected by the RTT value.

We now consider a more interesting scenario when the independent end-to-end

paths experience symmetric loss rates, but asymmetric RTT conditions. That is, path

1’s RTT=x sec, and path 2’s RTT=y sec (x ≠ y). How do x and y impact CMT vs.

CMT-PF performance? More importantly, does CMT-PF perform worse when the

paths have asymmetric RTTs? We performed the following Bernoulli loss model

experiment to gain insight (Bernoulli loss model simulations take much less time than

cross-traffic ones, and both loss models resulted in similar trends between CMT and

CMT-PF). We used the topology shown in Figure 1 to transfer an 8MB file from

sender A to receiver B. Path 1’s one-way propagation delay was fixed at 45ms while

path 2’s one-way delay varied as follows: 45ms, 90ms, 180ms, 360ms, and 450ms.

Both paths experience identical loss rates ranging from 1%-10%.

Figure 4: Goodput during Symmetric

Loss Conditions

Figure 5: Goodput Ratio during

Asymmetric Path RTTs

Figure 5 plots the ratio of CMT-SSTHRESH’s goodput over CMT-PF-

SSTHRESH’s (relative performance difference) with 5% error margin. As expected,

both CMT and CMT-PF perform equally well during symmetric RTT conditions. As

the asymmetry in paths’ RTTs increases, an interesting dynamic dominates and CMT-

PF performs slightly better than CMT (goodput ratios < 1).

Note that rbuf blocking depends on the frequency of loss events (loss rate) and

duration of loss recovery. Loss recovery duration increases with a path’s RTT and

RTO. As loss rate increases, the probability that a sender experiences consecutive

timeout events on the path increases. After the first timeout, CMT-PF transitions the

path to PF, and avoids data transmission on the path (as long as another active path

exists) until a heartbeat-ack confirms the path as active. But, a CMT sender suffers

back-to-back timeouts on data sent on the path, with exponential backoff of timeout

recovery period. Consecutive timeouts increase path 2’s RTO more at higher RTTs,

and results in longer periods of rbuf blocking in CMT (shown in [9]). Therefore, as

path 2’s RTT increases, CMT’s goodput degrades more than CMT-PF’s, and the

goodput ratio decreases (Figure 5). Similar trends are observed between CMT-CWND

and CMT-PF-CWND (not shown due to space constraints) [9]. In summary, during

symmetric loss conditions, CMT and CMT-PF perform equally well when paths

experience symmetric RTT conditions. As the RTT asymmetry increases, CMT-PF

demonstrates a slight advantage at high loss rates.

3.2 Asymmetric Loss Conditions

In our asymmetry experiments, paths 1 and 2 experience different cross-traffic loads.

The aggregate cross-traffic load on path 1 is set to 70% of the core link bandwidth,

while on path 2 the load varies from 70%-100% of the core link bandwidth. Figure 6

plots the average goodput of the 4 variations with 5% error margin. As discussed in

the previous sub-section, as path 2’s cross-traffic load increases, the probability that a

sender experiences back-to-back timeouts on path 2 increases. CMT suffers a higher

number of consecutive timeouts on data (Table 1) resulting in extended rbuf blocking

periods than CMT-PF. Therefore, as path 2’s cross-traffic load increases, CMT-PF

performs better than CMT (Figure 6). This result holds true for both RTX_CWND

and RTX_SSTHRESH variants.

Figure 6: CMT vs. CMT-PF Goodput during Asymmetric Loss Conditions (Path 1 Cross-traffic

Load = 70%)

Table 1: Mean Consecutive Data

Timeouts (Path 2)

Table 2: Mean Number of Transmissions

In CMT, RTX_CWND and RTX_SSTHRESH are retransmission policies, and are

not applied during new data transmissions. In CMT-PF, a path is marked PF after a

timeout, and as long as active path(s) exist, CMT-PF avoids retransmissions on the PF

path. Once the retransmissions are all sent, CMT-PF’s data transmission strategy is

applied to new data, and CMT-PF avoids new data transmissions on the PF path. As

shown in Table 2, when compared to CMT, CMT-PF reduces the number of

(re)transmissions on the higher loss rate path 2 and (re)transmits more on the lower

loss rate path 1. This transmission difference (ratio of transmissions on path 1 over

path 2) between CMT-PF and CMT increases as the paths become more asymmetric

in their loss conditions. In summary, CMT-PF does not perform worse than CMT

during asymmetric path loss conditions. In fact, CMT-PF is a better transmission

strategy than CMT, and performs better as the asymmetry in path loss increases.

4 Conclusion & Future Work

Using simulation, we demonstrated that (re)transmission policies using CMT with a

“potentially-failed” destination state (CMT-PF) outperform CMT during failures −

even under aggressive failure detection thresholds. Investigations during symmetric

loss conditions revealed that CMT-PF performs as well as CMT during symmetric

path RTTs, and slightly better when the paths experience asymmetric RTT conditions.

The simulation results conclude that CMT-PF (i) reduces rbuf blocking during failure

scenarios, and (ii) performs on par or slightly better than CMT during non-failure

scenarios. In light of these findings, we recommend CMT be replaced by CMT-PF in

SCTP implementations and RFCs. We have implemented CMT-PF in FreeBSD

SCTP/CMT stack, and are performing emulation experiments comparing CMT vs.

CMT-PF. As future work, we will evaluate CMT vs. CMT-PF when end-to-end paths

share a bottleneck and therefore are no longer independent.

5 Disclaimer

The views and conclusions contained in this document are those of the authors and

should not be interpreted as representing the official policies, either expressed or

implied, of the Army Research Laboratory or the U.S. Government.

6 References

[1] A. Caro, “End-to-End Fault Tolerance using Transport Layer Multihoming,” PhD

Dissertation, CIS Dept, U of Delaware, 08/05.

[2] A. Caro, J. Iyengar, “ns-2 SCTP Module,” Version 3.6, 06/06. pel.cis.udel.edu.

[3] CAIDA: Packet Sizes and Sequencing, 03/98. www.caida.org.

[4] J. Iyengar, P. Amer, R. Stewart. “Performance Implications of Receive Buffer Blocking in

Concurrent Multipath Transfer,” Computer Communications, 2/07, 30(4), pp 818-829.

[5] J. Iyengar, P. Amer, R. Stewart, “Concurrent Multipath Transfer using SCTP Multihoming

over Independent End-to-end Paths,” IEEE/ACM Trans on Networking, 10/06, 14(5), pp

951-964.

[6] P. Natarajan, J. Iyengar, P. Amer, R. Stewart, “CMT using Transport Layer Multihoming:

Performance under Network Failures,” MILCOM 2006, Washington D. C., 10/06.

[7] S. Shakkottai, R. Srikant, A. Broido, K. Claffy, “The RTT distribution of TCP Flows in the

Internet and its Impact on TCP-based flow control,” TR, CAIDA, 02/04.

[8] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely, C. Diot.

“Packet-level Traffic Measurements from the Sprint IP Backbone,” IEEE Network, 11/03,

17(6), pp 6-16.

[9] P. Natarajan, N. Ekiz, P. Amer, R. Stewart, “CMT using SCTP Multihoming: Transmission

Policies using a Potentially-failed Destination State,” TR 2007/338, CIS Dept, U of

Delaware, 02/07.

[10] W. Leland, M. Taqqu, W. Willinger, D. Wilson, “On the Self-similar Nature of Ethernet

Traffic,” ACM SIGCOMM, San Francisco, 09/93.

