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Abstract 
 

This paper corrects our previously published results 
[Lad04] where unbeknownst to us, our experiments used 
Netbed’s error-free, no-delay control connection for 
retransmissions.  We corrected this error, re-ran the entire set 
of experiments, and now present and interpret the corrected 
results. While all of the graphs depicting multiple file transfer 
times changed, fortunately, the overall conclusions remain 
consistent.  For purposes of completeness, we provide this full 
paper updated with corrected results. 

 We identify overheads associated with FTP, attributed to 
separate TCP connections for data and control, non-
persistence of the data connections, and the sequential nature 
of command exchanges. We argue that solutions to avoid 
these overheads using TCP place an undue burden on the 
application. Instead we propose modifying FTP to use SCTP 
and its multistreaming service. FTP over SCTP avoids the 
identified overheads in the current FTP over TCP approach 
without introducing complexity at the application, and still 
remaining “TCP-friendly.” We implemented FTP over SCTP 
in three ways: (1) simply replacing TCP calls with SCTP 
calls, thus using one SCTP association for control and one 
SCTP association for each data transfer, (2) using a single 
multistreamed SCTP association for control and all data 
transfers, and (3) enhancing (2) with command pipelining. 
Results comparing these 3 variations with the classic FTP 
over TCP indicate significant improvements in throughput for 
the transfer of multiple files by using multistreaming and 
command pipelining, with the largest benefit occurring for 
transferring multiple short files. More generally, this paper 
encourages the use of SCTP’s innovative transport-layer 
services to improve existing and future application 
performance. 
 
 
1. Introduction 

 
The past decade has witnessed an exponential growth of 
Internet traffic, with a proportionate increase in Hyper Text 
Transfer Protocol (HTTP) [BFF96] and decline in File 
Transfer Protocol (FTP) [PR85], both in terms of use and the 
amount of traffic. The decline in FTP traffic is chiefly 
attributed to the inflexible nature of its interface. 
 __________________________ 
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Over the years, several FTP extensions have been proposed 
[AOM98, EH02, HL97], with a few efforts to improve 
performance by using parallel TCP connections [AO97, 
Kin00]. However, opening parallel TCP connections (whether 
for FTP or HTTP) is regarded as “TCP-unfriendly” [FF99] as 
it allows an application to gain an unfair share of bandwidth 
at the expense of other network flows, potentially sacrificing 
network stability. Our focus is to improve end-to-end FTP 
latency and throughput in a TCP-friendly manner. 
 
Although FTP traffic has proportionately declined in the past 
decade, FTP still remains one of the most popular protocols 
for bulk data transfer on the Internet [MC00]. For example, 
Wuarchive [WUARCHIVE] serves as a file archive for a 
variety of files including mirrors of open source projects. 
Wuarchive statistics for the period of April 2002 to March 
2003 indicate FTP accounting for 5207 Gigabytes of traffic, 
and HTTP accounting for 7285 Gigabytes of traffic. FTP is 
exclusively used in many of the Internet’s software mirroring 
sites, for various source code repositories, for system 
backups, and for file sharing. All of these applications require 
transferring multiple files from one host to another.  

 
In this paper we identify the overheads associated with the 
current FTP design mainly due to running over TCP, which 
constrains the FTP application. We present modifications to 
FTP to run over Stream Control Transmission Protocol 
(SCTP) RFC2960 [SXM+00] instead of TCP. SCTP is an 
IETF standards track transport layer protocol. Like TCP, 
SCTP provides an application with a full duplex, reliable 
transmission service. Unlike TCP, SCTP provides additional 
transport services, in particular, multistreaming. SCTP 
multistreaming logically divides an association into streams 
with each stream having its own delivery mechanism. All 
streams within a single association share the same congestion 
and flow control parameters. Multistreaming decouples data 
delivery and transmission, and in doing so prevents Head-of-
Line (HOL) blocking.  

 
This paper shows how command pipelining and SCTP 
multistreaming benefit FTP in reducing overhead, especially 
for multiple file transfers. We recommend two modifications 
to FTP that make more efficient use of the available 
bandwidth and system resources. We implemented these 
modifications in a FreeBSD environment, and carried out 
experiments to compare the current FTP over TCP design vs. 
our FTP over SCTP designs. Our results indicate dramatic 
improvements with lower transfer time and higher throughput 
for multiple file transfers particularly under lossy network 
conditions. Moreover, our modifications to FTP solve 
concerns current FTP protocol faces with NATs and firewalls 



in transferring IP addresses and port numbers in the payload 
data [AOM98, Bel94, Tou02].  

 
This paper is organized as follows. Section 2 details and 
quantifies the overheads in the current FTP over TCP design. 
This section also discusses possible solutions to eliminate 
these overheads while still using TCP as the transport. Section 
3 introduces SCTP multistreaming. Section 4 presents minor 
FTP changes needed to exploit SCTP multistreaming, and a 
description of how the new design reduces overhead. Section 
5 presents the experimental results, and Section 6 concludes 
the paper. 
 
2. Inefficiencies and possible solutions 
 
2.1 Inefficiencies in FTP over TCP 

 

Figure 1: Expected cwnd evolution during a multiple file 
transfer in FTP over TCP 

FTP’s current design includes a number of inefficiencies due 
to (1) separate control and data connection and (2) non-
persistent data connection. Each is discussed in turn.  
 
2.1.1 Distinct control and data connection 

    
A. FTP’s out-of-band control signaling approach has 
consequences in terms of end-to-end latency. In a multiple file 
transfer, traffic on the control connection tends to be send-
and-wait, with no traffic transferred during the file transfer.  
This connection’s congestion mechanism typically times out, 
and returns the connection to slow start for each new file to be 
transferred [APS99]. The control connection is particularly 
vulnerable to timeouts because too few packets are flowing to 
cause a TCP fast retransmit. An operation (involving a single 
control command) will be subject to a timeout in the event of 
loss of either a command or its reply. Attempts are needed to 
reduce the command exchange over the control connection. 

 
B. With distinct connections, end hosts create and maintain on 
average two Transport Control Blocks (TCBs) for each FTP 
session. This factor is negligible for clients, but may 
significantly impact busy servers that are subject to reduced 
throughput due to memory block lookups [FTY99]. TCB 
overheads may be reduced by using ensemble sharing [BS01, 
Tou97]. 

 
C. Over the past years, considerable discussion has taken 
place on FTP’s lack of security, often attributed to data 
connection information (IP address, port number) being 
transmitted in plain text in the PORT command on the control 
connection to assist the peer in establishing a data connection. 
Moreover, transferring IP addresses and port numbers in the 
protocol payload creates problem for NATs and firewalls that 
must monitor and translate addressing information [AOM98, 
Tou02].  
 
2.1.2 Non-persistence of the data connection 

 
A.  The non-persistence of a data connection for multiple files 
causes connection setup overhead at least on the order of 1 

RTT for each file transfer or directory listing. (Traffic 
overhead also exists for connection teardown, but this traffic 
overlaps the control commands for the next operation.)   

 
B. Every new data connection must initially probe the 
available bandwidth (via a congestion window (cwnd)) during 
a slow start phase, before the connection reaches its steady 
state cwnd.  A loss early in the slow start phase, before the 
cwnd contains enough packets to allow for fast retransmit, 
will result in a timeout at the server. Figure 1 graphically 
shows the nature of this re-probing overhead in the event of 
three consecutive file transfers (over three different TCP 
connections). The interval between the transfers indicates the 
time involved in terminating the previous connection, 
transferring control commands, and setting up a new 
connection. (Note: Figure 1 represents a generic example.)  

 
C. For each file transfer, at least one RTT overhead is 
incurred over the control connection for communicating the 
PORT command and its 200 reply.  

 
D. In the event of multiple small file transfers, the server ends 
up having many connections in the TCP TIME-WAIT state 
and hence must maintain on average more than two TCBs per 
session. This per-connection memory load can adversely 
affect a server’s connection rate and throughput [FTY99]. 

 
2.2. Possible solutions and drawbacks 

 
We describe some of the possible solutions that try to avoid 
the above stated overheads while still using TCP as the 
underlying transport service. The drawbacks associated with 
each solution are presented.  

 
A. Use one persistent TCP connection for control and data 

  
Improvements: This approach avoids most overheads 
associated with FTP’s current design listed in the previous 
section. The commands over the control connection can be 
pipelined (in the event of a multiple file transfer) to improve 
latency, and maintain the probed congestion window for 
subsequent transfers.  

 
Drawbacks: TCP provides a byte-stream service and does not 
differentiate between the different types of data transmitted 



over the same connection. Using a single TCP connection 
requires the application to use markers to differentiate 
between control and data, and the beginning/end of each file. 
This marking burden increases application layer complexity.  
Control and file data in an FTP session are logically different 
types of data, and conceptually, are best kept logically if not 
physically, separate. Additionally, using a single connection 
risks Head-of-Line (HOL) blocking (discussed in Section 3).  

 
B. Use two persistent TCP connections: one for control, one 
for data  

 
Improvements: A persistent data connection eliminates the 
connection setup-teardown and command exchange 
overheads for every file transfer, thus reducing network traffic 
and the number of round trip delays. 

 
Drawbacks: Due to the sequential nature of commands over 
the control connection, the data connection will remain idle in 
between transfers of a multiple files transfer. During this idle 
time, the data connection congestion window may reduce to 
as little as the initial default size, and later require TCP to re-
probe for the available bandwidth [HPF00]. Moreover this 
approach still suffers from the overhead listed in Section 
2.1.1. 

 
C. Use two persistent TCP connections: one for control, one 
for data. Also use command pipelining on control connection. 

 
Improvements: Command pipelining allows for the immediate 
request of multiple files over the control connection rather 
than requiring filei is completely retrieved before filei+1 is 
requested.  A persistent data connection with command 
pipelining will maintain a steadier flow of data (i.e., higher 
throughput) over the data connection by letting subsequent 
transfers utilize the already probed bandwidth. 

 
Drawbacks: This approach still suffers from the overhead 
listed in Section 2.1.1. 

 
D. Use one TCP connection for control, and ‘n’ parallel data 
connections 

 
Improvements: Some FTP implementations do achieve better 
throughput using parallel TCP connections for a multiple file 
transfer.  

 
Drawbacks: This approach is not TCP-friendly [FF99] as it 
may allow an application to gain an unfair share of bandwidth 
and adversely affect the network’s equilibrium [BFF96, 
FF99]. Moreover past research has shown that parallel TCP 
connections may suffer from aggressive congestion control 
resulting in a reduced throughput [FF99]. As such, this 
solution should not be considered. This approach also suffers 
the overheads listed in Section 2.1.1. 
 
Related Work: Apart from the above solutions, researchers in 
the past have suggested ways to overcome TCP’s limitations 
and boost application performance [BS01, Tou97]. For 

example, T/TCP [Bra94] reduced the connection 
setup/teardown overhead by allowing data to be transferred in 
the TCP connection setup phase. But due to a fundamental 
security flaw, T/TCP could not succeed. Aggregating 
transfers has also been discussed for HTTP [PM94], but while 
HTTP semantics allowed for persistent data connections and 
command pipelining, FTP semantics do not allow similar 
solutions without introducing changes to the application (see 
A. above). 
 
Having summarized ways for improving FTP performance 
while still using TCP, we now consider the main objective of 
this paper - improving FTP performance by using SCTP, an 
emerging IETF general-purpose transport protocol [SXM+00]. 
We note that the TCP alternatives that incorporate temporal 
and ensemble sharing [Bra94, BS01, Tou97] are not discussed 
further in this paper; future work should evaluate such 
alternatives.  

 
3. SCTP multistreaming 

 
One innovative transport layer service that promises to 
improve application layer performance is SCTP 
multistreaming. A stream in an SCTP association is “a uni-
directional logical channel established from one to another 
associated SCTP endpoint, within which all user messages are 
delivered in sequence except for those submitted to the 
unordered delivery service” [SXM+00].  

 
Multistreaming within an SCTP association separates flows of 
logically different data into independent streams. This 
separation enhances application flexibility by allowing it to 
identify semantically different flows of data, and have the 
transport layer “manage” these flows (as the authors argue 
should be the responsibility of the transport layer, not the 
application layer). No longer must an application open 
multiple end-to-end connections to the same host simply to 
signify different semantic flows. 

 
Figure 2 shows Hosts A and B connected with a single 
multistreamed association.  The number of streams in each 
direction is negotiated during SCTP’s association 
establishment phase. In this example, three streams go from A 
to B, and one stream goes from B to A.  

   Figure 2: Use of streams within an SCTP association 

 
Each stream has an independent delivery mechanism, thus 
allowing SCTP to differentiate between data delivery and 
reliable data transmission, and avoid HOL blocking. Similar 
to TCP, SCTP uses a sequence number to order information 



and achieve reliability. However, where TCP sequences bytes, 
SCTP sequences transport layer protocol data units (PDUs) or 
“chunks” using Transmission Sequence Numbers (TSN). The 
TSN number space is global over all streams. Each stream is 
uniquely identified by a Stream ID (SID) and has its own 
Stream Sequence Numbers (SSN). In TCP, when a sender 
transmits multiple TCP segments, and the first segment is 
lost, the later segments must wait in the receiver's queue until 
the first segment is retransmitted and arrives correctly. This 
HOL blocking delays the delivery of data to the application, 
which in signaling and some multimedia applications is 
unacceptable. In SCTP, however, if data on stream 1 is lost, 
only stream 1 can be blocked at the receiver while awaiting 
retransmissions. The logically independent data flows on 
remaining streams can be deliverable to the application. 
SCTP’s socket API extensions [SXY+03] provide data 
structures and socket calls through which an application can 
indicate or determine the stream number on which it sends or 
receives data. 
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4. FTP over SCTP variants 
 
We consider three variations of FTP over SCTP to help 
identify the various gains of different features.  Each is 
described in turn. 

 
4.1 FTP over SCTP (SCTP-Naïve) 

 
Our first variation named “SCTP-naïve” maintains the 

semantics of FTP over TCP.  We name this approach “naïve” 
because it naïvely uses one persistent SCTP association for 
control, and a new non-persistent SCTP association is opened, 
used, and closed for each file transfer, directory listing, or file 
namelist, as is done in the current FTP over TCP approach. 
SCTP-naïve does not exploit any of SCTP’s advantages; it is 
evaluated to measure the inherent performance differences 
between our TCP and SCTP implementations.  If the basic 
TCP and SCTP implementations were the same, then the 
performance should be similar. The SCTP-naïve approach is 
not recommended in practice. 

. 

. 

. 

 
To derive SCTP-naïve, all socket calls in both the client and 
server in the FTP over TCP version (herein “TCP”) were 
changed from using IPPROTO_TCP to IPPROTO_SCTP.  
The timing is shown in Figure 3 with solid lines representing 
PDUs traveling over the control association, and dotted lines 
representing PDUs traveling over new associations.  The large 
dashed box represents the sequence of PDUs that must be 
iteratively transmitted for each file of the multiple file 
transfer. 

 
 

 Figure 3:  FTP over SCTP-Naïve  
   
4.2 FTP over SCTP with multistreaming (SCTP-
MS) 
 

In “SCTP-MS”, FTP control and data connections are 
combined over a single multistreamed SCTP association. That 
is, only one association exists for the entire multiple file FTP 
session. An FTP client establishes an SCTP association with 
the server with two streams opened in each direction. The 
client and the server send control information (commands and 
replies) on their respective stream 0. All data (files, directory 
listings, and file namelists) are transferred over their 
respective stream 1. This approach maintains semantics for 
streams analogous to control and data connections in FTP 
over TCP.  

 
Recall that the data connection in FTP over TCP is non-
persistent and the end of data transfer (EOF) is detected by 
the data connection’s close. To detect EOF using one SCTP 
association, the SIZE command [EH02] is used. The SIZE 
command is already widely used in FTP for the purpose of 
detecting restart markers. For directory listings, the end of 
data transfer is detected by using the number of bytes read by 
recvmsg call provided by the SCTP socket API [SXY+03]. 



 
For a multiple file retrieval, the client sends out requests on 
outgoing stream 0 and receives the files sequentially on 

ads described in 
Section 2.1. The number of round trips is reduced as: (1) a 

roach faces is similar to the 
drawbacks described in Section 2.1.2.B. For a multiple file 

Sinc ediately (due 
to the exchange of control commands before each transfer 

istreaming and 
command pipelining (SCTP-MS-CP) 

s extended with 
command pipelining (CP), similar to that defined in [PM94], 

at allows each subsequent 
transfer to utilize the probed value of congestion window 

By using SCTP-MS-CP, FTP views multiple file transfers as a 

. Experimental results 

To c mpare FTP over TCP vs. our three SCTP variations, we 

Figure 5:  FTP over SCTP-MS-CP 

incoming steam 1 (see Figure 4). Data on stream 1 is 
represented by dashed lines, and control messages on stream 
0 are represented by solid lines. The dashed box on the 
timeline in Figure 4 indicates the operations that are repeated 
sequentially for each file to be transferred.  

 
This approach avoids most of the overhe

single connection (association in SCTP terminology) exists 
throughout the FTP session, hence repeated setup-teardown of 
each data connection is eliminated, and (2) exchanging PORT 
commands over the control connection for data connection 
information is unnecessary. The server load is reduced as the 
server maintains TCBs for at most half the connections 
required with FTP over TCP. 

 
The drawback that this app

transfer, each subsequent file transfer is unable to utilize the 
prior probed available bandwidth. Before transmitting new 
data chunks, the sender calculates the cwnd based on the 
SCTP protocol parameter Max.Burst [SOA+03] as follows: 

 

if ((flightsize + Max.Burst*MTU) < cwnd)                 (1) 
      cwnd = flightsize + Max.Burst*MTU    

 
e the transfer of filei+1 cannot take place imm

(see Figure 4)), all data sent by the server for filei gets acked, 
and the flightsize at the server reduces to zero. Thus in 
multiple file transfers, the server’s cwnd reduces to 
Max.Burst*MTU before starting each subsequent file transfer 
([SOA+03] recommends Max.Burst = 4).  

 
4.3 FTP over SCTP with mult

 
Finally, in “SCTP-MS-CP”, SCTP-MS i

to avoid unnecessary cwnd reduction between file transfers. 
In SCTP-MS, the cwnd reduction between file transfers 
occurs because the SIZE and RETR commands for each 
subsequent file are sent only after the previous file has been 
received completely by the client.  

 
In Figure 5, we present a solution th

from the prior transfer. Command pipelining ensures a 
continuous flow of data from the server to client throughout 
the execution of a multiple file transfer. After parsing the 
name list of the files, the client sends SIZE commands for all 
files at once (which SCTP ends up bundling together in its 
SCTP-PDUs). As each reply for a SIZE command is received, 
the client immediately sends out the respective RETR 
command for that file. Since the control stream is ordered, 

SCTP guarantees the replies to the SIZE and RETR 
commands will arrive in proper sequence.  

 

single data cycle. Command pipelining aggregates all of the 
file transfers resulting in better management of the cwnd. This 
solution overcomes all of the drawbacks listed in Section 2.1. 
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o

measured the total transfer time for a multiple file transfer for 
a varied set of parameters. 
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• Bandwidth-Propagation Delay (B-D) configuration: Three 
path configurations were evaluated: (3Mbps, 1ms), (1Mbps, 
35ms), (256Kbps, 125ms). Both the client to server and 
server to client paths share the same characteristics. These 
configurations roughly represent an end-to-end connection 
on: a local network, U.S. coast-to-coast, and over a satellite, 
respectively.  
Packet Loss R•

+

 5 
PLR x 5 file sizes) was run multiple times to achieve a 90% 

ingle (and 
multiple) file transfer, we only report the results of 

nd 8 (note: best viewed in color) show results 
obtained for our three bandwidth-delay configurations. Each 

ply a 
raightforward substitution of TCP calls with SCTP calls, 

nfigurations and file sizes, TCP and 
CTP-naïve performed almost identically at 0% loss.  In only 

uced and increased, however, the 
erformance of these two methods clearly diverged.  

ral 
ifferences between the two studied implementations that 

 short files -  First, each SCTP-
aïve association establishment uses a 4-leg handshake while 

 atio (PLR): The PLRs studied were (0, .01, 
.03, .06, and .1). Loss was symmetric; each value represents 
the loss ratio for both the client to server and the server to 
client paths. We used a Bernoulli distribution to emulate 
packet loss. Certainly 10% loss represents an extreme case 
but we were interested in general trends as the loss rate 
increases. Moreover, higher loss rates are of serious interest 
in wireless and military networks. 
File sizes: We evaluated the po• tential overheads for a 
variety of file sizes: 10K, 50K, 200K, 500K, and 1M.  

 
5.1 Experimental setup 

 
Netbed [WLS 02] (an outgrowth of Emulab) was used to 
provide integrated access to experimental networks. Three 
nodes were used for each experiment: an FTP client, an FTP 
server, and an intermediate node running Dummynet [Riz97] 
to simulate a drop-tail router with a queue size of 500KB, and 
various bandwidths, propagation delays, and packet loss 
ratios. The router’s queue was set large enough such that 
buffer overflow, i.e., loss due to congestion, did not occur. 
The client and server nodes were 850MHz Intel Pentium IIIs. 

 
The client and the server nodes run FreeBSD-4.6. The 
dummynet router node runs FreeBSD-4.10. The FreeBSD 
kernel implementation of SCTP available with the KAME 
Stack [KAME] was used on the client and server nodes. 
SCTP patchlevel 24 released October 11, 2004 from 
www.sctp.org was used for the SCTP-MS and SCTP-MS-CP 
runs. Because of the timing of the experiments, patchlevel 25 
released February 21, 2005 was used for SCTP-naïve. KAME 
is an evolving and experimental stack targeted for IPv6/IPsec 
in BSD-based operating systems.  

 
In our previous published results [Lad04], Netlab’s control 
connection was inadvertently used by SCTP end-hosts for 
retransmissions.   SCTP is inherently multihomed, and 
without knowing it, our SCTP associations used Netlab’s 
essentially error-free, no-delay control channel, thus biasing 
results in favor of SCTP.  When rerunning the experiments, 
only the path thru the dummynet router was used. 

 
We implemented protocol changes by modifying the FTP 
client and server source code available with the FreeBSD 4.6 
distribution. Total transfer time was measured as follows. The 
starting time was when the “150 Opening” control reply from 
the server reached the client in response to the client’s 
“NLST” request. The end time was when the server’s “226 
control reply” reached the client after the last file transfer.  
Each combination of parameters (3 B-D configurations x

confidence level for the total transfer time. Tcpdump 
[TCPDUMP] (version 3.7.1) was used to perform packet level 
traces. SCTP decoding functionality in tcpdump was 
developed in collaboration of UD's Protocol Engineering Lab 
and Temple University's Netlab. Our results compare four 
FTP variants:  “TCP” (the TCP variant used was New-Reno), 
“SCTP-naïve”, “SCTP-MS”, and “SCTP-MS-CP”. 

 
While we also performed experiments involving s

experiments involving multiple file transfers. Some minor 
improvement using SCTP multistreaming was witnessed in a 
single file transfer, but nothing significant.  The major gains 
of multistreaming are more predominant when transferring 
multiple files.  Additionally, comparing SCTP-naïve  vs. TCP 
for multiple files provides insight on single file transfer.  

 
5.2 Results 

 
Figures 6, 7, a

graph displays the total time to transfer 100 same-size files for 
different loss probabilities using the four FTP variants.  
 
5.2.1 TCP vs. SCTP-Naïve. Since SCTP-naïve is sim
st
any performance difference must be attributed to the different 
ways our TCP and SCTP implementations handled 
connection/associate establishment and/or data transfer (i.e., 
congestion control, loss recovery).  Congestion control 
differences between SCTP and TCP can be found in [AAI02] 
where the authors note that the congestion control semantics 
and loss recovery mechanisms in SCTP are robust, and result 
in better steady state throughput at higher loss rates in a 
satellite environment. 
 
For all three B-D co
S
one case (the long delay satellite configuration with smallest 
10K file size) was there a noticeable difference of SCTP 
being ~10% slower.   
 
As loss was introd
p
Interestingly, for the smallest file size (10KB), SCTP-naïve 
performed consistently worse than TCP, and for all other files 
sizes 50KB – 1MB, SCTP-naïve transferred multiple files 
consistently faster than TCP.  And as the file size increased, 
so did SCTP-naïve’s relative performance improvement.   
 
We investigated many of the tcpdumps and discovered seve
d
help explain this behavior. 
 
Why TCP does better for
n
TCP connects using 3 legs.  (This added leg provides SCTP 
associations with better defense against DoS attacks [SX01].)  



SCTP’s extra ½ RTT has significant impact; more so for short 
files.  And as loss increases, SCTP incurs a greater chance 
(i.e., 4 to 3) that the establishment loses a leg, and requires a 
timeout before recover via retransmission.  For newly 
established associations, this minimum timeout value is 
conservative (initially minRTO=3s; after the sender measures 
an RTT, minRTO=1s).   Transferring a 10K file only involves 
~7 PDUs, so for short transfers, a longer establishment time 
noticeably degrades SCTP-naïve performance.  As file sizes 
increase, the establishment time becomes less a factor. 
 
Second, an SCTP-naïve sender (and for that matter, all three 

CTP variations) requires 4 missing reports before a fast 

r for longer files -  SCTP-
aïve’s significantly better performance for longer files 

SD 
version of TCP (New-Reno) does not have three congestion 

er 
FTP over SCTP-naïve is better or worse than FTP over TCP. 

st consider the 
pact of FTP using a transport layer with multistreaming by 

with loss present, 
ultistreaming in SCTP-MS transfers 10KB files in roughly 

) is seen, for example, by comparing the 50KB 
le transfers and seeing that SCTP-MS for the 3Mbps-1ms 

ment (see Figure 6), while 
CTP-naïve does require an extra establishment association 

B), the 
mount of time transferring the file dominates any extra time 

re 8’s satellite link 
 (500KB - 1MB), SCTP-MS is 

lained in 
ection 4.3, when transferring multiple files at once, 

command pipelining (a) reduces round trips for command 

S
retransmission, while a TCP sender fast retransmits on receipt 
of 3 dupacks.  (Note: an SCTP missing report and a TCP 
dupack are analogous.)  For short files, when the cwnd is 
often around size 3-4, TCP will be able to recover more often 
without a timeout via fast retransmit, while SCTP-naïve does 
not have sufficient PDUs in the pipe, and will require a 
timeout.  As file sizes increase, this fast retransmit difference 
will not play as important a factor.  (Note: in the latest SCTP 
design, only 3 missing reports will be required for a fast 
retransmit.)  SCTP has Limited Transmit [ABF01], so this 
difference may not significant. 
 
Why SCTP-naïve does bette
n
(increasingly as loss rates increased) initially came as a 
surprise as it was widely understood that the congestion 
control mechanisms in TCP and SCTP are approximately the 
same. The largest improvement is demonstrated in Figure 6’s 
LAN connection transferring 100 – 1MB files at the highest 
10% loss rate: SCTP-naïve is four times faster than TCP. 

 
On analysis, we realize that the currently prevalent FreeB

control mechanisms included in our SCTP model: Limited 
Transmit [ABF01], Appropriate Byte Counting [All03], and 
Selective Acks [MMF96].  One advantage of an experimental 
protocol such as SCTP is its ability to include newer 
mechanisms much sooner than for TCP. Once these 
extensions are included in TCP implementations, we expect 
(1) and (2) to perform similarly at different loss rates. 

 
In any case, our primary goal is NOT to focus on wheth

Such a comparison would require equivalent FreeBSD 
implementations, which was beyond the scope of this study.  
We focus on the gains from multistreaming and command 
pipelining using SCTP-naïve as a baseline to see if and how 
much these mechanisms benefit file transfer.  
 
5.2.2 SCTP-MS vs. SCTP-Naïve.  We fir
im
comparing SCTP-MS vs SCTP-naïve. In Figures 6-8, we 
observe that in a lossy environment, significant gains from 
multistreaming are evident; more so for (1) smaller file sizes 
vs. larger file sizes, and (2) the highest bandwidth - shortest 

delay connection (LAN) vs the lowest bandwidth - longest 
delay connection (satellite).   No significant performance 
difference was observed for (3) 0% loss in the LAN 
environment, and (4) for all B-D configurations and loss 
levels when transferring large (1MB) files. 
 
Regarding (1), for all B-D configurations 
m
1/2 the time than without multistreaming (SCTP-naïve) 
consistently across all loss probabilities.  The relative gains 
decrease to roughly 30-40% faster for 50KB files. SCTP-MS 
avoids the overhead to set up an additional association for 
every file, an overhead that is relatively more significant for 
smaller files.  
 
Evidence of (2
fi
link (Figure 6) is ~40% faster than SCTP-naïve, and for the 
256Kbps-125ms link (Figure 8), SCTP-MS improves on 
SCTP-naïve by only ~20%.   Because SCTP-naïve has at least 
7 extra PDUs (4 for association establishment; 3 for 
shutdown), SCTP-naïve will experience more timeouts per 
file transfer than SCTP-MS when there is loss.  These 
additional timeouts degrade SCTP-naïve ‘relatively’ more 
when the RTT is shorter because the sender uses a fixed 
minimum RTO value.  When the RTT = 2ms in the LAN 
scenario (Figure 6), a timeout with minRTO results in ~500 
idle RTTs, whereas for the satellite scenario (Figure 8), only 3 
RTTs are idle.  Further evidence of a fixed minRTO 
degrading shorter RTT paths relatively more than longer RTT 
paths can be found in [IAS05]. 
 
Regarding (3), in a LAN environ
S
for each file, this overhead delay is minimal because the extra 
RTTs are short.  Only as loss is introduced does the 
performance between these two versions diverge 
significantly, because loss in any of the extra 4 legs needed 
for SCTP-naïve association establishment requires a timeout 
before recovery via retransmission is possible, and timeouts 
are relatively ‘expensive’ in terms of relative delay. 
 
Regarding (4), once files become very large (1M
a
spent having to establish an association. 
 
One unexpected result appears in Figu
scenario.  For large files
slightly slower than SCTP-naïve at certain loss rates.  We 
investigated tcpdumps for several runs in detail, and found no 
protocol behavior to explain this minor inconsistency.  We 
noted that in redoing our experiments, the SCTP-MS version 
used a slightly older patch (#24) than SCTP-naïve (#25), 
which could explain the minimal 1-2% difference.   
 
5.2.3 SCTP-MS-CP vs. SCTP-MS.  As exp
S



exchanges, and (b) maintains the probed value of the 
congestion window for subsequent transfers in a multiple file 
transfer. We note that command pipelining is not exploiting a 
new transport layer mechanism as is the case of using 
multistreaming.  Conceptually, FTP over TCP could also be 
designed to pipeline the file retrieval commands over the 
control channel. 
 
We hypothesized the effect of (a) would remain fairly 
constant irrespective of file sizes being transferred and loss 

te, and the effect of (b) would be more prevalent in 

command pipelining introduces clear 
erformance improvements, more so for the smaller files.  

ur experimental results confirm that modifying FTP to use 
pipelining can 

) and other 

nections, 
 reduce the number of round trips required for connection 

• ciently by preserving the 

 

perf of FTP over 
CTP-MS-CP vs. FTP over TCP are: 

ad and its effects on 
throughput is beyond the scope of this paper. The 

 
• 

educing the command 
exchanges and connection establishments/teardowns) 

 
• 

ns that FTP over 
TCP faces with Network Address Translators (NAT) and 

We 
can aming 
provides a TCP-friendly mechanism for parallel transfers. 

View d conclusions contained in this document are those 
and should not be interpreted as representing 

the official policies, either expressed or implied, of the Army 

m discussions with J. Iyengar and A. 
art for supporting the SCTP KAME 

stack. We thank Jay Lepreau and the staff of Netbed, the Utah 

[AAI02] R. Alamgir, M. Atiquzzaman, W. Ivancic, Effect of 
 Control on the Perf of TCP and SCTP over 

ets. Proc. NASA Earth Science Tech Conf, 6/02. 

[AB
TC
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[A rmann, Multiple Data Connection 

[A FTP extensions 

Control, RFC 2581, 4/99. 

ra
transferring smaller files. For small files, more time 
(relatively) is spent by SCTP-MS in slow start probing for 
available bandwidth compared to the amount of time spent 
probing in large file transfers.  By avoiding this reprobing for 
each file, and spending more time in steady state congestion 
avoidance phase, SCTP-MS-CP gains should be more evident 
for smaller files. 
 
Figures 6-8 confirm these hypotheses.  For all three B-D 
configurations, 
p
The most pronounced improvement is seen in Figure 6, where 
for 10KB files, SCTP-MS-CP transfer files as much as 8 
times faster than SCTP-MS as loss increases above 2%.  Even 
for transferring one hundred 200KB files, SCTP-MS-CP does 
30% better than SCTP-MS.  When the file size increases to 
1MB, some gain using command pipelining is noticeable, but 
the majority of time spent in congestion avoidance (as 
opposed to slow start, and doing command exchanges) 
dominates the transfer time, making the gain of SCTP-MS-CP 
over SCTP-MS only minimally significant. 
 
6. Conclusions and future work 

 
O
SCTP multistreaming and command 
dram  benefit mirroring (e.g., fmirroratically
applications which transfer a large number of files from host 
to host.  These features: 
 
• reduce the number of connections by aggregating the 

control and data con
•

setup/teardown, and command exchange, and 
use the bandwidth more effi
congestion window between file transfers. 

Apart from transfer time improvements documented in our 
ormance experiments, other advantages 

S
 
• The number of connections a server must maintain is 

reduced. Quantifying server lo

interested reader is pointed to [FTY99]. We however 
expect that by using SCTP-MS-CP, servers could serve 
at least twice the number of clients compared to the 

current FTP over TCP design when the bottleneck for the 
number of simultaneous clients served is the TCBs 
reserved for the connections. This result should be of 
interest to busy servers that are constrained by the 
number of simultaneous clients. 

The number of PDUs exchanged between client and 
server is reduced (e.g., by r

thus reducing the overall network load. 

Aggregating control and data connections into one SCTP 
multistreamed association solves concer

firewalls in transferring IP addresses and port numbers 
through the control connection [AOM98, Tou02].  
 
further argue that the benefits of SCTP multistreaming 
be exploited by other applications. SCTP multistre

Ongoing research at UD’s PEL is investigating whether web 
transfers using HTTP can benefit from aggregation of 
multiple transfers in a single SCTP association.  
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Figure 6:  Transfer Time vs. Loss Ratio for a 
multiple transfer of 100 files on a LAN-like link 
(Bandwidth = 3Mbps, Propagation Delay = 1 ms)  

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 Figure 7:  Transfer Time vs. Loss Ratio for a 

multiple transfer of 100 files on a US coast-to-
coast-like link (Bandwidth = 1Mbps, 
Propagation Delay = 35 ms)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 Figure 8:  Transfer Time vs. Loss Ratio for a 

multiple transfer of 100 files on a satellite-like 
link (Bandwidth = 256Kbps, Propagation Delay = 
125 ms)  

 
 


