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 Abstract - In recent years several enhancements to TCP 
congestion control and loss recovery mechanisms have been 
proposed and accepted as Internet standards. While each 
proposal has been accompanied with related research, a number 
of questions remain to be answered both in the research and the 
implementer community: (i) What is the current deployment 
status of these TCP enhancements in the Internet, (ii) What is 
the effect of TCP enhancements on web based transfers, and (iii) 
How do bulk data transfers benefit from the cumulative 
addition of these TCP enhancements. In this paper, we attempt 
to answer these questions. We consider five TCP enhancements: 
(1) Selective Acknowledgements (SACK) and the SACK-based 
loss recovery algorithm, (2) Increasing Initial Congestion 
Window, (3) Limited Transmit, (4) Appropriate Byte Counting, 
and (5) Early Retransmit. We present results from active 
measurements performed on web servers on the state of 
deployment of these enhancements. Our results show that while 
several web servers support TCP enhancements, the majority 
still use previous standards for congestion control and loss 
recovery. Using simulation, we quantify the cumulative effect of 
these TCP enhancements on web based and bulk data transfers. 
We hope that such an evaluation provides a clearer view of the 
applicability of these enhancements, and further motivation for 
their implementation. 
 

I. INTRODUCTION 
 

 End-to-end congestion control and loss recovery has interested 
the research community for nearly two decades, and stil l remains 
one of the most prominent areas of networking research. TCP, the 
Internet’s prevalent transport protocol [MC00], uses congestion 
control and loss recovery mechanisms first defined in [JK88] and 
standardized in [APS99]. Recently, five modifications to TCP 
congestion control and loss recovery mechanisms: (1) Selective 
Acknowledgments (SACK) and the SACK-based loss recovery 
algorithm [MMF+96, BAF+03], (2) Increasing Initial Congestion 
Window [AFP+02], (3) Limited Transmit [ABF01], (4) Appropriate 
Byte Counting [All03], and (5) Early Retransmit [AAA+03], have 
been proposed and accepted as Internet standards. The focus of these 
modifications has been to reduce the retransmission timeouts in TCP 
or to perform finer loss recovery. A cumulative assessment of these 
mechanisms has been lacking and requires attention due to the 
following reasons. First, implementers and vendors need to know 
the performance incentives for implementing these enhancements in 
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their TCP stacks and in the context of their requirements (i.e., for the 
category of transfers (mice or elephants) they are interested in). 
Second, researchers who base their experiments on TCP need to 
know if their benchmarks reflect the current TCP that is deployed in 
the Internet. In this paper we attempt to answer these questions. 

Several methodologies to measure the support of different TCP 
mechanisms at a remote host have been developed over the years. 
One such methodology is the TCP Behavior Inference Tool (TBIT) 
[TBIT, PF01], which measures the existence of TCP options and 
features in remote web servers. TBIT establishes a user level TCP 
connection to a remote web server and generates requests for a base 
web page. Using the BSD packet filter device [MJ92], TBIT 
captures the incoming packets at the user level and prevents them 
from reaching the kernel. Using special sequences of packets and by 
monitoring the incoming packets, TBIT identifies the TCP protocol 
features of the remote web server. The TBIT packets generated 
cannot be distinguished from legitimate user traffic, thus providing 
an advantage over tools such as NMAP [NMAP] that use special 
packets to perform TCP fingerprinting. Thus, TBIT packets have a 
minimal chance of being blocked by a server firewall . We developed 
and implemented TBIT extensions for Limited Transmit, 
Appropriate Byte Counting, and Early Retransmit and used the 
already implemented tests for determining Initial Congestion 
Window and SACK support. We report on the prevalence of these 
TCP enhancements in a small web server space in the Internet. We 
hope that these results will help researchers update the benchmarks 
of their experiments on the TCP variant prevalent in the Internet 
[AF99]. 

Each TCP enhancement discussed in this paper proposes to 
improve congestion control and loss recovery. For example, 
RFC3390 [AFP+02] for Increasing TCP’s Initial Window allows the 
limit on the initial window of a new TCP connection to be increased 
up to 4K bytes, or roughly three to four packets. Such an increase 
helps short transfers and has minimal effect on bulk data transfers. 
While each of these standards has been accompanied with related 
research [All98, Bal98, PN98, FF96], the cumulative assessment of 
TCP with all the enhancements is lacking. In this paper we present 
an evaluation of current TCP by benchmarking TCP NewReno and 
comparing it with the cumulative addition of TCP enhancements. 
We present this evaluation for web based and bulk data transfers 
with different transfer sizes. We believe that such an evaluation will 
provide useful information to implementers and vendors for 
considering these enhancements. 

The remainder of this paper is organized as follows. Section II 
presents a brief description of the five TCP enhancements under 
study. Section II I describes the TBIT extensions and the results 
obtained from the tests applied to web servers in the Internet. 
Section IV describes the simulation methodology and evaluation 
results. Section V concludes the paper with a discussion on ongoing 
and future work. 
 



II . TCP ENHANCEMENTS 
 
TCP SACK as defined in [MMF+96] extends TCP to include the 

new SACK option. TCP SACK receivers can report multiple out-of-
order received packets via this SACK option. TCP SACK senders 
retransmit only those packets that have not been acknowledged via 
the SACK option. In TCP without SACK, a sender can determine 
only a single packet loss per round trip time (RTT). TCP SACK 
allows a sender to recover from multiple losses in a single RTT. 
Measurement studies showed that while several servers in the 
Internet were advertising the SACK option, the SACK information 
was not being used to perform finer loss recovery [PF01]. This 
discovery pressed the need for laying out a standard based on [FF96] 
that presents a conservative loss recovery mechanism for TCP 
SACK [BAF+03]. 
 TCP congestion control as defined in [APS99], restricted TCP 
implementations from increasing their initial congestion window 
(cwnd) beyond twice the Maximum Segment Size (MSS). Several 
scenarios demanded an increase in the value of initial cwnd: (i) short 
web based transfers where the web page transfer time is on order of 
RTTs, (ii ) Long delay TCP connections, as over satellit e channels, 
where RTTs are in order of seconds, and hence lead to slower 
evolution of the cwnd. A new standard specified in [AFP+02] 
increases the limit of 2*MSS for the initial cwnd up to 4380 bytes or 
roughly three to four packets. The minimum initial cwnd that can be 
used by a TCP connection was specified in [AFP+02] to be two 
packets, thus reducing the chances of expiring the delayed Ack timer 
of the TCP receiver for the first window of packets. 
 A TCP receiver on receiving out-of-order packets sends duplicate 
acknowledgments (Acks) cumulatively acknowledging the last in-
order segment received. A TCP sender infers loss of data either if it 
receives a threshold number of duplicate Acks from the receiver, or 
if it does not receive any feedback from the receiver within a 
retransmission time out (RTO) interval. The duplicate Ack threshold 
of inferring loss is currently specified as three [APS99]. A TCP 
sender is not allowed to send new data on the receipt of duplicate 
Acks. This leads to scenarios where a sender does not have enough 
data outstanding that could generate three duplicate Acks if a loss 
occurs, limiting the sender to infer the loss only after RTO amount 
of time. A new standard, Limited Transmit [ABF01], allows TCP 
senders to send new data on the receipt of first two duplicate Acks. 
Limited transmit increases the probabilit y of a sender to receive 
three duplicate Acks when a loss does occur, and decreases the 
chances of an RTO. 
 TCP implementations typically maintain the congestion window 
for a connection in packets as opposed to bytes. On receipt of an 
Ack that acknowledges new data, TCP senders increase the cwnd by 
one packet in slow start, and 1/cwnd packets in congestion 
avoidance. Misbehaving or greedy receivers can generate multiple 
“split ” Acks for a single data packet, thus making the sender 
increase its cwnd by several packets [SCW+99]. This aggressive 
behavior is inappropriate as it may result in unfair sharing of the 
network resources between behaving and misbehaving flows. 
Appropriate Byte Counting (ABC) [All03], recently standardized, 
calls for TCP senders to maintain the congestion window in bytes 
rather than packets and base the increase of cwnd on the number of 
bytes being acknowledged. While protecting against misbehaving 
“split -acking” receivers, ABC also improves the evolution of cwnd 
in the case of Ack loss. ABC defines a limit L that is the maximum 
amount by which a single Ack can increase the sender’s cwnd. The 
standard recommends the conservative value of L=1*MSS, and 
allows an experimental value of L=2*MSS.  

 While Limited Transmit helps to reduce the chances of a timeout 
when the number of outstanding segments is less than enough to 
generate three duplicate Acks, it requires a TCP sender to have new 
data to send on the receipt of first two duplicate Acks. Application 
limited flows that generate small bursts of traffic may not be able to 
take advantage of Limited Transmit and may have to rely on an 
RTO to detect packet loss. A recent proposal called Early 
Retransmit [AAA +03] allows application limited TCP senders to 
retransmit data on the receipt of less than three duplicate Acks, in 
the hope of avoiding an expensive RTO. Early Retransmit is 
currently an Internet draft within the IETF [AAA+03] and is in the 
last phases of being standardized. 
 

III. ACTIVE MEASUREMENTS 
 

 We developed TBIT tests to measure the prevalence of TCP 
enhancements among web servers in the Internet. We used the Initial 
Congestion Window and SACK tests that were already developed in 
the base version of TBIT for our measurements. In the following 
discussion we report on the design of the tests and the results 
obtained. We assume that the reader is famili ar with the basic design 
and architecture of TBIT as described in [TBIT, PF01]. 
 
A. Methodology 
 
1. Limited Transmit 

The TBIT test to determine if a remote server supports Limited 
Transmit requires that TBIT be aware of the Initial Congestion 
Window (ICW) being used by the remote server. Once the ICW is 
determined the following test can be used to probe a web server for 
Limited Transmit support. 

 
• TBIT establishes a TCP connection with the remote server. 
• TBIT sends the base web page request to the remote server. 
• The remote server starts sending the base web page to the TBIT 

client. 
• TBIT sends an Ack for the 1st packet. 
• TBIT drops the 2nd packet. 
• TBIT sends a duplicate Ack (indicating it is waiting for packet 

2) in response to the 3rd packet. 
• TBIT does not acknowledge any further packets. 
• TBIT monitors the incoming packets incrementing the "highest 

packet number" for every new data packet received until the 1st 
retransmission. 

• A remote server of a given ICW supports Limited Transmit 
when the highest packet number received by TBIT is: 

(i) ICW = 1, highest packet = 4 
 (ii ) ICW = 2, highest packet = 5 

… 
(n) ICW = n, highest packet = n+3 

• If the highest packet received from a server of ICW=' n' is less 
than n+3, Limited Transmit is not supported by the remote 
server; 

• If the highest packet received from a server of ICW=' n' is 
greater than n+3, TBIT test exits without conclusion; 

 
2. Appropriate Byte Counting (ABC)  

We tested the prevalence of ABC in TCP web servers using two 
tests. The first test determines if a remote server supports ABC. The 
second test determines the value of L being used by the servers that 
support ABC. Both tests require that TBIT be aware of the ICW 



being used by the remote server. The first TBIT test to determine if 
a remote server supports ABC is:  
 

• TBIT establishes a TCP connection with the remote server. 
• TBIT sends the base web page request to the remote server. 
• The remote server starts sending the base web page. 
• TBIT sends two split Acks for the 1st packet, each of them 

acknowledging half of the 1st packet. 
• TBIT does not acknowledge any more packets. 
• TBIT monitors the incoming packets incrementing the "highest 

packet number" for every new data packet received until the 1st 
retransmission. 

• If the retransmission contains a sequence number less than that 
of the 2nd packet, TBIT exits without conclusion. 

• A remote server of a given ICW does not support ABC when 
the highest packet number received by TBIT is: 

(i) ICW = 1, highest packet > 3 
(ii ) ICW = 2, highest packet > 4 

… 
  (n) ICW = n, highest packet > n+2 

• If for an ICW of ‘n’ packets, the highest packet number 
received is less than ‘n+3’, the remote server supports ABC.  

 
 The second TBIT test for ABC is used to measure the value of L 
being used by the servers supporting ABC. The test is as follows. 
 

• TBIT establishes a TCP connection with the remote server 
• TBIT sends the base web page request to the remote server. 
• The remote server starts sending the base web page. 
• TBIT sends an Ack for the 1st packet. 
• TBIT sends a delayed Ack for the 2nd and 3rd packet. 
• TBIT does not acknowledge any more packets. 
• TBIT monitors the incoming packets incrementing the "highest 

packet number" for every new data packet received till t he 1st 
retransmission. 

• If the retransmission contains a sequence number less than that 
of the 4th packet, TBIT exits without conclusion. 

• A remote server of a given ICW uses a value of L for 
Appropriate Byte Counting (ABC) when the highest packet 
number received by TBIT is: 
(i) ICW = 1, highest packet = 6, L=1; highest packet = 7, L=2 

        (ii ) ICW = 2, highest packet = 7, L=1; highest packet = 8, L=2 
… 

(n) ICW=n, highest packet=n+5, L=1; highest packet=n+6, L=2 
• If the highest packet received for ICW=' n' is greater than n+6, 

TBIT test exits without conclusion; 
• If the highest packet received for ICW=' n' is less than n+5, 

TBIT test exits without conclusion; 
 
3. Early Retransmit  
 The Early Retransmit mechanism gets invoked in scenarios where 
a TCP sender does not have any new data to send and the amount of 
outstanding data is less than 4*MSS. To generate this scenario, the 
TBIT test required a special byte-range HTTP request [FGM+99] to 
be generated by the TBIT client. The byte range request will ensure 
that the server sends less than 4*MSS packets, to cause a scenario 
where the support for Early Retransmit can be tested. The 
description of the test is as follows. 
 

• TBIT establishes a TCP connection with the remote server 

• TBIT sends the base page byte range request to the remote 
server, requesting 2*MSS bytes (This will generate 3 packets 
from the remote server: 2*MSS bytes of data + HTTP header). 

• The remote server starts sending the base web page. 
• TBIT sends an Ack for the 1st packet. 
• TBIT drops the 2nd packet. 
• TBIT sends a duplicate Ack (indicating it is waiting for packet 

2) in response to the 3rd packet. 
• In sequence TBIT now sends an Ack for all the packets. 
• TBIT monitors the incoming packets. 
• If TBIT receives a retransmission for the 2nd packet, the 

remote server supports Early Retransmit; 
else, the remote server does not support Early Retransmit; 

 
B. Results 
 

We performed the TBIT tests described above on a list of top 500 
global web sites based on the rankings by Alexa’s website 
[ALEXA]. Clearly this sample is not statistically significant1. For 
every server, we ran each TBIT test five times. We considered the 
test on a server valid if and only if four or more of these five tests 
returned the same result. The remaining servers were eliminated 
from the results for that particular test. Possible sources of error 
included packet reordering, unexpected drop, no response from the 
server, besides others [PF01]. The MSS used for the tests was 128 
bytes with an exception for the Early Retransmit test that used an 
MSS of 1000 bytes. The results of the test are shown in Table 1. 

We first ran the Initial Congestion Window test on the list of web 
servers. We found that 62 of the 423 web servers that returned 
results still used an initial window of one packet. This small number 
is surprising as TCP congestion control standardized the use of 
initial window of 2 packets several years back [APS99]. Of the 
remaining 361 web servers, 311 used an initial window of two 
packets. The use of initial congestion windows higher than two was 
found to be minimal. While 25 web servers used an initial window 
of three packets, only 17 web servers used initial window of four 
 

TABLE I 
TBIT TEST RESULTS 

__________________________ 
1 We are currently running the TBIT tests for TCP enhancements on a list of 27000 web 
servers. The results from these tests wil l be included in the final paper, if accepted. 

Category of TBIT test/  
TCP feature 

Number of web servers 
supporting the feature 

Initial Window (= 1) 62 

Initial Window (= 2) 311 

Initial Window (= 3) 25 

Initial Window (= 4) 17 
Initial Window (> 4) 8 

          SACK Advertised 344 

SACK Information Used 90 

Limited Transmit Supported 99 

Appropriate Byte Counting 
(ABC) 

100 

ABC with L = 1 80 

ABC with L = 2 0 

Early Retransmit 0 



packets. The maximum initial window allowed by [AFP+02], for a 
TCP connection with an MSS of 128 bytes is four packets. Few web 
servers used an initial window of more than 4 packets. Interestingly, 
the Center of Information Technology’s website at the National 
Institute of Health (http://www.cit.nih.gov) used the highest initial 
window of 23 packets! We are currently using fingerprinting tools to 
determine the operating systems being run by the web servers. 

Surprisingly, a large numbers of servers advertised the SACK 
option but less than one third of these servers utilized the SACK 
information to perform sender side loss recovery. We found that 344 
out of the 486 web servers that returned results advertised the SACK 
option. The remaining 142 web servers did not advertise the SACK 
option and hence were not included in the SACK utilization test. We 
tested the 344 web servers that advertised SACK for sender side 
SACK behavior. Only 90 out of the 344 web servers utilized the 
SACK information to perform sender side loss recovery.       
 The Limited Transmit test required that the initial window of the 
remote server be known. From the Initial Window test, we knew the 
initial window being used by 423 web servers. 224 out of the 423 
web servers returned results for the Limited Transmit test. We found 
that 99 of the 224 web servers that returned results supported 
Limited Transmit, while 125 web servers did not support Limited 
Transmit. 
 The ABC tests required that the initial window of the remote 
server be known. Thus the test to determine if a remote server 
supports ABC was run on a list of 423 web servers. Out of the 200 
servers that returned results, 100 supported ABC, while the 
remaining 100 did not support ABC. It is surprising that even 
though the threat of a misbehaving receiver is large, 50% of the 
servers do not support ABC. A misbehaving receiver (i.e., client) 
can send out multiple split Acks for a single data packet and make a 
non-ABC sender (i.e. server) open up its congestion window 
unfairly in comparison to conforming flows. Our next test involved 
testing the value of the limit L (as defined in [All03]) being used by 
servers that support ABC. We found that out of the 80 servers that 
returned results, all of them used L = 1. None of the servers used L = 
2. This result is in spirit of the recommendation given in [All03]. 
 The Early Retransmit test was run on the entire list of 500 web 
servers. The Early Retransmit test required that the server supports 
byte-range request specified in HTTP/1.1 [FGM+99]. Out of the 500 
web servers only 80 servers returned results, since most of the 
servers did not support the byte-range request. None of the 80 web 
servers supported Early Retransmit! 
 

IV. SIMULATION RESULTS AND ANALYSIS 
 
A. Methodology 
 
 To assess the cumulative effects of the five TCP protocol changes 
we performed simulations using the Network Simulator (ns2) [NS]. 
The topology used for the simulations is illustrated in Fig. 1. All the 
links used in the topology are full duplex. A single TCP source 
(TCP Sender in the topology) is connected to the drop-tail router 
R1. The link connecting the TCP source to the router is of capacity 
5Mbps and has a one-way propagation delay of 1ms. A single TCP 
sink (TCP Receiver in the topology) is connected to the drop-tail 
router R2. The link connecting the TCP sink to the router is of 
capacity 5Mbps and has a one-way propagation delay of 1ms. To 
resemble the observed nature of traffic on data networks [LTW+93], 
we use self-similar cross-traffic. To generate self-similar cross-
traffic, we use four cross-traffic nodes, each having eight Pareto 
ON-OFF traffic generators connected to routers R1 and R2. Each 

Pareto source has an average ON time of 1ms and OFF time of 9ms. 
Each cross-traffic node is connected to a router (R1 or R2) via a 
5Mbps link with a propagation delay randomized to be between 1ms 
and 5ms. The Pareto sources connected to the router R1 generate the 
forward path cross-traffic for the TCP data flow, and the Pareto 
sources connected to the router R2 generate the reverse path cross-
traffic for the TCP Ack flow. The cross-traffic packet sizes are 
chosen to resemble the distribution found in the Internet [CAIDA]: 
50% are 44B, 25% are 576B, and 25% are 1500B. Thus the average 
packet size for the cross-traffic is 541B. A link of capacity 1Mbps 
with a one-way propagation delay of 35ms (approximate 
propagation delay between US coast to coast) forms the core link 
connecting router R1 and R2. The buffer capacity at routers R1 and 
R2 for the core link was set to twice the bandwidth-delay product 
(BDP) of the core link. Using the 2*BDP product and the average 
packet size of 541B, the buffer size at each of the routers R1 and R2 
was set to 16 packets.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Network topology for simulations 
 
 The Maximum Transmission Unit (MTU) for all links was set to 
the standard Ethernet MTU of 1500B. The TCP sender used an MSS 
of 1460B. The TCP receiver used delayed Acks with a delayed Ack 
timer of 200ms. For all simulations described in this paper, the 
cross-traffic was allowed to run for 10s before the TCP sender began 
sending data. 
 The parameters varied in the topology described in Fig. 1 were 
the aggregate rate of cross-traffic, the TCP variants, and the size of 
the file being transferred. The aggregate cross-traffic ranged from no 
cross-traffic to the bottleneck bandwidth of 1Mbps. The aggregate 
cross-traffic was found to be directly proportional to the number of 
packet losses generated. The packet losses in the simulations were 
only due to network congestion. The TCP variants were chosen 
using an incremental combination of the TCP enhancements 
considered in this paper. We benchmarked TCP NewReno as the 
TCP variant to base our comparisons. TCP NewReno had recently 
been observed to be the most popular TCP variant in the Internet 
[PF01]. Using TCP SACK as the starting point of the TCP 
enhancements in study, we cumulatively added each TCP 
enhancement in the order of their standardization in the IETF. The 
TCP SACK and TCP NewReno variants used an initial window of 
one packet. The TCP variants used in the simulations are as follows. 
The acronym in parentheses is used to refer to the respective variant 
in the rest of this paper. 
 

(a) TCP NewReno {NewReno} 
(b) TCP SACK {SACK} 
(c) Increased Initial Window with (b) {SACK-IW} 
(d) Limited Transmit with (c) {SACK-IW-LT} 
(e) Appropriate Byte Counting (L=1) with (d)  

{SACK-IW-LT-ABC1} 
(f) Early Retransmit with (e) {SACK-IW-LT-ABC1-ER} 
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B. Web Transfers 
 
 To assess the effect of TCP enhancements on web transfers, we 
show the results for transfer of a single 20K and a single 100K file. 
During the TBIT tests we observed that the base web page size used 
in the Internet has significant variance. A plain text web page could 
be as low as 10K in size while a web page with several objects 
(pictures, thumbnails, audio, etc) could go up to 500K in size. We 
thus chose a sample of 20K and 100K as representatives for web 
transfers. We varied the aggregate cross-traffic arrival rate to 
simulate packet drops for the TCP flow. 
 Fig. 2 shows the transfer time of a 20K file, as a function of the 
aggregate cross-traffic arrival rate, using the different TCP variants. 
Fig. 3(a) plots the number of packet drops seen by a TCP flow for 
different levels of cross-traffic. Each point in the graphs represents 
an average of multiple runs. The results for cross-traffic arrival rates 
below 800Kbps have not been plotted in Fig. 1 as the TCP flow did 
not experience any loss below 800Kbps, leading to nearly same 
transfer times for all the variants. At higher levels of cross-traffic 
NewReno slightly outperforms SACK. SACK-IW outperforms both 
SACK and NewReno and is the main contributor for better 
performance of the cumulative enhancements. This is because short 
transfers are on the order of few RTTs and saving one RTT by using 
larger a initial window significantly reduces transfer times. SACK-
IW and all the later cumulative variants use an initial window of 3 
packets as specified in [AFP+02], whereas NewReno and SACK use 
an initial window of 1 packet. SACK-IW-LT uses Limited Transmit, 
that allows to send new data on duplicate Acks. It can be seen from 
Fig. 1 that SACK-IW-LT outperforms SACK and NewReno for all 
levels of cross-traffic and performs almost the same or better than 
SACK-IW. The effect of ABC is minimal, especially for lower loss 
rates, as short transfers typically remain in slow start, while ABC 
with an L=1 is helpful for transfers that spend majority of their time 
in the congestion avoidance phase of TCP congestion control. In the 
next section of bulk data transfers, we notice the effect of ABC more 
prominently and explain the rationale behind it. In Fig. 2, the effect 
of Early Retransmit (ER) is also minimal as ER gets invoked only in 
the special case at the end of the file transfers. The effect of ER will 
be more predominant for transfers less than 4 packets (5K file 
transfers) where ER may be able to avoid expensive timeouts in the 
event of packet loss. 

Fig. 3(b) shows the CDF of the number of times Limited 
Transmit (LT) and ER get invoked vs. the fraction of the total 
number of runs. The total number of runs, on which the fraction in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Transfer Time vs. Aggregate Cross-Traffic for a 20K transfer 

 
 
 
 
 
 
 
 
 
        (a)              (b)     
 
Fig. 3. (a) Aggregate Cross-Traffic (Kbps) vs. Average number of drops for a   
                 20K transfer 
          (b) CDF of the Number of times Limited Transmit or Early Retransmit  

      get invoked vs. Fraction of Runs for a 20K transfer. 
 
Fig. 3(b) is calculated, is the collection of all LT and ER enabled 
runs for the LT and ER curve, respectively. As expected, ER gets 
invoked only once, and for only 3% of the runs. However, it is 
important to note that although ER occurs rather rarely, it does make 
its case as the 3% of the total runs where ER fast retransmits the 
missing packet, may have suffered a timeout without ER. For small 
file transfers, a single timeout could significantly increase the 
transfer time. For 51% of the runs, LT does not get invoked. This is 
because for cross-traffic levels below 800Kbps no losses were seen 
by the TCP flow. For the remaining 49% of the runs, LT gets 
invoked “at least” once. Each time LT gets invoked, a new data 
segment can be transmitted, thus improving (i.e. reducing) the total 
transfer time as seen in Fig. 1. 
 Fig. 4 shows the transfer time for a 100K file vs. the aggregate 
cross-traffic arrival rate. SACK outperforms NewReno slightly for 
cross-traffic rates beyond 800Kbps. The increase of initial cwnd has 
no significant effect on transfer time. LT and ABC reduce the 
transfer time by over 10 seconds for aggregate cross-traffic arrival 
rates of 1Mbps. While LT allows for sending new data on duplicate 
Acks yielding in increased goodput, ABC allows better evolution of 
cwnd in congestion avoidance. Without ABC, a TCP sender will 
increase its cwnd by one MSS in every two RTTs (due to delayed 
Acks), when in congestion avoidance. An ABC sender will be able 
to increase its cwnd by one MSS once per RTT as the cwnd is 
increased based on the number of bytes acknowledged rather than 
number of Acks received. The reverse path cross-traffic causes loss 
of Acks similar to the loss of data in the forward path. Loss of Acks 
in congestion avoidance may not allow cwnd to be increased once 
per two RTTs for a TCP sender without ABC. On the other hand a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Transfer Time vs. Aggregate Cross-Traffic for a 100K transfer 
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Fig. 5. (a) Aggregate Cross-Traffic (Kbps) vs. Average number of drops for a   
                 100K transfer 
          (b) CDF of the Number of times Limited Transmit or Early Retransmit  

 get invoked vs. Fraction of Runs for a 100K transfer. 
 
TCP sender with ABC is not affected by the loss of Acks in 
congestion avoidance as long as an Ack cumulatively 
acknowledging previous packets arrives. Since the 100K flow 
operates in congestion avoidance for most of its transfer, ABC 
causes better evolution of cwnd reducing the transfer time. 

Fig. 5(a) shows the average number of data packet drops as a 
function of the cross-traffic arrival rate. Starting from 800Kbps of 
cross-traffic, the losses start increasing steadily, matched by the 
increased transfer time as seen in Figure 4. As the file size to be 
transferred increased from 20K to 100K, a greater number of LT 
events should be generated. This can be seen in Figure 5(b), where 
all sample runs generated at least two LT events, and approximately 
20% of the runs generated more than eight LT events. ER gets 
invoked only once, and for only 2.5% of the runs. 
 
B. Bulk Transfers 
 
 While web transfers present their own challenges, bulk transfers 
are also an important metric for evaluating the performance of TCP 
variants. We performed a bulk transfer of 10M to assess the 
throughput achieved by the TCP variants. The aggregate cross-
traffic was varied to simulate packet drops. 
 Fig. 6 shows the transfer time taken by the TCP variants for a 
10M transfer as a function of the loss rate as seen by the TCP flow. 
The loss rate is represented as a fraction of the total number of 
packets dropped out of the total number of “new” data packets sent. 
Fig. 6 shows that NewReno and SACK perform the same for loss  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Transfer Time vs. Fraction of Packet Loss for a 10M transfer 

rates below 9%, but as the loss rates increase further, SACK 
outperforms NewReno. While the loss rates beyond 10% may seem 
excessive for the Internet, the plot shown in Fig. 1 illustrates the 
pattern of performance of the TCP variants for bulk transfers. The 
SACK-IW curve lies exactly over the SACK curve thus showing 
that a higher initial cwnd makes little difference for bulk transfers. 
SACK-IW-LT yields in better transfer times for higher loss rates as 
well as for loss rates below 10%. Thus bulk transfers clearly gain by 
the Limited Transmit feature. Bulk transfers spend most of the 
connection lifetime in congestion avoidance. As described before 
ABC allows for better evolution of cwnd in congestion avoidance 
for receivers that generate delayed Acks and in situations of Ack 
loss. A TCP sender that supports ABC increases its cwnd by one 
MSS once per RTT, as opposed to once per two RTTs that a TCP 
sender without ABC would increase. Loss of Acks leads to yet 
slower cwnd evolution for a TCP sender without ABC. The 
performance improvement with ABC is evident in Fig. 6 where 
SACK-IW-LT-ABC1 reduces the transfer time as compared to 
SACK-IW-LT. For bulk data transfers ER does not offer any 
advantage as the scenario in which ER can be invoked occurs rarely 
at end of transfers. Hence SACK-IW-LT-ABC1-ER and SACK-IW-
LT-ABC1 overlap in Fig. 6.  
 We plot the CDF of the number of times LT and ER get invoked 
for the bulk transfer vs. the fraction of total number of runs. It is 
evident from Fig. 7 that the effect of LT is pronounced on bulk 
transfers where approximately 50% of the total runs invoked LT 
more than 400 times in their transfers. More than 90% of the runs 
invoked LT 100 times in their transfers. While the effect of ER on 
transfer time is minimal, we still saw 2.5% of the runs witness one 
ER event at the end of transfer. ER may be able to save one timeout 
for 2.5% of the runs, although a single timeout at the end of the 
transfer is insignificant relative to the bulk data transfer time. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. CDF of the Number of times Limited Transmit or Early Retransmit  

 get invoked vs. Fraction of Runs for a 100K transfer. 
 

V. CONCLUSIONS AND ONGOING WORK 
 
 This paper presents measurement and evaluation results for a set 
of five recent TCP enhancements: SACK and the loss recovery 
algorithm, Increasing Initial Congestion Window, Limited Transmit, 
Appropriate Byte Counting and Early Retransmit. We developed 
TBIT extensions and performed measurements to determine the 
support of these TCP enhancements in the web server space in the 
Internet. Our findings were that out of the servers that returned 
results: 

• Majority of the web servers use the standard initial window of 
two packets. However, 15% of the web servers still use a low 
initial window of one packet. Only 3% of the servers use an 
initial window of 4 packets as allowed by [AFP+02]. 
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• While a large number of servers advertise the SACK option, 
only 30% of them use the SACK information to perform loss 
recovery. 

• More than 50% servers do not support Limited Transmit. 
• 50% of the web servers support Appropriate Byte Counting, 

while other 50% are still vulnerable to misbehaving “split -
acking” receivers.  

• None of the servers support Early Retransmit.  
 

We performed simulations to assess the performance benefits of 
these TCP enhancements for web and bulk data transfers. Based on 
the results obtained, we make the following observations: 

• SACK does not offer any noticeable improvements in the 
transfer time for web transfers. For bulk transfers, SACK 
reduces the transfer time for loss rates above 10%. 

• Increasing initial congestion window improves transfer times 
for small web transfers but offers no advantage for large web 
transfers and bulk transfers.  

• Although a relatively small change to TCP congestion control, 
Limited Transmit is an important feature that improves transfer 
times and gets invoked for all categories of transfers and 
proportionally to the size of the transfer. 

• Appropriate Byte Counting offers protection against 
misbehaving receivers. From our results it also improves the 
transfer time significantly for bulk transfers and for large web 
transfers, in the presence of delayed Acks or Ack loss. 

• Early Retransmit is a feature that gets invoked consistently for 
3% of the total TCP runs. The main benefits of Early 
Retransmit occur only for short flows such as small web 
transfers. 

 
Ongoing work as part of this paper includes the following: 
• We are currently running the TBIT tests described in this paper 

on a list of 27000 web servers. We plan to perform 
fingerprinting of the operating systems being used by the 
remote servers, and survey the current implementation status of 
the TCP enhancements in the popular operating systems. 

• The TCP-friendly equation [PFT+98], which is the basis for 
TCP-friendly rate control (TFRC) [HFP+03], is based on the 
Reno variant of TCP. We are investigating if the TCP-friendly 
equation is still a correct representative of current TCP, i.e., 
TCP with the enhancements evaluated in this paper. 
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