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Abstract— In both TCP and SCTP, selectively acked 

(SACKed) out-of-order data is implicitly renegable; that is, the 

receiver can later discard SACKed data. The possibility of 

reneging forces the transport sender to maintain copies of 

SACKed data in the send buffer until they are cumulatively 

acked. In this paper, we investigate the situation where all out-of-

order data is non-renegable, such as when the data has been 

delivered to the application, or when the receiver simply never 

reneges. Using simulations, we show that SACKs result in 

inevitable send buffer wastage, which increases as frequency of 

loss events and loss recovery durations increase. We introduce a 

fundamentally new ack mechanism, Non-Renegable Selective 

Acknowledgments (NR-SACKs), for SCTP. Using NR-SACKs, an 

SCTP receiver can explicitly identify some or all out-of-order 

data as being non-renegable, allowing the sender to free up send 

buffer sooner than if the data were only SACKed. We compare 

and show that NR-SACKs enable efficient utilization of a 

transport sender’s memory. We further investigate the effects of 

using NR-SACKs in Concurrent Multipath Transfer (CMT). 

CMT is an experimental SCTP extension that exploits 

multihoming for simultaneous data transfer over multiple paths 

[4]. Using simulations, we show that NR-SACKs not only reduce 

transport sender’s memory requirements, but also improve 

throughput in CMT. 

 
Index Terms—Network Protocols, Protocol Design and 

Analysis 

I. INTRODUCTION 

Reliable transport protocols such as TCP and SCTP (Stream 

Control Transmission Protocol) [RFC4960] employ two kinds 

of data acknowledgment mechanisms: (i) cumulative acks 

indicate data that has been received in-sequence, and (ii) 

selective acknowledgments (SACKs) indicate data that has 

been received out-of-order. In both TCP and SCTP, while 

cumulatively acked data is the receiver’s responsibility, 

 
 

SACKed data is not, and SACK information is advisory 

[RFC3517, RFC4960]. While SACKs notify a sender about 

the reception of specific out-of-order TPDUs, the receiver is 

permitted to later discard the TDPUs. Discarding data that has 

been previously SACKed is known as reneging. Though 

reneging is a possibility, the conditions under which current 

transport layer and/or operating system implementations 

renege, and the frequency of these conditions occurring in 

practice (if any) are unknown and needs further investigation.  

Data that has been delivered to the application, by 

definition, is non-renegable by the transport receiver. Unlike 

TCP which never delivers out-of-order data to the application, 

SCTP’s multistreaming and unordered data delivery services 

result in out-of-order data being delivered to the application 

and thus become non-renegable. Interestingly, TCP and SCTP 

implementations can be configured such that the receiver is not 

allowed to and therefore never reneges on out-of-order data 

(details in Section II). In these configurations, even non-

deliverable out-of-order data becomes non-renegable.  

The current SACK mechanism in both TCP and SCTP does 

not differentiate between out-of-order data that “has been 

delivered to the application and/or is non-renegable” vs. data 

that “has not yet been delivered to the application and is 

renegable”. In this work, we introduce a fundamentally new 

third acknowledgment mechanism called Non-Renegable 

Selective Acknowledgments (NR-SACKs) that enable a 

transport receiver to explicitly convey non-renegable 

information to the sender on some or all out-of-order TPDUs. 

While this work introduces NR-SACKs for SCTP, the NR-

SACKs idea can be applied to any reliable transport protocol 

that uses selective acknowledgments and/or permits delivery of 

out-of-order data. 

In this work, we investigate the effect of SCTP’s SACK 

mechanism in situations where out-of-order data is non-

renegable, and identify conditions under which SACKs affect 

performance for an SCTP sender. We further investigate the 

effects of NR-SACKs on Concurrent Multipath Transfer 

(CMT), an experimental extension to SCTP that exploits 

SCTP’s multihoming feature for simultaneous transfer of new 
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data over multiple paths (details in Section II) [4]. Section III 

introduces the NR-SACK chunk for SCTP, and briefly 

explains sender and receiver side NR-SACK processing 

details. Section IV elaborates evaluation preliminaries such as 

ns-2 simulation topologies, parameters for cross-traffic 

generation, and performance metrics. Section V analyzes 

SACK vs. NR-SACK results for both SCTP and CMT. Section 

VI concludes our work 

II. PROBLEM DESCRIPTION 

A. Background 

The SCTP (or TCP) layer send buffer, or the sender-side 

socket buffer (Figure 1), consists of two kinds of data: (i) new 

application data waiting to be transmitted for the first time, and 

(ii) copies of data that have been transmitted at least once and 

are waiting to be cum-acked, a.k.a. the retransmission queue 

(rtxq). Data in the rtxq is the transport sender’s responsibility 

until the receiver has guaranteed their delivery to the receiving 

application, and/or the receiver guarantees not to renege on the 

data. 

In traditional in-order data delivery service, a receiver 

cumulatively acknowledges (cum-acks) the latest in-order data. 

Cum-acked data has either been delivered to the application or 

is ready for delivery. In either case, cum-acks are an explicit 

assurance that the receiver will not renege on the 

corresponding data. Upon receiving a cum-ack, the sender is 

no longer responsible, and removes the corresponding data 

from the rtxq. In the current SACK mechanism, cum-acks are 

the only means to convey non-renegable information; all 

selectively acknowledged (out-of-order) data are by default 

renegable. 

 
Figure 1: Transport Layer Send Buffer  

 

SCTP’s multistreaming service divides an end-to-end 

association (SCTP’s term for a transport connection) into 

independent logical data streams. Data arriving in-sequence 

within a stream can be delivered to the receiving application 

even if the data is out-of-order relative to the association’s 

overall flow of data. Also, data marked for unordered delivery 

can be delivered immediately upon reception, regardless of the 

data’s position within the overall flow of data. Thus, SCTP’s 

data delivery services result in situations where out-of-order 

data is delivered to the application, and is thus non-renegable.  

Operating systems allow configuration of transport layer 

implementations such that out-of-order data is never reneged.  

For example, in FreeBSD, the net.inet.tcp.do_tcpdrain or 

net.inet.sctp.do_sctp_drain sysctl parameters can be 

configured to never revoke kernel memory allocated to TCP or 

SCTP out-of-order data [9]. Thus, out-of-order data can also 

be rendered non-renegable through simple user configuration. 

In the following discussions, “non-renegable out-of-order 

data” refers to data for which the transport receiver takes full 

responsibility, and guarantees not to renege either because (i) 

the data has been delivered (or is deliverable) to the 

application, or (ii) the receiving system (OS and/or transport 

layer implementation) guarantees not to revoke the allocated 

memory until after the data is delivered to the application. 

With the current SACK mechanism, non-renegable out-of-

order data is selectively acked, and is (wrongly) deemed 

renegable by the transport sender. Maintaining copies of non-

renegable data in the sender’s retransmission queue is 

unnecessary.  

B. SCTP Unordered Data Transfer with SACKs 

We now discuss the effects of SACKs in transfers where all 

out-of-order is non-renegable. The discussion is applicable to 

any type of reliable data delivery service (in-order, partial-

order, unordered) where all out-of-order data is non-renegable, 

but uses the simple unordered SCTP data transfer example 

shown in Figure 2.  

In this example, the SCTP send buffer denoted by the 

rectangular box can hold a maximum of eight TPDUs. Each 

SCTP PDU is assigned a unique Transmission Sequence 

Number (TSN). The timeline slice shown in Figure 2 picks up 

the data transfer at a point when the sender’s cwnd C=8, 

allowing transmission of 8 TPDUs (arbitrarily numbered with 

TSNs 11-18). Note that when TSN 18 is transmitted, the 

retransmission queue grows to fill the entire send buffer.  

 

 
Figure 2: Timeline of an Unordered SCTP Data Transfer using SACKs 

 

TSN 11 is presumed lost in the network. The other TSNs 

are received out-of-order and immediately SACKed by the 

SCTP receiver. The SACKs shown have the following format: 

(S)ACK:CumAckTSN;GapAckStart-GapAckEnd. Each Gap-
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ack start and Gap-ack end value is relative to the cum-ack 

value, and together they specify a block of received TSNs.  

At the sender, the first SACK (S:10;2-2) is also a dupack 

and gap-acks TSN 12. Though data corresponding to TSN 12 

has been delivered to the receiving application, the SACK 

does not convey the non-renegable nature of TSN 12, 

requiring the sender to continue being responsible for the 

TSN. Starting from the time that this SACK arrives at the 

sender, the copy of TSN 12 in the sender’s rtxq is 

unnecessary. The gap-ack for TSN 12 reduces the amount of 

outstanding data (O) to 7 TPDUs. Since O<C, the sender could 

in theory transmit new data, but in practice cannot do so since 

the completely filled send buffer blocks the sending 

application from writing new data into the transport layer. We 

call this situation send buffer blocking. Note that send buffer 

blocking prevents the sender from fully utilizing the cwnd. 

The second and third dupacks (S:10;2-3, S:10;2-4) further 

increase the number of unnecessary TSNs in the rtxq. Send 

buffer blocking continues to prevent new data transmission. 

On receipt of the third dupack, the sender halves the cwnd 

(C=4), fast retransmits TSN 11, and enters fast recovery. 

Dupacks received during fast recovery further increase the 

amount of unnecessary data in the rtxq, prolonging inefficient 

rtxq usage. Note that though these dupacks reduce outstanding 

data (O<C), send buffer blocking prevents new data 

transmission. 

The sender eventually exits fast recovery when the SACK 

for TSN 11’s retransmission (S:18) arrives. The sender 

removes the unnecessary copies of TSNs 12-18 from the rtxq, 

and concludes the current instance of send buffer blocking. 

Since send buffer blocking prevented the sender from fully 

utilizing the cwnd before, the new cum ack (S:18) does not 

increase the cwnd [RFC4960]. The application writes new data 

into the newly available send buffer space and the sender now 

transmits TSNs 19-22. 

The simple timeline demonstrates the following 

observations on transfers involving non-renegable out-of-order 

data:  

• The unnecessary copies of non-renegable out-of-order data 

in the retransmission queue contribute to inefficient kernel 

memory usage. The amount of wasted memory is a function 

of flightsize (amount of data “in flight”) during a loss 

event; larger flightsize increases the amount of wasted 

memory. 

• When the retransmission queue grows to fill the entire send 

buffer, send buffer blocking ensues, which can degrade the 

transfer’s throughput.  

C. Implications to Concurrent Multipath Transfer (CMT) 

A host is multihomed if it can be reached via multiple IP 

addresses, as is the case when the host has multiple network 

interfaces. SCTP supports transport layer multihoming for 

fault-tolerance purposes [RFC4960]. SCTP multihoming 

allows binding of an association to multiple IP addresses at 

each endpoint. An endpoint chooses a single destination 

address as the primary destination, which is used for all data 

traffic during normal transmission. SCTP also monitors the 

reachability of each destination address. Failure in reaching the 

primary destination results in failover, where an SCTP 

endpoint dynamically chooses an alternate destination to 

transmit the data. 

Multiple active interfaces suggest the possibility of multiple 

independent end-to-end paths between the multihomed hosts. 

Concurrent Multipath Transfer (CMT) [4] is an experimental 

extension to SCTP that assumes multiple independent paths 

and exploits them for simultaneous transfer of new data 

between end hosts, and increases a network application’s 

throughput.  Similar to an SCTP sender, the CMT sender uses 

a single send buffer and rtxq for data transfer. However, the 

CMT sender’s total flightsize is the sum of flightsizes on each 

path. Since the amount of kernel memory and the probability 

of send buffer blocking increase as the transport sender’s 

flightsize increases (previous Section), we hypothesize that a 

CMT association is even more likely than an SCTP association 

to suffer from the inefficiencies of the existing SACK 

mechanism. 

III. NON-RENEGABLE SELECTIVE ACKNOWLEDGMENTS (NR-

SACKS) FOR SCTP 

Non-Renegable Selective Acknowledgments (NR-SACKs) 

for SCTP [5] enables a receiver to explicitly convey non-

renegable information on out-of-order TPDUs. NR-SACKs 

provide the same information as SACKs for SCTP’s 

congestion and flow control, and the sender is expected to 

process this information identical to SACK processing. In 

addition, NR-SACKs provide the option to report some or all 

of the out-of-order TPDUs as being non-renegable.  

A. NR-SACK Chunk Details 

The proposed NR-SACK chunk for SCTP is shown in 

Figure 3. Before sending/receiving NR-SACKs, the endpoints 

first negotiate NR-SACK usage during association 

establishment. An endpoint supporting the NR-SACK 

extension lists the NR-SACK chunk in the Supported 

Extensions Parameter carried in the INIT or INIT-ACK chunk 

[RFC5061]. During association establishment, if both 

endpoints support the NR-SACK extension, then each 

endpoint acknowledges received data with NR-SACK chunks 

instead of SACK chunks. 

Since NR-SACKs extend SACK functionality, an NR-

SACK chunk has several fields identical to the SACK chunk: 

the Cumulative TSN Ack, the Advertised Receiver Window 

Credit (a_rwnd), Gap Ack Blocks, and Duplicate TSNs. These 

fields have identical semantics to the corresponding fields in 

the SACK chunk [RFC4960]. NR-SACKs also report non-

renegable out-of-order data chunks in the NR Gap Ack Blocks, 

a.k.a. “nr-gap-acks”. Each NR Gap Ack Block acknowledges a 

continuous subsequence of non-renegable out-of-order data 

chunks. All data chunks with TSNs ≥ (Cumulative TSN Ack + 

NR Gap Ack Block Start) and ≤ (Cumulative TSN Ack + NR 

Gap Ack Block End) of each NR Gap Ack Block are reported 

as non-renegable. The Number of NR Gap Ack Blocks (M) 
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field indicates the number of NR-Gap Ack Blocks included in 

the NR-SACK chunk.  

 

 
Figure 3: NR-SACK Chunk for SCTP 

 

The third least significant bit in the Chunk Flags field is the 

(A)ll bit. If the ‘A’ bit is set to '1', all out-of-order data blocks 

acknowledged in the NR-SACK chunk are non-renegable.  

The ‘A’ bit enables optimized sender/receiver processing and 

reduces the size of NR-SACK chunks when all out-of-order 

TPDUs at the receiver are non-renegable. 

Note that each sequence of TSNs in an NR Gap Ack Block 

will be a subsequence of one of the Gap Ack Blocks, and there 

can be more than one NR Gap Ack Block per Gap Ack Block. 

Also, non-renegable information cannot be revoked. If a TSN 

is nr-gap-acked in any NR-SACK chunk, then all subsequent 

NR-SACKs gap-acking that TSN should also nr-gap-ack that 

TSN. Complete details of NR-SACK chunk can be found in 

[5]. 

B. SCTP Unordered Data Transfer with NR-SACKs 

NR-SACKs provide an SCTP receiver with the option to 

convey non-renegable information on some or all out-of-order 

TPDUs. When a receiver guarantees not to renege an out-of-

order data chunk and nr-gap-acks the chunk, the sender no 

longer needs to keep that particular data chunk in its rtxq, thus 

allowing the data sender to free up kernel memory sooner than 

if the data chunk were only gap-acked. 

Figure 4 is analogous to Figure 2’s example, this time using 

NR-SACKs. The sender and receiver are assumed to have 

negotiated the use of NR-SACKs during association 

establishment. As in the example of Figure 2, TSNs 11-18 are 

initially transmitted, and TSN 11 is presumed lost. For each 

TSN arriving out-of-order, the SCTP receiver transmits an 

NR-SACK chunk instead of SACK chunk. Since all out-of-

order data are non-renegable in this example, every NR-SACK 

chunk has the ‘A’ bit set, and the nr-gap-acks report the list of 

TSNs that are received out-of-order and non-renegable.  

All NR-SACKs in Figure 4 have the following format: 

(N)R-SACK:CumAckTSN;NRGapAckStart-NRGapAckEnd. 

The first NR-SACK (N:10;2-2) is also a dupack. This NR-

SACK cum-acks TSN 10, and (nr-)gap-acks TSN 12. Once the 

data sender is informed that TSN 12 is non-renegable, the 

sender frees up the kernel memory allocated to TSN 12, 

allowing the application to write more data into the newly 

available send buffer space. Since TSN 12 is also gap-acked, 

the amount of outstanding data (O) is reduced to 7, allowing 

the sender to transmit new data – TSN 19.  

On receipt of the 2
nd

 and 3
rd

 dupacks that newly (nr-)gap-

ack TSNs 13 and 14, the sender removes these TSNs from the 

rtxq. On receiving the second dupack, the sender transmits 

new data – TSN 20. On receipt of the third dupack, the sender 

halves the cwnd (C=4), fast retransmits TSN 11, and enters 

fast recovery. Dupacks received during fast recovery (nr-)gap-

ack TSNs 15-20. The sender frees rtxq accordingly, and 

transmits new TSNs 21, 22 and 23. The sender exits fast 

recovery when the NR-SACK with new cum-ack (N:20) 

arrives. This new cum-ack increments C=5, and decrements 

O=3. The sender now transmits new TSNs 24 and 25.  

The explicit non-renegable information in NR-SACKs 

ensures that the rtxq contains only necessary data − TPDUs 

that are actually in flight or “received and renegable”. 

Comparing Figures 2 and 4, we observe that NR-SACKs use 

the rtxq more efficiently. 

 
Figure 4: Timeline of an Unordered SCTP Data Transfer using NR-SACKs 

IV. EVALUATION PRELIMINARIES 

Ns-2 SCTP and CMT modules [??, 3] were extended to 

support and process NR-SACK chunks. The simulation-based 

evaluations compare long-lived SCTP or CMT flows using 

SACKs vs. NR-SACKs under varying cross-traffic loads. This 

section discusses the experiment setup and other evaluation 

preliminaries in detail. 
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A. Simulation Setup 

Reference [1] recommends specific simulation setup and 

parameters for a realistic evaluation of TCP extensions and 

congestion control algorithms. These recommendations 

include network topologies, details of cross-traffic generation, 

and delay distributions mimicking patterns observed in the 

Internet. We adhere to these recommendations for a realistic 

evaluation of SACKs vs. NR-SACKs. 

 

 
 

Figure 5:  Topology for SCTP Experiments (Topology 1) 

 
Figure 6:  Topology for CMT Experiments (Topology 2) 

 

The SCTP evaluations use the dumb-bell topology shown in 

Figure 5, which models the access link scenario specified in 

[1]. The central bottleneck link connects routers R1 (left) and 

R2 (right), has a 100Mbps capacity, and 2ms one-way 

propagation delay. Both routers employ drop tail queuing and 

the queue size is set to the bandwidth-delay product of a 

100ms flow. Each router is connected to three cross-traffic 

generating edge nodes via 100Mbps edge links with the 

following propagation delays: 0ms, 12ms, 25ms (left) and 

2ms, 37ms, 75ms (right). Each left edge node generates cross-

traffic destined to every right edge node and vice-versa. Thus, 

without considering queuing delays, the RTTs for cross-traffic 

flows sharing the bottleneck link range from 8ms—204ms. 

Reference [1] recommends application level cross-traffic 

generation over packet level generation, since, in the latter 

scenario, cross-traffic flows do not respond to the 

user/application/transport behavior of competing flows. Also, 

[1] proposes the use of Tmix [8] traffic generator. However, 

the recommended Tmix connection vectors were unavailable 

at the time of performing our evaluations. Therefore, we 

decided to employ existing ns-2 application level traffic 

generation tools, recommended by [7, ?]. Since our simulation 

setup uses application level cross-traffic, we believe that the 

general conclusions from our evaluations will hold for 

evaluations using the Tmix traffic generator. 

Cross-traffic generated by three kinds of applications are 

considered: (i) non-greedy, responsive HTTP sessions − 

generated by PackMime implementation [2], (ii) rate 

controlled, unresponsive video sessions over UDP, and (iii) 

greedy, responsive bulk file transfer sessions over TCP. We 

are unaware of existing measurement studies on the proportion 

of each kind of traffic observed in the Internet. Therefore the 

simulations assume a simple, yet reasonable rule for traffic mix 

proportion − more HTTP traffic than video or FTP traffic.  

Each edge node runs a PackMime session to every edge 

node on the other side, and the amount of HTTP traffic 

generated is controlled via the PackMime rate parameter. 

Similarly, each edge node establishes video and FTP sessions 

to every edge node on the other side, and the number of 

video/FTP sources at each node impacts the amount of 

video/FTP traffic. To avoid synchronization issues, the 

PackMime, video, and FTP sessions start at randomly chosen 

times during the initial 5 seconds of the simulation. The 

default segment size for all TCP traffic results in 1500 byte IP 

PDUs; the segment size for 10% of the FTP flows is modified 

to result in 576 byte IP PDUs. Also, the PackMime request 

and response size distributions are seeded in every simulation 

run, resulting in a range of packet sizes at the bottleneck [1].  

The bottleneck router load is measured as (L) = (mean 

queue length ÷ total queue size). Four packet-level 

load/congestion variations are considered: (i) Low (~15% 

load, < 0.1% loss), (ii) Mild (~45% load, 1-2% loss), (iii) 

Medium (~60% load, 3-4% loss), (iv) Heavy (~85% load, 8-

9% loss).  

Topology 1 (Figure 5) is used to evaluate SCTP flows. 

CMT evaluations are over the dual-dumbbell topology shown 

in Figure 6 (topology 2), with two independent bottleneck 

links between routers R1-R2 and R3-R4. Similar to topology 1, 

each router in topology 2 is attached to 3 cross-traffic 

generating edge nodes, with similar bottleneck and edge link 

bandwidth/delay characteristics. In both topologies, nodes S 

and R are the SCTP or CMT sender and receiver, respectively. 

In topology 2, both S and R are multihomed, and the CMT 

sender uses the two independent paths (paths 1 and 2) for 
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simultaneous data transfer. In both topologies, S and R are 

connected to the bottleneck routers via 100Mbps duplex edge 

links, with 14ms one-way delay. Thus the one-way 

propagation delay experienced by the SCTP or the CMT flow 

corresponds to 30ms, approximately the US coast-to-coast 

propagation delay [6].  

In both topologies, the bottleneck links experience bi-

directional cross-traffic; the cross-traffic load is similar on 

both forward and reverse directions. In topology 1, the cross-

traffic load varies from low to heavy. For CMT evaluations 

using topology 2, the bottlenecks experience asymmetric path 

loads; path 1 cross-traffic load varies from low to heavy, while 

path 2 experiences low load.  

The SCTP or CMT flow initiates an unordered data transfer 

~18-20 seconds after the simulation begins such that, all data 

received out-of-order at R is deliverable, and thus, non-

renegable. Trace collection begins after a 20 second warm-up 

period from the start of SCTP or CMT traffic, and ends when 

the simulation completes after 70 seconds. The CMT sender 

uses the recommended RTX-SSTHRESH retransmission 

policy, i.e., retransmissions are sent on the path with highest 

ssthresh [4]. 

B. Metric: Retransmission Queue Utilization 

In transfers using SACKs, the rtxq consists of two kinds of 

data (Figure 2): (i) necessary data – data that is either “in 

flight” and has not yet reached receiver’s transport layer, or 

data that has been received but is renegable by the transport 

receiver, and (ii) unnecessary data – data that is received out 

of order and is non-renegable. The rtxq is most efficiently 

utilized when all data in the rtxq are necessary. As the fraction 

of unnecessary data increases, the rtxq is less efficiently 

utilized.  

The transport sender modifies the rtxq as and when 

SACKs/NR-SACKs arrive. The rtxq size varies during the 

course of a file transfer, but can never exceed the send buffer 

size. For time duration ti in the transfer, let 

ri = size of rtxq, and  

ki = amount of necessary data in the rtxq. 

During ti, only ki ÷ ri of the rtxq is efficiently utilized, and 

the efficiency changes whenever ki or ri changes.  

Let 

n

n

r

k

r

k

r

k
K,,

1

1

0

0
 be the efficient rtxq utilization values 

during time durations ( )∑ = Ttttt inK,, 10 , respectively. 
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calculated as T
r

k
tUtilRtxQ

i

i

i ÷







×= ∑_ . To measure 

rtxq utilization, the ns-2 SCTP or CMT sender tracks ki , ri and 

ti until association shutdown. Let,  

W = time when trace collection begins after the initial 

warm-up time, and 

E = simulation end time. 

In the following discussions, the time weighted efficient rtxq 

utilization averaged over the entire trace collection time, i.e., 

T = (E – W), is referred to as RtxQ_Util. 

In an unordered transfer using NR-SACKs, all out-of-order 

data will be nr-gap-acked and the rtxq should contain only 

necessary data. Therefore, we expect an SCTP or CMT flow 

using NR-SACKs to most efficiently utilize the rtxq 

(RtxQ_Util =1) under all circumstances.  

C. Retransmission Queue Utilization during Loss Recovery 

Typically, in SCTP transfers, data is always received in-

order during no losses, unless the intermediate routers reorder 

packets. Consequently, during no losses, SCTP flows 

employing either SACKs or NR-SACKs utilize the rtxq most 

efficiently, and both their RtxQ_Util values equal unity. The 

two acknowledgment mechanisms differ in rtxq usage only 

when data is received out-of-order, which ensues when an 

SCTP flow suffers packet losses. Specifically, in SCTP, the 

duration of NR-SACKs’ impact on the rtxq is limited to loss 

recovery periods. To evaluate the impact of the two ack 

schemes during loss recovery periods, the ns-2 SCTP sender 

timestamps every entry/exit to/from loss recovery. Since none 

of the routers reorder packets in our simulations, the SCTP 

sender uses the following naive rule − sender enters loss 

recovery on the receipt of SACKs/NR-SACKs with at least 

one gap-ack block, and exits loss recovery on the receipt of 

SACKs/NR-SACKs with a new cum-ack and zero gap-acks. 

We found that this simple rule resulted in a good 

approximation of the actual loss recovery periods. In addition 

to RtxQ_Util, an SCTP sender also tracked RtxQ_Util_L, 

which corresponds to rtxq utilization averaged over only the 

loss recovery durations of trace collection.  

Depending on the paths’ bandwidth/delay characteristics, a 

CMT association experiences data reordering even under no 

loss conditions [4]. Data transmitted on the shorter RTT path 

will be received out-of-order w.r.t. data transmitted on other 

path(s). Therefore, the naïve rule mentioned above cannot be 

employed to estimate entry/exit of CMT sender’s loss 

recovery. Therefore, the CMT sender tracked only RtxQ_Util.  

V. RESULTS 

For each type of sender (SCTP or CMT), different send 

buffer sizes imposing varying levels of memory constraints are 

considered: 32K, 64K and INF (infinite or unlimited space) for 

SCTP, and 128K, 256K and INF for CMT. The results are 

averaged over 30 runs, and plotted with 95% confidence 

intervals. In the following discussions, SCTP transfers using 

SACKs or NR-SACKs are referred to as SCTP-SACKs and 

SCTP-NR-SACKs, respectively. Similarly, CMT using 

SACKs or NR-SACKs are referred to as CMT-SACKs and 

CMT-NR-SACKs.  

A. Retransmission Queue Utilization 

As the end-to-end path gets more congested, SCTP-SACKs’ 

RtxQ_Util_L remains fairly consistent ~0.5 (Figure 7), while 

the RtxQ_Util decreases (Figure 8). The RtxQ_Util_L values 

indicate that irrespective of path loss rate, SCTP-SACKs 



 7 

efficiently utilize only ~50% of rtxq during loss recovery; 

~50% of rtxq is wasted buffering unnecessary data.  

At lower congestion levels (lower cross-traffic), the 

frequency of loss events and the fraction of transfer time spent 

in loss recovery are smaller, resulting in negligible rtxq 

wastage during the entire trace collection period (RtxQ_Util). 

As loss recoveries become more frequent, SCTP-SACKs’ 

inefficient rtxq utilization during loss recovery lowers the 

corresponding RtxQ_Util values. The simulation results show 

that SCTP-SACKs waste on average ~20% of the rtxq during 

moderate congestion and ~30% during heavy congestion 

conditions. The amount of wasted kernel memory increases as 

the number of transport connections increase, and can be 

significant at a server handling large numbers of concurrent 

connections, such as a web server.  

By definition of the RtxQ_Util metric, NR-SACKs are 

expected to utilize the rtxq most efficiently, even during loss 

recovery periods (Section IVB). The simulation results 

confirm this hypothesis. RtxQ_Util values for both SCTP-NR-

SACKs and CMT-NR-SACKs are unity. 

In CMT evaluations, path 2 experiences low traffic load, 

while path 1’s traffic load varies from low to heavy (Figure 6). 

Recall that a CMT sender transmits data concurrently on both 

paths. Asymmetric path congestion levels aggravate data 

reordering in CMT. As path 1 congestion level increases, 

TPDU losses on the higher congested path 1 cause data 

transmitted on the lower congested path 2 to arrive out-of-

order at the receiver. CMT congestion control is designed such 

that losses on path 1 do not affect the cwnd/flightsize on path 2 

[4]. While losses on path 1 are being recovered, sender 

continues data transmission on path 2, increasing the amount 

of non-renegable out-of-order data in the rtxq. As the paths 

become increasingly asymmetric in their congestion levels, the 

amount of non-renegable out-of-order data in the rtxq 

increases, and brings down CMT-SACKs’ RtxQ_Util values 

(Figure 9).  

Increasing the send buffer/rtxq space improves SCTP-

SACKs’ or CMT-SACKs’ kernel memory (rtxq) utilization 

only to a certain degree. In Figures 8 and 9 RtxQ_Util for INF 

send buffer is essentially the upper bound on how efficient 

SCTP or CMT employing SACKs utilizes rtxq. Therefore, we 

conclude that TPDU reordering results in inevitable rtxq 

wastage in transfers using SACKs. The amount of wasted 

memory increases as TPDU reordering and loss recovery 

durations increase. Also, smaller send buffer sizes further 

degrade RtxQ_Util_L and RtxQ_Util values. This degradation 

is more pronounced in CMT (Figure 9). Further investigations 

reveal this effect to be due to send buffer blocking, discussed 

next. 

B. Send Buffer Blocking in CMT 

When the rtxq grows to fill the entire send buffer, send 

buffer blocking ensues, preventing the application from 

writing new data into the transport layer (Section IIA). In both 

SCTP and CMT, send buffer blocking increases as the send 

buffer is more constrained (decreases). In addition, CMT 

employs multiple paths for data transfer, increasing a sender’s 

total flightsize in comparison to SCTP. Therefore, we 

hypothesized that CMT would suffer more send buffer 

blocking than SCTP (Section IIC). Indeed, in the simulations, 

CMT suffered significant send buffer blocking even for 128K 

and 256K send buffer sizes. In this section, we focus on the 

effects of send buffer blocking in CMT. 

 

 
Figure 7:  Rtxq Utilization during Loss Recovery in SCTP 

 

 
Figure 8:  Rtxq Utilization in SCTP 

 

 
Figure 9:  Rtxq Utilization in CMT 
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Figure 10:  Retransmission Queue Evolution in CMT-SACKs 

 

 
Figure 12:  Retransmission Queue Evolution in CMT-SACKs (1.5 sec) 

 
Figure 11:  Retransmission Queue Evolution in CMT-NR-SACKs 

 

 
Figure 13:  Mean Timeout Recoveries under Heavy Traffic Load in CMT 

 

CMT using either acknowledgment scheme suffers from 

send buffer blocking for 128K and 256K buffer sizes. In 

CMT-SACKs, send buffer blocking continues until cum-ack 

point moves forward, i.e., until loss recovery ends. As path 1 

congestion level increases, timeout recoveries become more 

frequent, causing longer loss recovery durations. Therefore, as 

congestion increases, the CMT-SACKs sender is blocked for 

larger fractions of transfer time. On the other hand, send buffer 

blocking in CMT-NR-SACKs is unaffected by the congestion 

level on path 1. As and when NR-SACKs arrive (on path 2), 

the CMT-NR-SACK sender removes nr-gap-acked data from 

the rtxq, allowing more data transmission.  

CMT-SACKs’ longer send buffer blocking durations 

adversely impact performance as discussed below.  

1) Ineffective Use of Send Buffer Space 

Send buffer blocking limits rtxq growth and reduces 

throughput. The impact on throughput is minimized when the 

available send buffer space is utilized as much as possible.  

Figures 10 and 11 illustrate CMT sender’s rtxq evolution 

over 40 seconds of a transfer using SACKs and NR-SACKs, 

respectively. The figures show that both CMT-SACKs and 

CMT-NR-SACKs suffer from send buffer blocking − the 

maximum rtxq size in the figures corresponds to 100% of send 

buffer (128K).However, the rtxq evolution in CMT-SACKs 

(Figure 10) exhibits more variance – reaches the maximum 

and drops to 0 multiple times, while CMT-NR-SACKs’ rtxq 

size is closer to 128K most of the time (Figure 11).  

Figure 12 is a zoom of CMT-SACKs’ rtxq evolution over an 

arbitrary 1.5 second period. At point A (time 66.36sec), rtxq 

size hits the maximum, and the sender is blocked from 

transmitting any more data. Subsequent SACKs reduce the 

amount of outstanding data, but send buffer blocking prevents 

the sender from clocking out new data. At time 66.42sec, path 

1’s retransmission timer expires; the sender detects loss, and 

retransmits TSN 20369 on path 2. At time 66.48sec (point B), 

sender receives a SACK with a new cum-ack (TSN=20457) 

and completely clears rtxq contents, ending the current 

instance of send buffer blocking. The sender immediately 

transmits new data on both paths, and the rtxq evolution after 

the new cum-ack (TSN=20457) is shown by the (green) 

dashed line. The cwnd on path 1 allows transmission of 2 

MTU sized TPDUs (TSNs 20458 and 20459). The cwnd on 

path 2 is 127162 bytes, but the Maxburst parameter 

[RFC4960] limits the sender to transmit only 4 MTU sized 

TPDUs − TSNs 20460-20463. Once the sender transmits data 

on both paths, rtxq size increases to ~8.6K, shown by point C. 
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Subsequent SACKs allow more data transmission and at point 

D the sender’s rtxq reaches the maximum causing the next 

instance of send buffer blocking.  

Though CMT-NR-SACKs (Figure 11) also incurs send 

buffer blocking, nr-gap-acks free up rtxq space allowing the 

sender to steadily clock out more data. A constrained send 

buffer is better utilized, and the transmission is less bursty 

with NR-SACKs than SACKs. The improved send buffer use 

contributes to throughput improvements (discussed later). 

2) Retransmission Queue Utilization 

In Figure 9, CMT-SACKs’ RtxQ_Util worsens as send 

buffer blocking increases (send buffer size decreases). As 

discussed earlier, in CMT-SACKs, send buffer blocking 

prevents new data transmission until loss recovery. Lack of 

new data transmission resulted in fewer and sometimes 

insufficient acks to trigger fast retransmits. Consequently, 

blocked CMT-SACKs experienced more timeout recoveries 

(RTOs) at heavy traffic loads than non-blocked CMT-SACKs 

(Figure 13). As the send buffer is more constrained, the 

average number of RTOs increase, and the fraction of transfer 

time spent in loss recovery increases. Longer loss recovery 

durations increase the duration of inefficient rtxq utilization, 

and bring down blocked CMT-SACKs’ RtxQ_Util values 

compared to non-blocked (INF) CMT-SACKs’ RtxQ_Util.  

On the other hand, CMT-NR-SACKs steadily clock out 

data, and do not incur excessive RTOs during send buffer 

blocking. CMT-NR-SACKs’ mean number of RTOs for 128K 

and 256K buffer sizes are similar to the INF case (Figure 13). 

To conclude, send buffer blocking worsens CMT-SACKs’ rtxq 

utilization. Blocked CMT-SACKs’ inefficient send buffer usage 

increases the number of timeout recoveries, and degrades 

throughput when compared to CMT-NR-SACKs.  

3) Throughput 

When the send buffer never limits rtxq growth (INF send 

buffer size), both CMT-SACKs and CMT-NR-SACKs 

experience no send buffer blocking, and perform similarly 

(Figure 14). However, CMT-SACKs achieve the same 

throughput as CMT-NR-SACKs at the cost of larger rtxq sizes. 

Using terminology defined in Section IVB, the average rtxq 

size, RtxQ over the entire trace collection period (T) is 

calculated as, ( ) TrtRtxQ ii ÷×= ∑ . Figure 15 plots 

CMT-SACKs vs. CMT-NR-SACKs RtxQ for the INF case. As 

path 1 cross-traffic load increases, the bandwidth available for 

the CMT flow decreases, and CMT-NR-SACKs’ RtxQ 

decreases (Figure 15). Similarly, CMT-SACKs’ RtxQ 

decreases as traffic load increases from low to mild. However, 

a different factor dominates and increases CMT-SACKs’ RtxQ 

during medium and heavy traffic conditions. Note that rtxq 

growth is never constrained in the INF case, enabling the CMT 

sender to transmit as much data as possible on path 2 while 

recovering from losses on path 1. At medium and heavy cross-

traffic loads, loss recovery durations increase due to increased 

timeout recoveries, and the CMT-SACKs sender transmits 

more data on path 2 compared to mild traffic conditions. This 

factor increases CMT-SACKs’ RtxQ during medium and 

heavy traffic conditions. 

Going back to Figure 14, when the send buffer size limits 

rtxq growth, CMT-NR-SACKs’ efficient rtxq utilization 

alleviates send buffer blocking, and CMT-NR-SACKs perform 

better than CMT-SACKs. The throughput improvements in 

CMT-NR-SACKs increase as conditions that aggravate send 

buffer blocking increases. I.e., NR-SACKs improve 

throughput more as send buffer becomes more constrained 

and/or when the paths become more asymmetric in the 

congestion levels. Alternately, CMT-NR-SACKs achieve 

similar throughput as CMT-SACKs using smaller send buffer 

sizes. For example, during mild, medium and heavy path 1 

cross-traffic load, CMT-NR-SACKs with 128K send buffer 

performs similar or better than CMT-SACKs with 256K send 

buffer. Also, CMT-NR-SACKs with 256K send buffer 

performs similar to CMT-SACKs with larger (unconstrained) 

send buffer. 

 

 
Figure 14: CMT- SACKs vs. CMT-NR-SACKs Throughput 

 

 
Figure 15:  CMT-SACKs vs. CMT-NR-SACKs Average Rtxq Size  

VI. CONCLUSION & FUTURE WORK 

This work investigated the effect of existing SACK 

mechanism when data received out-of-order is non-renegable. 

We conclude that SACKs cause inevitable sender memory 
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wastage, which worsens as data reordering and loss recovery 

durations increase. We proposed a new ack mechanism, Non-

Renegable Selective Acknowledgments for SCTP, which 

provides the transport receiver with the option to convey non-

renegable information on some or all out-of-order data.  

A transfer employing NR-SACKs never performs worse 

than a transfer using SACKs. When out-of-order data is non-

renegable NR-SACKs perform better than SACKs. 

Simulations confirmed that in both SCTP and CMT, NR-

SACKs utilize send buffer and rtxq space most efficiently. 

Send buffer blocking in CMT with SACKs adversely impact 

end-to-end performance, while efficient send buffer use in 

CMT with NR-SACKs alleviates send buffer blocking. 

Therefore, NR-SACKs not only reduce sender’s memory 

requirements, but also improve throughput in CMT. We are in 

the process of implementing NR-SACKs in FreeBSD and NR-

SACKs are being pursued as an experimental extension to 

SCTP in the IETF [5]. 

We plan to investigate the impact of asymmetric path delays 

in CMT with SACKs. Asymmetric path delays can aggravate 

send buffer blocking in CMT with SACKs, and we expect NR-

SACKs to alleviate this blocking.   
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