
On the Prevalence and Evaluation of Recent TCP Enhancements

Sourabh Ladha Paul D. Amer Armando Caro Jr. Janardhan R. Iyengar
Protocol Engineering Lab,

Computer and Information Sciences
University of Delaware

{ ladha, amer, acaro, iyengar} @cis.udel.edu

 Abstract - In recent years several enhancements to TCP
congestion control and loss recovery mechanisms have been
proposed and accepted as Internet standards. While each
proposal has been accompanied with related research, a number
of questions remain to be answered both in the research and the
implementer community: (i) What is the current deployment
status of these TCP enhancements in the Internet, (ii) What is
the effect of TCP enhancements on web based transfers, and (iii)
How do bulk data transfers benefit from the cumulative
addition of these TCP enhancements. In this paper, we attempt
to answer these questions. We consider five TCP enhancements:
(1) Selective Acknowledgements (SACK) and the SACK-based
loss recovery algorithm, (2) Increasing Initial Congestion
Window, (3) Limited Transmit, (4) Appropriate Byte Counting,
and (5) Early Retransmit. We present results from active
measurements performed on web servers on the state of
deployment of these enhancements. Our results show that while
several web servers support TCP enhancements, the majority
still use previous standards for congestion control and loss
recovery. Using simulation, we quantify the cumulative effect of
these TCP enhancements on web based and bulk data transfers.
We hope that such an evaluation provides a clearer view of the
applicability of these enhancements, and further motivation for
their implementation.

I. INTRODUCTION

 End-to-end congestion control and loss recovery has interested
the research community for nearly two decades, and stil l remains
one of the most prominent areas of networking research. TCP, the
Internet’s prevalent transport protocol [MC00], uses congestion
control and loss recovery mechanisms first defined in [JK88] and
standardized in [APS99]. Recently, five modifications to TCP
congestion control and loss recovery mechanisms: (1) Selective
Acknowledgments (SACK) and the SACK-based loss recovery
algorithm [MMF+96, BAF+03], (2) Increasing Initial Congestion
Window [AFP+02], (3) Limited Transmit [ABF01], (4) Appropriate
Byte Counting [All03], and (5) Early Retransmit [AAA+03], have
been proposed and accepted as Internet standards. The focus of these
modifications has been to reduce the retransmission timeouts in TCP
or to perform finer loss recovery. A cumulative assessment of these
mechanisms has been lacking and requires attention due to the
following reasons. First, implementers and vendors need to know
the performance incentives for implementing these enhancements in

*Prepared through collaborative participation in the Communication and Network
Consortium sponsored by the U.S. Army Research Laboratory under the Collaborative
Technology Alli ance Program, Cooperative Agreement DAAD19-01-2-0011. The U.S.
Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.
* Research supported, in part, by the University Research Program, Cisco Systems, Inc.

their TCP stacks and in the context of their requirements (i.e., for the
category of transfers (mice or elephants) they are interested in).
Second, researchers who base their experiments on TCP need to
know if their benchmarks reflect the current TCP that is deployed in
the Internet. In this paper we attempt to answer these questions.

Several methodologies to measure the support of different TCP
mechanisms at a remote host have been developed over the years.
One such methodology is the TCP Behavior Inference Tool (TBIT)
[TBIT, PF01], which measures the existence of TCP options and
features in remote web servers. TBIT establishes a user level TCP
connection to a remote web server and generates requests for a base
web page. Using the BSD packet filter device [MJ92], TBIT
captures the incoming packets at the user level and prevents them
from reaching the kernel. Using special sequences of packets and by
monitoring the incoming packets, TBIT identifies the TCP protocol
features of the remote web server. The TBIT packets generated
cannot be distinguished from legitimate user traffic, thus providing
an advantage over tools such as NMAP [NMAP] that use special
packets to perform TCP fingerprinting. Thus, TBIT packets have a
minimal chance of being blocked by a server firewall . We developed
and implemented TBIT extensions for Limited Transmit,
Appropriate Byte Counting, and Early Retransmit and used the
already implemented tests for determining Initial Congestion
Window and SACK support. We report on the prevalence of these
TCP enhancements in a small web server space in the Internet. We
hope that these results will help researchers update the benchmarks
of their experiments on the TCP variant prevalent in the Internet
[AF99].

Each TCP enhancement discussed in this paper proposes to
improve congestion control and loss recovery. For example,
RFC3390 [AFP+02] for Increasing TCP’s Initial Window allows the
limit on the initial window of a new TCP connection to be increased
up to 4K bytes, or roughly three to four packets. Such an increase
helps short transfers and has minimal effect on bulk data transfers.
While each of these standards has been accompanied with related
research [All98, Bal98, PN98, FF96], the cumulative assessment of
TCP with all the enhancements is lacking. In this paper we present
an evaluation of current TCP by benchmarking TCP NewReno and
comparing it with the cumulative addition of TCP enhancements.
We present this evaluation for web based and bulk data transfers
with different transfer sizes. We believe that such an evaluation will
provide useful information to implementers and vendors for
considering these enhancements.

The remainder of this paper is organized as follows. Section II
presents a brief description of the five TCP enhancements under
study. Section II I describes the TBIT extensions and the results
obtained from the tests applied to web servers in the Internet.
Section IV describes the simulation methodology and evaluation
results. Section V concludes the paper with a discussion on ongoing
and future work.

II . TCP ENHANCEMENTS

TCP SACK as defined in [MMF+96] extends TCP to include the

new SACK option. TCP SACK receivers can report multiple out-of-
order received packets via this SACK option. TCP SACK senders
retransmit only those packets that have not been acknowledged via
the SACK option. In TCP without SACK, a sender can determine
only a single packet loss per round trip time (RTT). TCP SACK
allows a sender to recover from multiple losses in a single RTT.
Measurement studies showed that while several servers in the
Internet were advertising the SACK option, the SACK information
was not being used to perform finer loss recovery [PF01]. This
discovery pressed the need for laying out a standard based on [FF96]
that presents a conservative loss recovery mechanism for TCP
SACK [BAF+03].
 TCP congestion control as defined in [APS99], restricted TCP
implementations from increasing their initial congestion window
(cwnd) beyond twice the Maximum Segment Size (MSS). Several
scenarios demanded an increase in the value of initial cwnd: (i) short
web based transfers where the web page transfer time is on order of
RTTs, (ii) Long delay TCP connections, as over satellit e channels,
where RTTs are in order of seconds, and hence lead to slower
evolution of the cwnd. A new standard specified in [AFP+02]
increases the limit of 2*MSS for the initial cwnd up to 4380 bytes or
roughly three to four packets. The minimum initial cwnd that can be
used by a TCP connection was specified in [AFP+02] to be two
packets, thus reducing the chances of expiring the delayed Ack timer
of the TCP receiver for the first window of packets.
 A TCP receiver on receiving out-of-order packets sends duplicate
acknowledgments (Acks) cumulatively acknowledging the last in-
order segment received. A TCP sender infers loss of data either if it
receives a threshold number of duplicate Acks from the receiver, or
if it does not receive any feedback from the receiver within a
retransmission time out (RTO) interval. The duplicate Ack threshold
of inferring loss is currently specified as three [APS99]. A TCP
sender is not allowed to send new data on the receipt of duplicate
Acks. This leads to scenarios where a sender does not have enough
data outstanding that could generate three duplicate Acks if a loss
occurs, limiting the sender to infer the loss only after RTO amount
of time. A new standard, Limited Transmit [ABF01], allows TCP
senders to send new data on the receipt of first two duplicate Acks.
Limited transmit increases the probabilit y of a sender to receive
three duplicate Acks when a loss does occur, and decreases the
chances of an RTO.
 TCP implementations typically maintain the congestion window
for a connection in packets as opposed to bytes. On receipt of an
Ack that acknowledges new data, TCP senders increase the cwnd by
one packet in slow start, and 1/cwnd packets in congestion
avoidance. Misbehaving or greedy receivers can generate multiple
“split ” Acks for a single data packet, thus making the sender
increase its cwnd by several packets [SCW+99]. This aggressive
behavior is inappropriate as it may result in unfair sharing of the
network resources between behaving and misbehaving flows.
Appropriate Byte Counting (ABC) [All03], recently standardized,
calls for TCP senders to maintain the congestion window in bytes
rather than packets and base the increase of cwnd on the number of
bytes being acknowledged. While protecting against misbehaving
“split -acking” receivers, ABC also improves the evolution of cwnd
in the case of Ack loss. ABC defines a limit L that is the maximum
amount by which a single Ack can increase the sender’s cwnd. The
standard recommends the conservative value of L=1*MSS, and
allows an experimental value of L=2*MSS.

 While Limited Transmit helps to reduce the chances of a timeout
when the number of outstanding segments is less than enough to
generate three duplicate Acks, it requires a TCP sender to have new
data to send on the receipt of first two duplicate Acks. Application
limited flows that generate small bursts of traffic may not be able to
take advantage of Limited Transmit and may have to rely on an
RTO to detect packet loss. A recent proposal called Early
Retransmit [AAA +03] allows application limited TCP senders to
retransmit data on the receipt of less than three duplicate Acks, in
the hope of avoiding an expensive RTO. Early Retransmit is
currently an Internet draft within the IETF [AAA+03] and is in the
last phases of being standardized.

III. ACTIVE MEASUREMENTS

 We developed TBIT tests to measure the prevalence of TCP
enhancements among web servers in the Internet. We used the Initial
Congestion Window and SACK tests that were already developed in
the base version of TBIT for our measurements. In the following
discussion we report on the design of the tests and the results
obtained. We assume that the reader is famili ar with the basic design
and architecture of TBIT as described in [TBIT, PF01].

A. Methodology

1. Limited Transmit

The TBIT test to determine if a remote server supports Limited
Transmit requires that TBIT be aware of the Initial Congestion
Window (ICW) being used by the remote server. Once the ICW is
determined the following test can be used to probe a web server for
Limited Transmit support.

• TBIT establishes a TCP connection with the remote server.
• TBIT sends the base web page request to the remote server.
• The remote server starts sending the base web page to the TBIT

client.
• TBIT sends an Ack for the 1st packet.
• TBIT drops the 2nd packet.
• TBIT sends a duplicate Ack (indicating it is waiting for packet

2) in response to the 3rd packet.
• TBIT does not acknowledge any further packets.
• TBIT monitors the incoming packets incrementing the "highest

packet number" for every new data packet received until the 1st
retransmission.

• A remote server of a given ICW supports Limited Transmit
when the highest packet number received by TBIT is:

(i) ICW = 1, highest packet = 4
 (ii) ICW = 2, highest packet = 5

…
(n) ICW = n, highest packet = n+3

• If the highest packet received from a server of ICW=' n' is less
than n+3, Limited Transmit is not supported by the remote
server;

• If the highest packet received from a server of ICW=' n' is
greater than n+3, TBIT test exits without conclusion;

2. Appropriate Byte Counting (ABC)

We tested the prevalence of ABC in TCP web servers using two
tests. The first test determines if a remote server supports ABC. The
second test determines the value of L being used by the servers that
support ABC. Both tests require that TBIT be aware of the ICW

being used by the remote server. The first TBIT test to determine if
a remote server supports ABC is:

• TBIT establishes a TCP connection with the remote server.
• TBIT sends the base web page request to the remote server.
• The remote server starts sending the base web page.
• TBIT sends two split Acks for the 1st packet, each of them

acknowledging half of the 1st packet.
• TBIT does not acknowledge any more packets.
• TBIT monitors the incoming packets incrementing the "highest

packet number" for every new data packet received until the 1st
retransmission.

• If the retransmission contains a sequence number less than that
of the 2nd packet, TBIT exits without conclusion.

• A remote server of a given ICW does not support ABC when
the highest packet number received by TBIT is:

(i) ICW = 1, highest packet > 3
(ii) ICW = 2, highest packet > 4

…
 (n) ICW = n, highest packet > n+2

• If for an ICW of ‘n’ packets, the highest packet number
received is less than ‘n+3’, the remote server supports ABC.

 The second TBIT test for ABC is used to measure the value of L
being used by the servers supporting ABC. The test is as follows.

• TBIT establishes a TCP connection with the remote server
• TBIT sends the base web page request to the remote server.
• The remote server starts sending the base web page.
• TBIT sends an Ack for the 1st packet.
• TBIT sends a delayed Ack for the 2nd and 3rd packet.
• TBIT does not acknowledge any more packets.
• TBIT monitors the incoming packets incrementing the "highest

packet number" for every new data packet received till t he 1st
retransmission.

• If the retransmission contains a sequence number less than that
of the 4th packet, TBIT exits without conclusion.

• A remote server of a given ICW uses a value of L for
Appropriate Byte Counting (ABC) when the highest packet
number received by TBIT is:
(i) ICW = 1, highest packet = 6, L=1; highest packet = 7, L=2

 (ii) ICW = 2, highest packet = 7, L=1; highest packet = 8, L=2
…

(n) ICW=n, highest packet=n+5, L=1; highest packet=n+6, L=2
• If the highest packet received for ICW=' n' is greater than n+6,

TBIT test exits without conclusion;
• If the highest packet received for ICW=' n' is less than n+5,

TBIT test exits without conclusion;

3. Early Retransmit
 The Early Retransmit mechanism gets invoked in scenarios where
a TCP sender does not have any new data to send and the amount of
outstanding data is less than 4*MSS. To generate this scenario, the
TBIT test required a special byte-range HTTP request [FGM+99] to
be generated by the TBIT client. The byte range request will ensure
that the server sends less than 4*MSS packets, to cause a scenario
where the support for Early Retransmit can be tested. The
description of the test is as follows.

• TBIT establishes a TCP connection with the remote server

• TBIT sends the base page byte range request to the remote
server, requesting 2*MSS bytes (This will generate 3 packets
from the remote server: 2*MSS bytes of data + HTTP header).

• The remote server starts sending the base web page.
• TBIT sends an Ack for the 1st packet.
• TBIT drops the 2nd packet.
• TBIT sends a duplicate Ack (indicating it is waiting for packet

2) in response to the 3rd packet.
• In sequence TBIT now sends an Ack for all the packets.
• TBIT monitors the incoming packets.
• If TBIT receives a retransmission for the 2nd packet, the

remote server supports Early Retransmit;
else, the remote server does not support Early Retransmit;

B. Results

We performed the TBIT tests described above on a list of top 500
global web sites based on the rankings by Alexa’s website
[ALEXA]. Clearly this sample is not statistically significant1. For
every server, we ran each TBIT test five times. We considered the
test on a server valid if and only if four or more of these five tests
returned the same result. The remaining servers were eliminated
from the results for that particular test. Possible sources of error
included packet reordering, unexpected drop, no response from the
server, besides others [PF01]. The MSS used for the tests was 128
bytes with an exception for the Early Retransmit test that used an
MSS of 1000 bytes. The results of the test are shown in Table 1.

We first ran the Initial Congestion Window test on the list of web
servers. We found that 62 of the 423 web servers that returned
results still used an initial window of one packet. This small number
is surprising as TCP congestion control standardized the use of
initial window of 2 packets several years back [APS99]. Of the
remaining 361 web servers, 311 used an initial window of two
packets. The use of initial congestion windows higher than two was
found to be minimal. While 25 web servers used an initial window
of three packets, only 17 web servers used initial window of four

TABLE I
TBIT TEST RESULTS

1 We are currently running the TBIT tests for TCP enhancements on a list of 27000 web
servers. The results from these tests wil l be included in the final paper, if accepted.

Category of TBIT test/
TCP feature

Number of web servers
supporting the feature

Initial Window (= 1) 62

Initial Window (= 2) 311

Initial Window (= 3) 25

Initial Window (= 4) 17
Initial Window (> 4) 8

 SACK Advertised 344

SACK Information Used 90

Limited Transmit Supported 99

Appropriate Byte Counting
(ABC)

100

ABC with L = 1 80

ABC with L = 2 0

Early Retransmit 0

packets. The maximum initial window allowed by [AFP+02], for a
TCP connection with an MSS of 128 bytes is four packets. Few web
servers used an initial window of more than 4 packets. Interestingly,
the Center of Information Technology’s website at the National
Institute of Health (http://www.cit.nih.gov) used the highest initial
window of 23 packets! We are currently using fingerprinting tools to
determine the operating systems being run by the web servers.

Surprisingly, a large numbers of servers advertised the SACK
option but less than one third of these servers utilized the SACK
information to perform sender side loss recovery. We found that 344
out of the 486 web servers that returned results advertised the SACK
option. The remaining 142 web servers did not advertise the SACK
option and hence were not included in the SACK utilization test. We
tested the 344 web servers that advertised SACK for sender side
SACK behavior. Only 90 out of the 344 web servers utilized the
SACK information to perform sender side loss recovery.
 The Limited Transmit test required that the initial window of the
remote server be known. From the Initial Window test, we knew the
initial window being used by 423 web servers. 224 out of the 423
web servers returned results for the Limited Transmit test. We found
that 99 of the 224 web servers that returned results supported
Limited Transmit, while 125 web servers did not support Limited
Transmit.
 The ABC tests required that the initial window of the remote
server be known. Thus the test to determine if a remote server
supports ABC was run on a list of 423 web servers. Out of the 200
servers that returned results, 100 supported ABC, while the
remaining 100 did not support ABC. It is surprising that even
though the threat of a misbehaving receiver is large, 50% of the
servers do not support ABC. A misbehaving receiver (i.e., client)
can send out multiple split Acks for a single data packet and make a
non-ABC sender (i.e. server) open up its congestion window
unfairly in comparison to conforming flows. Our next test involved
testing the value of the limit L (as defined in [All03]) being used by
servers that support ABC. We found that out of the 80 servers that
returned results, all of them used L = 1. None of the servers used L =
2. This result is in spirit of the recommendation given in [All03].
 The Early Retransmit test was run on the entire list of 500 web
servers. The Early Retransmit test required that the server supports
byte-range request specified in HTTP/1.1 [FGM+99]. Out of the 500
web servers only 80 servers returned results, since most of the
servers did not support the byte-range request. None of the 80 web
servers supported Early Retransmit!

IV. SIMULATION RESULTS AND ANALYSIS

A. Methodology

 To assess the cumulative effects of the five TCP protocol changes
we performed simulations using the Network Simulator (ns2) [NS].
The topology used for the simulations is illustrated in Fig. 1. All the
links used in the topology are full duplex. A single TCP source
(TCP Sender in the topology) is connected to the drop-tail router
R1. The link connecting the TCP source to the router is of capacity
5Mbps and has a one-way propagation delay of 1ms. A single TCP
sink (TCP Receiver in the topology) is connected to the drop-tail
router R2. The link connecting the TCP sink to the router is of
capacity 5Mbps and has a one-way propagation delay of 1ms. To
resemble the observed nature of traffic on data networks [LTW+93],
we use self-similar cross-traffic. To generate self-similar cross-
traffic, we use four cross-traffic nodes, each having eight Pareto
ON-OFF traffic generators connected to routers R1 and R2. Each

Pareto source has an average ON time of 1ms and OFF time of 9ms.
Each cross-traffic node is connected to a router (R1 or R2) via a
5Mbps link with a propagation delay randomized to be between 1ms
and 5ms. The Pareto sources connected to the router R1 generate the
forward path cross-traffic for the TCP data flow, and the Pareto
sources connected to the router R2 generate the reverse path cross-
traffic for the TCP Ack flow. The cross-traffic packet sizes are
chosen to resemble the distribution found in the Internet [CAIDA]:
50% are 44B, 25% are 576B, and 25% are 1500B. Thus the average
packet size for the cross-traffic is 541B. A link of capacity 1Mbps
with a one-way propagation delay of 35ms (approximate
propagation delay between US coast to coast) forms the core link
connecting router R1 and R2. The buffer capacity at routers R1 and
R2 for the core link was set to twice the bandwidth-delay product
(BDP) of the core link. Using the 2*BDP product and the average
packet size of 541B, the buffer size at each of the routers R1 and R2
was set to 16 packets.

Fig. 1. Network topology for simulations

 The Maximum Transmission Unit (MTU) for all links was set to
the standard Ethernet MTU of 1500B. The TCP sender used an MSS
of 1460B. The TCP receiver used delayed Acks with a delayed Ack
timer of 200ms. For all simulations described in this paper, the
cross-traffic was allowed to run for 10s before the TCP sender began
sending data.
 The parameters varied in the topology described in Fig. 1 were
the aggregate rate of cross-traffic, the TCP variants, and the size of
the file being transferred. The aggregate cross-traffic ranged from no
cross-traffic to the bottleneck bandwidth of 1Mbps. The aggregate
cross-traffic was found to be directly proportional to the number of
packet losses generated. The packet losses in the simulations were
only due to network congestion. The TCP variants were chosen
using an incremental combination of the TCP enhancements
considered in this paper. We benchmarked TCP NewReno as the
TCP variant to base our comparisons. TCP NewReno had recently
been observed to be the most popular TCP variant in the Internet
[PF01]. Using TCP SACK as the starting point of the TCP
enhancements in study, we cumulatively added each TCP
enhancement in the order of their standardization in the IETF. The
TCP SACK and TCP NewReno variants used an initial window of
one packet. The TCP variants used in the simulations are as follows.
The acronym in parentheses is used to refer to the respective variant
in the rest of this paper.

(a) TCP NewReno {NewReno}
(b) TCP SACK {SACK}
(c) Increased Initial Window with (b) {SACK-IW}
(d) Limited Transmit with (c) {SACK-IW-LT}
(e) Appropriate Byte Counting (L=1) with (d)

{SACK-IW-LT-ABC1}
(f) Early Retransmit with (e) {SACK-IW-LT-ABC1-ER}

P8

R1 R21Mbps 35ms

5Mbps 1-5ms 5Mbps 1-5ms

P2 P8

TCP
Sender

P1 P2

TCP
Receiver

1

2

3

4

1

2

3

4
5M

bp
s

1m
s

5Mbps 1ms

P1 P8

R1 R21Mbps 35ms

5Mbps 1-5ms 5Mbps 1-5ms

P2 P8

TCP
Sender

P1 P2

TCP
Receiver

1

2

3

4

1

2

3

4
5M

bp
s

1m
s

5Mbps 1ms

P1

B. Web Transfers

 To assess the effect of TCP enhancements on web transfers, we
show the results for transfer of a single 20K and a single 100K file.
During the TBIT tests we observed that the base web page size used
in the Internet has significant variance. A plain text web page could
be as low as 10K in size while a web page with several objects
(pictures, thumbnails, audio, etc) could go up to 500K in size. We
thus chose a sample of 20K and 100K as representatives for web
transfers. We varied the aggregate cross-traffic arrival rate to
simulate packet drops for the TCP flow.
 Fig. 2 shows the transfer time of a 20K file, as a function of the
aggregate cross-traffic arrival rate, using the different TCP variants.
Fig. 3(a) plots the number of packet drops seen by a TCP flow for
different levels of cross-traffic. Each point in the graphs represents
an average of multiple runs. The results for cross-traffic arrival rates
below 800Kbps have not been plotted in Fig. 1 as the TCP flow did
not experience any loss below 800Kbps, leading to nearly same
transfer times for all the variants. At higher levels of cross-traffic
NewReno slightly outperforms SACK. SACK-IW outperforms both
SACK and NewReno and is the main contributor for better
performance of the cumulative enhancements. This is because short
transfers are on the order of few RTTs and saving one RTT by using
larger a initial window significantly reduces transfer times. SACK-
IW and all the later cumulative variants use an initial window of 3
packets as specified in [AFP+02], whereas NewReno and SACK use
an initial window of 1 packet. SACK-IW-LT uses Limited Transmit,
that allows to send new data on duplicate Acks. It can be seen from
Fig. 1 that SACK-IW-LT outperforms SACK and NewReno for all
levels of cross-traffic and performs almost the same or better than
SACK-IW. The effect of ABC is minimal, especially for lower loss
rates, as short transfers typically remain in slow start, while ABC
with an L=1 is helpful for transfers that spend majority of their time
in the congestion avoidance phase of TCP congestion control. In the
next section of bulk data transfers, we notice the effect of ABC more
prominently and explain the rationale behind it. In Fig. 2, the effect
of Early Retransmit (ER) is also minimal as ER gets invoked only in
the special case at the end of the file transfers. The effect of ER will
be more predominant for transfers less than 4 packets (5K file
transfers) where ER may be able to avoid expensive timeouts in the
event of packet loss.

Fig. 3(b) shows the CDF of the number of times Limited
Transmit (LT) and ER get invoked vs. the fraction of the total
number of runs. The total number of runs, on which the fraction in

Fig. 2. Transfer Time vs. Aggregate Cross-Traffic for a 20K transfer

 (a) (b)

Fig. 3. (a) Aggregate Cross-Traffic (Kbps) vs. Average number of drops for a
 20K transfer
 (b) CDF of the Number of times Limited Transmit or Early Retransmit

 get invoked vs. Fraction of Runs for a 20K transfer.

Fig. 3(b) is calculated, is the collection of all LT and ER enabled
runs for the LT and ER curve, respectively. As expected, ER gets
invoked only once, and for only 3% of the runs. However, it is
important to note that although ER occurs rather rarely, it does make
its case as the 3% of the total runs where ER fast retransmits the
missing packet, may have suffered a timeout without ER. For small
file transfers, a single timeout could significantly increase the
transfer time. For 51% of the runs, LT does not get invoked. This is
because for cross-traffic levels below 800Kbps no losses were seen
by the TCP flow. For the remaining 49% of the runs, LT gets
invoked “at least” once. Each time LT gets invoked, a new data
segment can be transmitted, thus improving (i.e. reducing) the total
transfer time as seen in Fig. 1.
 Fig. 4 shows the transfer time for a 100K file vs. the aggregate
cross-traffic arrival rate. SACK outperforms NewReno slightly for
cross-traffic rates beyond 800Kbps. The increase of initial cwnd has
no significant effect on transfer time. LT and ABC reduce the
transfer time by over 10 seconds for aggregate cross-traffic arrival
rates of 1Mbps. While LT allows for sending new data on duplicate
Acks yielding in increased goodput, ABC allows better evolution of
cwnd in congestion avoidance. Without ABC, a TCP sender will
increase its cwnd by one MSS in every two RTTs (due to delayed
Acks), when in congestion avoidance. An ABC sender will be able
to increase its cwnd by one MSS once per RTT as the cwnd is
increased based on the number of bytes acknowledged rather than
number of Acks received. The reverse path cross-traffic causes loss
of Acks similar to the loss of data in the forward path. Loss of Acks
in congestion avoidance may not allow cwnd to be increased once
per two RTTs for a TCP sender without ABC. On the other hand a

Fig. 4. Transfer Time vs. Aggregate Cross-Traffic for a 100K transfer

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

No. of times Invoked

C
D

F-
 F

ra
ct

io
n

of
 R

un
s

LT
ER

0

1

2

3

4

5

6

7

260 596 801 925 975 1111 1174

Aggregate Cross Traffic (Kbps)

A
ve

ra
ge

 N
o.

 o
f

D
ro

ps

20K

(a) (b)

Fig. 5. (a) Aggregate Cross-Traffic (Kbps) vs. Average number of drops for a
 100K transfer
 (b) CDF of the Number of times Limited Transmit or Early Retransmit

 get invoked vs. Fraction of Runs for a 100K transfer.

TCP sender with ABC is not affected by the loss of Acks in
congestion avoidance as long as an Ack cumulatively
acknowledging previous packets arrives. Since the 100K flow
operates in congestion avoidance for most of its transfer, ABC
causes better evolution of cwnd reducing the transfer time.

Fig. 5(a) shows the average number of data packet drops as a
function of the cross-traffic arrival rate. Starting from 800Kbps of
cross-traffic, the losses start increasing steadily, matched by the
increased transfer time as seen in Figure 4. As the file size to be
transferred increased from 20K to 100K, a greater number of LT
events should be generated. This can be seen in Figure 5(b), where
all sample runs generated at least two LT events, and approximately
20% of the runs generated more than eight LT events. ER gets
invoked only once, and for only 2.5% of the runs.

B. Bulk Transfers

 While web transfers present their own challenges, bulk transfers
are also an important metric for evaluating the performance of TCP
variants. We performed a bulk transfer of 10M to assess the
throughput achieved by the TCP variants. The aggregate cross-
traffic was varied to simulate packet drops.
 Fig. 6 shows the transfer time taken by the TCP variants for a
10M transfer as a function of the loss rate as seen by the TCP flow.
The loss rate is represented as a fraction of the total number of
packets dropped out of the total number of “new” data packets sent.
Fig. 6 shows that NewReno and SACK perform the same for loss

Fig. 6. Transfer Time vs. Fraction of Packet Loss for a 10M transfer

rates below 9%, but as the loss rates increase further, SACK
outperforms NewReno. While the loss rates beyond 10% may seem
excessive for the Internet, the plot shown in Fig. 1 illustrates the
pattern of performance of the TCP variants for bulk transfers. The
SACK-IW curve lies exactly over the SACK curve thus showing
that a higher initial cwnd makes little difference for bulk transfers.
SACK-IW-LT yields in better transfer times for higher loss rates as
well as for loss rates below 10%. Thus bulk transfers clearly gain by
the Limited Transmit feature. Bulk transfers spend most of the
connection lifetime in congestion avoidance. As described before
ABC allows for better evolution of cwnd in congestion avoidance
for receivers that generate delayed Acks and in situations of Ack
loss. A TCP sender that supports ABC increases its cwnd by one
MSS once per RTT, as opposed to once per two RTTs that a TCP
sender without ABC would increase. Loss of Acks leads to yet
slower cwnd evolution for a TCP sender without ABC. The
performance improvement with ABC is evident in Fig. 6 where
SACK-IW-LT-ABC1 reduces the transfer time as compared to
SACK-IW-LT. For bulk data transfers ER does not offer any
advantage as the scenario in which ER can be invoked occurs rarely
at end of transfers. Hence SACK-IW-LT-ABC1-ER and SACK-IW-
LT-ABC1 overlap in Fig. 6.
 We plot the CDF of the number of times LT and ER get invoked
for the bulk transfer vs. the fraction of total number of runs. It is
evident from Fig. 7 that the effect of LT is pronounced on bulk
transfers where approximately 50% of the total runs invoked LT
more than 400 times in their transfers. More than 90% of the runs
invoked LT 100 times in their transfers. While the effect of ER on
transfer time is minimal, we still saw 2.5% of the runs witness one
ER event at the end of transfer. ER may be able to save one timeout
for 2.5% of the runs, although a single timeout at the end of the
transfer is insignificant relative to the bulk data transfer time.

Fig. 7. CDF of the Number of times Limited Transmit or Early Retransmit

 get invoked vs. Fraction of Runs for a 100K transfer.

V. CONCLUSIONS AND ONGOING WORK

 This paper presents measurement and evaluation results for a set
of five recent TCP enhancements: SACK and the loss recovery
algorithm, Increasing Initial Congestion Window, Limited Transmit,
Appropriate Byte Counting and Early Retransmit. We developed
TBIT extensions and performed measurements to determine the
support of these TCP enhancements in the web server space in the
Internet. Our findings were that out of the servers that returned
results:

• Majority of the web servers use the standard initial window of
two packets. However, 15% of the web servers still use a low
initial window of one packet. Only 3% of the servers use an
initial window of 4 packets as allowed by [AFP+02].

0

5

10

15

20

260 596 801 925 975 1111

Average Cross Traffic Rate (Kbps)

A
ve

ra
ge

 N
o.

 o
f

D
ro

ps

100K

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

No. of times Invoked

C
D

F
-

Fr
ac

tio
n

of
 R

un
s

LT
ER

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 50 86 88 90 96 140 148 150 156 242 400 501 600 700 801 831

No. of times Invoked

C
D

F
-

Fr
ac

tio
n

of
 R

un
s

LT
ER

• While a large number of servers advertise the SACK option,
only 30% of them use the SACK information to perform loss
recovery.

• More than 50% servers do not support Limited Transmit.
• 50% of the web servers support Appropriate Byte Counting,

while other 50% are still vulnerable to misbehaving “split -
acking” receivers.

• None of the servers support Early Retransmit.

We performed simulations to assess the performance benefits of
these TCP enhancements for web and bulk data transfers. Based on
the results obtained, we make the following observations:

• SACK does not offer any noticeable improvements in the
transfer time for web transfers. For bulk transfers, SACK
reduces the transfer time for loss rates above 10%.

• Increasing initial congestion window improves transfer times
for small web transfers but offers no advantage for large web
transfers and bulk transfers.

• Although a relatively small change to TCP congestion control,
Limited Transmit is an important feature that improves transfer
times and gets invoked for all categories of transfers and
proportionally to the size of the transfer.

• Appropriate Byte Counting offers protection against
misbehaving receivers. From our results it also improves the
transfer time significantly for bulk transfers and for large web
transfers, in the presence of delayed Acks or Ack loss.

• Early Retransmit is a feature that gets invoked consistently for
3% of the total TCP runs. The main benefits of Early
Retransmit occur only for short flows such as small web
transfers.

Ongoing work as part of this paper includes the following:
• We are currently running the TBIT tests described in this paper

on a list of 27000 web servers. We plan to perform
fingerprinting of the operating systems being used by the
remote servers, and survey the current implementation status of
the TCP enhancements in the popular operating systems.

• The TCP-friendly equation [PFT+98], which is the basis for
TCP-friendly rate control (TFRC) [HFP+03], is based on the
Reno variant of TCP. We are investigating if the TCP-friendly
equation is still a correct representative of current TCP, i.e.,
TCP with the enhancements evaluated in this paper.

REFERENCES

[AAA+03] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton, Early
Retransmit for TCP and SCTP. draft-allman-tcp-early-rexm-03, Dec 03.

[ABF01] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP's Loss
Recovery Using Limited Transmit. RFC 3042, Jan 01.

[AF99] M. Allman, A. Falk, On the Effective Evaluation of TCP. ACM
Computer Communication Review, 29(5), Oct 99.

[AFP+02] M. Allman, S. Floyd, C. Partridge, Increasing TCP’s Initial
Window. RFC3390, Oct 02.

[All98] M. Allman. On the Generation and Use of TCP Acknowledgments.
ACM Computer Communication Review, 28(5), Oct 98

[All03] M. Allman, TCP Congestion Control with Appropriate Byte
Counting (ABC). RFC 3465, Feb 03.

[ALEXA] Global Top 500 Web Sites. http://www.alexa.com.

[APS99] M. Allman, V. Paxson, W. Stevens. TCP Congestion Control. RFC
2581, Apr 99.

[BAF+03] E. Blanton, M. Allman, K. Fall, L. Wang, A Conservative
Selective Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP.
RFC3517, Apr 03.

[Bal98] H. Balakrishnan, Challenges to Reliable Data Transport over
Heterogeneous Wireless Networks. Ph.D. Thesis, University of California at
Berkeley, Aug 98.

[CAIDA] CAIDA: Packet Sizes and Sequencing, Mar 98.
http://traffic.caida.org.

[CMT98] K. Claffy, G. Miller, and K. Thompson, The Nature of the Beast:
Recent Traffic Measurements from an Internet Backbone. INET 98, Apr 98.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee, Hypertext Transfer Protocol -- HTTP/1.1. RFC2616,
Jun 99.

[FF96] K. Fall, S. Floyd, Simulation-based Comparisons of Tahoe, Reno and
SACK TCP. ACM Computer Communication Review, July 96.

 [FH99] S. Floyd, T. Henderson, The NewReno Modification to TCP's Fast
Recovery Algorithm. RFC 2582, Apr 99.

[HFP+03] M. Handley, S. Floyd, J. Padhye, J. Widmer, TCP Friendly Rate
Control (TFRC) Protocol Specification. RFC3448, Jan 03.

[JK88] V. Jacobson, M. Karels, Congestion Avoidance and Control. In
Proceedings of the Sigcomm 1988, Aug 88

[LTW+93] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the Self-
similar Nature of Ethernet Traffic. In ACM SIGCOMM 1993, Sep 93.

[MC00] S. McCreary, K. Claffy, Trends in Wide Area IP Traffic Patterns - A
View from Ames Internet Exchange. Proc. ITC, September 2000. Monterey,
CA.

[MJ92] S. McCanne, V. Jacobson, The BSD Packet Filter: A New
architecture for User level Data Capture. In Proceedings of 1993 Winter
USENIX Conference, Jan 93.

[MMF+96] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective
Acknowledgement Options. RFC2018, Oct 96.

[NMAP] The NMAP Security Scanner. http://www.insecure.org/nmap.

[NS] The Network Simulator-2. http://www.isi.edu/nsnam.

[PF01] J. Padhye, S. Floyd, Identifying the TCP Behavior of Web Servers. In
Proceedings of Sigcomm 2001, Jun 01.

[PFT+98] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
throughput: a simple model and its empirical validation. ACM Sigcomm 98,
Sep 1998

[PN98] K. Poduri, K. Nichols, Simulation Studies of Increased Initial TCP
Window Size, RFC 2415, Sep 98.

[SCW+99] S. Savage, N. Cardwell, D. Wetherall, T. Anderson, TCP
Congestion Control with a Misbehaving Receiver. ACM Computer
Communications Review, 29(5): 71-78, October 1999.

[TBIT] The TCP Behavior Inference Tool (TBIT). http://www.icir.org/tbit.

