
 1

Abstract— In both TCP and SCTP, selectively acked

(SACKed) out-of-order data is implicitly renegable; that is, the

receiver can later discard SACKed data. The possibility of

reneging forces the transport sender to maintain copies of

SACKed data in the send buffer until they are cumulatively

acked. In this paper, we investigate the situation where all out-of-

order data is non-renegable, such as when the data has been

delivered to the application, or when the receiver simply never

reneges. Using simulations, we show that SACKs result in

inevitable send buffer wastage, which increases as frequency of

loss events and loss recovery durations increase. We introduce a

fundamentally new ack mechanism, Non-Renegable Selective

Acknowledgments (NR-SACKs), for SCTP. Using NR-SACKs, an

SCTP receiver can explicitly identify some or all out-of-order

data as being non-renegable, allowing the sender to free up send

buffer sooner than if the data were only SACKed. We compare

and show that NR-SACKs enable efficient utilization of a

transport sender’s memory. We further investigate the effects of

using NR-SACKs in Concurrent Multipath Transfer (CMT).

CMT is an experimental SCTP extension that exploits

multihoming for simultaneous data transfer over multiple paths

[4]. Using simulations, we show that NR-SACKs not only reduce

transport sender’s memory requirements, but also improve

throughput in CMT.

Index Terms—Network Protocols, Protocol Design and

Analysis

I. INTRODUCTION

Reliable transport protocols such as TCP and SCTP (Stream

Control Transmission Protocol) [RFC4960] employ two kinds

of data acknowledgment mechanisms: (i) cumulative acks

indicate data that has been received in-sequence, and (ii)

selective acknowledgments (SACKs) indicate data that has

been received out-of-order. In both TCP and SCTP, while

cumulatively acked data is the receiver’s responsibility,

SACKed data is not, and SACK information is advisory

[RFC3517, RFC4960]. While SACKs notify a sender about

the reception of specific out-of-order TPDUs, the receiver is

permitted to later discard the TDPUs. Discarding data that has

been previously SACKed is known as reneging. Though

reneging is a possibility, the conditions under which current

transport layer and/or operating system implementations

renege, and the frequency of these conditions occurring in

practice (if any) are unknown and needs further investigation.

Data that has been delivered to the application, by

definition, is non-renegable by the transport receiver. Unlike

TCP which never delivers out-of-order data to the application,

SCTP’s multistreaming and unordered data delivery services

result in out-of-order data being delivered to the application

and thus become non-renegable. Interestingly, TCP and SCTP

implementations can be configured such that the receiver is not

allowed to and therefore never reneges on out-of-order data

(details in Section II). In these configurations, even non-

deliverable out-of-order data becomes non-renegable.

The current SACK mechanism in both TCP and SCTP does

not differentiate between out-of-order data that “has been

delivered to the application and/or is non-renegable” vs. data

that “has not yet been delivered to the application and is

renegable”. In this work, we introduce a fundamentally new

third acknowledgment mechanism called Non-Renegable

Selective Acknowledgments (NR-SACKs) that enable a

transport receiver to explicitly convey non-renegable

information to the sender on some or all out-of-order TPDUs.

While this work introduces NR-SACKs for SCTP, the NR-

SACKs idea can be applied to any reliable transport protocol

that uses selective acknowledgments and/or permits delivery of

out-of-order data.

In this work, we investigate the effect of SCTP’s SACK

mechanism in situations where out-of-order data is non-

renegable, and identify conditions under which SACKs affect

performance for an SCTP sender. We further investigate the

effects of NR-SACKs on Concurrent Multipath Transfer

(CMT), an experimental extension to SCTP that exploits

SCTP’s multihoming feature for simultaneous transfer of new

Non-Renegable Selective Acknowledgments

(NR-SACKs) for SCTP

Preethi Natarajan
1
, Nasif Ekiz

1
, Ertugrul Yilmaz

1
, Paul D. Amer

1
, Janardhan Iyengar

2
, Randall

Stewart
3

1
CIS Dept., University of Delaware, {nataraja,ekiz,yilmaz,amer}@cis.udel.edu,

2
Math & Computer Science, Franklin & Marshall College, jiyengar@fandm.edu

 3
Cisco Systems, rrs@lakerest.net

• Prepared through collaborative participation in the Communication and

Networks Consortium sponsored by the US Army Research Lab under

Collaborative Tech Alliance Program, Coop Agreement DAAD19-01-2-

0011. The US Gov’t is authorized to reproduce and distribute reprints

for Gov’t purposes notwithstanding any copyright notation thereon.

• Supported by the University Research Program, Cisco Systems, Inc.

 2

data over multiple paths (details in Section II) [4]. Section III

introduces the NR-SACK chunk for SCTP, and briefly

explains sender and receiver side NR-SACK processing

details. Section IV elaborates evaluation preliminaries such as

ns-2 simulation topologies, parameters for cross-traffic

generation, and performance metrics. Section V analyzes

SACK vs. NR-SACK results for both SCTP and CMT. Section

VI concludes our work

II. PROBLEM DESCRIPTION

A. Background

The SCTP (or TCP) layer send buffer, or the sender-side

socket buffer (Figure 1), consists of two kinds of data: (i) new

application data waiting to be transmitted for the first time, and

(ii) copies of data that have been transmitted at least once and

are waiting to be cum-acked, a.k.a. the retransmission queue

(rtxq). Data in the rtxq is the transport sender’s responsibility

until the receiver has guaranteed their delivery to the receiving

application, and/or the receiver guarantees not to renege on the

data.

In traditional in-order data delivery service, a receiver

cumulatively acknowledges (cum-acks) the latest in-order data.

Cum-acked data has either been delivered to the application or

is ready for delivery. In either case, cum-acks are an explicit

assurance that the receiver will not renege on the

corresponding data. Upon receiving a cum-ack, the sender is

no longer responsible, and removes the corresponding data

from the rtxq. In the current SACK mechanism, cum-acks are

the only means to convey non-renegable information; all

selectively acknowledged (out-of-order) data are by default

renegable.

Figure 1: Transport Layer Send Buffer

SCTP’s multistreaming service divides an end-to-end

association (SCTP’s term for a transport connection) into

independent logical data streams. Data arriving in-sequence

within a stream can be delivered to the receiving application

even if the data is out-of-order relative to the association’s

overall flow of data. Also, data marked for unordered delivery

can be delivered immediately upon reception, regardless of the

data’s position within the overall flow of data. Thus, SCTP’s

data delivery services result in situations where out-of-order

data is delivered to the application, and is thus non-renegable.

Operating systems allow configuration of transport layer

implementations such that out-of-order data is never reneged.

For example, in FreeBSD, the net.inet.tcp.do_tcpdrain or

net.inet.sctp.do_sctp_drain sysctl parameters can be

configured to never revoke kernel memory allocated to TCP or

SCTP out-of-order data [9]. Thus, out-of-order data can also

be rendered non-renegable through simple user configuration.

In the following discussions, “non-renegable out-of-order

data” refers to data for which the transport receiver takes full

responsibility, and guarantees not to renege either because (i)

the data has been delivered (or is deliverable) to the

application, or (ii) the receiving system (OS and/or transport

layer implementation) guarantees not to revoke the allocated

memory until after the data is delivered to the application.

With the current SACK mechanism, non-renegable out-of-

order data is selectively acked, and is (wrongly) deemed

renegable by the transport sender. Maintaining copies of non-

renegable data in the sender’s retransmission queue is

unnecessary.

B. SCTP Unordered Data Transfer with SACKs

We now discuss the effects of SACKs in transfers where all

out-of-order is non-renegable. The discussion is applicable to

any type of reliable data delivery service (in-order, partial-

order, unordered) where all out-of-order data is non-renegable,

but uses the simple unordered SCTP data transfer example

shown in Figure 2.

In this example, the SCTP send buffer denoted by the

rectangular box can hold a maximum of eight TPDUs. Each

SCTP PDU is assigned a unique Transmission Sequence

Number (TSN). The timeline slice shown in Figure 2 picks up

the data transfer at a point when the sender’s cwnd C=8,

allowing transmission of 8 TPDUs (arbitrarily numbered with

TSNs 11-18). Note that when TSN 18 is transmitted, the

retransmission queue grows to fill the entire send buffer.

Figure 2: Timeline of an Unordered SCTP Data Transfer using SACKs

TSN 11 is presumed lost in the network. The other TSNs

are received out-of-order and immediately SACKed by the

SCTP receiver. The SACKs shown have the following format:

(S)ACK:CumAckTSN;GapAckStart-GapAckEnd. Each Gap-

 3

ack start and Gap-ack end value is relative to the cum-ack

value, and together they specify a block of received TSNs.

At the sender, the first SACK (S:10;2-2) is also a dupack

and gap-acks TSN 12. Though data corresponding to TSN 12

has been delivered to the receiving application, the SACK

does not convey the non-renegable nature of TSN 12,

requiring the sender to continue being responsible for the

TSN. Starting from the time that this SACK arrives at the

sender, the copy of TSN 12 in the sender’s rtxq is

unnecessary. The gap-ack for TSN 12 reduces the amount of

outstanding data (O) to 7 TPDUs. Since O<C, the sender could

in theory transmit new data, but in practice cannot do so since

the completely filled send buffer blocks the sending

application from writing new data into the transport layer. We

call this situation send buffer blocking. Note that send buffer

blocking prevents the sender from fully utilizing the cwnd.

The second and third dupacks (S:10;2-3, S:10;2-4) further

increase the number of unnecessary TSNs in the rtxq. Send

buffer blocking continues to prevent new data transmission.

On receipt of the third dupack, the sender halves the cwnd

(C=4), fast retransmits TSN 11, and enters fast recovery.

Dupacks received during fast recovery further increase the

amount of unnecessary data in the rtxq, prolonging inefficient

rtxq usage. Note that though these dupacks reduce outstanding

data (O<C), send buffer blocking prevents new data

transmission.

The sender eventually exits fast recovery when the SACK

for TSN 11’s retransmission (S:18) arrives. The sender

removes the unnecessary copies of TSNs 12-18 from the rtxq,

and concludes the current instance of send buffer blocking.

Since send buffer blocking prevented the sender from fully

utilizing the cwnd before, the new cum ack (S:18) does not

increase the cwnd [RFC4960]. The application writes new data

into the newly available send buffer space and the sender now

transmits TSNs 19-22.

The simple timeline demonstrates the following

observations on transfers involving non-renegable out-of-order

data:

• The unnecessary copies of non-renegable out-of-order data

in the retransmission queue contribute to inefficient kernel

memory usage. The amount of wasted memory is a function

of flightsize (amount of data “in flight”) during a loss

event; larger flightsize increases the amount of wasted

memory.

• When the retransmission queue grows to fill the entire send

buffer, send buffer blocking ensues, which can degrade the

transfer’s throughput.

C. Implications to Concurrent Multipath Transfer (CMT)

A host is multihomed if it can be reached via multiple IP

addresses, as is the case when the host has multiple network

interfaces. SCTP supports transport layer multihoming for

fault-tolerance purposes [RFC4960]. SCTP multihoming

allows binding of an association to multiple IP addresses at

each endpoint. An endpoint chooses a single destination

address as the primary destination, which is used for all data

traffic during normal transmission. SCTP also monitors the

reachability of each destination address. Failure in reaching the

primary destination results in failover, where an SCTP

endpoint dynamically chooses an alternate destination to

transmit the data.

Multiple active interfaces suggest the possibility of multiple

independent end-to-end paths between the multihomed hosts.

Concurrent Multipath Transfer (CMT) [4] is an experimental

extension to SCTP that assumes multiple independent paths

and exploits them for simultaneous transfer of new data

between end hosts, and increases a network application’s

throughput. Similar to an SCTP sender, the CMT sender uses

a single send buffer and rtxq for data transfer. However, the

CMT sender’s total flightsize is the sum of flightsizes on each

path. Since the amount of kernel memory and the probability

of send buffer blocking increase as the transport sender’s

flightsize increases (previous Section), we hypothesize that a

CMT association is even more likely than an SCTP association

to suffer from the inefficiencies of the existing SACK

mechanism.

III. NON-RENEGABLE SELECTIVE ACKNOWLEDGMENTS (NR-

SACKS) FOR SCTP

Non-Renegable Selective Acknowledgments (NR-SACKs)

for SCTP [5] enables a receiver to explicitly convey non-

renegable information on out-of-order TPDUs. NR-SACKs

provide the same information as SACKs for SCTP’s

congestion and flow control, and the sender is expected to

process this information identical to SACK processing. In

addition, NR-SACKs provide the option to report some or all

of the out-of-order TPDUs as being non-renegable.

A. NR-SACK Chunk Details

The proposed NR-SACK chunk for SCTP is shown in

Figure 3. Before sending/receiving NR-SACKs, the endpoints

first negotiate NR-SACK usage during association

establishment. An endpoint supporting the NR-SACK

extension lists the NR-SACK chunk in the Supported

Extensions Parameter carried in the INIT or INIT-ACK chunk

[RFC5061]. During association establishment, if both

endpoints support the NR-SACK extension, then each

endpoint acknowledges received data with NR-SACK chunks

instead of SACK chunks.

Since NR-SACKs extend SACK functionality, an NR-

SACK chunk has several fields identical to the SACK chunk:

the Cumulative TSN Ack, the Advertised Receiver Window

Credit (a_rwnd), Gap Ack Blocks, and Duplicate TSNs. These

fields have identical semantics to the corresponding fields in

the SACK chunk [RFC4960]. NR-SACKs also report non-

renegable out-of-order data chunks in the NR Gap Ack Blocks,

a.k.a. “nr-gap-acks”. Each NR Gap Ack Block acknowledges a

continuous subsequence of non-renegable out-of-order data

chunks. All data chunks with TSNs ≥ (Cumulative TSN Ack +

NR Gap Ack Block Start) and ≤ (Cumulative TSN Ack + NR

Gap Ack Block End) of each NR Gap Ack Block are reported

as non-renegable. The Number of NR Gap Ack Blocks (M)

 4

field indicates the number of NR-Gap Ack Blocks included in

the NR-SACK chunk.

Figure 3: NR-SACK Chunk for SCTP

The third least significant bit in the Chunk Flags field is the

(A)ll bit. If the ‘A’ bit is set to '1', all out-of-order data blocks

acknowledged in the NR-SACK chunk are non-renegable.

The ‘A’ bit enables optimized sender/receiver processing and

reduces the size of NR-SACK chunks when all out-of-order

TPDUs at the receiver are non-renegable.

Note that each sequence of TSNs in an NR Gap Ack Block

will be a subsequence of one of the Gap Ack Blocks, and there

can be more than one NR Gap Ack Block per Gap Ack Block.

Also, non-renegable information cannot be revoked. If a TSN

is nr-gap-acked in any NR-SACK chunk, then all subsequent

NR-SACKs gap-acking that TSN should also nr-gap-ack that

TSN. Complete details of NR-SACK chunk can be found in

[5].

B. SCTP Unordered Data Transfer with NR-SACKs

NR-SACKs provide an SCTP receiver with the option to

convey non-renegable information on some or all out-of-order

TPDUs. When a receiver guarantees not to renege an out-of-

order data chunk and nr-gap-acks the chunk, the sender no

longer needs to keep that particular data chunk in its rtxq, thus

allowing the data sender to free up kernel memory sooner than

if the data chunk were only gap-acked.

Figure 4 is analogous to Figure 2’s example, this time using

NR-SACKs. The sender and receiver are assumed to have

negotiated the use of NR-SACKs during association

establishment. As in the example of Figure 2, TSNs 11-18 are

initially transmitted, and TSN 11 is presumed lost. For each

TSN arriving out-of-order, the SCTP receiver transmits an

NR-SACK chunk instead of SACK chunk. Since all out-of-

order data are non-renegable in this example, every NR-SACK

chunk has the ‘A’ bit set, and the nr-gap-acks report the list of

TSNs that are received out-of-order and non-renegable.

All NR-SACKs in Figure 4 have the following format:

(N)R-SACK:CumAckTSN;NRGapAckStart-NRGapAckEnd.

The first NR-SACK (N:10;2-2) is also a dupack. This NR-

SACK cum-acks TSN 10, and (nr-)gap-acks TSN 12. Once the

data sender is informed that TSN 12 is non-renegable, the

sender frees up the kernel memory allocated to TSN 12,

allowing the application to write more data into the newly

available send buffer space. Since TSN 12 is also gap-acked,

the amount of outstanding data (O) is reduced to 7, allowing

the sender to transmit new data – TSN 19.

On receipt of the 2
nd

 and 3
rd

 dupacks that newly (nr-)gap-

ack TSNs 13 and 14, the sender removes these TSNs from the

rtxq. On receiving the second dupack, the sender transmits

new data – TSN 20. On receipt of the third dupack, the sender

halves the cwnd (C=4), fast retransmits TSN 11, and enters

fast recovery. Dupacks received during fast recovery (nr-)gap-

ack TSNs 15-20. The sender frees rtxq accordingly, and

transmits new TSNs 21, 22 and 23. The sender exits fast

recovery when the NR-SACK with new cum-ack (N:20)

arrives. This new cum-ack increments C=5, and decrements

O=3. The sender now transmits new TSNs 24 and 25.

The explicit non-renegable information in NR-SACKs

ensures that the rtxq contains only necessary data − TPDUs

that are actually in flight or “received and renegable”.

Comparing Figures 2 and 4, we observe that NR-SACKs use

the rtxq more efficiently.

Figure 4: Timeline of an Unordered SCTP Data Transfer using NR-SACKs

IV. EVALUATION PRELIMINARIES

Ns-2 SCTP and CMT modules [??, 3] were extended to

support and process NR-SACK chunks. The simulation-based

evaluations compare long-lived SCTP or CMT flows using

SACKs vs. NR-SACKs under varying cross-traffic loads. This

section discusses the experiment setup and other evaluation

preliminaries in detail.

 5

A. Simulation Setup

Reference [1] recommends specific simulation setup and

parameters for a realistic evaluation of TCP extensions and

congestion control algorithms. These recommendations

include network topologies, details of cross-traffic generation,

and delay distributions mimicking patterns observed in the

Internet. We adhere to these recommendations for a realistic

evaluation of SACKs vs. NR-SACKs.

Figure 5: Topology for SCTP Experiments (Topology 1)

Figure 6: Topology for CMT Experiments (Topology 2)

The SCTP evaluations use the dumb-bell topology shown in

Figure 5, which models the access link scenario specified in

[1]. The central bottleneck link connects routers R1 (left) and

R2 (right), has a 100Mbps capacity, and 2ms one-way

propagation delay. Both routers employ drop tail queuing and

the queue size is set to the bandwidth-delay product of a

100ms flow. Each router is connected to three cross-traffic

generating edge nodes via 100Mbps edge links with the

following propagation delays: 0ms, 12ms, 25ms (left) and

2ms, 37ms, 75ms (right). Each left edge node generates cross-

traffic destined to every right edge node and vice-versa. Thus,

without considering queuing delays, the RTTs for cross-traffic

flows sharing the bottleneck link range from 8ms—204ms.

Reference [1] recommends application level cross-traffic

generation over packet level generation, since, in the latter

scenario, cross-traffic flows do not respond to the

user/application/transport behavior of competing flows. Also,

[1] proposes the use of Tmix [8] traffic generator. However,

the recommended Tmix connection vectors were unavailable

at the time of performing our evaluations. Therefore, we

decided to employ existing ns-2 application level traffic

generation tools, recommended by [7, ?]. Since our simulation

setup uses application level cross-traffic, we believe that the

general conclusions from our evaluations will hold for

evaluations using the Tmix traffic generator.

Cross-traffic generated by three kinds of applications are

considered: (i) non-greedy, responsive HTTP sessions −

generated by PackMime implementation [2], (ii) rate

controlled, unresponsive video sessions over UDP, and (iii)

greedy, responsive bulk file transfer sessions over TCP. We

are unaware of existing measurement studies on the proportion

of each kind of traffic observed in the Internet. Therefore the

simulations assume a simple, yet reasonable rule for traffic mix

proportion − more HTTP traffic than video or FTP traffic.

Each edge node runs a PackMime session to every edge

node on the other side, and the amount of HTTP traffic

generated is controlled via the PackMime rate parameter.

Similarly, each edge node establishes video and FTP sessions

to every edge node on the other side, and the number of

video/FTP sources at each node impacts the amount of

video/FTP traffic. To avoid synchronization issues, the

PackMime, video, and FTP sessions start at randomly chosen

times during the initial 5 seconds of the simulation. The

default segment size for all TCP traffic results in 1500 byte IP

PDUs; the segment size for 10% of the FTP flows is modified

to result in 576 byte IP PDUs. Also, the PackMime request

and response size distributions are seeded in every simulation

run, resulting in a range of packet sizes at the bottleneck [1].

The bottleneck router load is measured as (L) = (mean

queue length ÷ total queue size). Four packet-level

load/congestion variations are considered: (i) Low (~15%

load, < 0.1% loss), (ii) Mild (~45% load, 1-2% loss), (iii)

Medium (~60% load, 3-4% loss), (iv) Heavy (~85% load, 8-

9% loss).

Topology 1 (Figure 5) is used to evaluate SCTP flows.

CMT evaluations are over the dual-dumbbell topology shown

in Figure 6 (topology 2), with two independent bottleneck

links between routers R1-R2 and R3-R4. Similar to topology 1,

each router in topology 2 is attached to 3 cross-traffic

generating edge nodes, with similar bottleneck and edge link

bandwidth/delay characteristics. In both topologies, nodes S

and R are the SCTP or CMT sender and receiver, respectively.

In topology 2, both S and R are multihomed, and the CMT

sender uses the two independent paths (paths 1 and 2) for

 6

simultaneous data transfer. In both topologies, S and R are

connected to the bottleneck routers via 100Mbps duplex edge

links, with 14ms one-way delay. Thus the one-way

propagation delay experienced by the SCTP or the CMT flow

corresponds to 30ms, approximately the US coast-to-coast

propagation delay [6].

In both topologies, the bottleneck links experience bi-

directional cross-traffic; the cross-traffic load is similar on

both forward and reverse directions. In topology 1, the cross-

traffic load varies from low to heavy. For CMT evaluations

using topology 2, the bottlenecks experience asymmetric path

loads; path 1 cross-traffic load varies from low to heavy, while

path 2 experiences low load.

The SCTP or CMT flow initiates an unordered data transfer

~18-20 seconds after the simulation begins such that, all data

received out-of-order at R is deliverable, and thus, non-

renegable. Trace collection begins after a 20 second warm-up

period from the start of SCTP or CMT traffic, and ends when

the simulation completes after 70 seconds. The CMT sender

uses the recommended RTX-SSTHRESH retransmission

policy, i.e., retransmissions are sent on the path with highest

ssthresh [4].

B. Metric: Retransmission Queue Utilization

In transfers using SACKs, the rtxq consists of two kinds of

data (Figure 2): (i) necessary data – data that is either “in

flight” and has not yet reached receiver’s transport layer, or

data that has been received but is renegable by the transport

receiver, and (ii) unnecessary data – data that is received out

of order and is non-renegable. The rtxq is most efficiently

utilized when all data in the rtxq are necessary. As the fraction

of unnecessary data increases, the rtxq is less efficiently

utilized.

The transport sender modifies the rtxq as and when

SACKs/NR-SACKs arrive. The rtxq size varies during the

course of a file transfer, but can never exceed the send buffer

size. For time duration ti in the transfer, let

ri = size of rtxq, and

ki = amount of necessary data in the rtxq.

During ti, only ki ÷ ri of the rtxq is efficiently utilized, and

the efficiency changes whenever ki or ri changes.

Let

n

n

r

k

r

k

r

k
K,,

1

1

0

0
 be the efficient rtxq utilization values

during time durations ()∑ = Ttttt inK,, 10 , respectively.

The time weighted efficient rtxq utilization averaged over T is

calculated as T
r

k
tUtilRtxQ

i

i

i ÷







×= ∑_ . To measure

rtxq utilization, the ns-2 SCTP or CMT sender tracks ki , ri and

ti until association shutdown. Let,

W = time when trace collection begins after the initial

warm-up time, and

E = simulation end time.

In the following discussions, the time weighted efficient rtxq

utilization averaged over the entire trace collection time, i.e.,

T = (E – W), is referred to as RtxQ_Util.

In an unordered transfer using NR-SACKs, all out-of-order

data will be nr-gap-acked and the rtxq should contain only

necessary data. Therefore, we expect an SCTP or CMT flow

using NR-SACKs to most efficiently utilize the rtxq

(RtxQ_Util =1) under all circumstances.

C. Retransmission Queue Utilization during Loss Recovery

Typically, in SCTP transfers, data is always received in-

order during no losses, unless the intermediate routers reorder

packets. Consequently, during no losses, SCTP flows

employing either SACKs or NR-SACKs utilize the rtxq most

efficiently, and both their RtxQ_Util values equal unity. The

two acknowledgment mechanisms differ in rtxq usage only

when data is received out-of-order, which ensues when an

SCTP flow suffers packet losses. Specifically, in SCTP, the

duration of NR-SACKs’ impact on the rtxq is limited to loss

recovery periods. To evaluate the impact of the two ack

schemes during loss recovery periods, the ns-2 SCTP sender

timestamps every entry/exit to/from loss recovery. Since none

of the routers reorder packets in our simulations, the SCTP

sender uses the following naive rule − sender enters loss

recovery on the receipt of SACKs/NR-SACKs with at least

one gap-ack block, and exits loss recovery on the receipt of

SACKs/NR-SACKs with a new cum-ack and zero gap-acks.

We found that this simple rule resulted in a good

approximation of the actual loss recovery periods. In addition

to RtxQ_Util, an SCTP sender also tracked RtxQ_Util_L,

which corresponds to rtxq utilization averaged over only the

loss recovery durations of trace collection.

Depending on the paths’ bandwidth/delay characteristics, a

CMT association experiences data reordering even under no

loss conditions [4]. Data transmitted on the shorter RTT path

will be received out-of-order w.r.t. data transmitted on other

path(s). Therefore, the naïve rule mentioned above cannot be

employed to estimate entry/exit of CMT sender’s loss

recovery. Therefore, the CMT sender tracked only RtxQ_Util.

V. RESULTS

For each type of sender (SCTP or CMT), different send

buffer sizes imposing varying levels of memory constraints are

considered: 32K, 64K and INF (infinite or unlimited space) for

SCTP, and 128K, 256K and INF for CMT. The results are

averaged over 30 runs, and plotted with 95% confidence

intervals. In the following discussions, SCTP transfers using

SACKs or NR-SACKs are referred to as SCTP-SACKs and

SCTP-NR-SACKs, respectively. Similarly, CMT using

SACKs or NR-SACKs are referred to as CMT-SACKs and

CMT-NR-SACKs.

A. Retransmission Queue Utilization

As the end-to-end path gets more congested, SCTP-SACKs’

RtxQ_Util_L remains fairly consistent ~0.5 (Figure 7), while

the RtxQ_Util decreases (Figure 8). The RtxQ_Util_L values

indicate that irrespective of path loss rate, SCTP-SACKs

 7

efficiently utilize only ~50% of rtxq during loss recovery;

~50% of rtxq is wasted buffering unnecessary data.

At lower congestion levels (lower cross-traffic), the

frequency of loss events and the fraction of transfer time spent

in loss recovery are smaller, resulting in negligible rtxq

wastage during the entire trace collection period (RtxQ_Util).

As loss recoveries become more frequent, SCTP-SACKs’

inefficient rtxq utilization during loss recovery lowers the

corresponding RtxQ_Util values. The simulation results show

that SCTP-SACKs waste on average ~20% of the rtxq during

moderate congestion and ~30% during heavy congestion

conditions. The amount of wasted kernel memory increases as

the number of transport connections increase, and can be

significant at a server handling large numbers of concurrent

connections, such as a web server.

By definition of the RtxQ_Util metric, NR-SACKs are

expected to utilize the rtxq most efficiently, even during loss

recovery periods (Section IVB). The simulation results

confirm this hypothesis. RtxQ_Util values for both SCTP-NR-

SACKs and CMT-NR-SACKs are unity.

In CMT evaluations, path 2 experiences low traffic load,

while path 1’s traffic load varies from low to heavy (Figure 6).

Recall that a CMT sender transmits data concurrently on both

paths. Asymmetric path congestion levels aggravate data

reordering in CMT. As path 1 congestion level increases,

TPDU losses on the higher congested path 1 cause data

transmitted on the lower congested path 2 to arrive out-of-

order at the receiver. CMT congestion control is designed such

that losses on path 1 do not affect the cwnd/flightsize on path 2

[4]. While losses on path 1 are being recovered, sender

continues data transmission on path 2, increasing the amount

of non-renegable out-of-order data in the rtxq. As the paths

become increasingly asymmetric in their congestion levels, the

amount of non-renegable out-of-order data in the rtxq

increases, and brings down CMT-SACKs’ RtxQ_Util values

(Figure 9).

Increasing the send buffer/rtxq space improves SCTP-

SACKs’ or CMT-SACKs’ kernel memory (rtxq) utilization

only to a certain degree. In Figures 8 and 9 RtxQ_Util for INF

send buffer is essentially the upper bound on how efficient

SCTP or CMT employing SACKs utilizes rtxq. Therefore, we

conclude that TPDU reordering results in inevitable rtxq

wastage in transfers using SACKs. The amount of wasted

memory increases as TPDU reordering and loss recovery

durations increase. Also, smaller send buffer sizes further

degrade RtxQ_Util_L and RtxQ_Util values. This degradation

is more pronounced in CMT (Figure 9). Further investigations

reveal this effect to be due to send buffer blocking, discussed

next.

B. Send Buffer Blocking in CMT

When the rtxq grows to fill the entire send buffer, send

buffer blocking ensues, preventing the application from

writing new data into the transport layer (Section IIA). In both

SCTP and CMT, send buffer blocking increases as the send

buffer is more constrained (decreases). In addition, CMT

employs multiple paths for data transfer, increasing a sender’s

total flightsize in comparison to SCTP. Therefore, we

hypothesized that CMT would suffer more send buffer

blocking than SCTP (Section IIC). Indeed, in the simulations,

CMT suffered significant send buffer blocking even for 128K

and 256K send buffer sizes. In this section, we focus on the

effects of send buffer blocking in CMT.

Figure 7: Rtxq Utilization during Loss Recovery in SCTP

Figure 8: Rtxq Utilization in SCTP

Figure 9: Rtxq Utilization in CMT

 8

Figure 10: Retransmission Queue Evolution in CMT-SACKs

Figure 12: Retransmission Queue Evolution in CMT-SACKs (1.5 sec)

Figure 11: Retransmission Queue Evolution in CMT-NR-SACKs

Figure 13: Mean Timeout Recoveries under Heavy Traffic Load in CMT

CMT using either acknowledgment scheme suffers from

send buffer blocking for 128K and 256K buffer sizes. In

CMT-SACKs, send buffer blocking continues until cum-ack

point moves forward, i.e., until loss recovery ends. As path 1

congestion level increases, timeout recoveries become more

frequent, causing longer loss recovery durations. Therefore, as

congestion increases, the CMT-SACKs sender is blocked for

larger fractions of transfer time. On the other hand, send buffer

blocking in CMT-NR-SACKs is unaffected by the congestion

level on path 1. As and when NR-SACKs arrive (on path 2),

the CMT-NR-SACK sender removes nr-gap-acked data from

the rtxq, allowing more data transmission.

CMT-SACKs’ longer send buffer blocking durations

adversely impact performance as discussed below.

1) Ineffective Use of Send Buffer Space

Send buffer blocking limits rtxq growth and reduces

throughput. The impact on throughput is minimized when the

available send buffer space is utilized as much as possible.

Figures 10 and 11 illustrate CMT sender’s rtxq evolution

over 40 seconds of a transfer using SACKs and NR-SACKs,

respectively. The figures show that both CMT-SACKs and

CMT-NR-SACKs suffer from send buffer blocking − the

maximum rtxq size in the figures corresponds to 100% of send

buffer (128K).However, the rtxq evolution in CMT-SACKs

(Figure 10) exhibits more variance – reaches the maximum

and drops to 0 multiple times, while CMT-NR-SACKs’ rtxq

size is closer to 128K most of the time (Figure 11).

Figure 12 is a zoom of CMT-SACKs’ rtxq evolution over an

arbitrary 1.5 second period. At point A (time 66.36sec), rtxq

size hits the maximum, and the sender is blocked from

transmitting any more data. Subsequent SACKs reduce the

amount of outstanding data, but send buffer blocking prevents

the sender from clocking out new data. At time 66.42sec, path

1’s retransmission timer expires; the sender detects loss, and

retransmits TSN 20369 on path 2. At time 66.48sec (point B),

sender receives a SACK with a new cum-ack (TSN=20457)

and completely clears rtxq contents, ending the current

instance of send buffer blocking. The sender immediately

transmits new data on both paths, and the rtxq evolution after

the new cum-ack (TSN=20457) is shown by the (green)

dashed line. The cwnd on path 1 allows transmission of 2

MTU sized TPDUs (TSNs 20458 and 20459). The cwnd on

path 2 is 127162 bytes, but the Maxburst parameter

[RFC4960] limits the sender to transmit only 4 MTU sized

TPDUs − TSNs 20460-20463. Once the sender transmits data

on both paths, rtxq size increases to ~8.6K, shown by point C.

 9

Subsequent SACKs allow more data transmission and at point

D the sender’s rtxq reaches the maximum causing the next

instance of send buffer blocking.

Though CMT-NR-SACKs (Figure 11) also incurs send

buffer blocking, nr-gap-acks free up rtxq space allowing the

sender to steadily clock out more data. A constrained send

buffer is better utilized, and the transmission is less bursty

with NR-SACKs than SACKs. The improved send buffer use

contributes to throughput improvements (discussed later).

2) Retransmission Queue Utilization

In Figure 9, CMT-SACKs’ RtxQ_Util worsens as send

buffer blocking increases (send buffer size decreases). As

discussed earlier, in CMT-SACKs, send buffer blocking

prevents new data transmission until loss recovery. Lack of

new data transmission resulted in fewer and sometimes

insufficient acks to trigger fast retransmits. Consequently,

blocked CMT-SACKs experienced more timeout recoveries

(RTOs) at heavy traffic loads than non-blocked CMT-SACKs

(Figure 13). As the send buffer is more constrained, the

average number of RTOs increase, and the fraction of transfer

time spent in loss recovery increases. Longer loss recovery

durations increase the duration of inefficient rtxq utilization,

and bring down blocked CMT-SACKs’ RtxQ_Util values

compared to non-blocked (INF) CMT-SACKs’ RtxQ_Util.

On the other hand, CMT-NR-SACKs steadily clock out

data, and do not incur excessive RTOs during send buffer

blocking. CMT-NR-SACKs’ mean number of RTOs for 128K

and 256K buffer sizes are similar to the INF case (Figure 13).

To conclude, send buffer blocking worsens CMT-SACKs’ rtxq

utilization. Blocked CMT-SACKs’ inefficient send buffer usage

increases the number of timeout recoveries, and degrades

throughput when compared to CMT-NR-SACKs.

3) Throughput

When the send buffer never limits rtxq growth (INF send

buffer size), both CMT-SACKs and CMT-NR-SACKs

experience no send buffer blocking, and perform similarly

(Figure 14). However, CMT-SACKs achieve the same

throughput as CMT-NR-SACKs at the cost of larger rtxq sizes.

Using terminology defined in Section IVB, the average rtxq

size, RtxQ over the entire trace collection period (T) is

calculated as, () TrtRtxQ ii ÷×= ∑ . Figure 15 plots

CMT-SACKs vs. CMT-NR-SACKs RtxQ for the INF case. As

path 1 cross-traffic load increases, the bandwidth available for

the CMT flow decreases, and CMT-NR-SACKs’ RtxQ

decreases (Figure 15). Similarly, CMT-SACKs’ RtxQ

decreases as traffic load increases from low to mild. However,

a different factor dominates and increases CMT-SACKs’ RtxQ

during medium and heavy traffic conditions. Note that rtxq

growth is never constrained in the INF case, enabling the CMT

sender to transmit as much data as possible on path 2 while

recovering from losses on path 1. At medium and heavy cross-

traffic loads, loss recovery durations increase due to increased

timeout recoveries, and the CMT-SACKs sender transmits

more data on path 2 compared to mild traffic conditions. This

factor increases CMT-SACKs’ RtxQ during medium and

heavy traffic conditions.

Going back to Figure 14, when the send buffer size limits

rtxq growth, CMT-NR-SACKs’ efficient rtxq utilization

alleviates send buffer blocking, and CMT-NR-SACKs perform

better than CMT-SACKs. The throughput improvements in

CMT-NR-SACKs increase as conditions that aggravate send

buffer blocking increases. I.e., NR-SACKs improve

throughput more as send buffer becomes more constrained

and/or when the paths become more asymmetric in the

congestion levels. Alternately, CMT-NR-SACKs achieve

similar throughput as CMT-SACKs using smaller send buffer

sizes. For example, during mild, medium and heavy path 1

cross-traffic load, CMT-NR-SACKs with 128K send buffer

performs similar or better than CMT-SACKs with 256K send

buffer. Also, CMT-NR-SACKs with 256K send buffer

performs similar to CMT-SACKs with larger (unconstrained)

send buffer.

Figure 14: CMT- SACKs vs. CMT-NR-SACKs Throughput

Figure 15: CMT-SACKs vs. CMT-NR-SACKs Average Rtxq Size

VI. CONCLUSION & FUTURE WORK

This work investigated the effect of existing SACK

mechanism when data received out-of-order is non-renegable.

We conclude that SACKs cause inevitable sender memory

 10

wastage, which worsens as data reordering and loss recovery

durations increase. We proposed a new ack mechanism, Non-

Renegable Selective Acknowledgments for SCTP, which

provides the transport receiver with the option to convey non-

renegable information on some or all out-of-order data.

A transfer employing NR-SACKs never performs worse

than a transfer using SACKs. When out-of-order data is non-

renegable NR-SACKs perform better than SACKs.

Simulations confirmed that in both SCTP and CMT, NR-

SACKs utilize send buffer and rtxq space most efficiently.

Send buffer blocking in CMT with SACKs adversely impact

end-to-end performance, while efficient send buffer use in

CMT with NR-SACKs alleviates send buffer blocking.

Therefore, NR-SACKs not only reduce sender’s memory

requirements, but also improve throughput in CMT. We are in

the process of implementing NR-SACKs in FreeBSD and NR-

SACKs are being pursued as an experimental extension to

SCTP in the IETF [5].

We plan to investigate the impact of asymmetric path delays

in CMT with SACKs. Asymmetric path delays can aggravate

send buffer blocking in CMT with SACKs, and we expect NR-

SACKs to alleviate this blocking.

ACKNOWLEDGMENTS

The authors acknowledge the valuable comments and

suggestions from Dr. Philip Conrad at the University of

California Santa Barbara, Jonathan Leighton and Joseph

Szymanski at the University of Delaware’s Protocol

Engineering Lab.

DISCLAIMER

The views and conclusions contained in this document are

those of the authors and should not be interpreted as

representing the official policies, either expressed or implied,

of the Army Research Laboratory or the U.S. Government

REFERENCES

[1] L. Andrew, C Marcondes, S. Floyd, L. Dunn, R. Guillier, W. Gang, L.

Eggert, S. Ha, I. Rhee. Towards a Common TCP Evaluation Suite. In

PFLDnet 2008, March 2008.

[2] J. Cao, W.S. Cleveland, Y. Gao, K. Jeffay, F.D. Smith, M.C, Weigle,

"Stochastic Models for Generating Synthetic HTTP Source Traffic",

INFOCOM, March 2004.

[3] N. Ekiz, P. Natarajan, J. Iyengar, A. Caro, “ns-2 SCTP Module,”

Version 3.7, September 2007. pel.cis.udel.edu.

[4] J. Iyengar, P. Amer, R. Stewart, “Concurrent Multipath Transfer using

SCTP Multihoming over Independent End-to-end Paths,” IEEE/ACM

Transactions on Networking, October 2006, 14(5), pp 951-964.

[5] P. Natarajan, P. Amer, E. Yilmaz, R. Stewart, J. Iyengar, "Non-

Renegable Selective Acknowledgments (NR-SACKs) for SCTP,"

Internet Draft, draft-natarajan-tsvwg-sctp-nrsack (work in progress).

[6] S. Shakkottai, R. Srikant, A. Broido, K. Claffy, “The RTT distribution

of TCP Flows in the Internet and its Impact on TCP-based flow control,”

TR, CAIDA, February, 2004.

[7] G. Wang, Y. Xia, D. Harrison, "An NS2 TCP Evaluation Tool," Internet

Draft, April 2007.

[8] M. C. Weigle, P. Adurthi, F. Hern´andez-Campos, K. Jeffay, and F. D.

Smith, “Tmix: a Tool for Generating Realistic TCP Application

Workloads in ns-2,” SIGCOMM Computer Communication Review

(CCR), vol. 36, no. 3, pp. 65–76, 2006.

[9] FreeBSD TCP and SCTP Implementation, URL:

http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/#dirlist.

[10] J. Iyengar, P. Amer, R. Stewart, “Performance implications of a

bounded receive buffer in concurrent multipath transfer,” Computer

Communications, February 2007, 30(4), pp 818-829.

