
Corrections on: Improving Multiple File Transfers Using SCTP Multistreaming*

Preethi Natarajan, Paul D. Amer, Ryan W. Bickhart, Sourabh Ladha+
Protocol Engineering Lab, CIS Department, University of Delaware

Abstract

This paper corrects our previously published results
[Lad04] where unbeknownst to us, our experiments used
Netbed’s error-free, no-delay control connection for
retransmissions. We corrected this error, re-ran the entire set
of experiments, and now present and interpret the corrected
results. While all of the graphs depicting multiple file transfer
times changed, fortunately, the overall conclusions remain
consistent. For purposes of completeness, we provide this full
paper updated with corrected results.

 We identify overheads associated with FTP, attributed to
separate TCP connections for data and control, non-
persistence of the data connections, and the sequential nature
of command exchanges. We argue that solutions to avoid
these overheads using TCP place an undue burden on the
application. Instead we propose modifying FTP to use SCTP
and its multistreaming service. FTP over SCTP avoids the
identified overheads in the current FTP over TCP approach
without introducing complexity at the application, and still
remaining “TCP-friendly.” We implemented FTP over SCTP
in three ways: (1) simply replacing TCP calls with SCTP
calls, thus using one SCTP association for control and one
SCTP association for each data transfer, (2) using a single
multistreamed SCTP association for control and all data
transfers, and (3) enhancing (2) with command pipelining.
Results comparing these 3 variations with the classic FTP
over TCP indicate significant improvements in throughput for
the transfer of multiple files by using multistreaming and
command pipelining, with the largest benefit occurring for
transferring multiple short files. More generally, this paper
encourages the use of SCTP’s innovative transport-layer
services to improve existing and future application
performance.

1. Introduction

The past decade has witnessed an exponential growth of
Internet traffic, with a proportionate increase in Hyper Text
Transfer Protocol (HTTP) [BFF96] and decline in File
Transfer Protocol (FTP) [PR85], both in terms of use and the
amount of traffic. The decline in FTP traffic is chiefly
attributed to the inflexible nature of its interface.

*Prepared through collaborative participation in Communication and Network
Consortium sponsored by US Army Research Lab under Collaborative Tech
Alliance Program (DAAD19-01-2-0011). The US Gov’t is authorized to reproduce
and distribute reprints for Gov’t purposes notwithstanding copyright notation
thereon. Supported, in part, by the University Research Partnership Program of
Cisco Systems, Inc.
+Currently with Qualcomm, Inc., San Diego, CA.

Over the years, several FTP extensions have been proposed
[AOM98, EH02, HL97], with a few efforts to improve
performance by using parallel TCP connections [AO97,
Kin00]. However, opening parallel TCP connections (whether
for FTP or HTTP) is regarded as “TCP-unfriendly” [FF99] as
it allows an application to gain an unfair share of bandwidth
at the expense of other network flows, potentially sacrificing
network stability. Our focus is to improve end-to-end FTP
latency and throughput in a TCP-friendly manner.

Although FTP traffic has proportionately declined in the past
decade, FTP still remains one of the most popular protocols
for bulk data transfer on the Internet [MC00]. For example,
Wuarchive [WUARCHIVE] serves as a file archive for a
variety of files including mirrors of open source projects.
Wuarchive statistics for the period of April 2002 to March
2003 indicate FTP accounting for 5207 Gigabytes of traffic,
and HTTP accounting for 7285 Gigabytes of traffic. FTP is
exclusively used in many of the Internet’s software mirroring
sites, for various source code repositories, for system
backups, and for file sharing. All of these applications require
transferring multiple files from one host to another.

In this paper we identify the overheads associated with the
current FTP design mainly due to running over TCP, which
constrains the FTP application. We present modifications to
FTP to run over Stream Control Transmission Protocol
(SCTP) RFC2960 [SXM+00] instead of TCP. SCTP is an
IETF standards track transport layer protocol. Like TCP,
SCTP provides an application with a full duplex, reliable
transmission service. Unlike TCP, SCTP provides additional
transport services, in particular, multistreaming. SCTP
multistreaming logically divides an association into streams
with each stream having its own delivery mechanism. All
streams within a single association share the same congestion
and flow control parameters. Multistreaming decouples data
delivery and transmission, and in doing so prevents Head-of-
Line (HOL) blocking.

This paper shows how command pipelining and SCTP
multistreaming benefit FTP in reducing overhead, especially
for multiple file transfers. We recommend two modifications
to FTP that make more efficient use of the available
bandwidth and system resources. We implemented these
modifications in a FreeBSD environment, and carried out
experiments to compare the current FTP over TCP design vs.
our FTP over SCTP designs. Our results indicate dramatic
improvements with lower transfer time and higher throughput
for multiple file transfers particularly under lossy network
conditions. Moreover, our modifications to FTP solve
concerns current FTP protocol faces with NATs and firewalls

in transferring IP addresses and port numbers in the payload
data [AOM98, Bel94, Tou02].

This paper is organized as follows. Section 2 details and
quantifies the overheads in the current FTP over TCP design.
This section also discusses possible solutions to eliminate
these overheads while still using TCP as the transport. Section
3 introduces SCTP multistreaming. Section 4 presents minor
FTP changes needed to exploit SCTP multistreaming, and a
description of how the new design reduces overhead. Section
5 presents the experimental results, and Section 6 concludes
the paper.

2. Inefficiencies and possible solutions

2.1 Inefficiencies in FTP over TCP

Figure 1: Expected cwnd evolution during a multiple file
transfer in FTP over TCP

FTP’s current design includes a number of inefficiencies due
to (1) separate control and data connection and (2) non-
persistent data connection. Each is discussed in turn.

2.1.1 Distinct control and data connection

A. FTP’s out-of-band control signaling approach has
consequences in terms of end-to-end latency. In a multiple file
transfer, traffic on the control connection tends to be send-
and-wait, with no traffic transferred during the file transfer.
This connection’s congestion mechanism typically times out,
and returns the connection to slow start for each new file to be
transferred [APS99]. The control connection is particularly
vulnerable to timeouts because too few packets are flowing to
cause a TCP fast retransmit. An operation (involving a single
control command) will be subject to a timeout in the event of
loss of either a command or its reply. Attempts are needed to
reduce the command exchange over the control connection.

B. With distinct connections, end hosts create and maintain on
average two Transport Control Blocks (TCBs) for each FTP
session. This factor is negligible for clients, but may
significantly impact busy servers that are subject to reduced
throughput due to memory block lookups [FTY99]. TCB
overheads may be reduced by using ensemble sharing [BS01,
Tou97].

C. Over the past years, considerable discussion has taken
place on FTP’s lack of security, often attributed to data
connection information (IP address, port number) being
transmitted in plain text in the PORT command on the control
connection to assist the peer in establishing a data connection.
Moreover, transferring IP addresses and port numbers in the
protocol payload creates problem for NATs and firewalls that
must monitor and translate addressing information [AOM98,
Tou02].

2.1.2 Non-persistence of the data connection

A. The non-persistence of a data connection for multiple files
causes connection setup overhead at least on the order of 1

RTT for each file transfer or directory listing. (Traffic
overhead also exists for connection teardown, but this traffic
overlaps the control commands for the next operation.)

B. Every new data connection must initially probe the
available bandwidth (via a congestion window (cwnd)) during
a slow start phase, before the connection reaches its steady
state cwnd. A loss early in the slow start phase, before the
cwnd contains enough packets to allow for fast retransmit,
will result in a timeout at the server. Figure 1 graphically
shows the nature of this re-probing overhead in the event of
three consecutive file transfers (over three different TCP
connections). The interval between the transfers indicates the
time involved in terminating the previous connection,
transferring control commands, and setting up a new
connection. (Note: Figure 1 represents a generic example.)

C. For each file transfer, at least one RTT overhead is
incurred over the control connection for communicating the
PORT command and its 200 reply.

D. In the event of multiple small file transfers, the server ends
up having many connections in the TCP TIME-WAIT state
and hence must maintain on average more than two TCBs per
session. This per-connection memory load can adversely
affect a server’s connection rate and throughput [FTY99].

2.2. Possible solutions and drawbacks

We describe some of the possible solutions that try to avoid
the above stated overheads while still using TCP as the
underlying transport service. The drawbacks associated with
each solution are presented.

A. Use one persistent TCP connection for control and data

Improvements: This approach avoids most overheads
associated with FTP’s current design listed in the previous
section. The commands over the control connection can be
pipelined (in the event of a multiple file transfer) to improve
latency, and maintain the probed congestion window for
subsequent transfers.

Drawbacks: TCP provides a byte-stream service and does not
differentiate between the different types of data transmitted

over the same connection. Using a single TCP connection
requires the application to use markers to differentiate
between control and data, and the beginning/end of each file.
This marking burden increases application layer complexity.
Control and file data in an FTP session are logically different
types of data, and conceptually, are best kept logically if not
physically, separate. Additionally, using a single connection
risks Head-of-Line (HOL) blocking (discussed in Section 3).

B. Use two persistent TCP connections: one for control, one
for data

Improvements: A persistent data connection eliminates the
connection setup-teardown and command exchange
overheads for every file transfer, thus reducing network traffic
and the number of round trip delays.

Drawbacks: Due to the sequential nature of commands over
the control connection, the data connection will remain idle in
between transfers of a multiple files transfer. During this idle
time, the data connection congestion window may reduce to
as little as the initial default size, and later require TCP to re-
probe for the available bandwidth [HPF00]. Moreover this
approach still suffers from the overhead listed in Section
2.1.1.

C. Use two persistent TCP connections: one for control, one
for data. Also use command pipelining on control connection.

Improvements: Command pipelining allows for the immediate
request of multiple files over the control connection rather
than requiring filei is completely retrieved before filei+1 is
requested. A persistent data connection with command
pipelining will maintain a steadier flow of data (i.e., higher
throughput) over the data connection by letting subsequent
transfers utilize the already probed bandwidth.

Drawbacks: This approach still suffers from the overhead
listed in Section 2.1.1.

D. Use one TCP connection for control, and ‘n’ parallel data
connections

Improvements: Some FTP implementations do achieve better
throughput using parallel TCP connections for a multiple file
transfer.

Drawbacks: This approach is not TCP-friendly [FF99] as it
may allow an application to gain an unfair share of bandwidth
and adversely affect the network’s equilibrium [BFF96,
FF99]. Moreover past research has shown that parallel TCP
connections may suffer from aggressive congestion control
resulting in a reduced throughput [FF99]. As such, this
solution should not be considered. This approach also suffers
the overheads listed in Section 2.1.1.

Related Work: Apart from the above solutions, researchers in
the past have suggested ways to overcome TCP’s limitations
and boost application performance [BS01, Tou97]. For

example, T/TCP [Bra94] reduced the connection
setup/teardown overhead by allowing data to be transferred in
the TCP connection setup phase. But due to a fundamental
security flaw, T/TCP could not succeed. Aggregating
transfers has also been discussed for HTTP [PM94], but while
HTTP semantics allowed for persistent data connections and
command pipelining, FTP semantics do not allow similar
solutions without introducing changes to the application (see
A. above).

Having summarized ways for improving FTP performance
while still using TCP, we now consider the main objective of
this paper - improving FTP performance by using SCTP, an
emerging IETF general-purpose transport protocol [SXM+00].
We note that the TCP alternatives that incorporate temporal
and ensemble sharing [Bra94, BS01, Tou97] are not discussed
further in this paper; future work should evaluate such
alternatives.

3. SCTP multistreaming

One innovative transport layer service that promises to
improve application layer performance is SCTP
multistreaming. A stream in an SCTP association is “a uni-
directional logical channel established from one to another
associated SCTP endpoint, within which all user messages are
delivered in sequence except for those submitted to the
unordered delivery service” [SXM+00].

Multistreaming within an SCTP association separates flows of
logically different data into independent streams. This
separation enhances application flexibility by allowing it to
identify semantically different flows of data, and have the
transport layer “manage” these flows (as the authors argue
should be the responsibility of the transport layer, not the
application layer). No longer must an application open
multiple end-to-end connections to the same host simply to
signify different semantic flows.

Figure 2 shows Hosts A and B connected with a single
multistreamed association. The number of streams in each
direction is negotiated during SCTP’s association
establishment phase. In this example, three streams go from A
to B, and one stream goes from B to A.

 Figure 2: Use of streams within an SCTP association

Each stream has an independent delivery mechanism, thus
allowing SCTP to differentiate between data delivery and
reliable data transmission, and avoid HOL blocking. Similar
to TCP, SCTP uses a sequence number to order information

and achieve reliability. However, where TCP sequences bytes,
SCTP sequences transport layer protocol data units (PDUs) or
“chunks” using Transmission Sequence Numbers (TSN). The
TSN number space is global over all streams. Each stream is
uniquely identified by a Stream ID (SID) and has its own
Stream Sequence Numbers (SSN). In TCP, when a sender
transmits multiple TCP segments, and the first segment is
lost, the later segments must wait in the receiver's queue until
the first segment is retransmitted and arrives correctly. This
HOL blocking delays the delivery of data to the application,
which in signaling and some multimedia applications is
unacceptable. In SCTP, however, if data on stream 1 is lost,
only stream 1 can be blocked at the receiver while awaiting
retransmissions. The logically independent data flows on
remaining streams can be deliverable to the application.
SCTP’s socket API extensions [SXY+03] provide data
structures and socket calls through which an application can
indicate or determine the stream number on which it sends or
receives data.

 Client Server

NLST

150

226

213

RETR
150

File

226

 SIZE

PORT

200

INIT
INIT-ACK

COOKIE-ECHO

SHUTDOWN
SHUTDOWN-ACK

PORT

200

Name List

COOKIE-ACK

SHUTDOWN-
COMPLETE

INIT-ACK

COOKIE-ECHO
COOKIE-ACK

INIT

SHUTDOWN
SHUTDOWN-ACK

SHUTDOWN-
COMPLETE

.

.

.

4. FTP over SCTP variants

We consider three variations of FTP over SCTP to help
identify the various gains of different features. Each is
described in turn.

4.1 FTP over SCTP (SCTP-Naïve)

Our first variation named “SCTP-naïve” maintains the

semantics of FTP over TCP. We name this approach “naïve”
because it naïvely uses one persistent SCTP association for
control, and a new non-persistent SCTP association is opened,
used, and closed for each file transfer, directory listing, or file
namelist, as is done in the current FTP over TCP approach.
SCTP-naïve does not exploit any of SCTP’s advantages; it is
evaluated to measure the inherent performance differences
between our TCP and SCTP implementations. If the basic
TCP and SCTP implementations were the same, then the
performance should be similar. The SCTP-naïve approach is
not recommended in practice.

.

.

.

To derive SCTP-naïve, all socket calls in both the client and
server in the FTP over TCP version (herein “TCP”) were
changed from using IPPROTO_TCP to IPPROTO_SCTP.
The timing is shown in Figure 3 with solid lines representing
PDUs traveling over the control association, and dotted lines
representing PDUs traveling over new associations. The large
dashed box represents the sequence of PDUs that must be
iteratively transmitted for each file of the multiple file
transfer.

 Figure 3: FTP over SCTP-Naïve

4.2 FTP over SCTP with multistreaming (SCTP-
MS)

In “SCTP-MS”, FTP control and data connections are
combined over a single multistreamed SCTP association. That
is, only one association exists for the entire multiple file FTP
session. An FTP client establishes an SCTP association with
the server with two streams opened in each direction. The
client and the server send control information (commands and
replies) on their respective stream 0. All data (files, directory
listings, and file namelists) are transferred over their
respective stream 1. This approach maintains semantics for
streams analogous to control and data connections in FTP
over TCP.

Recall that the data connection in FTP over TCP is non-
persistent and the end of data transfer (EOF) is detected by
the data connection’s close. To detect EOF using one SCTP
association, the SIZE command [EH02] is used. The SIZE
command is already widely used in FTP for the purpose of
detecting restart markers. For directory listings, the end of
data transfer is detected by using the number of bytes read by
recvmsg call provided by the SCTP socket API [SXY+03].

For a multiple file retrieval, the client sends out requests on
outgoing stream 0 and receives the files sequentially on

ads described in
Section 2.1. The number of round trips is reduced as: (1) a

roach faces is similar to the
drawbacks described in Section 2.1.2.B. For a multiple file

Sinc ediately (due
to the exchange of control commands before each transfer

istreaming and
command pipelining (SCTP-MS-CP)

s extended with
command pipelining (CP), similar to that defined in [PM94],

at allows each subsequent
transfer to utilize the probed value of congestion window

By using SCTP-MS-CP, FTP views multiple file transfers as a

. Experimental results

To c mpare FTP over TCP vs. our three SCTP variations, we

Figure 5: FTP over SCTP-MS-CP

incoming steam 1 (see Figure 4). Data on stream 1 is
represented by dashed lines, and control messages on stream
0 are represented by solid lines. The dashed box on the
timeline in Figure 4 indicates the operations that are repeated
sequentially for each file to be transferred.

This approach avoids most of the overhe

single connection (association in SCTP terminology) exists
throughout the FTP session, hence repeated setup-teardown of
each data connection is eliminated, and (2) exchanging PORT
commands over the control connection for data connection
information is unnecessary. The server load is reduced as the
server maintains TCBs for at most half the connections
required with FTP over TCP.

The drawback that this app

transfer, each subsequent file transfer is unable to utilize the
prior probed available bandwidth. Before transmitting new
data chunks, the sender calculates the cwnd based on the
SCTP protocol parameter Max.Burst [SOA+03] as follows:

if ((flightsize + Max.Burst*MTU) < cwnd) (1)
 cwnd = flightsize + Max.Burst*MTU

e the transfer of filei+1 cannot take place imm

(see Figure 4)), all data sent by the server for filei gets acked,
and the flightsize at the server reduces to zero. Thus in
multiple file transfers, the server’s cwnd reduces to
Max.Burst*MTU before starting each subsequent file transfer
([SOA+03] recommends Max.Burst = 4).

4.3 FTP over SCTP with mult

Finally, in “SCTP-MS-CP”, SCTP-MS i

to avoid unnecessary cwnd reduction between file transfers.
In SCTP-MS, the cwnd reduction between file transfers
occurs because the SIZE and RETR commands for each
subsequent file are sent only after the previous file has been
received completely by the client.

In Figure 5, we present a solution th

from the prior transfer. Command pipelining ensures a
continuous flow of data from the server to client throughout
the execution of a multiple file transfer. After parsing the
name list of the files, the client sends SIZE commands for all
files at once (which SCTP ends up bundling together in its
SCTP-PDUs). As each reply for a SIZE command is received,
the client immediately sends out the respective RETR
command for that file. Since the control stream is ordered,

SCTP guarantees the replies to the SIZE and RETR
commands will arrive in proper sequence.

single data cycle. Command pipelining aggregates all of the
file transfers resulting in better management of the cwnd. This
solution overcomes all of the drawbacks listed in Section 2.1.

5

o

measured the total transfer time for a multiple file transfer for
a varied set of parameters.

 ServerClient

Client

NLST
150

Name List

226

Stream 0

RETR
213
213

150

RETR

 Server

226

 File

SIZE

SIZE
Stream 0
Stream 0

Stream 0
Stream 0

. . .

. . .

Stream 0

Stream 1

Stream 0

Stream 0
Stream 0

Stream 0

Stream 1

Stream 0

NLST
150

Name List

226 SIZE
213

RETR
150

 File

226

Stream 0
Stream 0

Stream 0

Stream 0

Stream 1

Stream 0

Stream 0

Stream 0

Stream 1

Stream 0

. . .

. . .

Figure 4: FTP over SCTP-MS

• Bandwidth-Propagation Delay (B-D) configuration: Three
path configurations were evaluated: (3Mbps, 1ms), (1Mbps,
35ms), (256Kbps, 125ms). Both the client to server and
server to client paths share the same characteristics. These
configurations roughly represent an end-to-end connection
on: a local network, U.S. coast-to-coast, and over a satellite,
respectively.
Packet Loss R•

+

 5
PLR x 5 file sizes) was run multiple times to achieve a 90%

ingle (and
multiple) file transfer, we only report the results of

nd 8 (note: best viewed in color) show results
obtained for our three bandwidth-delay configurations. Each

ply a
raightforward substitution of TCP calls with SCTP calls,

nfigurations and file sizes, TCP and
CTP-naïve performed almost identically at 0% loss. In only

uced and increased, however, the
erformance of these two methods clearly diverged.

ral
ifferences between the two studied implementations that

 short files - First, each SCTP-
aïve association establishment uses a 4-leg handshake while

 atio (PLR): The PLRs studied were (0, .01,
.03, .06, and .1). Loss was symmetric; each value represents
the loss ratio for both the client to server and the server to
client paths. We used a Bernoulli distribution to emulate
packet loss. Certainly 10% loss represents an extreme case
but we were interested in general trends as the loss rate
increases. Moreover, higher loss rates are of serious interest
in wireless and military networks.
File sizes: We evaluated the po• tential overheads for a
variety of file sizes: 10K, 50K, 200K, 500K, and 1M.

5.1 Experimental setup

Netbed [WLS 02] (an outgrowth of Emulab) was used to
provide integrated access to experimental networks. Three
nodes were used for each experiment: an FTP client, an FTP
server, and an intermediate node running Dummynet [Riz97]
to simulate a drop-tail router with a queue size of 500KB, and
various bandwidths, propagation delays, and packet loss
ratios. The router’s queue was set large enough such that
buffer overflow, i.e., loss due to congestion, did not occur.
The client and server nodes were 850MHz Intel Pentium IIIs.

The client and the server nodes run FreeBSD-4.6. The
dummynet router node runs FreeBSD-4.10. The FreeBSD
kernel implementation of SCTP available with the KAME
Stack [KAME] was used on the client and server nodes.
SCTP patchlevel 24 released October 11, 2004 from
www.sctp.org was used for the SCTP-MS and SCTP-MS-CP
runs. Because of the timing of the experiments, patchlevel 25
released February 21, 2005 was used for SCTP-naïve. KAME
is an evolving and experimental stack targeted for IPv6/IPsec
in BSD-based operating systems.

In our previous published results [Lad04], Netlab’s control
connection was inadvertently used by SCTP end-hosts for
retransmissions. SCTP is inherently multihomed, and
without knowing it, our SCTP associations used Netlab’s
essentially error-free, no-delay control channel, thus biasing
results in favor of SCTP. When rerunning the experiments,
only the path thru the dummynet router was used.

We implemented protocol changes by modifying the FTP
client and server source code available with the FreeBSD 4.6
distribution. Total transfer time was measured as follows. The
starting time was when the “150 Opening” control reply from
the server reached the client in response to the client’s
“NLST” request. The end time was when the server’s “226
control reply” reached the client after the last file transfer.
Each combination of parameters (3 B-D configurations x

confidence level for the total transfer time. Tcpdump
[TCPDUMP] (version 3.7.1) was used to perform packet level
traces. SCTP decoding functionality in tcpdump was
developed in collaboration of UD's Protocol Engineering Lab
and Temple University's Netlab. Our results compare four
FTP variants: “TCP” (the TCP variant used was New-Reno),
“SCTP-naïve”, “SCTP-MS”, and “SCTP-MS-CP”.

While we also performed experiments involving s

experiments involving multiple file transfers. Some minor
improvement using SCTP multistreaming was witnessed in a
single file transfer, but nothing significant. The major gains
of multistreaming are more predominant when transferring
multiple files. Additionally, comparing SCTP-naïve vs. TCP
for multiple files provides insight on single file transfer.

5.2 Results

Figures 6, 7, a

graph displays the total time to transfer 100 same-size files for
different loss probabilities using the four FTP variants.

5.2.1 TCP vs. SCTP-Naïve. Since SCTP-naïve is sim
st
any performance difference must be attributed to the different
ways our TCP and SCTP implementations handled
connection/associate establishment and/or data transfer (i.e.,
congestion control, loss recovery). Congestion control
differences between SCTP and TCP can be found in [AAI02]
where the authors note that the congestion control semantics
and loss recovery mechanisms in SCTP are robust, and result
in better steady state throughput at higher loss rates in a
satellite environment.

For all three B-D co
S
one case (the long delay satellite configuration with smallest
10K file size) was there a noticeable difference of SCTP
being ~10% slower.

As loss was introd
p
Interestingly, for the smallest file size (10KB), SCTP-naïve
performed consistently worse than TCP, and for all other files
sizes 50KB – 1MB, SCTP-naïve transferred multiple files
consistently faster than TCP. And as the file size increased,
so did SCTP-naïve’s relative performance improvement.

We investigated many of the tcpdumps and discovered seve
d
help explain this behavior.

Why TCP does better for
n
TCP connects using 3 legs. (This added leg provides SCTP
associations with better defense against DoS attacks [SX01].)

SCTP’s extra ½ RTT has significant impact; more so for short
files. And as loss increases, SCTP incurs a greater chance
(i.e., 4 to 3) that the establishment loses a leg, and requires a
timeout before recover via retransmission. For newly
established associations, this minimum timeout value is
conservative (initially minRTO=3s; after the sender measures
an RTT, minRTO=1s). Transferring a 10K file only involves
~7 PDUs, so for short transfers, a longer establishment time
noticeably degrades SCTP-naïve performance. As file sizes
increase, the establishment time becomes less a factor.

Second, an SCTP-naïve sender (and for that matter, all three

CTP variations) requires 4 missing reports before a fast

r for longer files - SCTP-
aïve’s significantly better performance for longer files

SD
version of TCP (New-Reno) does not have three congestion

er
FTP over SCTP-naïve is better or worse than FTP over TCP.

st consider the
pact of FTP using a transport layer with multistreaming by

with loss present,
ultistreaming in SCTP-MS transfers 10KB files in roughly

) is seen, for example, by comparing the 50KB
le transfers and seeing that SCTP-MS for the 3Mbps-1ms

ment (see Figure 6), while
CTP-naïve does require an extra establishment association

B), the
mount of time transferring the file dominates any extra time

re 8’s satellite link
 (500KB - 1MB), SCTP-MS is

lained in
ection 4.3, when transferring multiple files at once,

command pipelining (a) reduces round trips for command

S
retransmission, while a TCP sender fast retransmits on receipt
of 3 dupacks. (Note: an SCTP missing report and a TCP
dupack are analogous.) For short files, when the cwnd is
often around size 3-4, TCP will be able to recover more often
without a timeout via fast retransmit, while SCTP-naïve does
not have sufficient PDUs in the pipe, and will require a
timeout. As file sizes increase, this fast retransmit difference
will not play as important a factor. (Note: in the latest SCTP
design, only 3 missing reports will be required for a fast
retransmit.) SCTP has Limited Transmit [ABF01], so this
difference may not significant.

Why SCTP-naïve does bette
n
(increasingly as loss rates increased) initially came as a
surprise as it was widely understood that the congestion
control mechanisms in TCP and SCTP are approximately the
same. The largest improvement is demonstrated in Figure 6’s
LAN connection transferring 100 – 1MB files at the highest
10% loss rate: SCTP-naïve is four times faster than TCP.

On analysis, we realize that the currently prevalent FreeB

control mechanisms included in our SCTP model: Limited
Transmit [ABF01], Appropriate Byte Counting [All03], and
Selective Acks [MMF96]. One advantage of an experimental
protocol such as SCTP is its ability to include newer
mechanisms much sooner than for TCP. Once these
extensions are included in TCP implementations, we expect
(1) and (2) to perform similarly at different loss rates.

In any case, our primary goal is NOT to focus on wheth

Such a comparison would require equivalent FreeBSD
implementations, which was beyond the scope of this study.
We focus on the gains from multistreaming and command
pipelining using SCTP-naïve as a baseline to see if and how
much these mechanisms benefit file transfer.

5.2.2 SCTP-MS vs. SCTP-Naïve. We fir
im
comparing SCTP-MS vs SCTP-naïve. In Figures 6-8, we
observe that in a lossy environment, significant gains from
multistreaming are evident; more so for (1) smaller file sizes
vs. larger file sizes, and (2) the highest bandwidth - shortest

delay connection (LAN) vs the lowest bandwidth - longest
delay connection (satellite). No significant performance
difference was observed for (3) 0% loss in the LAN
environment, and (4) for all B-D configurations and loss
levels when transferring large (1MB) files.

Regarding (1), for all B-D configurations
m
1/2 the time than without multistreaming (SCTP-naïve)
consistently across all loss probabilities. The relative gains
decrease to roughly 30-40% faster for 50KB files. SCTP-MS
avoids the overhead to set up an additional association for
every file, an overhead that is relatively more significant for
smaller files.

Evidence of (2
fi
link (Figure 6) is ~40% faster than SCTP-naïve, and for the
256Kbps-125ms link (Figure 8), SCTP-MS improves on
SCTP-naïve by only ~20%. Because SCTP-naïve has at least
7 extra PDUs (4 for association establishment; 3 for
shutdown), SCTP-naïve will experience more timeouts per
file transfer than SCTP-MS when there is loss. These
additional timeouts degrade SCTP-naïve ‘relatively’ more
when the RTT is shorter because the sender uses a fixed
minimum RTO value. When the RTT = 2ms in the LAN
scenario (Figure 6), a timeout with minRTO results in ~500
idle RTTs, whereas for the satellite scenario (Figure 8), only 3
RTTs are idle. Further evidence of a fixed minRTO
degrading shorter RTT paths relatively more than longer RTT
paths can be found in [IAS05].

Regarding (3), in a LAN environ
S
for each file, this overhead delay is minimal because the extra
RTTs are short. Only as loss is introduced does the
performance between these two versions diverge
significantly, because loss in any of the extra 4 legs needed
for SCTP-naïve association establishment requires a timeout
before recovery via retransmission is possible, and timeouts
are relatively ‘expensive’ in terms of relative delay.

Regarding (4), once files become very large (1M
a
spent having to establish an association.

One unexpected result appears in Figu
scenario. For large files
slightly slower than SCTP-naïve at certain loss rates. We
investigated tcpdumps for several runs in detail, and found no
protocol behavior to explain this minor inconsistency. We
noted that in redoing our experiments, the SCTP-MS version
used a slightly older patch (#24) than SCTP-naïve (#25),
which could explain the minimal 1-2% difference.

5.2.3 SCTP-MS-CP vs. SCTP-MS. As exp
S

exchanges, and (b) maintains the probed value of the
congestion window for subsequent transfers in a multiple file
transfer. We note that command pipelining is not exploiting a
new transport layer mechanism as is the case of using
multistreaming. Conceptually, FTP over TCP could also be
designed to pipeline the file retrieval commands over the
control channel.

We hypothesized the effect of (a) would remain fairly
constant irrespective of file sizes being transferred and loss

te, and the effect of (b) would be more prevalent in

command pipelining introduces clear
erformance improvements, more so for the smaller files.

ur experimental results confirm that modifying FTP to use
pipelining can

) and other

nections,
 reduce the number of round trips required for connection

• ciently by preserving the

perf of FTP over
CTP-MS-CP vs. FTP over TCP are:

ad and its effects on
throughput is beyond the scope of this paper. The

•

educing the command
exchanges and connection establishments/teardowns)

•

ns that FTP over
TCP faces with Network Address Translators (NAT) and

We
can aming
provides a TCP-friendly mechanism for parallel transfers.

View d conclusions contained in this document are those
and should not be interpreted as representing

the official policies, either expressed or implied, of the Army

m discussions with J. Iyengar and A.
art for supporting the SCTP KAME

stack. We thank Jay Lepreau and the staff of Netbed, the Utah

[AAI02] R. Alamgir, M. Atiquzzaman, W. Ivancic, Effect of
 Control on the Perf of TCP and SCTP over

ets. Proc. NASA Earth Science Tech Conf, 6/02.

[AB
TC
1/

[A

[A rmann, Multiple Data Connection

[A FTP extensions

Control, RFC 2581, 4/99.

ra
transferring smaller files. For small files, more time
(relatively) is spent by SCTP-MS in slow start probing for
available bandwidth compared to the amount of time spent
probing in large file transfers. By avoiding this reprobing for
each file, and spending more time in steady state congestion
avoidance phase, SCTP-MS-CP gains should be more evident
for smaller files.

Figures 6-8 confirm these hypotheses. For all three B-D
configurations,
p
The most pronounced improvement is seen in Figure 6, where
for 10KB files, SCTP-MS-CP transfer files as much as 8
times faster than SCTP-MS as loss increases above 2%. Even
for transferring one hundred 200KB files, SCTP-MS-CP does
30% better than SCTP-MS. When the file size increases to
1MB, some gain using command pipelining is noticeable, but
the majority of time spent in congestion avoidance (as
opposed to slow start, and doing command exchanges)
dominates the transfer time, making the gain of SCTP-MS-CP
over SCTP-MS only minimally significant.

6. Conclusions and future work

O
SCTP multistreaming and command
dram benefit mirroring (e.g., fmirroratically
applications which transfer a large number of files from host
to host. These features:

• reduce the number of connections by aggregating the

control and data con
•

setup/teardown, and command exchange, and
use the bandwidth more effi
congestion window between file transfers.

Apart from transfer time improvements documented in our
ormance experiments, other advantages

S

• The number of connections a server must maintain is

reduced. Quantifying server lo

interested reader is pointed to [FTY99]. We however
expect that by using SCTP-MS-CP, servers could serve
at least twice the number of clients compared to the

current FTP over TCP design when the bottleneck for the
number of simultaneous clients served is the TCBs
reserved for the connections. This result should be of
interest to busy servers that are constrained by the
number of simultaneous clients.

The number of PDUs exchanged between client and
server is reduced (e.g., by r

thus reducing the overall network load.

Aggregating control and data connections into one SCTP
multistreamed association solves concer

firewalls in transferring IP addresses and port numbers
through the control connection [AOM98, Tou02].

further argue that the benefits of SCTP multistreaming
be exploited by other applications. SCTP multistre

Ongoing research at UD’s PEL is investigating whether web
transfers using HTTP can benefit from aggregation of
multiple transfers in a single SCTP association.

Disclaimer

s an

of the authors

Research Lab or the US Government.

Acknowledgments

This paper benefited fro
Caro. We thank R. Stew

Network Emulation Testbed (supported by NSF ANI-00-
82493 and Cisco) for their facilities. Special thanks to Mike
Hibler for helping set up nodes on Netbed.

References

Congestion
atellite NS

Pasadena, CA.
F01] M. Allman, H. Balakrishnan, S. Floyd, Enhancing

P's Loss Recovery Using Limited Transmit, RFC 3042,
01.

[AF99] M. Allman, A. Falk, On the Effective Evaluation of TCP.
ACM CCR, 29(5), 10/99.
ll03] M. Allman, TCP Congestion Control with Appropriate
Byte Counting (ABC), RFC3465, 2/03.
O97] M. Allman, S. Oste
FTP Extensions. TR-19971, Ohio Univ. Comp Sci, 2/97.
OM98] M. Allman, S. Ostermann, C. Metz,
for NATS and firewalls, RFC2428, 9/98.

[APS99] M. Allman, V. Paxson, W. Stevens, TCP Congestion

[Bel94] S. Bellovin, Firewall-Friendly FTP. RFC 1579, 2/94.
FF96] T. Berners-Lee, R. Fielding, H[B . Frystyk, Hypertext

[B - TCP extensions for transactions

rogress), 3/03.

rol in the Internet. IEEE/ACM Trans on

[F on to

[F
n Busy Servers. Proc Infocom, 3/99, NYC.

ultipath Transfer (submitted for publication)

[K formance in a High-

[L ers
 Int'l Perf, Computing,

[M IP Traffic

[M

, 27(1):3141, 1/97.

CTP Implementers Guide, draft-ietf-tsvwg-

[S

[S
la, L. Zhang, V.

[S ood, K. Poon,, M.

[T ository, www.tcpdump.org

[T ternet Computing,

 for Dist’d Systems and Networks. Proc. 5th Symp

[W HIVE] Usage Statistics for wuarchive,
wuarchive.wustl.edu

Transfer Protocol -- HTTP/1.0. RFC 1945, IETF, 5/96.
ra94] R. Braden, T/TCP
functional specification, RFC1644, 7/94.

[BS01] H. Balakrishnan, S. Seshan, The Congestion Manager,
RFC 3124, 6/01.

[EH02] R. Elz, P. Hethmon, Extensions to FTP. draft-ietf-ftpext-
mlst-16.txt, IETF Internet draft (work in p

[FF99] S. Floyd, K. Fall, Promoting the Use of End-to-End
Congestion Cont
Networking, 8/99.
H99] S. Floyd, T. Henderson, The NewReno Modificati
TCP's Fast Recovery Algorithm. RFC2582, 4/99.
TY99] T. Faber, J. Touch, W. Yue, The TIME-WAIT State in
TCP and Its Effect o

[HL97] M. Horowitz, S. Lunt, FTP Security Extensions. RFC
2228, 10/97.

[HPF00] M. Handley, J. Padhye, S. Floyd, TCP Congestion
Window Validation, RFC 2861, 6/00.

[IAS05] J. Iyengar, P. Amer, R. Stewart. Rbuf-blocking in
Concurrent M

[KAME] KAME Project, www.kame.net
in00] J. King, Parallel FTP Per
Bandwidth, High-Latency WAN, SC2000, 11/00.
ad04] S. Ladha, P. Amer, Improving multiple file transf
using SCTP multistreaming, 23rd IEEE
and Comm Conf (IPCCC), Phoenix, 4/04, 513-22
C00] S. McCreary, K. Clay, Trends in WAN
Patterns - Ames Internet Exchange.. ITC, 9/00. Monterey.
MF96] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow. TCP
Selective Acknowledgment Options, RFC2018, 10/96.

[NS] UC Berkeley, LBL, USC/ISI, Xerox Parc. Ns-2
documentation-software, v2.1b8. www.isi.edu/nsnam/ns.

[PM94] V. Padmanabhan, J. Mogul, Improving HTTP latency..
2nd Inter WWW Conf, 10/94, Chicago, IL.

[PR85] J. Postel, J. Reynolds, File Transfer Protocol (FTP), RFC
959, 10/85.

[Riz97] L. Rizzo, Dummynet: a simple approach to the
evaluation of network protocols. ACM CCR

[SOA+03] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, M.
Tuexen, S
sctpimpguide-13.txt (work in progress), 2/05
X01] R. Stewart, Q. Xie. SCTP: A Reference Guide.
Addison-Wesley, 2001, ISBN-0201721864
XM+00] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H.
Schwarzbauer, T. Taylor, I. Rytina, M. Kal
Paxson, SCTP, RFC2960, 10/00.
XY+03] R. Stewart, Q. Xie, L. Yarroll, J. W
Tuexen, Sockets API Extensions for SCTP. draft-ietf-tsvwg-
sctpsocket-10.txt, (work in progress), 2/05.
CPDUMP] TCPDUMP public rep

[Tou97] J. Touch, TCP Control Block Interdependence. RFC
2140, 4/97.
ou02] J. Touch, Those Pesky NATs, IEEE In
7/02.

[WLS+02] B. White, et al. An Integrated Experimental
Environment
on OS Design and Implementation, 12/02. Boston.
UARC

Figure 6: Transfer Time vs. Loss Ratio for a
multiple transfer of 100 files on a LAN-like link
(Bandwidth = 3Mbps, Propagation Delay = 1 ms)

 Figure 7: Transfer Time vs. Loss Ratio for a

multiple transfer of 100 files on a US coast-to-
coast-like link (Bandwidth = 1Mbps,
Propagation Delay = 35 ms)

 Figure 8: Transfer Time vs. Loss Ratio for a

multiple transfer of 100 files on a satellite-like
link (Bandwidth = 256Kbps, Propagation Delay =
125 ms)

