

TRANSPORT LAYER RENEGING

by

Nasif Ekiz

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer
Science

Fall 2012

© 2012 Nasif Ekiz
All Rights Reserved

TRANSPORT LAYER RENEGING

by

Nasif Ekiz

Approved: __
 Errol L. Lloyd, Ph.D.
 Chair of the Department of Computer and Information Sciences

Approved: __
 Babatunde A. Ogunnaike, Ph.D.
 Interim Dean of the College of Engineering

Approved: __
 Charles G. Riordan, Ph.D.
 Vice Provost for Graduate and Professional Education

 I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
 Paul D. Amer, Ph.D.
 Professor in charge of dissertation

 I certify that I have read this dissertation and that in my opinion it meets

the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
 Adarshpal S. Sethi, Ph.D.
 Member of dissertation committee

 I certify that I have read this dissertation and that in my opinion it meets

the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
 Martin Swany, Ph.D.
 Member of dissertation committee

 I certify that I have read this dissertation and that in my opinion it meets

the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
 Janardhan R. Iyengar, Ph.D.
 Member of dissertation committee

 I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
 Frederick J. Baker, Cisco Fellow
 Member of dissertation committee

 v

ACKNOWLEDGMENTS

I consider myself very lucky for having Paul D. Amer as my advisor. He has

always been supportive when I have had hard-times in life and research, especially in

my first years. With his help and patience, I was able to overcome all the difficulties I

encountered. As an advisor, he taught me to present complex ideas in a simple and

clear way. His enthusiasm for teaching and research gave me the strength to finish this

dissertation. I believe I could not ask more from an advisor. Thanks a lot Prof. Amer.

I would like to thank my dissertation committee: Prof. Adarshpal Sethi, Prof.

Martin Swany, Prof. Janardhan Iyengar, and Fred Baker for their reviews, constructive

suggestions and criticisms that helped to improve this dissertation.

During my years at the University of Delaware, I worked with a lot of great

people at the Protocol Engineering Lab (PEL). Preethi Natarajan was my mentor. She

helped me and improved my ability to conduct research in many ways. Thanks a lot,

Preethi. Jon Leighton and Joe Szymanski always provided invaluable comments and

helpful discussions when I was stuck on a problem. Abuthahir Rahman Habeeb, Fan

Yang, Aasheesh Kolli, Ersin Ozkan, and Varun Notibala contributed to this

dissertation by running experiments and extending network monitoring tools. Thank

you all. In addition, I am very grateful to Armando Caro, Janardhan Iyengar and

Randall Stewart for their guidance whenever I faced problems with ns-2 and FreeBSD

stack.

 vi

This dissertation is dedicated to my mother, Meryem Ekiz, my father, Yusuf

Ekiz, and my brother, Kemal Ekiz. Without their endless support, this dream would

not have come true.

A very special thanks goes to Kristina Curtis, not only for correcting my

grammatical errors but also for being very supportive and patient with me during my

stressful times while writing this dissertation. You are the best, canim!

Newark is a very special city for me. What made Newark really special is the

close friends I met here. Bahadir Bastas, Yiannis Bourmpakis, Levent Colak, Gokhan

and Juliette Tolay, Mehmet and Ozge Uygur, and Hasan Yonten made Newark more

fun and enjoyable. Thank you all.

 vii

TABLE OF CONTENTS

LIST OF TABLES ... x
LIST OF FIGURES .. xii
ABSTRACT .. xvi

Chapter

1 INTRODUCTION .. 1

1.1 Proposed Research ... 1
1.2 Definitions and Problem Statement ... 1

1.2.1 Transport Layer “Shrinking the Window” and “Reneging” 1
1.2.2 Non-Renegable Selective Acknowledgments (NR-SACKs) 4
1.2.3 Problem Statement ... 6
1.2.4 Research Goals – Why Study Data Reneging? 9

1.3 Related Research ... 9

2 MISBEHAVIORS IN TCP SELECTIVE ACKNOWLEDGMENT (SACK)
GENERATION .. 16

2.1 Introduction ... 16
2.2 Testing Seven SACK Misbehaviors .. 19

2.2.1 Fewer than Max Number of Reported SACKs 19
2.2.2 Receiving Data between CumACK and First SACK 22
2.2.3 Receiving Data between Two Previous SACKs 23
2.2.4 Failure to Report SACKs in FIN Segments 25
2.2.5 Failure to Report SACKs during Bidirectional Data Flow 27
2.2.6 Mishandling of Data Due to SACK Processing 29
2.2.7 SACK Reappearance in Consecutive Connections 31

2.3 Experimental Design ... 33
2.4 Results of TCP Behavior Inference Tool (TBIT) Testing 34
2.5 Conclusion ... 38

3 DETECTING RENEGING THROUGH PASSIVE MEASUREMENT 40

 viii

3.1 Detecting Reneging at TCP and SCTP Data Senders 42
3.2 Detecting Reneging in the Middle ... 46

3.2.1 The Model (RenegDetect v1) .. 47
3.2.2 Validating RenegDetect v1 .. 57
3.2.3 RenegDetect v2 (with Misbehaviors Detection and Use of

Bidirectional Traffic) ... 58
3.2.4 Hypothesis ... 67
3.2.5 Results of Internet Trace Analysis .. 69

3.2.5.1 Cooperative Association of Internet Data Analysis
(CAIDA) Traces ... 72

3.2.5.1.1 Description of Traces 73
3.2.5.1.2 Results .. 78
3.2.5.1.3 Linux Reneging Instances 80
3.2.5.1.4 FreeBSD Reneging Instances 85
3.2.5.1.5 Windows Reneging Instances 90

3.2.5.2 SIGCOMM 2008 Traces .. 94

3.2.5.2.1 Description of Traces 95
3.2.5.2.2 Results .. 97

3.2.5.3 Lawrence Berkeley National Laboratory (LBNL)
Traces ... 98

3.2.5.3.1 Description of Traces 98
3.2.5.3.2 Results .. 99

3.3 Conclusion ... 100

4 RENEGING SUPPORT IN OPERATING SYSTEMS 106

4.1 Reneging in Microsoft’s Windows .. 109
4.2 Reneging in Mac OS X .. 110
4.3 Reneging in Linux ... 116

4.3.1 Local vs. Global Reneging .. 119

4.4 Reneging in FreeBSD .. 120
4.5 Reneging in OpenBSD .. 126
4.6 Reneging in Solaris .. 128
4.7 Conclusion ... 132

 ix

5 CAUSING RENEGING ON A REMOTE HOST ... 134

5.1 A Tool to Cause a Remote Host to Renege: CauseReneg 136
5.2 Causing a FreeBSD Host to Renege .. 144

5.2.1 Network Buffers .. 144
5.2.2 Causing Reneging in FreeBSD .. 148
5.2.3 Results ... 152

5.3 Causing a Solaris Host to Renege ... 160

5.3.1 Causing Reneging in Solaris ... 160
5.3.2 Results ... 162

5.4 Causing Windows Hosts to Renege .. 163

5.4.1 Causing Reneging in Windows ... 164
5.4.2 Results ... 165

5.5 Conclusion ... 167

6 PRIOR COLLOBORATIVE RESEARCH .. 171

6.1 NR-SACKs .. 171
6.2 Concurrent Multipath Transfer (CMT)/Potentially Failed (PF) 173

7 CONCLUSIONS & FUTURE WORK .. 176

7.1 Conclusions ... 176
7.2 Future Work ... 187

REFERENCES ... 189

 x

LIST OF TABLES

Table 2.1: TBIT test results ... 35

Table 3.1: Number of SACK blocks in TCP segments .. 51

Table 3.2: Percentage of data monitored in CAIDA traces (Chicago, dir A) 75

Table 3.3: Percentage of data monitored in CAIDA traces (Chicago, dir B) 76

Table 3.4: Percentage of data monitored in CAIDA traces (San Jose, dir A) 77

Table 3.5: Percentage of data monitored in CAIDA traces (San Jose, dir B) 78

Table 3.6: Reneging frequency of CAIDA traces .. 79

Table 3.7: Host characteristics for Linux data receivers .. 81

Table 3.8: Linux reneging instances ... 81

Table 3.9: Connection numbers for reneging Linux data receivers 83

Table 3.10: Host characteristics for FreeBSD data receivers 87

Table 3.11: Initial advertised rwnd (SYN segments) of various operating systems .. 87

Table 3.12: FreeBSD reneging instances ... 87

Table 3.13: Connection numbers for FreeBSD data receivers 88

Table 3.14: Timestamp values of a reneging FreeBSD data receiver 89

Table 3.15: Host characteristics for Windows data receivers 91

Table 3.16: Windows reneging instances ... 92

Table 3.17: Connection numbers for reneging Windows data receivers 93

Table 3.18: Percentage of data monitored in wireless traces 96

Table 3.19: Percentage of data monitored in Ethernet traces 96

 xi

Table 3.20: Reneging frequency of SIGCOMM 2008 traces 97

Table 3.21: Percentage of data monitored in LBNL traces .. 98

Table 3.22: Reneging frequency of LBNL traces ... 99

Table 3.23: Frequency of reneging ... 101

Table 4.1: Market share of popular operating systems in 2009 [Market] 107

Table 4.2: Nmap detected operating systems of some of the Alexa's Top Sites 109

Table 5.1: Mbuf statistics for variable size out-of-order data for a single TCP
connection ... 146

Table 5.2: Memory usage statistics for n parallel TCP connections 149

Table 5.3: Memory usage statistics for n parallel TCP connections (updated) 150

Table 5.4: Testing [RFC2018] conformant TCP data senders 160

Table 5.5: CauseReneg attack to a Vista victim with variable number of parallel
connections .. 165

Table 5.6: CauseReneg attack to a Windows 7 victim with variable number of
parallel connections ... 166

 xii

LIST OF FIGURES

Figure 2.1: Fewer than max number of reported SACKs .. 21

Figure 2.2: Receiving data between CumACK and first SACK 23

Figure 2.3: Receiving data between two previous SACKs .. 25

Figure 2.4: Failure to report SACKs in FIN segments .. 26

Figure 2.5: Failure to report SACKs during bidirectional data 28

Figure 2.6: Mishandling of data due to SACK processing .. 30

Figure 2.7: SACK reappearance in consecutive connections 32

Figure 2.8: Experimental design for TBIT testing ... 33

Figure 3.1: Detecting reneging at the SCTP data sender ... 45

Figure 3.2: Detecting reneging at an intermediate router .. 50

Figure 3.3: Receive buffer state ... 52

Figure 3.4: Reneging detection model ... 54

Figure 3.5: Detecting reneging by analyzing retransmissions 60

Figure 3.6: Wireshark flow graph output of a TCP flow with SACKs 61

Figure 3.7: Candidate reneging instance I (not reneging) .. 63

Figure 3.8: Candidate reneging instance II (ambiguous) ... 64

Figure 3.9: Candidate reneging instance III (reneging) ... 65

Figure 3.10: Filtering traces ... 71

Figure 3.11: A Linux reneging instance .. 84

Figure 3.12: A FreeBSD reneging instance ... 89

 xiii

Figure 3.13: A Windows reneging instance ... 95

Figure 3.14: An example “bogus” reneging instance .. 100

Figure 4.1: Setting up the default reneging behavior in Mac OS X 111

Figure 4.2: Call graph for reneging in Mac OS X ... 111

Figure 4.3: mbuf_slab_alloc() function in Mac OS X ... 112

Figure 4.4: mbuf_sleep() function in Mac OS X ... 113

Figure 4.5: pfslowtimo() function in Mac OS X .. 114

Figure 4.6: tcp_drain() function in Mac OS X ... 115

Figure 4.7: Call graph for reneging in Linux ... 116

Figure 4.8: tcp_prune_ofo_queue() function in Linux .. 117

Figure 4.9: tcp_prune_queue() function in Linux .. 118

Figure 4.10: tcp_try_rmem_schedule() function in Linux .. 119

Figure 4.11: Setting up the default reneging behavior in FreeBSD 120

Figure 4.12: Call graph for reneging in FreeBSD .. 121

Figure 4.13: vm_pageout_scan() function in FreeBSD ... 122

Figure 4.14: Event handler for low-memory situation in FreeBSD 122

Figure 4.15: mb_reclaim() function in FreeBSD ... 123

Figure 4.16: Protocol switch table structure in FreeBSD .. 124

Figure 4.17: Protocol switch table initialization for TCP in FreeBSD 124

Figure 4.18: tcp_drain() function in FreeBSD ... 125

Figure 4.19: tcp_reass_flush() function in FreeBSD ... 126

Figure 4.20: Protocol switch table structure in OpenBSD ... 127

Figure 4.21: Protocol switch table initialization for TCP in OpenBSD 128

 xiv

Figure 4.22: Reassembly queue in Solaris ... 128

Figure 4.23: Definition of tcps_reass_timeout in Solaris .. 129

Figure 4.24: tcp_propinfo_tbl[59] value in Solaris .. 129

Figure 4.25: tcp_input_data() function in Solaris .. 130

Figure 4.26: tcp_reass_timer() function in Solaris .. 130

Figure 4.27: ndd command to change TCP parameters in Solaris 131

Figure 5.1: Causing a remote host to renege .. 136

Figure 5.2: The CauseReneging TBIT Test with m=40 (step #5, #9) 140

Figure 5.3: Causing a remote host to renege using CauseReneg 143

Figure 5.4: Network status output of a FreeBSD host ... 145

Figure 5.5: Statistics for mbuf and TCP reassembly queue size usage for 32
parallel TCP connections ... 147

Figure 5.6: Statistics for TCP reassembly queue size and memory usage for
1200+ parallel TCP connections ... 150

Figure 5.7: Main memory consumer program ... 151

Figure 5.8: Step ii of causing reneging (reneging is on) .. 154

Figure 5.9: Step iv of causing reneging (reneging is on) ... 154

Figure 5.10: Step v of causing reneging (reneging is on) .. 155

Figure 5.11: Step vi of causing reneging (reneging is on) ... 155

Figure 5.12: Step vi of causing reneging (reneging is off) .. 156

Figure 5.13: Tcpdump output of a TCP connection from causing reneging
(reneging is on) .. 158

Figure 5.14: Tcpdump output of a TCP connection from causing reneging
(reneging is off) ... 158

 xv

Figure 5.15: Tcpdump output of a TCP connection from causing reneging attack on
Solaris 11 ... 162

 xvi

ABSTRACT

Reneging occurs when a data receiver SACKs data, and later discards that data

from its receiver buffer prior to delivering it to the receiving application. Today’s

reliable transport protocols (TCP, SCTP) are designed to tolerate data reneging. I

argue that this design assumption is wrong based on our hypothesis that reneging

rarely if ever occurs in practice. To support this argument, this dissertation provides

the literature’s first comprehensive analysis of reneging. We investigate (1) the

instances, (2) causes and (3) effects of reneging in today’s Internet.

For (1), this dissertation proposes a model to detect reneging instances. The

model builds upon the way an SCTP data sender detects reneging. A state of the data

receiver’s receive buffer is constructed at an intermediate router and updated as new

acks are observed. When an inconsistency occurs between the state of the receive

buffer and a new ack, reneging is detected. We implemented the proposed model as a

tool called RenegDetect v1. While verifying RenegDetect v1 with real TCP flows, we

discovered that some TCP implementations were generating SACKs incompletely

under some circumstances giving a false impression that reneging was happening. Our

discovery led us to a side investigation to precisely identify five misbehaving TCP

stacks observed in the Internet (CAIDA) traces. For that, we designed a methodology

and verified RFC2018-conformant SACK generation on 29 TCP stacks for a wide

range of OSes. We found at least one misbehaving TCP stack for the five

misbehaviors observed during the verification of RenegDetect v1 and concluded that

while simple in concept, SACK handling is complex to implement.

 xvii

To identify reneging instances more accurately and distinguish them from

SACK generation misbehaviors, we updated RenegDetect v1 to v2 to better analyze

the flow of data, in particular, to analyze data retransmissions which are a more

definitive indication that reneging happened. To report the frequency of reneging in

trace data, traces from three domains were analyzed: Internet backbone, a wireless

network, and an enterprise network. Contrary to our initial expectation that reneging is

an extremely rare event, trace analysis demonstrated that reneging does happen. We

analyzed 202,877 TCP flows using SACKs from the three domains. In the flows, we

confirmed 104 reneging instances (0.05%). With 95% statistical confidence, we report

that the true average rate of reneging is in the interval [0.041%, 0.059%], roughly 1

flow in 2000.

For the reneging instances that were found, the operating system of the data

receiver was identified thus allowing the reneging behavior of Linux, FreeBSD and

Windows hosts to be more precisely characterized.

Since TCP is designed to tolerate reneging, SACKed data are unnecessarily

stored in the send buffer wasting operating system resources when reneging does not

happen. Since reneging does happen rarely (less than 1 flow per 1000), we recommend

that TCP should be changed to not tolerate reneging by (a) changing the semantics of

SACKs from being advisory to permanent and (b) RESETing (terminating) a

connection if a data receiver does have to take back memory that has been allocated to

received out-of-order data. With this recommended change, the send buffer is better

utilized for the large majority of flows that do not renege.

In trace analysis, we also found that the average main memory returned to a

reneging operating system per reneging instance was on the order of 2 TCP segments

 xviii

(2715, 3717, and 1371 bytes for Linux, FreeBSD, and Windows operating systems,

respectively.) This average amount of main memory reclaimed back to the operating

system seems relatively insignificant. I argue that reneging to save so little memory is

not worth the trouble. Reclaiming such an amount of memory to an operating system

is unlikely to help resume normal operation.

The causes of reneging (2) were identified by analyzing TCP stacks of popular

operating systems with reneging support. Our investigation revealed that five popular

operating systems (FreeBSD, Linux (Android), Apple’s Mac OS X, Oracle’s Solaris

and Microsoft’s Windows Vista+) can renege. Initially, reneging was expected to

happen on operating systems that go low on main memory to help the operating

system to resume normal operation. Surprisingly, we discovered that reneging also is

used as a protection mechanism against Denial of Service (DoS) attacks (Solaris and

Windows Vista/7). We concluded that reneging is a common mechanism implemented

in many of today’s popular operating systems.

To investigate the consequences of reneging (3), a tool, CauseReneg, to cause

a remote host to renege was designed, and used to force FreeBSD, Solaris, and

Windows Vista victims to renege. CauseReneg achieves its goal by exhausting a

victim’s resources by sending out-of-order data using multiple TCP connections. For

an operating system (e.g., FreeBSD) starving for memory, we demonstrated that

reneging alone cannot help the system to resume normal operation. Therefore, we

recommend that reneging support should be turned off for systems using reneging as a

mechanism to reclaim memory to resume normal operation. For operating systems

using reneging to protect against DoS attacks, reneging appears to be a useful

mechanism. We argue that a better approach would be to RESET a connection under

 xix

attack instead of reneging since terminating the connection would release all of the

resources held. For example, in FreeBSD, reneging would reclaim at most 64 Kbytes

(the default receive buffer size) per connection while terminating a connection would

release ~3MB of memory. By RESETing a connection, the victim’s system resources

are better utilized.

 1

Chapter 1

INTRODUCTION

1.1 Proposed Research

This dissertation investigates data reneging within the transport layer. Data

reneging occurs when a data receiver buffers and selectively acknowledges out-of-

order received data, and then purges that data from its receive buffer without

delivering the data to the receiving application. Today’s reliable transport protocols

Transmission Control Protocol (TCP) [RFC793] and Stream Control Transmission

Protocol (SCTP) [RFC4960] are designed to tolerate reneging. This dissertation argues

this design assumption is wrong. To develop and support this argument, this

dissertation investigates the instances, causes and effects of data reneging in today’s

Internet.

1.2 Definitions and Problem Statement

1.2.1 Transport Layer “Shrinking the Window” and “Reneging”

Data reneging is a transport layer behavior of which little is known: its

frequency of occurrence, its causes, its effects, etc. This section discusses data

reneging in more detail and motivates the study of data reneging in transport protocols

such as TCP and SCTP.

TCP specifies sequence numbers and cumulative acknowledgments (ACKs) to

help achieve reliable data transfer. A TCP data receiver uses sequence numbers to sort

 2

arrived data segments. Data arriving in expected order, i.e., ordered data, are

acknowledged to the data sender via cumulative ACKs. The data receiver accepts

responsibility of delivering ACKed data to the receiving application. Thus the data

sender can safely delete all cumulatively ACKed data from its send buffer, even

before these data are delivered to the receiving application.

The data receiver stores incoming data segments in a receive buffer. The

receive buffer consists of two types of data: ordered data which have been

cumulatively ACKed but not yet delivered to the application, and out-of-order data

caused by loss or reordering in the network. A correct TCP data receiver

implementation is not allowed to delete cumulatively ACKed data without first

delivering these data to the receiving application since the data sender removes

ACKed data from its send buffer.

Related to reneging is a behavior known as shrinking the window. For

purposes of flow control, a data receiver advertises a receive window (rwnd) which

specifies the amount of available buffer space at the data receiver. As a means of flow

control, a data receiver constrains a data sender to have at most an rwnd of data

outstanding. A TCP data receiver is technically allowed to advertise a window, and

later advertise a smaller window. This shrinking the window behavior while permitted

by the TCP specification is strongly discouraged [RFC793]. When a data receiver

shrinks its window, no ACKed data are actually deleted from the receive buffer, only

advertised empty buffer space is retracted.

TCP’s Selective Acknowledgment Option (SACK) [RFC2018] extends TCP’s

cumulative ACK mechanism by introducing SACKs. SACKs allow a data receiver to

acknowledge arrived out-of-order data to the data sender. The intention is that

 3

SACKed data do not need to be retransmitted during loss recovery. The data receiver

informs the data sender of out-of-order data by including SACK(s) in the TCP

segment’s options field.

Data receiver reneging (or simply, reneging) occurs when a data receiver

SACKs data, and later discards these data from its receive buffer prior to delivering

these data to the receiving application (or socket buffer). TCP is designed to tolerate

reneging. Specifically [RFC2018] states that: “The SACK option is advisory, in that,

while it notifies the data sender that the data receiver has received the indicated

segments, the data receiver is permitted to later discard data which have been

reported in a SACK option”. As is shrinking the window, reneging also is strongly

discouraged but permitted when, for example, an operating system needs to recapture

previously allocated receive buffer memory for another process, say to avoid

deadlock.

Because TCP is designed to tolerate possible reneging by a data receiver, a

TCP data sender must keep copies of all transmitted data segments in its send buffer,

even SACKed data, until cumulatively ACKed. If reneging does happen, a copy of the

reneged data exists and can be retransmitted to complete the reliable data transfer.

Inversely if reneging does not happen, SACKed data are unnecessarily stored in the

send buffer until cumulatively ACKed.

Reneging is more serious than shrinking the window. Note that while out-of-

order data are deleted from the receive buffer when reneging occurs, no removal of

out-of-order data occurs with shrinking the window. A TCP data sender needs a

mechanism (and its associated overhead) to deal with reneging while no extra

mechanism is needed to handle shrinking the window.

 4

This dissertation investigates if reneging actually occurs in the current Internet.

If reneging never occurs, transport protocols have no need to manage the event and

current TCP and SCTP implementations can be improved. Further, if reneging occurs

rarely, we believe the current handling of reneging in transport protocols can be

improved.

To further motivate the study of reneging, we need to understand the potential

gains for a transport protocol that does not tolerate reneging. For that, we first explain

Non-Renegable Selective Acknowledgments (NR-SACKs).

1.2.2 Non-Renegable Selective Acknowledgments (NR-SACKs)

The Non-Renegable Selective Acknowledgment (NR-SACKs) is a new

acknowledgment mechanism for SCTP [Ekiz 2011a]. With an NR-SACK extension,

an SCTP data receiver takes responsibility for non-renegable data (NR-SACKed), and,

an SCTP data sender needs not to retain copies of NR-SACKed data in its send buffer

until cumulatively ACKed. NR-SACKed data can be removed from the send buffer

immediately on the receipt of the NR-SACK.

In SCTP, non-renegable data are possible in three ways.

(1) SCTP offers an unordered delivery service in which data marked

UNORDERED can be delivered to the receiving application immediately even if the

data are out-of-order according to the transport sequence number (TSN). After

UNORDERED data are delivered to the application, they are by definition non-

renegable.

(2) SCTP provides a multistream delivery service in which each stream is

logically independent, and data received in-order within a stream can be delivered to

the application. In multistream applications, data delivered to the application are non-

 5

renegable, even though these data are out-of-order within the SCTP association

(SACKed). Note that out-of-order data which are also out-of-order within a stream are

renegable.

(3) It is possible to make all out-of-order data non-renegable in both TCP and

SCTP with operating system support. Some operating systems allow turning reneging

on and off. When reneging is off, the operating system guarantees not to renege on

out-of-order data. In FreeBSD [Freebsd], for example, the sysctl variable

net.inet.tcp.do_tcpdrain (a mechanism to get/set kernel state) can be used to turn

reneging off for TCP. This variable is on by default. Analogously, the sysctl variable

net.inet.sctp.do_sctp_drain is provided for SCTP. When reneging is turned off, all out-

of-ordered data become non-renegable.

NR-SACKed data are released from a data sender’s send buffer immediately.

With NR-SACKs, only renegable (necessary) data reside in the send buffer, while

with SACKs both renegable and non-renegable (unnecessary) data are kept. As a

result, memory allocated for the send buffer is better utilized with NR-SACKs.

[Natarajan 2008b] presents send buffer utilization results for unordered data transfers

over SCTP under mild (~1-2%), medium (~3-4%) and heavy (~8-9%) loss rates using

NR-SACKs vs. SACKs. For the bandwidth-delay parameters studies with SACKs, the

memory wasted by keeping copies of non-renegable data is on average ~10%, ~20%

and ~30% for the given loss rates, respectively.

NR-SACKs also improve end-to-end application throughput. To send new

data, in TCP and SCTP, a data sender is constrained by three factors: the congestion

window (congestion control), the advertised receive window (flow control), and the

send buffer. When the send buffer is full, no new data can be transmitted even when

 6

congestion and flow control mechanisms allow. When NR-SACKed data are removed

from the send buffer, new application data can be read and potentially transmitted.

[Yilmaz 2010] shows that the throughput achieved with NR-SACKs is always ≥ throughput observed with SACKs. For example, using NR-SACKs, the throughput

for an unordered data transfer over SCTP is improved by ~14% for a data sender with

32KB send buffer under low (~0-1%) loss rate.

1.2.3 Problem Statement

Suppose that reliable transport protocols were designed to NOT tolerate

reneging. What would be the advantages and disadvantages? In such a case, the send

buffer utilization would be always optimal, and the application throughput would be

improved for data transfers with constrained send buffers. Current transport protocols

employing SACKs such as TCP and SCTP suffer because of the assumption that

reneging may happen. Note that, a non-reneging transport protocol (that is when all

out-of-order data are non-renegable) would perform even better than a protocol using

NR-SACKs since there is no constraint on data delivery service used.

If we can document that reneging never happens or happens rarely, we can

argue that reliable transport protocols should be modified to operate on the assumption

that all data are non-renegable. As simplified argument, let us assume that reneging

happens rarely, say once in a million TCP flows. Case A (current practice): TCP

implementations tolerate reneging to maintain the reliable data transfer of the single

reneging connection. The 999999 non-reneging connections waste ~10% of the main

memory allocated for send buffer (under mild (~1-2%) loss rates) and achieve lower

application throughput.

 7

Case B (proposed change): TCP does not tolerate reneging. For our simplified

argument, 999999 connections have improved performance and 1 connection gets

RESET.

Changing TCP or SCTP with their current support for reneging into non-

reneging transport protocols requires only minor modifications to current practice.

First, the semantics for SACK is changed from advisory to permanent. Once a data

receiver SACKs data, that out-of-order data may not be reneged (Note: with this

simple change, the NR-SACK extension is not needed; SACKed data become non-

renegable.) If a data receiver does have to recapture allocated receive buffer space, we

propose that the data receiver MUST RESET the connection prior to reneging (i.e.,

only penalize the reneging connection). A data sender needs no mechanism to handle

reneging, since the data receiver must reset the connection when reneging is

necessary.

Our hypothesis is that the inefficiency of the transport protocols due to

possible reneging needs to be corrected by designing TCP and SCTP to not tolerate

reneging. We argue that penalizing a few reneging connections by making them

RESET worthwhile so that the large majority of non-reneging connections benefit

from better send buffer utilization and increased throughput.

One might criticize our proposed change, “What if a data receiver were to

renege on SACKed data and not RESET?” That incorrect behavior would cause a

failure in the reliable data transfer or a deadlock to occur. But currently a TCP receiver

may not renege on cumulatively ACKed data. If a TCP data receiver did such an

incorrect behavior, a failure or deadlock will occur. Our proposed change simply

defines SACKed data to have the same status as ACKed data.

 8

Our original expectation was that reneging never happens in practice. As it

turns out, this dissertation research observes that data reneging does happen, albeit

rarely. Given this observation, we characterize the circumstances causing reneging.

Once the circumstances are known, we analyze the pros and cons of reneging on the

operating system’s operation. If reneging does not help the operating system to resume

its operation, reneging should be disabled. Randall Stewart, the designer of SCTP and

implementor of the its FreeBSD reference implementation, hypothesized that an

operating system would eventually crash if the operating system ever arrived to a state

in which reneging was needed. If so, then why bother tolerating data reneging!

To better understand reneging in current practice, this dissertation identifies

operating systems that have built-in mechanisms for reneging, and ones that do not

(Chapter 4). If the majority of the operating systems did not have mechanisms to deal

with reneging, employing the current SACK mechanism would be inefficient and

designing non-reneging transport protocols would be absolutely called for. Our

investigation reveals that several operating systems (FreeBSD, Linux, Mac OS,

Solaris, and Windows) have reneging mechanisms.

Simply put – does reneging occur or not? We know of only one study of

reneging (an MS thesis) in the research community. We do not know what percentage

of connections renege, nor if today’s TCP implementations handle reneging instances

correctly. The Internet is evolving continuously; we should model actual practice. By

analogy, a study by [Medina 2005] examined a large number of web-servers and

showed that Tahoe TCP was used in only 2.6% of web-servers in 2005. Thus, there is

no need to compare new TCP extensions with TCP Tahoe since TCP Tahoe is now

 9

past practice. If we observe reneging occurs rarely or never, we will have evidence to

change the basic assumptions of transport layer protocols.

1.2.4 Research Goals – Why Study Data Reneging?

The primary research goal is to investigate reneging in the current Internet and

attempt to detect reneging instances through a passive measurement technique.

Findings from the passive measurement analysis of Internet traces are presented in

Chapter 3.

A secondary research goal is to design a tool to cause a remote machine to

renege. Inspecting reneging mechanisms in various operating systems (Chapter 4)

provides a basis for building a reneging causing tool. Chapter 5 presents a tool to

cause a machine to renege, and investigates the effects of reneging on transport

connections and operating systems.

1.3 Related Research

To the best of this author’s knowledge, the first and only prior study of

reneging is [Blanton 2008]. In this MS thesis which was not published elsewhere, the

author presents a reneging detection algorithm for a TCP data sender, and analyzes

TCP traces using the detection algorithm to report frequency of reneging.

In general, a TCP data sender is not designed to detect reneging. Instead, a

TCP sender is designed to tolerate reneging as specified in [RFC2018]. The SACK

scoreboard should be cleared at a retransmission timeout (RTO) and the segment at the

left edge of the window must be retransmitted. In [Blanton 2008], the author

hypothesized that discarding the SACK scoreboard may have a detrimental impact on

a connection’s ability to recover loss without unnecessary retransmissions. To

 10

decrease unnecessary retransmissions, an algorithm to detect reneging at a TCP sender

is proposed which clears SACK scoreboard when reneging is detected instead of

waiting until the RTO. The reneging detection algorithm compares existing SACK

blocks (scoreboard) with incoming ACKs and when an ACK is advanced to the

middle of a SACK block, reneging is detected. Using real traces, the author analyzed

TCP connections with SACKs to report frequency of reneging. Out of 1,306,646

connections analyzed, the author’s reneging detection algorithm identified 227

connections (0.017%) having reneged. The author concluded that reneging is an

infrequent event, and in general was found in systems running servers on well-known

ports (email servers, HTTP servers.) Another finding is that multiple instances of

reneging were often observed in a single connection.

The reneging detection algorithm proposed in [Blanton 2008] is simple, robust

to packet reordering, and does not rely on any external timers or events. The algorithm

does not detect reneging until an ACK advances to the middle of a SACK block. The

author acknowledges that reneging can be detected earlier when the TCP receiver

skips previously SACKed data. For such a case, SACKs are used for reneging

detection. The author is concerned that reordered ACKs would look like reneging with

this technique, so a mechanism is needed to ensure that ACKs are not reordered. For

that, the author suggests the use of TCP timestamps [RFC1323]. Unfortunately, ACKs

from the same window in general have the same TCP timestamp value which makes

timestamps less robust to reordering check. Our approach to detect reneging, detailed

in Section 3.2, uses both ACKs and SACKs. To infer ACK reordering, our approach

uses IP ID and TCP ACK fields instead of TCP timestamps.

 11

During the trace analysis [Blanton 2008], a common behavior is observed. An

ACK would advance to the middle of a SACK block and the next ACK observed

within 5ms would cover the entire SACK block. That type of reneging is referred as

“spurious” reneging. Our approach to detect reneging relies on retransmissions and

ignores “spurious” reneging instances when there are no retransmissions.

[Paxson 1997] presents “tcpanaly” a tool which automatically analyses the

correctness of TCP implementations by inspecting passive traces collected for bulk

data transfers in both directions (data and ACK traffic). The tool can identify large

number of TCP implementations employed at the time and reports errors when the

TCP flows inspected show non-conformant TCP behavior. In [Paxson 1997], the main

interests are data sender’s congestion window evolution and data receiver’s proper

ACK generation. With analysis, non-conformant TCP stacks are identified and

reported to the stack implementors. Similar to the [Paxson 1997], we detect reneging

instances through a passive measurement as detailed in Section 3.2 using bidirectional

TCP traffic.

[Padhye 2001] describes the TCP Behavior Inference Tool (TBIT) [Tbit]

which is used to infer the TCP behavior of remote web servers. The authors define a

number of test cases that can determine, for examples, the initial congestion window

size, the congestion control algorithm used, the time wait duration time, and ECN

usage of web servers.

The test case of importance to this research is the SACK mechanism test. This

test checks if a web server supports SACKs. A TCP end-point acknowledges its peer

that it is SACK enabled by sending a SACK-Permitted option in the SYN/SYN-ACK

packet [RFC2018]. If the web server is SACK enabled, this test further checks if

 12

SACKs sent by TBIT are correctly processed by the web server when it retransmits

segments during the loss recovery period.

In 2001, out of 4550 web servers tested by TBIT, only 1854 (~41%) were

SACK enabled. The authors also reported that only 42% of SACK enabled web

servers used SACK information correctly, the rest did not use SACK information to

minimize retransmissions during loss recovery.

Our tool to cause a remote machine to renege (see Section 5.1) is based on

TBIT, and needs to send specific sequences of TCP PDUs. The TCP traffic generated

by TBIT is restricted not to be hostile to the remote web servers. On the other hand,

our reneging causing tool tries to exhaust a remote machine’s main memory as much

as possible to trigger a reneging instance. TCP PDUs generated by our tool are hostile

and may eventually cause the remote machine to renege or even crash.

[Fraleigh 2003] describes the architecture and capabilities of the IPMON

system which is used for IP monitoring at Sprint IP backbone network. IPMON

consists of passive monitoring entities, a data repository to store collected trace files

and an offline analysis platform to analyze the collected data. The authors analyze

individual flows and traffic generated by different protocols and applications. The

authors present statistics such as traffic load (weekly and daily), traffic load by

applications (web, mail, file transfer, p2p, streaming), traffic load in flows. Also TCP

related statistics such as packet size distribution, RTT, out-of-sequence rate, and delay

distributions are presented. IPMON is another passive measurement tool as is tcpanaly

[Paxson 1997], and our method for detecting reneging instances (presented in Section

3.2).

 13

In [Jaiswal 2004], the authors introduce a passive measurement technique to

infer and keep track of the congestion window (cwnd) and round trip time (RTT) of a

TCP data sender. To infer a data sender’ cwnd, the authors construct a replica of the

data sender’s TCP state using a finite state machine (FSM). The FSM is updated

through ACKs and retransmissions seen at the data collection point. We employ the

same technique to update the view of a data receiver’s receive buffer. This view is

then used to detect reneging instances (detailed in Chapter 3.)

Using passive monitoring at an intermediate point, the cwnd evolution may be

under-estimated when three dup ACKs get lost after the intermediate point or over-

estimated if an entire window of packets gets lost before reaching to the intermediate

point. Our passive measurement approach to detect reneging is more robust to SACK

losses when compared to [Jaiswal 2004]. The robustness comes from the SACKs

being cumulative. Some of the information contained in lost or missing SACK

segments will be learnt from subsequent SACKs.

[Medina 2004] investigates the effect of “middleboxes” (firewalls, NATs,

proxies, etc.) on the performance of IP and TCP protocols. The authors use TBIT, the

tool described in [Padhye 2001], to send SYN packets with various IP or TCP options

to web servers in order to detect how middleboxes react to the options.

When no IP options are sent, most of the connections (98%) are established.

When IP options such as Record Route, Timestamp, and Unallocated Option are

present, the number of established connections drops dramatically to 45%, 36% and

0%, respectively. On the other hand, middleboxes have little effect on connection

establishment (connection failures are around 3%) when TCP options such as

Timestamp and Unallocated Option are present.

 14

[Ladha 2004] is an independent and parallel work to [Medina 2005] in which

the authors measure the current deployment status of recent TCP enhancements using

the TBIT tool. The authors added three new tests cases for recent TCP extensions

(limited transmit, appropriate byte counting (ABC), and early retransmit) to the TBIT.

In addition to the new test cases added, the SACK and initial congestion window tests

of [Padhye 2001] are rerun to evaluate the deployment status of these extensions. A

simulation study is performed to evaluate the performance of TCP extensions

mentioned above against TCP New Reno. TCP New Reno is compared against TCP

SACK with each extension added one at a time based on the standardization time in

the IETF.

In [Medina 2005], the authors investigate the correctness of modern TCP

implementations through active and passive measurements. The active measurements

are taken by the use of TBIT tool. All TBIT tests are rerun and compared with 2001’s

results [Padhye 2001]. Also, new test cases such as Byte Counting and Limited

Transmit are added to TBIT where the deployment status of new extensions to TCP is

explored.

SACK related results are of particular interest. SACK-enabled web servers

increased from being 41% in 2001 to 68% in 2004. Half of the SACK enabled web

servers also implement D-SACK [RFC2883]. Also the correct use of SACK

information by data senders (web servers) increased more dramatically: 90% in 2004

as opposed to 2001’s 42%. A new test is introduced to test if the web servers correctly

generate SACK blocks and around 91% of the web servers tested generated correct

SACK blocks.

 15

The authors also extended their previous work [Medina 2004] through passive

packet trace analysis to characterize the TCP behavior of the data receivers (web

clients). Statistics for advertised window and TCP options such as window scale

factor, timestamp, ECN capability and advertised MSS are provided for web clients.

The authors suggest developing tools to validate new transport protocols such as

SCTP and Datagram Congestion Control Protocol (DCCP).

Three studies summarized above, [Medina 2004], [Ladha 2004] and [Medina

2005], are active measurement studies as is our tool to cause a remote host to renege.

The main difference between these studies and our proposed study is the amount of

data traffic generated. In general, studies above send a small number of TCP PDUs

using a single TCP connection. Our reneging tool, on the other hand, requires sending

large amount of out-of-order data in order to cause reneging by consuming the main

memory allocated for network buffers using parallel TCP connections. While the

traffic generated by above studies is harmless to the tested web server, our tool to

cause a remote host to renege may cause the remote host to renege or even crash.

 16

Chapter 2

MISBEHAVIORS IN TCP SELECTIVE ACKNOWLEDGMENT (SACK)
GENERATION

While analyzing Internet traces of TCP traffic to detect instances of data

reneging, detailed in Chapter 3, we frequently observed seven misbehaviors in the

generation of TCP SACKs. These misbehaviors gave us the impression that data

reneging was happening frequently. Upon closer inspection of the reneging instances,

we concluded that in fact some TCP implementations were generating SACKs

incompletely under some circumstances. To confirm whether or not the misbehaviors

observed in the Internet traces were actual reneging instances (misbehaving TCP

stacks), we tested the RFC 2018 conformant SACK generation on wide range of

operating systems. In our testing, we simply mimicked the traffic behavior observed in

the Internet traces prior to observed misbehaviors.

In this chapter, we present a methodology and its application to test a wide

range of operating systems for SACK generation. The research findings for this

chapter appear in the journal paper [Ekiz 2011b].

2.1 Introduction

The Selective Acknowledgment (SACK) mechanism, [RFC2018], an extension

to Transmission Control Protocol’s (TCP) [RFC793] ACK mechanism, allows a data

receiver to explicitly acknowledge arrived out-of-order data to a data sender. When

using SACKs, a TCP data sender need not retransmit SACKed data during the loss

recovery period. Previous research [Allman 1997], [Bruyeron 1998], [Fall 1996]

 17

showed that SACKs improve TCP throughput when multiple losses occur within the

same window. The success of a SACK-based loss recovery algorithm [RFC3517] is

proportional to the SACK information received from the data receiver. In this research,

we investigate RFC 2018 conformant SACK generation.

Deployment of the SACK option in TCP connections has been a slow, but

steadily increasing trend. In 2001, 41% of the web servers tested were SACK-enabled

[Padhye 2001]. In 2004, SACK-enabled web servers increased to 68% [Medina 2005].

All of the operating systems tested in this study accept SACK-permitted TCP

connections.

Today’s reliable transport protocols such as TCP [RFC793] and SCTP

[RFC4960] are designed to tolerate data receiver reneging (simply, data reneging)

(Section 8 of [RFC2018]). As defined in Section 1.2.1, data reneging occurs when a

data receiver SACKs data, and later discards that data from its receive buffer prior to

delivering it to a receiving application (or receiving socket buffer).

In our research, we argue that reliable transport protocols should not be designed

to tolerate data reneging, largely because we found data reneging occurs rarely in

practice. While developing our software to discover data reneging in trace data, Section

3.2 in Chapter 3, we analyzed TCP SACK information within Internet traces provided

by the Cooperative Association for Internet Data Analysis (CAIDA) [Caida]. At first it

seemed that data reneging was happening frequently contrary to our hypothesis. On

closer inspection however, it appeared that the generation of SACKs in many TCP

connections potentially was incorrect according to RFC 2018. Sometimes SACK

information that should have been sent was not. Sometimes the wrong SACK

information was sent. In one misbehavior, SACKs from one connection were sent in the

 18

SYN-ACK used to open a later connection! These misbehaviors wrongly gave the

impression that data reneging was occurring.

Our discovery led us to verifying SACK generation behavior of TCP data

receivers for a wide range of operating systems. In our research, our goal is to present a

methodology for verifying SACK behavior, and to apply the methodology to report

misbehaving TCP stacks. The goal of the research is not to measure how much the

misbehaviors degrade the performance, but rather to identify misbehaving TCP stacks

so they will be corrected.

We first present in Section 2.2 seven misbehaviors, five (A-E) observed in the

CAIDA traces, and two (F-G) additional SACK related misbehaviors observed during

our testing of A-E. Technically, misbehaviors A-E indicate that SHOULD requirements

of [RFC2018] are not being followed, and SHOULD means “that there may exist valid

reasons in particular circumstances to ignore a particular item, but the full implications

must be understood and carefully weighed before choosing a different course”

[RFC2119]. Upon analysis, we believe these misbehaviors to be accidental, not

incidental.

Misbehaviors A-F can reduce the effectiveness of SACKs. Misbehavior G is the

worst one where a data receiver transmits a SACK for data that was never received, thus

questioning the data transfer reliability of the connection. To discover which

implementations are misbehaving, we defined seven test extensions to the TCP

Behavior Inference Tool (TBIT) [Tbit], a tool that verifies TCP endpoint behavior.

The methodology using TBIT is described in Section 2.3, and the results of our

TBIT tests are presented in Section 2.4. Section 2.5 summarizes our research in SACK

generation misbehavior.

 19

2.2 Testing Seven SACK Misbehaviors

The five SACK generation misbehaviors observed in CAIDA traces are

described as:

A. Fewer than max number of reported SACKs

B. Receiving data between CumACK and first SACK

C. Receiving data between two previous SACKs

D. Failure to report SACKs in FIN segments

E. Failure to report SACKs during bidirectional data flow

The two additional SACK-related misbehaviors observed during our TBIT

testing of A-E are:

F. Mishandling of data due to SACK processing

G. SACK reappearance in consecutive connections

2.2.1 Fewer than Max Number of Reported SACKs

RFC 2018 Section 3 specifies that “the data receiver SHOULD include as

many distinct SACK blocks possible in the SACK option,” and that “the 40 bytes

available for TCP options can specify a maximum of four SACK blocks.” For some

TCP flows, we observed that only two or sometimes three SACK blocks were reported

by a data receiver even though more SACKs were available and additional space

existed in the TCP header.

That is, more than two SACK blocks at the data receiver are known to exist

(say Xl-Xr, Yl-Yr, and Zl-Zr) but only two SACK blocks are reported (Xl-Xr and Yl-

Yr). A SACK block is presented with the following notation: Xl-Xr, where Xl and Xr

stand for the left and right edge, respectively. When the cumulative ACK advances

 20

beyond Xr, SACK block Xl-Xr, is correctly no longer reported, and SACK block Zl-Zr

is reported along with block Yl-Yr. This misbehavior implies that the data receiver

reports less than the recommended maximum SACK blocks.

We extended the existing TBIT test “SackRcvr” [Tbit] to determine a

receiver’s maximum number of reported SACK blocks. For clarity, most TCP

segments sent by TBIT in our Figures 2.1-2.7 are shown to carry 1 byte of data and

create 1 byte gaps. This numbering scheme makes the TBIT tests easy to understand.

In the actual tests performed (see traces [Ekiz 2011c]), segments carry 1460 bytes of

data and create 1460 byte gaps. The only exception was for Tests A, F for Linux

systems. The Linux advertised receiver window is only 5840 bytes. To simulate 4

gaps, TBIT segments for two Linux tests carry 600 bytes of data and create 600 byte

gaps.

The TBIT test in Figure 2.1 operates as follows. Sequence numbers of segments

are shown in parenthesis:

Test A

1. TBIT establishes a connection to TCP Implementation Under Test (IUT) with
SACK-Permitted option and Initial Sequence Number (ISN) 400

2. IUT replies with SACK-Permitted option

3. TBIT sends segment (401) in order

4. IUT acks the in order data with ACK (402)

5. TBIT sends segment (403) creating a gap at IUT

6. IUT acks the out-of-order data with SACK

7. TBIT sends segment (405) creating 2nd gap at IUT

8. IUT acks the out-of-order data with SACK

 21

9. TBIT sends segment (407) creating 3rd gap at IUT

10. IUT acks the out-of-order data with SACK

11. TBIT sends segment (409) creating 4th gap at IUT

12. IUT acks the out-of-order data with SACK

13. TBIT sends three resets (RST) to abort the connection

Figure 2.1: Fewer than max number of reported SACKs

The last SACK from the IUT reflects an implementation’s support for

maximum number of SACK blocks reported. A conformant implementation’s last

SACK should be as SACK #12 in Figure 2.1. A misbehaving implementation would

not SACK block Y (Misbehavior A1), or blocks X and Y (Misbehavior A2).

 22

2.2.2 Receiving Data between CumACK and First SACK

For some TCP flows having at least two SACK blocks, we observed the

following misbehavior. Once the data between the cumulative ACK and the first SACK

block was received, the data receiver increased the cumulative ACK, but misbehaved

and did not acknowledge other SACK blocks. (The acknowledgment with no SACK

blocks implies an instance of data reneging.)

RFC 2018 specifies that: “If sent at all, SACK options SHOULD be included in

all ACKs which do not ACK the highest sequence number in the data receiver's

queue.” So, SACKs should be included when the cumulative ACK is increased and

out-of-order data exists in the receive buffer.

Test B, illustrated in Figure 2.2, checks this misbehavior. The second SACK

block should remain present when the cumulative ACK is increased beyond the first

SACK block but is less than the second SACK block.

Test B

1. TBIT establishes a connection to IUT with SACK-Permitted option and ISN 400

2. IUT replies with SACK-Permitted option

3. TBIT sends segment (401) in order

4. IUT acks the in order data with ACK (402)

5. TBIT sends segment (404) creating a gap at IUT (the gap between Cum ACK and
first SACK block)

6. IUT acks the out-of-order data with SACK

7. TBIT sends segment (406) creating 2nd gap at IUT

8. IUT acks the out-of-order data with SACK

9. TBIT sends segment (403)

 23

10. IUT acks the out-of-order data with SACK

11. TBIT sends segment (402) to fill the gap between Cum ACK and first SACK

12. IUT acks the in order data with SACK

13. TBIT sends three RSTs to abort the connection

Figure 2.2: Receiving data between CumACK and first SACK

A conformant implementation should report SACK block (406-407) as shown

in #12 in Figure 2.2. A misbehaving implementation omits reporting the SACK block.

2.2.3 Receiving Data between Two Previous SACKs

We observed that some TCP flows report SACK information incompletely once

the missing data between two SACK blocks (say Xl-Xr and Yl-Yr) are received. The next

 24

SACK should report a single SACK block concatenating the first SACK block (Xl-Xr),

the missing data in between, and the second SACK block (Yl-Yr). Instead some

implementations generate a SACK covering only the first SACK block and the missing

data, i.e., (Xl-Yl), omitting the second SACK block. This behavior implies that the

second SACK block is reneged.

Test C, illustrated in Figure 2.3, tests this misbehavior. The data receiver should

report one SACK block covering the two SACK blocks and the data in between.

Test C

1. TBIT establishes a connection to IUT with SACK-Permitted option and ISN 400

2. IUT replies with SACK-Permitted option

3. TBIT sends segment (401) in order

4. IUT acks the in order data with ACK (402)

5. TBIT sends segment (403) creating a gap at IUT

6. IUT acks the out-of-order data with SACK

7. TBIT sends segment (405) creating 2nd gap at IUT

8. IUT acks the out-of-order data with SACK

9. TBIT sends segment (404) with missing data between the first and the second
SACK blocks

10. IUT acks the out-of-order data with SACK

11. TBIT sends three RSTs to abort the connection

A proper implementation is expected to report the out-of-order data (403-406)

as shown in #10 in Figure 2.3. A misbehaving implementation would report the SACK

block partially (403-405).

 25

Figure 2.3: Receiving data between two previous SACKs

2.2.4 Failure to Report SACKs in FIN Segments

When closing a connection, a receiving side sends a FIN segment along with the

acknowledgment (ACK and SACK) for the data received. But for some data flows, we

observed the FIN segment does not carry SACK information. As discussed in Section

2.2.2, the receiver should include the SACK information along with the ACK.

Test D, in Figure 2.4, operates as follows: TBIT opens a connection and sends a

GET request (HTTP/1.0) to the IUT. The IUT sends the requested data, and

immediately closes the connection with a FIN since HTTP/1.0 is non-persistent

[RFC1945].

Test D

1. TBIT establishes a connection to IUT with SACK-Permitted option and ISN 400

2. IUT replies with SACK-Permitted option

3. TBIT sends segment (401-450: GET /index.pdf HTTP/1.0 request) in order

 26

4. IUT acks the in order data with ACK (450)

5. IUT starts sending segments with contents of index.pdf

6. TBIT sends segment (451) creating a gap at IUT

7. TBIT acks segments of IUT

8. IUT acks the out-of-order data with SACK

9. IUT continues sending contents of index.pdf with SACK

10. Once index.pdf is sent completely, IUT sends a FIN to close the connection

Figure 2.4: Failure to report SACKs in FIN segments

 27

The conformed behavior of a data receiver is to include SACK information in

the FIN segment as shown in #10 in Figure 2.4. A misbehaving implementation sends

an ACK, but no SACK information.

2.2.5 Failure to Report SACKs during Bidirectional Data Flow

This misbehavior occurs when the data flow is bidirectional. In some TCP flows,

SACK information is not conveyed when the TCP segment carries data. If a TCP host is

sending data continuously (e.g., an HTTP server), only one SACK is sent when out-of-

order data are received, and SACK information is not piggybacked with the following

segments. This misbehavior can cause less efficient SACK-based loss recovery since

SACKs are sent only once for each out-of-order data arrival.

As stated in Section 2.2.2, a conformant data receiver should include SACK

information with all ACKs. If ACKs are piggybacked while sending data, SACKs

should also be piggybacked in the TCP segments.

We added a new TBIT test for misbehavior E. To have bidirectional data flow

and out-of-order data simultaneously, we used HTTP/1.1 GET requests [RFC2616].

HTTP/1.1 opens a persistent connection between TBIT and an IUT. TBIT requests the

file index.pdf (11650 bytes) which is large enough to have a data transfer requiring

several round trips so that SACK information can be observed in the segments.

Test E

1. TBIT establishes a connection to IUT with SACK-Permitted option and ISN 400

2. IUT replies with SACK-Permitted option

3. TBIT sends segment (401-450: GET /index.pdf HTTP/1.1 request) in order

4. IUT acks the in order data with ACK (450)

 28

5. IUT starts sending segments with contents of index.pdf

6. TBIT sends segment (451) creating a gap at IUT

7. TBIT acks segments of IUT

8. IUT acks the out-of-order data with SACK

9. IUT continues sending contents of index.pdf with SACK

10. Once index.pdf is retrieved completely, TBIT sends three RSTs to abort the
persistent connection

Figure 2.5: Failure to report SACKs during bidirectional data

A conformant implementation appends SACK information in TCP segments

carrying data as shown in Figure 2.5, whereas a misbehaving implementation does not.

 29

2.2.6 Mishandling of Data Due to SACK Processing

While running Test E, we observed another SACK-related misbehavior. Some

segments do not carry maximal payload when SACKs are included. Rather they carry

only the number of bytes equal to the SACK information appended.

We explain the misbehavior in detail using Test F shown in Figure 2.6. Test F

modifies Test E. Instead of sending one out-of-order data, four are sent to check how

data is sent by the TCP IUT as the number of appended SACKs increases.

Test F

1-5. Same as Test E

6. TBIT sends segment (451) creating a gap at IUT, and ACKing the 1st segment of
IUT

7. When the ACK for 1st segment of IUT is received, IUT’s congestion window
(cwnd) is increased enabling sending two new segments. IUT sends two segments
with one SACK block: 3rd segment (1448 bytes) and 4th segment (12 bytes)

8. TBIT sends segment (453) creating a second gap at IUT, and ACKing the 2nd
segment of IUT

9. When the ACK for 2nd segment of IUT is received, IUT sends two segments each
with two SACKs: 5th segment (1440 bytes) and 6th segment (20 bytes)

10. TBIT sends segment (455) creating a third gap at IUT, and ACKing the 3rd segment
of IUT

11. When the ACK for 3rd segment of IUT is received, IUT sends two segments each
with three SACKs: 7th segment (1432 bytes) and 8th segment (28 bytes)

12. TBIT sends segment (457) creating a fourth gap at IUT, and ACKing the 4th
segment of IUT

13. When the ACK for 4th segment of IUT is received, IUT sends two segments each
with four SACKs: 9th segment (1424 bytes) and 10th segment (36 bytes)

 30

Figure 2.6: Mishandling of data due to SACK processing

For every ACK received from TBIT, the IUT’s cwnd is increased to send two

new segments. After the first ACK is received, the IUT sends segments with 1448 and

12(!) bytes of data, respectively. Both segments from the IUT do include a SACK

block. A proper SACK implementation is expected to send 1448 bytes of data in both

segments each with 12 bytes of SACK in the TCP options. As the number of SACKs

increase to 2, 3 and 4, the IUT sends two segments with (1440, 20), (1432, 28), (1424,

36) bytes, respectively. Note that the second segment always (coincidentally?) carries

a number of data bytes equal to bytes needed for the SACK blocks, not a full size

segment. This misbehavior is observed continuously while out-of-order data exists at

 31

the IUT. Throughput is decreased almost in half for the time when out-of-order data

exists in the receive buffer.

2.2.7 SACK Reappearance in Consecutive Connections

When verifying misbehaviors A-E, we ran the TBIT tests successively using

different port numbers. We observed that in some TCP stacks, SACK information of a

prior connection, say from Test A, would sometimes appear in the SYN-ACK segment

of a new connection, say from Test B!

To further investigate the misbehavior, we developed Test G as shown in Figure

2.7. This test purposely uses the same initial sequence numbers for consecutive

connections to demonstrate a worst case:

Test G

1. TBIT establishes a connection to IUT with SACK-Permitted option and ISN 400
on ephemeral port Eph1

2. IUT replies with SACK-Permitted option on port 80

3. TBIT sends segment (401) in order

4. IUT acks the in order data with ACK (402)

5. TBIT sends segment (403) creating a gap at IUT

6. IUT acks the out-of-order data with SACK

7. TBIT sends three RSTs segments to abort the connection

8. After ‘X’ minutes, TBIT establishes a connection to IUT with SACK-Permitted
option and ISN 400 on ephemeral port Eph2

9. IUT replies with SACK-Permitted option on port 80 including a SACK block of the
previous connection

 32

Figure 2.7: SACK reappearance in consecutive connections

In the second connection, the IUT sends an acknowledgment with SACK block

403-404 which is from the first connection. TBIT assumes 403 is SACKed, but the IUT

never received the data. TBIT later sends data 402-403 to check if the IUT increases

ACK to 405. The IUT returns an inconsistent ACK 403, SACK 403-405, but fortunately

 33

does not increase ACK to 405 so the connection remains reliable. In a real connection,

eventually the sender will timeout on 403, discard all SACKed information, and

retransmit the data, thus returning to a correct state [RFC2018]. However for a brief

period of time, the data sender and receiver are in an inconsistent state.

2.3 Experimental Design

The TBIT tests described in Section 2.2 were performed over a dedicated local

area network with no loss. Tests were performed between two machines, A and B, as

shown in Figure 2.8. The round trip time was on average 10ms, and no background

traffic was present.

Figure 2.8: Experimental design for TBIT testing

 34

The IUTs being verified were the standard TCP stacks of various operating

systems. We installed 27 operating systems using Oracle’s VirtualBox virtualization

software [Virtualbox] on machine B. We ran tests for Mac OS X on another machine.

TBIT 1.0 [Tbit] was extended on FreeBSD 7.1 (machine A) with the seven

TBIT tests detailed in the Section 2.2.

For each operating system, we installed an Apache HTTP Server [Apache] on

machine B since TBIT is originally designed to infer TCP behavior of a web server.

The TCP segments transmitted between TBIT and each IUT were captured at machine

B. For this purpose, we also installed wireshark [Wireshark] on each Windows OS,

and tcpdump [Tcpdump] on each UNIX, UNIX-like and Mac OS.

2.4 Results of TCP Behavior Inference Tool (TBIT) Testing

We verified the operating systems in Table 2.1. Each TBIT test was repeated

three times. In every case, all seven test outputs were consistent. Segment captures of

tests and TBIT tests are available [Ekiz 2011c].

For test A, the early versions of FreeBSD, 5.3 and 5.4, and all versions of

OpenBSD report at most three SACK blocks (Misbehavior A1). OpenBSD explicitly

defines a parameter TCP_MAX_SACK = 3. Windows 2000, XP and Server 2003

report at most two SACK blocks (Misbehavior A2). Later Windows versions correct

this misbehavior.

If the return path carrying SACKs were lossless, a TCP data receiver reporting

at most two or three SACK blocks would not cause a problem. A data sender would

always infer the proper state of the receive buffer for efficient SACK-based loss

recovery described in [RFC3517]. When more than four SACK blocks exist at a data

receiver, and SACK segments are lost, the chance of a data sender getting less

 35

accurate state of the receive buffer increases as SACK implementations’ number of

blocks reported is decreased. This misbehavior can lead to less efficient SACK-based

loss recovery, and therefore decreased throughput (longer transfer times) when

multiple TCP segments are lost within the same window.

Table 2.1: TBIT test results

Operating System Test
A1 A2 B C D E F G

FreeBSD 5.3 X X
FreeBSD 5.4 X X
FreeBSD 6.0
FreeBSD 7.3
FreeBSD 8. 0
Linux 2.2.20 (Debian 3) X
Linux 2.4.18 (Red Hat 8) X
Linux 2.4.22 (Fedora 1) X
Linux 2.6.12 (Ubuntu 5.10) X
Linux 2.6.15 (Ubuntu 6.06) X
Linux 2.6.18 (Debian 4) X
Linux 2.6.31 (Ubuntu 9.10)
Mac OS X 10.5
Mac OS X 10.6
OpenBSD 4.2 X X
OpenBSD 4.5 X X
OpenBSD 4.6 X X
OpenBSD 4.7 X X
OpenBSD 4.8 X X
OpenSolaris 2008.05 X X
OpenSolaris 2009.06 X X
Solaris 10 X
Solaris 11 X
Windows 2000 X X X X X
Windows XP X X X X X
Windows Server 2003 X X X X X
Windows Vista X X
Windows Server 2008 X X
Windows 7 X X

 36

We report, for test B, that Windows 2000, XP and Server 2003, are

misbehaving. SACK information is not reported where it should be, after the

cumulative ACK is increased beyond the first SACK block. Later Windows versions

correct this misbehavior.

Misbehavior C is observed with Windows 2000, XP and Server 2003. SACK

information is partially reported when the data between two previously reported

SACK blocks are received. Later Windows versions correct this misbehavior.

We observed misbehavior D, failure to report SACK information in FIN

segment, in FreeBSD 5.3, FreeBSD 5.4, all versions of OpenBSD and Microsoft’s

Windows. The problem has been corrected in the later FreeBSD versions.

Misbehavior E is observed with all versions of Windows OS. When the TCP

traffic is bidirectional, SACKs are not carried within the opposite direction TCP

segments. Out-of-order data are SACKed only once when they arrive. If a SACK is lost

on the return path, subsequent segments with no SACKs will trigger a fast

retransmission which can cause the data sender to unnecessarily retransmit data that as

SACKed and already exists in the receiver’s buffer.

The traffic pattern for testing misbehavior E is a typical web browsing

scenario. TBIT represents a user’s web browser where HTTP 1.1 GET requests are

pipelined, and the IUT represents an HTTP 1.1 web server. Since the scenario

represents typical Internet traffic, we believe that the SACK generation misbehavior of

the Windows OS is significant, and should be fixed.

Misbehavior F is observed in Solaris 11, OpenSolaris and all Linux systems

except the latest one tested Linux 2.6.31 (Ubuntu 9.10), so the problem may be fixed

for Linux. Interestingly, misbehavior F did not occur in Solaris 10. When out-of-order

 37

data exists at the data sender, thus sending both data payload and SACKs, every other

segment carries only bytes equal to SACK information appended (at most 36 bytes).

This misbehavior halves the throughput for the time out-of-order data exists at the

receive buffer, and is the typical web browsing scenario described above. We consider

the misbehavior significant, and needs to be fixed.

Misbehavior G is observed on Solaris 10 and OpenSolaris systems. We ran the

Test G multiple times with different time intervals X = {1, 5, 15} minutes. Even after

15 minutes, we frequently observed the reappearance of SACK blocks from a prior

connection in later connections. The SACK-based loss recovery algorithm does not

work efficiently, when the TCP implementation has this misbehavior. For example,

when two connections have overlapping sequence numbers, the latter connection

sends a SACK for a data block that was never received. This misbehavior will cause a

decrease in throughput. We would like to note that the ISN of a new TCP connection

is assigned randomly and the probability of having two TCP connections using the

same ISN space is small.

One time, we ran all the seven TBIT tests continuously on Solaris 10 and

OpenSolaris machines, and noticed a scenario where a SACK block of the first

connection in Test A appeared in the SYN-ACK segment of the third connection

established in Test C. One time, all TBIT tests were executed and then repeated 45

minutes later. Even after 45 minutes, we observed an instance where the SACK block

of Test E from the first set appeared in the SYN-ACK segment of Test E in the second

set. We could not repeat this misbehavior with any regularity. Having a sender think

data is acknowledged when in fact the data has not been received results in an

 38

inconsistent (i.e., unreliable) state. Fortunately, this misbehavior is corrected in Solaris

11.

2.5 Conclusion

In this research, we designed a methodology and verified conformant SACK

generation on 29 TCP stacks for a wide range of OSes: FreeBSD, Linux, Mac OS X,

OpenBSD, Solaris and Windows. We identified the characteristics of the seven

misbehaviors, and designed seven new TBIT tests to uncover these misbehaviors.

For the first five misbehaviors which are observed in the CAIDA trace files,

we found at least one misbehaving TCP stack. We report various versions of

OpenBSD and Windows OS to have misbehaving SACK generation implementations.

In general, the misbehaving SACK implementations can cause a less efficient SACK-

based loss recovery which yields to decreased throughput and longer transfer times.

During the TBIT testing, we identified two additional misbehaviors (F and G).

Misbehavior F decreases the throughput by sending less than expected data while

using SACKs. Most Linux and OpenSolaris systems show this misbehavior.

Misbehavior G is more serious and can cause a TCP connection to be inconsistent

should the sequence number space of one connection overlap that of a prior

connection. Solaris 10 and OpenSolaris systems misbehave in this manner.

We note that for all misbehaviors, because SACKs are advisory thus allowing

a data receiver to renege on all SACKed out-of-order data, eventually the data sender-

receiver will timeout, discard all SACK information, and return to a correct state.

Thus the data flow remains reliable; only performance degradation may occur.

As stated in the Introduction (Section 2.1), we discovered SACK misbehaviors

during our investigation of data reneging described in Chapter 3. In that investigation,

 39

we argue that SACKs should be “permanent” (not advisory) meaning a data receiver

MUST NOT renege on out-of-order data. If SACKs were to become permanent,

misbehavior G would have to be fixed since it can result in unreliable data transfer.

While we hope misbehaviors A-F will be fixed, even if left as is, as long as SACKs

remains advisory the misbehaviors will only result in reduced performance, not

unreliable data transfer.

While simple in concept, SACK handling is complex to implement.

 40

Chapter 3

DETECTING RENEGING THROUGH PASSIVE MEASUREMENT

To document the frequency of TCP reneging, a mechanism is needed to detect

reneging instances. This section presents a model and its implementation as a tool,

RenegDetect, which passively detects TCP reneging instances occurring in Internet

traces. TCP does not support detecting reneging at a data sender. On the other hand,

SCTP supports detecting reneging at a data sender. When previously SACKed data are

not SACKed in a new acknowledgement (ack), an SCTP data sender infers reneging.

Our model to detect TCP reneging instances is based on SCTP’s reneging detection

mechanism. A state of the data receiver’s receive buffer is constructed at an

intermediate router and updated as new acks are observed. When an inconsistency

occurs between the state of the receive buffer and a new ack, reneging is detected. We

implemented the model as a tool called RenegDetect and tested RenegDetect with

artificial TCP flows mimicking reneging instances.

RenegDetect was also verified by analyzing 100s of TCP flows from Internet

traces. The analysis showed that reneging was happening frequently. On closer

inspection, however, it turned out that reneging was not happening, rather the

generation of SACKs in many TCP implementations was incorrect according to

[RFC2018]. Some TCP implementations were generating SACKs incompletely under

some circumstances. Sometimes the SACK information that should have been sent

was not. Sometimes wrong SACK information was sent. We refer to these

implementations as misbehaving. In Internet traces, we observed five different types

 41

of misbehaviors which wrongly gave the impression that reneging was occurring. Our

discovery led us to a side investigation to precisely identify the five misbehaving TCP

stacks observed in the CAIDA traces. We tested [RFC 2018] conformant SACK

generation on a wide range of operating systems and found at least one misbehaving

TCP stack (see Section 2.4 for more detail) for each of the five misbehaviors.

Discovering TCP SACK generation misbehaviors led us to change our initial

method to detect reneging instances which was based only on monitored acks. In

addition to acks, RenegDetect was extended to analyze the flow of data, in particular,

retransmissions of data which are a more definitive indication that reneging has

occurred.

Initially, our hypothesis was that reneging rarely if ever occurs in practice. To

statistically conclude with confidence that reneging is a rare event, say P(reneging) <

10-5, we needed to analyze ~300K TCP connections using SACKs and document that

no instances of reneging occurred. For that purpose, TCP traces from three different

domains (Internet backbone, wireless, enterprise) were analyzed using our updated

RenegDetect to report the frequency of reneging.

Contrary to our initial hypothesis that reneging rarely if ever occurs in practice,

trace analysis demonstrated that reneging does happen. For the reneging instances

detected, we predicted reneged hosts operating systems with TCP fingerprints and

characterized reneging behavior in detail.

The outline of this chapter is as follows. First, we detail how a TCP or SCTP

data sender infers reneging in Section 3.1. In Section 3.2.1, we present our initial

model (RenegDetect v1) to detect reneging instances in the Internet traces. Section

3.2.2 describes the validation of our original RenegDetect v1 using artificial TCP

 42

flows and real TCP flows from the Internet. Internet trace analysis demonstrated that

reneging is inferred wrongly due to SACK generation misbehaviors. Modifications

made to RenegDetect to create v2 to infer reneging and misbehavior instances more

accurately via data retransmissions are explained in Section 3.2.3. Section 3.2.4 details

the probability theory to define a minimum number of TCP flows to analyze to test our

initial hypothesis. We report the frequency of reneging in Section 3.2.5. Finally,

Section 3.3 concludes our efforts.

3.1 Detecting Reneging at TCP and SCTP Data Senders

This section details reneging behavior of a data sender in reliable transport

protocols. Reneging is possible both in TCP and SCTP. To generalize reneging

behavior in the Internet, the frequency of reneging for both protocols should be

documented. Unfortunately, SCTP is not sufficiently deployed to matter. TCP is the

dominant protocol used for reliable data transfers in the Internet. Thus, to generalize

reneging behavior, we need to document frequency of TCP reneging. For that, a

mechanism is needed to detect reneging instances in the Internet traces. If a TCP

sender had a mechanism to detect reneging, we could simply replicate that mechanism

and apply the mechanism to TCP traces. Unfortunately, a TCP sender does not support

detecting reneging. Instead, a TCP sender tolerates reneging with a retransmission

policy specified in [RFC2018]. An SCTP data sender, on the other hand, supports

detecting reneging by keeping a state for previously SACKed data. This state is

compared to SACK information carried within new acks and reneging is detected

when a comparison is inconsistent. We borrow SCTP’s approach and apply it to detect

TCP reneging instances within Internet traces. For that, we detail how an SCTP data

sender detects reneging with an example. We first present how a TCP data sender

 43

tolerates reneging and possible limitations which might be reasons for not detecting

reneging at a TCP data sender.

In the current TCP and SACK specifications, a TCP data sender has no design

to infer reneging. To tolerate reneging, a TCP data sender keeps copies of SACKed

data in its send buffer until cumulatively ACKed. To achieve reliable data transfer, the

following retransmission policy is specified in [RFC2018] for a data sender to resume

the data transfer in the case of reneging.

For each segment in the send buffer that is SACKed, an associated “SACKed”

flag is set. The segments with “SACKed” bit set are not retransmitted until a

retransmission timeout (RTO). At the RTO, the TCP data sender clears all the

“SACKed” information due to possible reneging and begins retransmitting all

segments beginning at the left edge of the send buffer.

A TCP data sender’s lack of inferring reneging (a retransmission policy is

specified to tolerate reneging instead) might be due to the following SACK

limitations. First, there is a hard limit on the number of SACK blocks that can be

acknowledged based on the constrained space in the TCP options field. At most, 4

SACK blocks can be reported in a TCP segment if no other TCP options are used.

Second, a data sender may not infer if a segment is “SACKed” or not when four

consecutive SACKs are lost on the ack path. These limitations prohibit a TCP data

sender from having an accurate view of the data receiver’s receive buffer state to

detect reneging.

SCTP, on the other hand, supports reneging detection at the data sender.

Unlike TCP’s constrained number on reported SACK blocks (4 at maximum), an

SCTP data receiver can generate SACK chunks with a large number of Gap Ack

 44

Blocks (same semantics as SACK blocks). In SCTP [RFC4960], a data receiver must

report as many Gap Ack Blocks as possible in a SACK chunk. While a limit still

exists on the number of reported blocks restricted by the path’s maximum

transmission unit (MTU) for practical purposes, the limit does not come into play. For

example, for a path with MTU=512 bytes, a SACK chunk can report 116 Gap Ack

Blocks (20 bytes for an IP header, 12 bytes for a SCTP common header, 16 bytes for a

SACK chunk header + 116 * 4 byte Gap Ack Blocks).

Thus, an SCTP data sender has a more accurate view (effectively complete) of

the data receiver’s buffer state, and can accurately infer reneging by inspecting

reported Gap Ack Blocks1. If a new SACK arrives and previously SACKed data is not

present, the SCTP data sender infers reneging, and marks only the reneged data for

retransmission.

Let us look at an example reneging scenario shown in Figure 3.1 and see how

an SCTP data sender infers reneging in detail. Without loss of generality, the example

assumes 1 byte of data is transmitted in each data packet. A data sender sends a

sequence of packets, 1 through 6, to a data receiver. Assume packet 2 is lost in the

network. The data receiver receives packets 3 through 6, and sends ACKs and SACKs

to notify the data sender about the out-of-order data received. When ACK 1 SACK 3-6

arrives at the data sender, the state of the receive buffer is known to be as follows:

ordered data 1 is delivered or deliverable to the receiving application, and out-of-order

data 3-6 are in the receive buffer.

1 The likelihood of a data stream requiring more than 116 out-of-order blocks of data
is negligible.

 45

Before packet 2 is retransmitted via a fast retransmission, assume the operating

system running the data receiver runs short of main memory, and reneges all out-of-

order data in the receive buffer. When packet 2’s retransmission arrives at the data

receiver, only a cumulative ACK 2 is sent back to the data sender with no SACKs.

When the data sender receives ACK 2, reneging is detected. Previously

SACKed out-of-order data 3-6 are still not being SACKed. Data 3-6 are marked for

retransmission as the data sender infers reneging.

ACK 2 SACK 7-7 is sent when packet 7 arrives out of order. This SACK

reinforces the fact that reneging (for data 3-6) occurred.

Figure 3.1: Detecting reneging at the SCTP data sender

 46

To report the frequency of TCP reneging, a mechanism to detect TCP reneging

instances is needed. We next present a method to detect reneging instances which is

based on how an SCTP data sender infers reneging.

3.2 Detecting Reneging in the Middle

To document the frequency of TCP reneging, a mechanism is needed to detect

reneging instances. This section presents a model and its implementation as a tool,

RenegDetect, which passively detects TCP reneging instances occurring in Internet

traces. In passive measurement studies, collected trace files are analyzed to infer a

specific protocol behavior (i.e., reneging). Our model infers reneging instances by

analyzing TCP acknowledgment traffic monitored at an intermediate router. The

model is based on how an SCTP data sender infers reneging. When previously

SACKed data are not SACKed in a new ack, reneging is inferred. The model is

detailed in Section 3.2.1. We implemented the model as a tool called RenegDetect v1.

RenegDetect v1 was verified with artificial TCP flows mimicking reneging

instances. The tool to validate the correctness of RenegDetect v1 is presented in

Section 3.2.2. RenegDetect v1 was also verified with 100s of TCP flows from Internet

traces. Preliminary Internet trace analysis showed that reneging albeit infrequent was

happening. Upon deeper investigation, we revealed that some TCP stacks were

generating partial or wrong SACKs falsely giving the impression that reneging was

happening. Discovering that misbehaving SACK implementations exist led us to

update our model.

Our initial model infers reneging instances by analyzing acks. To detect

reneging instances more accurately, our original RenegDetect v1 was updated to

 47

analyze flow of data too, specifically data retransmissions. Section 3.2.3 details

changes to RenegDetect v2.

Once RenegDetect v2 was ready to analyze TCP traces, we needed to find the

minimum number of TCP flows for analyzing to statistically conclude that reneging is

a rare event, say P(reneging) < 10-5. Section 3.2.4 details the probability theory to

determine the number of TCP flows to be analyzed for this investigation. To confirm

our initial hypothesis that reneging is a rare event, we needed to analyze ~300K TCP

connections using SACKs.

Finally, TCP traces from three different domains (Internet backbone, wireless,

enterprise) were analyzed using the RenegDetect v2 to report the frequency of

reneging. The results of trace analysis are presented in Section 3.2.5.

3.2.1 The Model (RenegDetect v1)

This section details a model and its implementation, RenegDetect v1, which

detects TCP reneging instances using the TCP trace files. The model described in this

section appears in [Ekiz 2010]. The model is based on SCTP’s reneging detection

mechanism. A state of the data receiver’s receive buffer is constructed at an

intermediate router and updated through new acks. When an inconsistency occurs

between the state of the receive buffer and a new ack, reneging is detected.

A data receiver’s receive buffer consists of two types of data: ordered data,

which has been ACKed but not yet delivered to the application, and out-of-order data

that resulted from loss or reordering in the network. To detect an SCTP reneging

instance, a data sender infers the state of the receiver’s buffer through ACKs and

SACKs. Even though TCP does not have a mechanism to detect reneging instances,

reneging can be detected by analyzing TCP ack traffic and inferring the state of

 48

receiver’s buffer. The idea is to learn the state of the receive buffer and to employ a

similar reneging detection mechanism as an SCTP data sender does based on the

observed acks. From now on, all discussions regarding to detecting reneging instances

apply only to TCP traffic.

For a TCP data sender, the state of the receive buffer can be learned with the

ACKs and SACKs, and updated through the new acks. The state consists of two items:

a cumulative ACK value (stateACK) and a list of out-of-order data blocks

(stateSACKs) known to be in the receive buffer.

Now let us briefly describe how the state of the receive buffer is maintained

and reneging is inferred at the data sender with the help of the reneging example

shown in Figure 3.1. Assume that all acks sent by a TCP data receiver arrive at the

corresponding TCP data sender.

The first ack, ACK 1, indicates that no out-of-order data are in the receive

buffer. The state of the receive buffer is initialized as follows: ordered data 1 is

delivered or deliverable to the receiving application (stateACK is set to 1) and no out-

of-order data are in the receive buffer (no stateSACK blocks). The next ack, ACK 1

SACK 3-3, notifies that out-of-order data 3 is received and stored in the receive

buffer. This ack updates the state of the receive buffer: ordered data 1 is delivered or

deliverable to the receiving application (stateACK is still 1) and out-of-order data 3 is

in the receive buffer (add the first stateSACK 3-3 to the state).

When the acks for packets 4-6 are each observed, the state of the receive buffer

is updated and the out-of-order data 3-6 are known to be in the receive buffer. The

state of the receive buffer is now: stateACK 1, stateSACK 3-6. The next ack, ACK 2,

arrives with no SACK blocks (assuming there is enough space in the TCP segment to

 49

report at least one SACK block). When the state of the receive buffer (stateACK 1,

stateSACK 3-6) is compared to the new ack (ACK 2), an inconsistency is observed.

The cumulative ACK informs that data up to 2 are delivered or deliverable to the

receiving application and no out-of-order data are in the receive buffer. On the other

hand, it is known that out-of-order data 3-6 have been previously SACKed

(stateSACK 3-6). So, due to the lack of a SACK block for the out-of-order data 3-6,

reneging is detected.

Let us consider the example scenario when the ack traffic is monitored by an

intermediate router. In the example shown in Figure 3.1, a reneging instance is

detected when all of the acks arrive at the data sender. In practice, acks may traverse

different paths, arrive at the intermediate router out of order, or get lost in the network

before reaching the router.

Figure 3.2 shows the same data transfer where only three acks are monitored at

the intermediate router. Upon seeing ACK 1 SACK 3-4, the router determines that the

state of receive buffer at the data receiver is: ordered data 1 is delivered or deliverable

to the receiving application (stateACK 1) and out-of-order data 3-4 are in the receive

buffer (stateSACK 3-4). The second ack, ACK 1 SACK 3-6, updates the state by

adding out-of-order data 5-6 as SACKed (stateSACK 3-6.) When ACK 2 SACK 7-7 is

received and compared to the state of the receive buffer (stateACK 1, stateSACK 3-6),

an inconsistency is observed. Reneging is detected since previously SACKed data 3-6

are not SACKed.

Even though the number of acks observed at the intermediate router are

limited, the state of the receive buffer is as for Figure 3.1. Because a SACK block

 50

reports all of the consecutive out-of-order data as a single block, the intermediate

router can infer the complete state of the receive buffer most of the time.

Figure 3.2: Detecting reneging at an intermediate router

Constructing the state of the receive buffer as accurately as possible is based

on the actual number of SACK blocks at the data receiver. If the number of SACK

blocks is more than 4, the data receiver is unable to report full SACK information. In

this case, when consecutive acks get lost, the intermediate router will have less

accurate state information.

Table 3.1 shows the number of SACK blocks in TCP segments based on a few

randomly selected trace files from the Internet backbone captured in June 2008. Recall

that, at maximum, 4 SACK blocks can be included in a TCP segment. For segments

 51

with 1, 2, or 3 SACK block(s), the TCP header length is checked to determine if

another SACK option could have been appended to a TCP header. TCP segments with

4 SACK blocks already have a full TCP header. Less than 0.5% of the TCP segments

that include SACK options do not have enough space for another SACK option.

Assuming all TCP traces follow a similar pattern, the state of the receive buffer can be

constructed accurately most of the time.

Even though the state of receive buffer may be inaccurate, having a partial

state of the out-of-order data in the receive buffer can be still enough to detect

reneging instances. The reasoning is that we expect that a reneging data receiver will

purge all of the out-of-order data, as it occurs in FreeBSD [FreebsdImpl] and Linux

[Linux]. Since the intermediate router has state information about out-of-order data,

reneging will be detected as soon as any ack with no SACK option is observed.

Table 3.1: Number of SACK blocks in TCP segments

TCP segments with
n SACK blocks

Enough space for
another SACK block

Not enough space for
another SACK block

1 ~88% 0%
2 ~11% 0%
3 0.7% 0.20%
4 n/a 0.15%

Total number of TCP segments 780,798 (100%)

Our software to detect reneging instances, RenegDetect v1, constructs the state

of the receive buffer for TCP flows (connections) that contain SACKs. An inferred

state of the receive buffer is compared with new acks to check for consistency. When

the comparison is consistent, the state is updated. Otherwise, a data reneging instance

is detected and reported.

 52

We now describe our model for constructing the state of the receive buffer at

an intermediate router. The state consists of a cumulative ACK (stateACK) value and

an ordered list of out-of-order data blocks (stateSACK blocks) known to be in the

receive buffer. In Figure 3.3, a view of the receive buffer state is shown, which

consists of n disjoint stateSACK blocks. The stateSACKs are ordered according to the

sequence number of their left edges.

Figure 3.3: Receive buffer state

The stateACK value holds the highest ACK value observed for the TCP flow

and is updated when a higher ACK value is observed. When the stateACK value is

updated, any stateSACKs below the stateACK value are deleted from the state.

RenegDetect v1 currently does not deal with wrap around in the sequence

space simply to avoid programming complexity for such a rare event. If the stateACK

value is higher than any of the stateSACKs due to a wrap around a warning is thrown

and the given TCP flow is simply discarded.

Figure 3.4 presents our model for constructing and updating the stateSACKs in

the state of the receive buffer. The state is initialized with the first TCP ack observed

 53

in a flow. If the ack has no SACK block(s), only the stateACK is initialized. If the ack

includes SACK blocks(s), each one is added as a stateSACK to the state.

When the next TCP ack is observed, each reported SACK block

(corresponding to a New SACK Block (N) in Figure 3.4) is compared with the

stateSACKs in the receive buffer state. Each stateSACK block in the receive buffer

state is represented with Current SACK Block (C) in Figure 3.4.

The comparison of a new SACK block (N) and a current SACK block (C) is

done both on the left (L) and right (R) edges. If each SACK block is thought of as a

set, a comparison of two sets must result in exactly one of four cases:

1. ܰ is a superset of ܥ (ܰ ⊇ (ܥ

2. ܰ is a proper subset of ܥ (ܰ ⊂ (ܥ

3. ܰ intersects with ܥ, and ܰ and ܥ each have at least 1 byte of data not in ܥ and ܰ, respectively ((ܰ ∩ ܥ ≠ 	∅) 	∧ ! (ܰ ⊇ ∧	(ܥ ! (ܰ ⊃ ((ܥ
4. ܰ does not intersect with ܥ (ܰ	 ∩ ܥ	 = 	∅)

Note that the above cases are all mutually exclusive. Each case is described in

turn. For the given examples, assume an initial receive buffer state as follows: the

stateACK is 8 and there is one stateSACK 12-15 with left and right edges 12 and 15,

respectively.

Case 1: When a new SACK block (e.g., SACK 12-17) is a superset of a current

SACK block (e.g., stateSACK 12-15), it means more out-of-order data had been

received at the data receiver. The current SACK block (stateSACK) is updated to

reflect the new SACK block (information). The update may be in terms of a left edge

extension, a right edge extension, or both. After the update, the updated stateSACK is

compared with the rest of the stateSACKs in the state. The reasoning is that the

updated stateSACK may be the superset of a number of stateSACKs in the receive

 54

Figure 3.4: Reneging detection model

 55

buffer state due to possible ack reordering, and may fill a gap between two

stateSACKs. Now assume that a new ack, ACK 8 SACK 12-17, arrives. When C and

N are compared, case 1 holds. C is updated via a right edge extension to reflect the

new information learnt from N; stateSACK becomes 12-17.

Case 2: When a new SACK block (e.g., SACK 12-13) is a proper subset of a

current SACK block (e.g., stateSACK 12-17), the comparison implies reneging (out-

of-order data 14-17 had been deleted from the receive buffer). An instance of reneging

is logged for future deeper analysis.

Case 3: Reneging is similarly detected when a new SACK block (e.g., SACK

15-20) intersects with a current SACK block (stateSACK 12-17), and the new SACK

block and current SACK block each have at least 1 byte not in the current SACK

block and new SACK block, respectively. Such a case would result when a data

receiver purges some, but not all, of the out-of-order data and later receives more out-

of-order data. The new ack informs the arrival of new out-of-order data, 18-20, as well

as the removal of previously SACKed data, 12-14. An instance of reneging is logged

for future deeper analysis. The state is not updated (to catch more inconsistencies)

until the cumulative ACK is advanced beyond the SACK blocks that trigger reneging

instances.

Case 4: If a new SACK block (e.g., SACK 22-25) and a current SACK block

(e.g., stateSACK 12-17) do not intersect, the new SACK block is compared with the

next stateSACK block in the state. If the new SACK block is disjoint with all of the

stateSACKs in the state, the new SACK block is added as a stateSACK to the receive

buffer state. The updated receive buffer state becomes: stateACK 8, stateSACK1 12-

17, stateSACK2 22-25. If a new ack reports only one SACK block, say ACK 8 SACK

 56

22-25, and there is no space in the TCP header to append another SACK block, case 4

holds. If the new ack has enough space to carry two SACKs (22-25, 12-17) but carries

only one (22-25), RenegDetect detects an inconsistency in the state: previously

SACKed data 12-17 is missing. An instance of reneging for out-of-order data 12-17 is

logged for future deeper analysis.

The model, shown in Figure 3.4, detects reneging instances only when some

SACK blocks are included in the acks. If the data receiver purges all the out-of-order

data in the receive buffer, no SACK blocks are reported within acks. In such a case,

the receive buffer state would have a number of stateSACKs, and the new ack would

report no SACK blocks (even though the TCP options field has enough space to report

at least one SACK block). RenegDetect v1 also infers such reneging instances. Let us

continue with the example scenario. The receive buffer state is as follows: stateACK

8, stateSACK1 12-17, and stateSACK2 22-25. A new TCP ack arrives with no SACK

blocks (ACK 8). Reneging is detected if there is enough space in TCP header to report

at least one SACK block.

Reneging may be inferred spuriously if acks are reordered before arriving at

the intermediate router. To cope with ack reordering, a check is performed on the

protocol fields: IP ID and TCP ACK. When one or both of the fields of an ack is

smaller than the previous ack’s values, reordering is detected. Reordered acks are not

used to update the receive buffer state; they are discarded.

We also considered looking at TCP timestamps [RFC1323] to cope with ack

reordering. Unfortunately, Internet TCP traces show that acks from the same window

may have the same TCP timestamp value. On the other hand, IP ID field is always

 57

incremental. As such, we chose to use IP ID field along with the TCP ACK field to

identify reordering.

We needed to test if RenegDetect v1 can detect reneging instances correctly

before analyzing real TCP traces. A tool to validate RenegDetect v1 is explained in the

following section.

3.2.2 Validating RenegDetect v1

A validation tool was needed to check whether or not RenegDetect v1 could

identify reneging instances correctly. For that purpose, another student from our lab,

Abuthahir Habeeb Rahman, independently created a number of synthetic TCP flows

carrying ack traffic to simulate some reneging and non-reneging flows. He used

text2pcap, an application that comes with the Wireshark protocol analyzer [Wireshark]

which can generate a capture file from an ASCII hex dump of packets.

Reneging flows mimicked behaviors such as: (1) a SACK block was shrinking

from left edge, right edge, or both, (2) only one SACK was reported when two SACK

blocks were expected, (3) a SACK block was shrinking from one edge while

extending from the other, and (4) an ACK was increasing into the middle of a SACK

block.

Non-reneging flows mimicked behaviors such as: (1) a SACK block was

extending from left edge, right edge, or both, (2) a new SACK block was covering

previous two SACKs, and (3) an ACK was increasing to the right edge of a SACK

block or beyond.

RenegDetect v1 was tested with these synthetic flows. All of the reneging

instances were correctly identified.

 58

RenegDetect v1 was also verified by analyzing 100s of TCP flows from

Internet traces provided by Cooperative Association of Internet Data Analysis

(CAIDA). Initially, it seemed that reneging was happening frequently. On closer

inspection, however, it turned out that the generation of SACKs in many TCP

implementations was incorrect according to [RFC2018]. Some TCP implementations

were generating SACKs incompletely under some circumstances. Sometimes the

SACK information that should have been sent was not. Sometimes wrong SACK

information was sent. These misbehaviors wrongly gave RenegDetect v1 the

impression that reneging was occurring.

Our discovery led us to a side investigation to confirm whether or not the

misbehaviors observed in the CAIDA traces were actual reneging instances or

misbehaving TCP stacks. We tested [RFC 2018] conformant SACK generation on a

wide range of operating systems. In our testing, we simply mimicked the traffic

behavior observed in the CAIDA traces prior to observed misbehaviors. For the five

misbehaviors observed in the CAIDA traces, we found at least one misbehaving TCP

stack (see Section 2.4 for more detail). This discovery led us to change the way

RenegDetect v1 detected reneging instances. We explain our updated model and tool

in the next section.

3.2.3 RenegDetect v2 (with Misbehaviors Detection and Use of Bidirectional
Traffic)

Based on the verification described in Section 3.2.2, we needed to update our

model to detect reneging. The problem was how to differentiate between an actual

reneging instance vs. a SACK generation misbehavior.

 59

We decided to distinguish misbehavior and reneging instances based on the

monitored data retransmissions. In misbehaviors, out-of-order data are not discarded

from the receive buffer. Only related SACK information is missing or reported

partially. Eventually, when the data between ACK and the out-of-order data are

received, ACK is increased beyond the out-of-order data that seemed to have been

reneged. If no or partial retransmissions are monitored for the out-of-order data that

seemed to have been reneged and ACK is increased beyond, we conclude that a

misbehavior is observed (no reneging).

On the other hand, out-of-order data are discarded with reneging. Therefore,

when the data between the ACK and reneged out-of-order data are received, the ACK

would increase to the left edge of the reneged data. Eventually, data sender will

timeout and retransmit the reneged data. Then, the ACK would increase steadily after

each retransmission. The updated RenegDetect, v2, keeps track of retransmissions for

the out-of-order data that seems to have been reneged. Let us show how to detect

reneging by analyzing retransmissions with an example shown in Figure 3.5. The

example is similar to example shown in Figure 3.1 except that transmission sequence

of packets 7 and 2 is exchanged and data retransmissions for packets 3-6 are present.

Before packet 7 is received, the data receiver reneges and deletes out-of-order data 3-

6. When packet 7 is received, an ack (ACK 1 SACK 7-7) is sent. When ACK 1 SACK

7-7 is compared to the state (stateACK 1 stateSACK 3-6), an inconsistency exists.

Previously SACKed data 3-6 are not SACKed anymore due to possible reneging or a

misbehaving TCP stack. RenegDetect v2 marks data 3-6 as MISSING. The ack, ACK

2, for packet 2’s fast retransmission gives the impression that reneging happened since

ACK is not increased to 7. If ACK was increased to 7 on receipt of packet 2, this

 60

behavior would conclude a SACK generation misbehavior (no retransmissions). After

an RTO, the data sender retransmits packets 3-6. Since ACK increases steadily after

each retransmission, reneging is concluded.

Figure 3.5: Detecting reneging by analyzing retransmissions

Does observing retransmissions for data that seems to have been reneged

assure a reneging instance? No. When retransmissions are observed for the out-of-

order data that seems to have been reneged (referred to as “a candidate reneging

instance”) three cases are possible: (I) a not reneging instance (a misbehavior), (II) an

 61

ambiguous instance (either a reneging or a misbehavior instance), or (III) a reneging

instance. RenegDetect v2 reports candidate reneging instances. We then analyzed each

candidate reneging instance by hand with wireshark [Wireshark]. Wireshark can graph

a TCP flow displaying both data and ack segments. Initially, wireshark did not have

support the viewing of SACK blocks. A student from our lab, Fan Yang, extended

wireshark to display SACK blocks in a flow graph. The patch to view SACKs in

wireshark flow graphs can be downloaded at:

http://www.cis.udel.edu/~amer/PEL/Wireshark_TCP_flowgraph_patch.tar. An

example output is shown in Figure 3.6 where the underlined data are shown in a

SACK block indicated by an arrow. With this update to wireshark, it easy to analyze a

TCP flow and decide which case holds for a candidate reneging instance.

Figure 3.6: Wireshark flow graph output of a TCP flow with SACKs

 62

Now we explain in detail each possible case for three candidate reneging

instances that look like Misbehavior B instances. Misbehavior B is observed in TCP

flows having at least two SACK blocks. Once the data between the ACK and the first

SACK are received, a data receiver increases the ACK, but misbehaves and does not

acknowledge other SACK blocks. The ack with no SACK blocks implies an instance

of reneging.

 (I) Figure 3.7 shows a candidate reneging instance where the retransmissions

for the data seems to have been reneged are transmitted using multiple data packets.

The initial state of the receive buffer is known as: stateACK 92655 stateSACK 93191-

93727. The first ack (#2, ACK 92655 SACK 94263-94799 93191-[|tcp]) informs that

data (#1) are received out-of-order. The “[|tcp]” indicates that the second SACK block

is truncated in the trace file and only the left edge is available to display. A new

stateSACK 94263-94799 is added to the state. The next ack (#5, ACK 93068 SACK

93191-94092 94263-[|tcp]) acknowledges the receipt of data packets (#3) and (#4).

The stateSACK 93191-93727 is updated to 93191-94092. Data packet (#6, 93068-

93604) fills the gap between the ACK and the first SACK block 93191-94092.

Consequently, ACK is increased to 94092 (#7) but a SACK for out-of-order data

94263-94799 is not present in the ack (#7) (Misbehavior B). Out-of-order data 94263-

94799 are marked as MISSING by RenegDetect v2. Next, two retransmissions are

monitored covering the MISSING out-of-order data, (#8, 94092-94628) and (#9,

94628-95164). When the first partial retransmission for the MISSING out-of-order

data are received (#8), ACK is increased to 94799 (the right edge of MISSING out-of-

order data) instead of 94628 indicating that the MISSING out-of-order data are still in

 63

the receive buffer. As a result, we conclude that the candidate reneging instance is a

Misbehavior B instance, and not an instance of reneging.

Figure 3.7: Candidate reneging instance I (not reneging)

(II) Figure 3.8 shows a candidate reneging instance where we cannot conclude

if the instance is or not reneging. When the data (#9) are received, the ACK is

increased to 16850 (#10) but previously SACKed data 18230-19610 are not reported

with a SACK block (Misbehavior B). RenegDetect v2 marks bytes 18230-19610 as

MISSING. The retransmission for the MISSING bytes is monitored with the next data

packet (#11). The reply ack now has a SACK block (18230-19610). Is the new SACK

block for the previously received out-of-order data (MISSING) or the retransmission?

 64

We cannot conclude if the observed behavior is an instance of reneging or

Misbehavior B due to ambiguity. We report this type of instance as ambiguous.

Figure 3.8: Candidate reneging instance II (ambiguous)

(III) Figure 3.9 shows a candidate reneging instance where the retransmissions

for the MISSING out-of-order data are observed and ACK is increased steadily after

each retransmission. When data (#8) is received, ACK is increased to 70336 (#9) but

no SACKs are reported. RenegDetect v2 marks bytes 70336-74476 as MISSING.

Next, the retransmissions for the MISSING out-of-order data are monitored: (#10),

(#12), and (#13), respectively. ACK is increased steadily after each retransmission.

This behavior clearly indicates a reneging instance.

 65

Figure 3.9: Candidate reneging instance III (reneging)

Each candidate reneging case presented above was analyzed by hand using

wireshark. Can we program RenegDetect to identify each case automated? Yes. If we

were able to match each data packet to a corresponding ack, RenegDetect could be

programmed to identify each case automated. Unfortunately, traces are collected at an

intermediate router where data packets can get lost after being monitored and acks can

get lost before reaching the router. Such packet losses can cause ambiguity in data-to-

ack matching. If traces were collected at the data receiver such an issue would not

exist. Each data could be matched to a corresponding ack. Past research, [Jaiswal

2004], identified the same problem where the authors proposed a passive measurement

methodology to infer congestion window (cwnd) in traces captured at an intermediate

router. We decided to simply analyze each candidate reneging instance using

 66

wireshark by hand to avoid programming complexity to implement data-to-ack

matching within RenegDetect v2.

The updated RenegDetect, v2, identifies misbehaviors where no or partial data

retransmissions are observed. Whenever a misbehavior is observed, the out-of-order

data that seem to have been reneged are marked as MISSING and RenegDetect v2

keeps tracks of retransmissions for the MISSING data. If retransmissions are observed

for the MISSING data, RenegDetect v2 reports a candidate reneging instance. For

each candidate reneging instance, a hand analysis is done using wireshark to determine

if the instance is a misbehavior, a reneging, or an ambiguous instance.

Our model cannot detect reneging instances with 100% certainty if particular

acks and data PDUs are not observed in a trace. Our model relies on acks to detect

inconsistencies between the state of receiver buffer and new SACK information. In

addition, our model relies on data retransmissions to distinguish between a reneging

and a misbehavior instance. For a reneged flow, if acks that cause inconsistencies were

not observed by the intermediate router or lost during the trace capture, reneging

would go undetected (the state is still consistent). Similarly, if data retransmissions are

not included in the trace capture, reneging again would go undetected. Therefore, the

frequency of reneging, p%, that we report in our analysis is a lower limit and should

be interpreted as “reneging happens in at least p% of the TCP flows analyzed”.

To report the frequency of reneging, TCP flows monitored at an intermediate

router should be analyzed. But, we first needed to determine the minimum number of

TCP flows to analyze based on our initial hypothesis that reneging rarely if ever

occurs in practice. The following section answers at least how many flows we needed

to analyze.

 67

3.2.4 Hypothesis

To generalize reneging behavior, we needed to analyze TCP flows to

determine if reneging is happening or not in today’s Internet. But how many TCP

flows do we need to analyze to be statistically confident of our conclusions?

Given a set of TCP flows, we assumed that whether or not a TCP flow reneges

is a binary event with probability P(reneging) = p, and the TCP flows are independent

and identically distributed (i.i.d.) with respect to reneging (we discuss if TCP flows

form the same host are i.i.d. or not at the end of this section.) We defined event A as

reneging happens in a TCP flow. Assuming reneging is a rare event, our initial

hypothesis (H0) was: ܪ:	(ܣ) ≥ 	10ିହ

We wanted to design an experiment which rejects H0 with 95% confidence

(confidence coefficient α=0.05) thus allowing us to conclude that: (ܣ) < 10ିହ

Our experiment would analyze n TCP flows hoping to not find a single

instance of reneging. We wanted to know the value of n such that the probability that

H0 is true even though no TCP flow reneges is less than 0.05 (confidence coefficient.) P(k = (ܪ	|	0 < .05

The probability of reneging occurring k times in n i.i.d. TCP flows is: (݇) = 	ܲ	ሼ݃݊݅݃݁݊݁ݎ	ݏݎݑܿܿ	݇	ݏ݁݉݅ݐ	݊݅	݊	ݏݓ݈݂	݊݅	ݕ݊ܽ	ݎ݁݀ݎሽ = 	 ቀ݊݇ቁ ିݍ

The probability that reneging does not occur (k=0) in n trials assuming H0 is: (0) = 	 ቀ0݊ቁ (0) ିݍ = 	 (1 − 10ିହ)

 68

To find the minimum number of TCP flows (n) to analyze, hoping with 95%

confidence to reject H0, we needed: (0) < 1) ߙ	 − 10ିହ) < 	0.05

The minimum n satisfying the equation is 299,572 (derived from MAPLE.)

Now, let us discuss if TCP flows are i.i.d.? To renege, a TCP flow should have

out-of-order data in its receive buffer. The out-of-order data exist due to either

congestion or packet reordering in the network. Other simultaneous TCP flows from

the same host would experience the same congestion or packet reordering if they share

the same bottleneck router. Therefore, if one TCP flow reneges, it is expected that

other TCP flows from the same TCP host might also renege. For example, FreeBSD

employs global reneging (see Section 4.4) where all TCP flows renege simultaneously.

On the other hand, Linux and Solaris employ local reneging (see Sections 4.3 and 4.6)

where each TCP flow reneges independently. Therefore, some simultaneous TCP

flows from same host are i.i.d. and others are not depending on the host’s operating

system. Initially, we assumed that each TCP flow was independent.

To generalize reneging behavior, our goal was to analyze at least 300K TCP

flows with SACKs using RenegDetect v2. If we could document no reneging

instances, we could claim that reneging is a rare event, i.e., P(reneging) < 10-5. For

that, TCP traces from three domains (Internet, wireless, enterprise) were analyzed

using RenegDetect v2. The results of the trace analysis are presented in the next

section.

 69

3.2.5 Results of Internet Trace Analysis

In this section, we report the frequency of reneging in TCP traces from three

domains: Internet backbone (CAIDA traces), a wireless network (SIGCOMM 2008

traces), and an enterprise network (LBNL traces). Our goal was to analyze 300K TCP

flows using SACKs and find no instances of reneging. Unfortunately, we found

instances of reneging. Therefore, we could not reject our hypothesis H0 specified in

Section 3.2.4 to conclude P(reneging) < 10-5.

Since reneging instances were found, analyzing 300K TCP flows were no

longer necessary. As a result, we ended up analyzing 202,877 TCP flows using

SACKs from the three domains where a total of 104 instances of reneging were found.

The sample proportion of reneging,	̂, is ̂ = X݊ = 104202877 = 0.000512	
From [Moore 1993], the standard error of sample proportion ̂ is ܵܧො = ඨ1)̂ − ݊(̂ = 	ඨ0.000512(0.999488)202877 = 0.00005

An approximate level C confidence interval for an unknown population

proportion is estimated using ̂ 	± ොܧܵ∗ݖ
A 95% confidence interval of event reneging being true for a TCP flow is

calculated using ݖ∗ being 1.960			̂ 	± ොܧܵ∗ݖ = 0.000512	 ± (1.960)(0.00005) = 0.000512	 ± 	0.0000984= 0.05%	 ± 0.009%

With 95% confidence, the margin of error is 0.009% assuming that the

analyzed TCP flows are independent and identically distributed (i.i.d.). That is, we

 70

estimate with 95% confidence that the true average rate of reneging is in the interval

[0.041%, 0.059%], roughly 1 flow in 2,000.

For each reneging instance, we tried to fingerprint the operating system of the

reneging data receiver, and generalize reneging behavior per operating system.

Trace files provided by the three domains contain thousands of TCP flows per

trace. In our analysis, trace files are processed beforehand to have a single trace file

for each bidirectional TCP flow using SACKs. This approach served two purposes: (1)

to provide reneging traces to the research community, and (2) to be able to view a flow

graph per TCP flow in wireshark for hand analysis.

(1) By documenting reneging instances during the trace analysis, we provide

the first set of reneging traces to interested researchers and TCP stack implementors

for further analysis. (2) When multiple TCP flows exist in a trace, wireshark views all

of them in the same flow graph which makes it hard to read the graph for hand

analysis. In addition, if a trace file with multiple flows is large (some of the traces

provided by CAIDA are 1-4 GB per trace), wireshark displays an out of memory error

and terminates. Therefore, we processed trace files provided by CAIDA, SIGCOMM,

and LBNL into separate trace files for each TCP flow using SACKs. Figure 3.10

summarizes the processing of TCP traces.

 For the reneging analysis, only TCP flows that contain at least one SACK

block during a data transfer are of interest (other flows cannot renege by definition).

For each trace file, we first identify TCP flows using SACKs. Flows not using SACKs

were discarded. Second, we filter each trace to include only TCP PDUs using tshark

tool, that is, UDP and ICMP PDUs are discarded. Third, we split the resulting trace

into individual TCP PDUs using editcap tool. Each individual TCP PDU is named by

 71

4-tuple (source IP, source port, destination IP, destination port) plus a sequence

number. Finally, individual PDUs are merged into a single TCP trace using mergecap

tool for each flow. Tshark, editcap and mergecap are command line utilities provided

by wireshark. The process described here corresponds to TCP flow filter box in Figure

3.10.

Figure 3.10: Filtering traces

RenegDetect v2 accepts a TCP trace file as an input and analyzes a TCP flow

using the model detailed in Sections 3.2.1 and 3.2.3. RenegDetect v2 logs candidate

reneging flows (and each individual instance per flow) during the trace analysis.

Candidate reneging instances are later inspected by hand using wireshark to conclude

reneging or not.

RenegDetect v2 relies on data retransmissions to report candidate reneging

instances. For each TCP flow, RenegDetect v2 also keeps track of the percentage of

data transmitted by the data sender (data seen between the lowest and the highest

ACK) monitored at the intermediate router to check if all data are observed. The initial

5% of the flow is skipped since data sent in prior window may not be available in a

TCP trace if the first PDUs in the trace are acks instead of data PDUs. For a data

 72

transfer of 100 bytes, for example, if a data collection point observes the last 95 bytes

on the data path, we classify that flow as 100% of the data is observed. If all the data is

observed at the router, we can argue that retransmissions follow the same data path,

which gives us a strong argument to rely on retransmissions to infer reneging. If the

routing path changes during a data transfer or large number of packets are dropped

during a trace capture, then a gap in the data will be observed (so the data percentage

would be less than 100%). If RenegDetect v2 observes, for instance, only 40% of the

data, then we can argue that relying on the retransmissions to detect reneging instances

is unreliable since some of the data and retransmissions (the other 60% of the data)

followed a different path or got lost during trace capture. If we analyze incomplete

flows having gaps in the data, less reneging instances would be detected. For such

flows, reneging instances could be identified falsely as non-reneging since data

retransmissions might be missing. To avoid a bias to identify less reneging instances,

we only analyze TCP flows where at least 95% of the data is available and ignore the

rest.

In all traces provided (CAIDA, SIGCOMM, and LBNL), the real IP addresses

of data senders/receivers were remapped to other IP addresses for privacy and security

purposes. This process is called IP anonymization.

The outline of the rest of this section is as follows. The frequency of reneging

for Internet (CAIDA), wireless (SIGCOMM), enterprise (LBNL) domains are

presented in Sections 3.2.5.1, 3.2.5.2, and 3.2.5.3, respectively.

3.2.5.1 Cooperative Association of Internet Data Analysis (CAIDA) Traces

In this section, we present the reneging frequency of Internet backbone traces

captured between April 2008 and October 2010. A brief description of the traces is

 73

presented in Section 3.2.5.1.1. The frequency of reneging in CAIDA traces is reported

in Section 3.2.5.1.2. During the trace analysis, 104 reneging instances were detected.

Each reneging instance was analyzed in detail and categorized based on the operating

system guess of the data receiver. We detail reneging instances for Linux, FreeBSD,

and Windows operating systems in Sections 3.2.5.1.3, 3.2.5.1.4, and 3.2.5.1.5,

respectively.

3.2.5.1.1 Description of Traces

The trace files from CAIDA [Caida] are representative of a wide area Internet

traffic and were collected via data collection monitors set in Equinix data centers

(http://www.equinix.com) in Chicago and San Jose, CA. The monitors are set on OC-

192 Internet bi-directional backbone links (9953 Mbps) between (Seattle and Chicago)

and (San Jose and Los Angeles). The trace data were collected separately for each

direction of the bi-directional links: direction A (Seattle to Chicago, San Jose to Los

Angeles) and direction B (Chicago to Seattle, Los Angeles to San Jose) and the traces

for each direction are provided in separate files.

The actual amount of data captured from each frame (snaplen) by the monitors

was 48 bytes as opposed to 68 bytes which is default by tcpdump [Tcpdump]. This 48

byte limit causes some SACK blocks to be truncated whenever a TCP timestamp

option is present or there are multiple SACK blocks. If all SACKs of a TCP flow are

truncated, the flow is discarded.

CAIDA provides 60 minute long traces for each Equinix monitor (Chicago,

San Jose) per month. In our lab, we did not have enough processing capacity to filter

all CAIDA traces as described in Section 3.2.5. Instead, we processed 2 minute long

traces for each month whenever trace data was available for both directions. When we

 74

processed all the 2 minute traces from April, 2008 to October, 2010 for both monitors,

we processed another set of 2 minute traces for Chicago monitor from April, 2008 to

January, 2009. For some dates, traces were only available for one direction (especially

for San Jose monitor). In such case, either data or ack traffic was available but not

both. We ignored those traces in our analysis. When we detected reneging instances,

we also filtered 10 minute long traces (covering the 2 minute trace) for the reneged

data receivers to analyze reneging behavior for longer durations and more detail.

Tables 3.2 and 3.3 show the statistics for the percentage of data of the TCP

flows using SACKs in CAIDA traces captured at Chicago monitor for directions A

and B, respectively. Tables 3.4 and 3.5 show the same statistics for the San Jose

monitor. The first six columns of the table show the date (yyyymmdd), the minute

interval analyzed, and percentage of TCP flows where 100, [95, 100), (0, 95), and 0

percent of the data is observed at the intermediate router. The seventh column shows

the percentage of TCP flows where there were multiple TCP flows for the same 4-

tuple in the trace. We identified multiple TCP flows using tcptrace, a TCP connection

analysis tool. RenegDetect v2 is designed to analyze a single bidirectional TCP flow

and does not have the ability to distinguish which data/acks belong to which flow

when multiple TCP flows exist in a trace file. Such ability was not implemented not to

increase the programming complexity of RenegDetect v2. That is, RenegDetect v2

cannot operate when multiple TCP flows exist in the same trace. Thus, trace files with

multiple TCP flows were ignored (column 7) along with those flows where less than

95% of the data was available (columns 5 and 6).

In Table 3.2, on dates 20080619 and 20080717 (the rows highlighted with grey

color), the percentages of data that falls between (0, 95) interval are 41.63% and

 75

66.10%, respectively for the Chicago monitor (direction A). This behavior implies that

gaps in the data were observed due to a route change or high packet losses during trace

capture. We ignored these TCP traces since missing data/retransmissions would bias

the results in favor of not reneging instances.

Table 3.2: Percentage of data monitored in CAIDA traces (Chicago, direction A)

Date Minutes 100% [95, 100)% (0, 95)% 0% Multiple Flows

20080430 20-22 96.31 2.33 0.64 0.64 0.09

20080430 31-33 96.00 2.22 0.66 0.63 0.50

20080430 20-31 75.02 2.53 0.00 7.51 14.93

20080515 57-59 84.02 14.73 0.55 0.60 0.10

20080515 37-39 83.07 15.39 0.65 0.81 0.08

20080515 50-60 64.00 28.00 0.00 7.64 0.36

20080619 00-21 48.00 6.61 41.63 1.77 1.99

20080717 11-13 26.28 3.81 66.10 3.55 0.26

20080821 18-20 95.27 1.65 1.13 1.75 0.21

20080821 37-39 94.75 2.25 1.12 1.69 0.19

20080918 03-05 96.28 1.28 0.81 1.51 0.12

20080918 02-04 95.72 1.71 0.73 1.83 0.00

20081016 11-13 94.01 1.66 1.91 2.41 0.00

20081016 23-25 93.25 2.08 1.21 3.29 0.17

20081120 52-54 95.06 1.49 1.49 1.72 0.23

20081120 25-27 95.77 1.18 0.59 2.12 0.35

20081218 45-47 91.65 2.82 2.82 2.09 0.63

20081218 09-11 95.88 2.11 1.11 0.91 0.00

20090115 18-20 90.53 6.63 0.90 1.44 0.50

20090115 53-55 89.46 5.79 1.41 2.92 0.41

20090219 48-50 94.83 0.25 2.22 1.97 0.74

20090331 23-25 96.84 1.16 0.95 0.53 0.53

20090416 28-30 95.74 1.84 1.27 1.15 0.00

20090521 10-12 91.01 4.03 2.33 2.17 0.47

20090618 34-36 92.21 2.79 2.35 2.50 0.15

20090716 22-24 90.75 6.33 0.97 1.95 0.00

20090820 32-34 97.81 0.73 0.73 0.73 0.00

 76

Table 3.2 continued

20090917 41-43 95.86 1.48 1.18 0.59 0.89

20091015 17-19 92.48 1.57 2.51 1.57 1.88

20091119 13-15 80.51 5.32 2.03 8.61 3.54

20091217 06-08 87.32 6.83 4.88 0.00 0.98

20100121 48-50 93.98 2.52 2.63 0.55 0.33

20100225 45-47 97.04 0.59 1.18 0.99 0.20

20100325 23-25 96.25 2.50 0.00 1.25 0.00

20100414 10-12 84.85 9.09 0.00 6.06 0.00

20100819 44-46 94.13 1.28 1.28 3.06 0.26

20100916 15-17 90.28 4.17 1.39 3.47 0.69

20101029 42-44 86.49 6.49 2.16 4.86 0.00

Table 3.3: Percentage of data monitored in CAIDA traces (Chicago, direction B)

Date Minutes 100% [95, 100)% (0, 95)% 0% Multiple Flows
20080430 20-22 94.52 0.07 0.85 4.57 0.00

20080430 31-33 96.57 0.50 0.50 2.37 0.06

20080515 57-59 97.24 0.09 0.31 2.28 0.09

20080515 37-39 97.44 0.20 0.20 2.16 0.00

20080619 00-21 93.63 0.07 0.11 2.45 3.75

20080717 11-13 92.01 0.31 0.61 6.62 0.46

20080821 18-20 98.37 0.57 0.49 0.46 0.11

20080821 37-39 97.94 0.38 0.70 0.91 0.07

20080918 03-05 97.41 0.65 0.88 0.97 0.09

20080918 02-04 97.11 0.66 0.95 1.18 0.09

20081016 11-13 96.97 0.57 1.39 0.88 0.19

20081016 23-25 97.72 0.40 0.89 0.92 0.06

20081120 52-54 96.99 0.94 0.47 1.42 0.18

20081120 25-27 96.40 0.35 0.83 1.94 0.48

20081218 45-47 96.10 0.53 0.53 2.60 0.24

20081218 09-11 96.60 0.63 1.42 1.34 0.00

20090115 18-20 95.90 0.88 0.67 2.13 0.41

20090115 53-55 95.24 1.40 0.75 2.00 0.60

20090115 14-24 99.22 0.00 0.00 0.00 0.78

 77

Table 3.3 continued

20090219 48-50 93.24 1.29 1.13 3.54 0.81

20090331 23-25 97.82 0.38 0.64 1.02 0.13

20090416 28-30 97.47 0.78 0.54 1.14 0.06

20090521 10-12 98.57 0.07 0.14 1.22 0.00

20090618 34-36 94.50 0.59 0.39 4.38 0.13

20090716 22-24 87.90 0.36 0.72 11.02 0.00

20090820 32-34 97.85 0.86 0.43 0.86 0.00

20090917 41-43 95.12 0.70 1.39 2.44 0.35

20091015 17-19 96.19 0.21 0.64 2.97 0.00

20091119 13-15 95.04 0.00 0.76 4.20 0.00

20091217 06-08 96.33 0.00 0.00 3.67 0.00

20100121 48-50 88.82 1.64 0.00 9.21 0.33

20100225 45-47 95.45 0.00 1.01 3.54 0.00

20100325 23-25 90.30 0.75 8.21 0.00 0.75

20100414 10-12 91.67 2.08 6.25 0.00 0.00

20100819 44-46 93.29 0.67 0.00 5.37 0.67

20100916 15-17 92.97 0.00 0.00 5.41 1.62

20101029 42-44 95.02 0.90 0.45 3.62 0.00

Table 3.4: Percentage of data monitored in CAIDA traces (San Jose, direction A)

Date Minutes 100% [95, 100)% (0, 95)% 0% Multiple Flows
20080717 06-08 97.30 0.58 0.97 1.09 0.06

20080821 24-26 95.92 0.39 1.12 2.35 0.22

20081016 03-05 98.10 0.40 0.70 0.62 0.17

20081120 34-36 95.72 0.82 1.76 1.59 0.11

20090331 28-30 96.85 0.79 1.33 0.75 0.27

20090416 14-16 92.44 5.89 0.92 0.63 0.13

20090521 25-27 94.61 1.41 2.28 1.07 0.63

20090618 03-05 95.56 1.19 1.86 1.23 0.16

20090716 40-42 95.31 1.72 2.15 0.77 0.05

20090820 11-13 97.85 0.40 1.07 0.54 0.13

20090820 07-17 87.67 0.00 0.00 12.33 0.00

20090917 20-22 95.72 1.06 2.24 0.86 0.12

 78

Table 3.4 continued

20091015 21-23 95.13 1.12 2.00 1.33 0.41

20091119 12-14 96.92 0.86 1.27 0.82 0.14

20091217 04-06 97.03 0.27 1.35 0.81 0.54

20100121 55-57 95.69 0.77 1.00 2.54 0.00

20100225 53-55 96.91 0.39 0.19 2.32 0.19

20100414 58-60 93.04 3.78 0.85 2.19 0.14

Table 3.5: Percentage of data monitored in CAIDA traces (San Jose, direction B)

Date Minutes 100% [95, 100)% (0, 95)% 0% Multiple Flows
20080717 06-08 95.45 0.91 2.07 1.49 0.08

20080821 24-26 96.29 0.40 1.72 1.59 0.00

20081016 03-05 95.22 0.57 1.24 2.77 0.19

20081120 34-36 94.80 1.44 1.52 2.09 0.14

20090331 28-30 93.80 0.76 0.90 4.20 0.34

20090331 24-34 0.00 100.00 0.00 0.00 0.00

20090416 14-16 96.28 0.83 0.83 1.83 0.24

20090521 25-27 94.18 0.52 0.26 4.58 0.46

20090618 03-05 93.08 0.65 1.38 4.72 0.16

20090716 40-42 94.30 0.31 0.78 4.14 0.47

20090820 11-13 98.33 0.33 0.33 0.83 0.17

20090917 20-22 96.30 0.21 0.58 2.80 0.11

20091015 21-23 93.37 0.73 0.70 4.75 0.45

20091119 12-14 94.79 0.74 0.65 3.35 0.47

20091217 04-06 94.34 0.00 1.74 3.27 0.65

20100121 55-57 96.09 0.95 0.59 2.37 0.00

20100225 53-55 97.53 0.82 0.59 1.06 0.00

20100414 58-60 98.24 0.19 0.33 1.19 0.05

3.2.5.1.2 Results

In this section, we document the frequency of reneging in the CAIDA traces.

Table 3.6 presents the number of TCP flows using SACKs and the frequency of

 79

reneging. The columns of the table show the date (in yyyymmdd format), the number

of TCP flows using SACK blocks analyzed, the number of candidate reneging flows,

and the number of reneged flows, respectively. The candidate reneging flows are those

that satisfy the following two conditions: (a) some SACK block(s) were MISSING

and (b) data retransmissions for the MISSING SACK block(s) were observed. Each

candidate reneging flow was analyzed by hand using the wireshark tool [Wireshark] to

determine if reneging happened or if the candidate reneging instance was an instance

of misbehavior. For each date, we report an aggregate amount of TCP flows using

SACKs from two the monitors: Chicago and San Jose. We report that out of 1273

candidate reneging flows (0.78% of all flows) analyzed, 104 flows (0.05%) reneged.

We analyzed each reneging flow in detail and categorized reneging instances

based on the operating system of the data receiver. We detail reneging instances and

behavior for Linux, FreeBSD, and Windows operating systems in Sections 3.2.5.1.3,

3.2.5.1.4, and 3.2.5.1.5, respectively.

Table 3.6: Reneging frequency of CAIDA traces

Date Flows using SACKs Candidate Reneging Flows Reneged Flows
20080430 10434 97 8
20080515 12233 111 40
20080619 22377 85 1
20080717 4507 40 0
20080821 10797 64 0
20080918 5835 32 0
20081016 13493 66 1
20081120 7829 73 0
20081218 4755 42 1
20090115 7998 130 11
20090219 977 15 0
20090331 6699 50 1
20090416 6484 53 0
20090521 5440 34 0

 80

Table 3.6 continued

20090618 5700 60 1
20090716 4379 67 0
20090820 1755 46 40
20090917 4901 42 0
20091015 7901 68 0
20091119 3773 27 0
20091217 1690 17 0
20100121 2848 23 0
20100225 2022 9 0
20100325 201 2 0
20100414 4896 12 0
20100819 514 5 0
20100916 446 1 0
20101029 556 2 0
TOTAL 161440 1273 104

3.2.5.1.3 Linux Reneging Instances

In this section, we characterize Linux reneging instances detected in the

CAIDA trace analysis. First, Linux data receivers are inferred by examining TCP

fingerprints of the reneging flows. Second, detailed statistics regarding the frequency

of reneging are listed. Next, for the reneging data receivers, we analyze the

characteristics of the reneging and non-reneging connections and the type of reneging

employed (global vs. local). Then, a typical Linux reneging instance is presented.

Finally, circumstances of Linux reneging are presented.

We strongly believe that reneging data receivers listed in Table 3.7 were

running Linux. Table 3.7 details the TCP fingerprints (characteristics) of the reneging

data receivers. The columns of the table show the date (in yyyymmdd format), the

anonymized IP address of the reneging data receiver, maximum segment size (MSS),

window scale value, initial receiver window (rwnd), maximum rwnd value observed

during the connection, if timestamps (TS) [RFC1323] were used, and if DSACKs

 81

[RFC2883] were used, respectively. We believe these data receivers were running

Linux since they all exhibited the following behaviors. (1) Linux implements dynamic

right-sizing (DRS) where the rwnd dynamically changes based on the receiver’s

estimate of the sender’s congestion window [Fisk 2001]. With DRS, the initial

advertised rwnd of a Linux TCP is 5840 bytes (column 5) and changes dynamically

(column 6) over the course of the connection. (2) Linux TCP supports DSACKs by

default (sysctl net.ipv4.tcp_dsack = 1) and DSACKs [RFC2883] were observed for all

the data receivers (column 7).

Table 3.7: Host characteristics for Linux data receivers

Date Anonymized
IP

MSS
(SYN)

Win
Scale

Rwnd
(SYN)

Rwnd
(Max)

TS DSACK

20080430 226.186.117.234 1460 n/a 5840 auto no yes

20080430 226.186.117.238 1460 n/a 5840 auto no yes

20080515 226.186.116.218 1460 n/a 5840 auto no yes

20080515 226.186.116.219 1460 n/a 5840 auto no yes

20080515 226.186.116.221 1460 n/a 5840 auto no yes

Table 3.8: Linux reneging instances

Date Anonymized
IP

Reneged
Flows

Total
Reneging
Instances

Total
Reneged

Bytes

Avg.
Reneged

Bytes
20080430 226.186.117.234 4 9 24820 2758

20080430 226.186.117.238 2 3 24820 8273

20080515 226.186.116.218 28 74 146000 1973

20080515 226.186.116.219 4 25 102200 4088

20080515 226.186.116.221 2 3 11680 3893

TOTAL 40 114 309520 2715

 82

Table 3.8 reports the reneging instances detected at the Linux data receivers.

The columns of the table show the date, the anonymized IP address of the reneged

data receiver, the number of TCP flows (connections) reneged, the total number of

reneging instances observed in the reneged flows, total amount of reneged bytes, and

the average amount of bytes reneged per reneging instance, respectively. A total of

114 reneging instances were observed in 40 flows from 5 different Linux data

receivers. The observation suggests that multiple TCP flows renege per each data

receiver. The average number of reneging instances per flow was 2.85 (114/40) which

indicates that reneging occurs multiple times per TCP flow. The average amount of

bytes reneged per reneging instance was 2715 bytes (~2 MSS PDUs.) We report the

average amount of bytes reneged per reneging instance to check if reneging occurs

when a significant portion of the receive buffer is filled with out-of-order data.

To identify if reneging Linux data receivers were busy servers or clients

having large number of TCP flows, we counted the number of TCP connections

analyzed for each reneging data receiver. Table 3.9 reports the number of flows using

SACKs for the reneging Linux data receivers for the three traces analyzed. 2 minute

traces only contain flows using SACKs. In addition to flows using SACKs, the 10

minute trace was filtered to contain TCP flows not using SACKs to infer connection

characteristics of a reneging data receiver. In Table 3.9, the number of connections

indicates that reneging happens at Linux data receivers having hundreds of TCP flows.

We initially expected reneging to happen at busy servers (e.g., web, mail servers) with

large number of TCP connections established. In our analysis, all the reneging Linux

data receivers were busy clients transferring data from web servers instead.

 83

Table 3.9: Connection numbers for reneging Linux data receivers

Date Anonymized IP Flows using SACKs Flows not using SACKs
2

minute
2

minute
10

minute
10

minute
20080430 226.186.117.234 105 120 452 5846

20080430 226.186.117.238 147 134 618 3356

20080515 226.186.116.218 107 63

20080515 226.186.116.219 76 106

20080515 226.186.116.221 74 107

Linux employs local reneging where simultaneous TCP connections renege

independently (see Section 4.3.1). To confirm local reneging, we analyzed reneging

times for each data receiver and verified that reneging instances from different flows

occurred at different times independently.

Now let us detail a Linux reneging instance, shown in Figure 3.11, observed at

2008/04/30 on a data receiver identified with anonymized IP 226.186.117.234. The

initial state of the receive buffer is as follows: stateACK=68906 with no stateSACKs.

First, data packet (#1, 68906-70336), is monitored at the intermediate router. Next,

data packets (#2, 70336-71826), (#3, 71826-73286), and (#4, 73286-74476) are

observed. The data receiver acknowledges the receipt of out-of-order data packet (#2)

with an ack (#5, ACK 68906 SACK 70336-71826). Similarly, when data packets (#3)

and (#4) are received out of order, reply acks (#6, ACK 68906 SACK 70336-73286)

and (#7, ACK 68906 SACK 70336-74476) are sent to the data sender. Those acks give

the impression that data packet (#1) is lost in the network. The state is updated when

acks (#5), (#6), and (#7) are each monitored at the router. The state becomes:

stateACK 68906 and stateSACK: 70336-74476. Next, a fast-retransmission (#8,

68906-70336) for the data packet (#1) is observed. The data receiver replies with an

ack (#9, ACK 70336). When ack (#9) is compared with the state, an inconsistency

 84

exists. Previously SACKed data 70336-74476 is missing in the ack (#9). At that point,

RenegDetect v2 marks those bytes as MISSING and checks if those bytes are

retransmitted. Next, a retransmission (#10, 70336-71826) is monitored for the data

packet (#2). The reply ack (#11, ACK 71826) indicates that retransmission (#10) is

received in order. Similarly, retransmissions (#12, 71826-73286), (#13, 73286-74476)

are observed for reneged data packets (#3) and (#4). After each retransmission, ACK

is increased steadily. Therefore, we conclude that reneging occurred.

Figure 3.11: A Linux reneging instance

In [Seth 2008], the authors state that reneging in Linux is expected to happen

when (a) an application is unable to read data queued up at the receive buffer, and (b)

a large number of out-of-order segments are received. In Figure 3.11, the ack (#0,

 85

ACK 54306 rwnd: 20440) specifies the rwnd to be (54306-74746). The ack (#7, ACK

68906 SACK 70336-74476 rwnd: 4380) indicates that 14600 bytes (the difference

between the ACK values) are received in order since the receipt of ack (#0). In ack

(#7), the rwnd still has the same right edge (74746), meaning that 14600 bytes in-order

data are not yet read by the receiving application and still reside in the receive buffer

satisfying (a). For all reneging Linux TCP flows, this same behavior was exhibited;

the advertised rwnd fluctuated and usually became 0 since in-order data were not

immediately read by the receiving application. When we investigated non-reneging

TCP flows, in general, the rwnd did not fluctuate, meaning that the receiving

applications were reading the in-order data immediately. As a result, we confirm that

Linux reneges when a receiving application is unable to read in-order data.

According to [Seth 2008], reneging in Linux is expected to happen when a

large number of out-of-order segments sit in the receive buffer. Unfortunately, our

analysis showed that the average amount of bytes reneged per reneging instance was

2715 bytes (~2 MSS PDUs.) This average amount of reneged out-of-order data does

not seem large when compared to Linux’s 87380 byte default receive buffer size

(sysctl net.ipv4.tcp_rmem = 4096 (min) 87380 (default) 2605056(max)). On average,

~3% of the receive buffer was allocated to the reneged out-of-order data. This

behavior suggests that Linux reneges irrespective of out-of-order data size.

3.2.5.1.4 FreeBSD Reneging Instances

This section reports FreeBSD reneging instances observed in the CAIDA

traces. First, we explain how we inferred that data receivers were running FreeBSD by

examining TCP fingerprints of the reneging flows. Second, detailed statistics

regarding the frequency of reneging are listed. Next, for the reneging data receivers,

 86

we analyze the characteristics of the reneging and non-reneging connections and type

of reneging employed (global vs. local). We conclude by presenting a detailed

FreeBSD reneging instance.

We believe that the reneging data receivers listed in Table 3.10 were running

FreeBSD. Table 3.10 presents the TCP fingerprints of the reneging hosts. Both

reneging hosts had an initial rwnd of 65535 and used timestamps [RFC1323]. Table

3.11 lists the initial rwnd reported in SYN segments of various operating systems

observed during our TBIT testing in Chapter 2. As the reneging data receivers did,

FreeBSD, Mac OS X and Windows 2000 all initially advertised an rwnd of 65535

bytes. The reneging data receivers could not be running Windows 2000 because

sometimes 3 or 4 SACK blocks were reported in TCP PDUs of the reneging flows.

Windows 2000 reports at most 2 SACK blocks (Misbehavior A2, see Section 2.4) in a

TCP PDU. FreeBSD and Mac OS differ in the way they implement the window scale

option [RFC1323]. Mac OS advertises a scaled rwnd in the SYN segment. For

example, if window scale option=1 for the connection, the rwnd reported in the SYN

segment would be 32768 for a 65535 size rwnd. FreeBSD, on the other hand, initially

advertises an rwnd of 65535 irrespective of window scale option. If the window scale

option is used, say window scale=1, consecutive TCP segments would have rwnd

value of 32768. During the analysis, the reneging data receivers initially advertised an

rwnd of 65535 in the SYN packet and advertised rwnds ~32K in the rest of the PDUs.

Therefore, we believe the reneging data receivers were running FreeBSD.

Table 3.12 reports the frequency of reneging for the FreeBSD data receivers. A

total of 11 reneging instances were observed in 11 flows from 2 different hosts. For

each flow reneged, a single reneging instance was observed. The average bytes

 87

reneged per reneging instance was 3717 bytes (~2.5 MSS PDUs.) This average

amount of reneged out-of-order data does not seem significant when compared to

FreeBSD’s 65535 byte default receive buffer size (sysctl net.inet.tcp.recvspace:

65536). On average, ~5.6% of the receiver buffer was allocated to reneged out-of-

order data. This behavior indicates that FreeBSD reneges irrespective of out-of-order

data size.

Table 3.10: Host characteristics for FreeBSD data receivers

Date Anonymized
IP

MSS
(SYN)

Win
Scale

Rwnd
(SYN)

Rwnd
(Max)

TS DSACK

20081218 238.47.123.36 1460 1 65535 65535 yes no

20090115 47.179.43.28 1460 1 65535 65535 yes no

Table 3.11: Initial advertised rwnd (SYN segments) of various operating systems

Operating System Default Receive Buffer (bytes)
FreeBSD 5.3-8.0 65535
Linux 2.4.18-2.6.31 5840
Mac OS X 10.6.0 65535
OpenBSD 4.2-4.7 16384
OpenSolaris 2008-2009 49640
Solaris 10 49640
Windows 2000 65535
Windows XP, Vista, 7 64240

Table 3.12: FreeBSD reneging instances

Date Anonymized
IP

Reneged
Flows

Total
Reneging
Instances

Total
Reneged

Bytes

Avg.
Reneged

Bytes
20081218 238.47.123.36 1 1 4380 4380

20090115 47.179.43.28 10 10 36500 3650

TOTAL 11 11 40880 3716

 88

Table 3.13: Connection numbers for FreeBSD data receivers

Date Anonymized
IP

Flows using SACKs Flows not using SACKs
2

minute
2

minute
10

minute
10

minute
20081218 238.47.123.36 1 9

20090115 47.179.43.28 58 5 127 14

To check if reneging FreeBSD data receivers were busy servers or clients, we

counted the number of TCP connections analyzed for each reneging data receiver.

Table 3.13 presents the results. For FreeBSD, the reneging data receivers did not seem

busy. We admit that other TCP flows could be established to the reneging data

receivers which were not available in our traces. As with the Linux reneging data

receivers did, all of the reneging FreeBSD data receivers (clients) were transferring

data from web servers.

FreeBSD employs global reneging where all TCP connections having out-of-

order data are reneged simultaneously (see Section 4.4). To confirm this behavior, we

analyzed reneging times for the data receiver identified with IP 47.179.43.28 on

2009/01/15. Table 3.14 reports the timestamp values for two acks observed at the

intermediate router. The first timestamp (column 4) is for the last ack monitored where

the comparison with the receive buffer state was still consistent. The next timestamp

(column 5) is for the ack that caused detecting of the reneging instance. Reneging is

presumed to have occurred sometime between those two timestamps. The timestamps

are clustered around two values: 09:19:02.0xx (flows with port numbers: 50490,

55470, and 61942) and 09:19:31.5yy (flows with port numbers: 50265, 54867, 56888,

and 62318). These clustered timestamps indicate that global reneging is employed.

 89

Table 3.14: Timestamp values of a reneging FreeBSD data receiver

Date Anonymized
IP

Port Timestamp of ack
Before Reneging

Timestamp of
ack Detecting Reneging

20090115 47.179.43.28 50265 09:19:31.589 09:19:31.735

20090115 47.179.43.28 50490 09:19:02.085 09:19:02.131

20090115 47.179.43.28 54867 09:19:31.584 09:19:31.631

20090115 47.179.43.28 55470 09:19:02.106 09:19:02.153

20090115 47.179.43.28 56888 09:19:31.567 09:19:31.713

20090115 47.179.43.28 59319 09:15:54.138 09:15:54.285

20090115 47.179.43.28 61942 09:19:02.060 09:19:02.405

20090115 47.179.43.28 62318 09:19:31.571 09:19:31.617

20090115 47.179.43.28 63763 09:19:12.112 09:19:12.449

20090115 47.179.43.28 64543 09:19:31.600 09:19:31.647

Figure 3.12: A FreeBSD reneging instance

 90

Figure 3.12 shows a FreeBSD reneging instance on 2009/01/15. Reneging is

detected with the receipt of ack (#17, ACK 44401) which informs that previously

SACKed data 44401-48781 are MISSING. Later, retransmissions for the MISSING

data are monitored (data packets (#18, #20, and #21) and ACK is increased steadily

after each retransmission. Therefore, we conclude that reneging occurred.

3.2.5.1.5 Windows Reneging Instances

This section characterizes Windows reneging instances observed in the

CAIDA traces. First, we explain how we inferred that data receivers were running

Windows by examining reneged flows TCP fingerprints. Second, detailed statistics

regarding the frequency of reneging are reported. Next, for the reneging data receivers,

we analyze the characteristics of the reneging and non-reneging connections and type

of reneging employed (global vs. local). Finally, a representative Windows reneging

instance is detailed.

We believe that reneging data receivers listed in Table 3.15 are Windows

hosts. Table 3.15 details the fingerprints (characteristics) of the reneging hosts. The

reneging data receivers did not use the window scale, timestamp, and DSACK options.

In addition, all of the reneging data receivers reported at most 2 SACK blocks and the

data receivers identified with IPs: 45.36.231.185 and 247.9.212.28 reported at most 2

SACKs when it was known that at least 3 SACK blocks existed at the receiver

(Misbehavior A2). Misbehavior A2 is observed only in Windows 2000, XP and Server

2003 (see Section 2.4). These TCP fingerprints suggest that the reneging data

receivers were running Windows 2000, XP or Server 2003. The TCP/IP

implementation for those operating systems is detailed in [MacDonald 2000] and

[Windows 2003]. First, all three operating systems support the window scale and

 91

timestamp option [RFC1323]. By default, a Windows host does not advertise these

options but enables their use if the TCP peer that is initiating communication includes

them in the SYN segment. Second, for the three Windows systems, the advertised

rwnd is determined based on the media speed. [Windows 2003] specifies that if the

media speed is [1Mbps-100Mbps), rwnd is set to twelve MSS segments. If the media

speed is [100Mbps-above), rwnd is set to 64KB. The data receivers specified with IPs:

7.30.83.155 and 126.14.171.216 did not match this specification. But their maximum

rwnd was set to 25*MSS and 45*MSS during the course of connection, respectively.

Both [MacDonald 2000] and [Windows 2003] specify that Windows TCP adjusts

rwnd to even increments of the maximum segment size (MSS) negotiated during

connection setup. This specification makes us believe those data receivers were

running Windows.

Table 3.15: Host characteristics for Windows data receivers

Date Anonymized
IP

MSS
(SYN)

Win
Scale

Rwnd
(SYN)

Rwnd
(Max)

TS DSACK

20080430 59.190.212.36 1452 n/a 16384 17424 no no

20080430 247.9.212.28 n/a n/a n/a 61320 no no

20080515 7.30.83.155 1360 n/a 32767 34000 no no

20080619 238.20.116.194 1460 n/a 65535 65535 no no

20081016 54.147.61.79 1460 n/a 65535 65535 no no

20090115 126.14.171.216 1452 n/a 64240 65340 no no

20090331 215.35.134.36 n/a n/a n/a 65535 no no

20090618 58.104.167.176 1460 n/a 65535 65535 no no

20090820 45.36.231.185 1414 n/a 65535 65535 no no

Table 3.16 reports the Windows reneging instances detected. 75 reneging

instances were observed in 53 flows from 9 different hosts. This behavior indicates

 92

that multiple TCP flows renege per Windows data receiver. The average number of

reneging instances per flow was 1.41 (75/53) which suggests that Windows reneging

occurs multiple times per flow. The average bytes reneged per reneging instance was

1371 bytes (~ 1 MSS PDU).

Table 3.16: Windows reneging instances

Date Anonymized
IP

Reneged
Flows

Total
Reneging
Instances

Total
Reneged

Bytes

Avg.
Reneged

Bytes
20080430 59.190.212.36 1 1 98 98

20080430 247.9.212.28 1 3 8760 2920

20080515 7.30.83.155 6 20 15085 754

20080619 238.20.116.194 1 1 4096 4096

20081016 54.147.61.79 1 1 1460 1460

20090115 126.14.171.216 1 1 287 287

20090331 215.35.134.36 1 2 3929 1965

20090618 58.104.167.176 1 2 7100 3550

20090820 45.36.231.185 40 44 61975 1409

TOTAL 53 75 102790 1371

To check if reneging Windows data receivers were busy servers or clients, we

listed the number of TCP connections analyzed for each reneging data receiver in

Table 3.17. For Windows, the reneging data receivers did not seem busy except for the

data receiver identified with IP 59.190.212.36. We admit that other TCP flows could

be established to the reneging data receivers which were not observed in our traces.

Majority of the data receivers (clients) were transferring data from web servers. Two

of the data receivers (clients) were transferring data using ephemeral port numbers and

one data receiver was a Simple Mail Transfer (SMTP) server.

 93

Table 3.17: Connection numbers for reneging Windows data receivers

Date Anonymized
IP

Flows using SACKs Flows not using SACKs
2

minute
2

minute
10

minute
10

minute
20080430 59.190.212.36 6 0 40 882

20080430 247.9.212.28 1 1

20080515 7.30.83.155 1 0 10 13

20080619 238.20.116.194 1

20081016 54.147.61.79 0 1

20090115 126.14.171.216 1 0 1 16

20090331 215.35.134.36 1 1 2

20090618 58.104.167.176 2

20090820 45.36.231.185 9 73 56

Since Windows TCP/IP stack is not open-source, it is unknown if Windows

employs local or global reneging. The Windows reneging instances from different

flows all happened at different times suggesting that Windows employs local

reneging.

For the Windows reneging instances, two types of reneging behaviors were

observed. The first type is more common and observed in 49 reneging flows. In the

first type of reneging, only a single out-of-order segment was reneged and the

consecutive out-of-order data were not SACKed even though these data are known to

be in the receive buffer. This type of reneging is detailed with an example reneging

instance shown in Figure 3.13. The second type of reneging is observed in 4 flows.

This type of reneging behavior is similar to FreeBSD reneging behavior shown in

Figure 3.12.

Figure 3.13 shows a Windows reneging instance that occurred on 2008/05/15

which is an example of the first type of Windows reneging behavior. The initial state

of the data receiver’s receive buffer is known as stateACK 74511. First, data packets

 94

(#1, 74511-75871) through (#7, 81321-81708) are monitored at the intermediate

router. The ack (#9, ACK 75871 SACK 77231-78591) informs the data sender that

data packet (#1) is received in order and data packet (#3, 77231-78591) is received

out-of-order. The state is updated to stateACK 75871, stateSACK 77231-78591. The

next ack (#10, ACK 77231) in acknowledges the receipt of data packet (#2, 75871-

77231) in order. Unfortunately, ACK is increased to the left edge of previously

SACKed out-of-order data (stateSACK 77231-78591) giving the impression that data

are reneged. RenegDetect v2 marks 77231-78591 as MISSING. Next, 4 duplicate acks

are observed (#11, #12, #13, and #14 ACK 77231). We believe these duplicate acks

are sent when data packets (#4, #5, #6, and #7) are each received out-of-order at the

data receiver. When the data sender retransmits the MISSING data, data packet (#15,

77231-78591), ACK is increased beyond the MISSING data. Therefore, we conclude

that reneging occurred. Interestingly, ACK is increased to 81708 after the

retransmission which confirms that data packets (#4, #5, #6, and #7) are received out-

of-order. Even though data packets (#4, #5, #6, and #7) were received out-of-order,

the data receiver misbehaved and did not report out-of-order received data with

SACKs.

3.2.5.2 SIGCOMM 2008 Traces

In this section, we analyze the reneging in SIGCOMM 2008 conference traces

collected at August, 2008. First, we describe the topology and how the traces are

collected in Section 3.2.5.2.1. Later, in Section 3.2.5.2.2, we present our findings.

 95

Figure 3.13: A Windows reneging instance

3.2.5.2.1 Description of Traces

The SIGCOMM 2008 traces consist of three types of traces: (a) wireless

(802.11a): collected from eight 802.11a monitors placed at the four corners of the

main conference hall, (b) Ethernet: the packets captured between the Network Address

Translator (NAT) and the Access Point (AP), and (c) Syslog from Access Point. For

our reneging investigation, we were interested in (a) wireless traces, and (b) Ethernet

traces, because only these traces contained TCP traffic using SACKs. In traces, all IP

addresses of were anonymized using the tcpmkpub tool; and DHCP assigned IPs for

local hosts in the 26.12.0.0/16 and 26.2.0.0/16 subnets after the anonymization

process. For more information on the traces, see [Sigcomm 2008].

 96

Wireless traces were collected for four days starting from 08/18/2008 to

08/21/2008 on eight 802.11a monitors where some TCP flows were captured on

multiple 802.11a monitors. Ethernet traces are more complete, and were collected for

five days between 08/17/2008 and 08/21/2008.

Table 3.18 and 3.19 present the statistics for the percentage of data for the TCP

flows using SACKs in wireless and Ethernet traces, respectively. Table 3.18 indicates

that the percentages of data that falls between (0, 95) interval (columns 4 and 5)

ranges from 28.19% to 48.24% in the wireless traces. This behavior implies that gaps

in the data were observed due to packet losses during trace capture. We ignored these

wireless traces since missing data/retransmissions would bias the results in favor of

not reneging instances.

Table 3.18: Percentage of data monitored in wireless traces

Date 100% [95, 100)% (0, 95)% 0% Multiple flows
20080818 36.44 15.31 43.23 2.41 1.97
20080819 52.06 4.88 29.84 5.55 7.03
20080820 60.13 4.16 22.21 5.98 5.85
20080821 37.90 2.35 36.49 11.75 7.05

Table 3.19: Percentage of data monitored in Ethernet traces

Date 100% [95, 100)% (0, 95)% 0% Multiple flows
20080817 88.24 0.00 0.00 0.00 11.76
20080818 93.38 1.07 0.32 0.64 4.59
20080819 92.82 0.13 0.06 0.31 6.68
20080820 93.08 0.19 0.02 0.16 6.55
20080821 94.01 0.09 0.00 0.14 5.76

In the Ethernet traces shown in Table 3.19, the data that falls between (0, 95)

interval (columns 4 and 5) ranges from 0.00% to 0.96%. Recall that the Ethernet data

 97

collection monitor was placed between the AP and the NAT, and therefore included

all the TCP flows from the wireless traces. Since the wireless traces contain gaps in

the data, we only analyzed Ethernet traces for reneging analysis.

3.2.5.2.2 Results

In this section, we document the frequency of reneging in the SIGCOMM 2008

Ethernet traces. Table 3.20 presents the number of TCP flows using SACKs and the

frequency of reneging in the Ethernet traces. The columns of the table show the date

(in yyyymmdd format), the number of TCP flows using SACK blocks analyzed, the

number of candidate reneging flows, and the number of reneged flows, respectively.

The candidate reneging flows are those that satisfy the following two conditions: (a)

some SACK block(s) were MISSING and (b) data retransmissions for the MISSING

SACK block(s) were observed. Each candidate reneging flow was analyzed by hand in

detail using wireshark [Wireshark] to determine if reneging happened or if the

candidate reneging instance was an instance of a misbehavior. Upon analysis, we

found that all of the candidate reneging instances were misbehavior instances. Out of

42 candidate reneging flows (0.27% of all flows) analyzed, no flows reneged.

Table 3.20: Reneging frequency of SIGCOMM 2008 traces

Date Flows using SACKs Candidate Reneging Flows Reneged Flows
20080817 45 0 0
20080818 1791 34 0
20080819 2974 2 0
20080820 8858 4 0
20080821 2015 2 0
TOTAL 15683 42 (0.27%) 0 (0.00%)

 98

In our analysis on SIGCOMM 2008 traces, we found the frequency of reneging

to be 0%. This result suggests that reneging is a rare event.

3.2.5.3 Lawrence Berkeley National Laboratory (LBNL) Traces

In this section, we present the reneging frequency of LBNL enterprise traces

captured between October, 2004 and January, 2005. First, we describe the traces in

Section 3.2.5.3.1. Later, in Section 3.2.5.3.2, we present the results.

3.2.5.3.1 Description of Traces

LBNL traces characterize internal enterprise traffic recorded at a medium-sized

site. The traces (11GB) span more than 100 hours of activity from a total of several

thousand internal hosts where the IP addresses of the internal hosts were anonymized

using tcpmkpub tool. For more information on the traces, see [LBNL 2004].

The enterprise traces were collected for 5 days from October, 2004 to January,

2005. Table 3.21 presents the statistics for the percentage of data for the TCP flows

using SACKs in the enterprise traces. The data that falls between (0, 95) interval

(columns 4 and 5) ranged from 0.08% to 2.09%. Those flows were ignored along with

the traces containing multiple TCP flows (column 6) for reneging analysis.

Table 3.21: Percentage of data monitored in LBNL traces

Date 100% [95, 100)% (0, 95)% 0% Multiple flows
20041004 96.03 0.90 0.18 1.91 0.98

20041215 97.26 0.00 0.01 0.16 2.57

20041216 95.95 0.05 0.02 0.07 3.92

20050106 97.05 0.20 0.00 0.08 2.67

20050107 96.36 0.09 0.02 0.13 3.39

 99

3.2.5.3.2 Results

In this section, we present the results of reneging analysis of the enterprise

traces provided by LBNL. Table 3.22 presents the frequency of reneging in the LBNL

traces. Out of 16 candidate reneging flows (0.06% of all flows), no flows reneged. We

report that all the candidate reneging flows were instances of SACK generation

misbehaviors.

Table 3.22: Reneging frequency of LBNL traces

Date Flows using
SACKs

Candidate Reneging
Flows

Reneged Flows

20041004 2684 1 0
20041215 8134 1 0
20041216 5757 2 0
20050106 4822 6 0
20050107 4357 6 0
TOTAL 25754 16 (0.06%) 0 (0.00%)

In [Blanton 2008], the author also analyzed LBNL traces to report the

frequency of reneging. Reneging instances were detected when an ACK increased in

the middle of a previously reported SACK. Out of 26,589 TCP flows analyzed, the

author reported no instances of reneging. The results of both analyses (our and

[Blanton 2008]) are the same: the frequency of reneging reported in LBNL traces is

0.00%. For the same traces, we analyzed less number of TCP flows (25754) since the

traces having gaps in the data or containing multiple flows were discarded.

In [Blanton 2008], the author defined a flow as “bogus” if a SACK information

was significantly outside of the analyzed sequence space. The author reported 3

“bogus” reneging flows in the LBNL traces. Figure 3.14 shows an example tcpdump

output for such a “bogus” reneging flow. The ack (lines 3, 4) notifies the data sender

 100

that the data segment (lines 1, 2) was received in order. Unfortunately, the left edge of

the reported SACK block 84025636-271085380 is same as the ACK. This behavior

was detected as a reneging instance in [Blanton 2008]. Note that the SACK block in

Figure 3.14 claimed that 187,059,744 (!) bytes were in the receive buffer. We believe

that this behavior is another instance of a misbehaving TCP stack. RenegDetect v2

also detected those “bogus” reneging flows in the LBNL traces. Unlike [Blanton

2008], RenegDetect v2 identified 4 flows as “bogus” and did not report these “bogus”

flows as candidate reneging flows since no data retransmissions were observed for the

MISSING data.

Figure 3.14: An example “bogus” reneging instance

In our analysis on LBNL traces, we found the frequency of reneging to be 0%.

This result suggests that reneging is a rare event.

3.3 Conclusion

To document the frequency of TCP reneging in trace data, we proposed a

mechanism to detect reneging instances. The proposed mechanism is based on how an

SCTP data sender infers reneging. A state of the receive buffer is constructed at an

intermediate router and updated through new acks. When an inconsistency occurs

between the state of the receive buffer and a new ack, reneging is detected. We

implemented the proposed mechanism as a tool called RenegDetect.

 101

While verifying RenegDetect with real TCP flows, we discovered that some

TCP implementations were generating SACKs incompletely under some

circumstances giving a false impression that reneging was happening. To identify

reneging instances more accurately, we updated RenegDetect to better analyze the

flow of data, in particular, to analyze data retransmissions which are a more definitive

indication that reneging happened.

Our initial hypothesis was that reneging rarely if ever occurs in practice. For

that purpose, TCP traces from three domains (Internet backbone (CAIDA), wireless

(SIGCOMM), enterprise (LBNL)) were analyzed using RenegDetect.

Contrary to our initial expectation that reneging is extremely rare event, trace

analysis demonstrated that reneging does happen. Therefore, we could not reject our

initial hypothesis H0 that P(reneging) < 10-5. Since reneging instances were found,

analyzing 300K TCP flows were no longer necessary. As a result, we ended up

analyzing 202,877 TCP flows using SACKs from the three domains. Table 3.23

reports the frequency of TCP reneging in the three domains. In the TCP flows using

SACKs, we detected 104 reneging flows. Based on these observations, we estimated

with 95% confidence that the true average rate of reneging is in the interval [0.041%,

0.059%], roughly 1 flow in 2,000 (0.05%).

Table 3.23: Frequency of reneging

Trace Flows using
SACKs

Linux
Reneging

FreeBSD
Reneging

Windows
Reneging

Total
Reneging

CAIDA 161440 40 11 53 104
SIGCOMM 15683 0 0 0 0

LBNL 25754 0 0 0 0
TOTAL 202877 40

(0.02%)
11

(0.00%)
53

(0.03%)
104

(0.05%)

 102

The frequency of TCP reneging we found, 0.05%, is greater than the results in

[Blanton 2008] where the frequency of reneging is reported as 0.017%. Together the

results of these two studies allow us to conclude that reneging is a rare event.

In the 104 reneging flows, a total of 200 reneging instances were detected. This

behavior suggests that multiple reneging instances occur per reneging flow. For each

reneging flow, we tried to fingerprint the operating system of the reneging data

receiver, and generalize reneging behavior of Linux, FreeBSD, and Windows data

receivers.

In this study, we investigated the frequency of TCP reneging to conclude if

TCP’s design to tolerate reneging is correct. If we could document that reneging never

occurs, TCP had no need to tolerate reneging. However, reneging occurs rarely (less

than 1 flow per 1000), we believe the current handling of reneging in TCP can be

improved.

TCP is designed to tolerate reneging by defining a retransmission policy for a

data sender [RFC2018] and keeping the SACKed data in the data sender’s send buffer

until cumulatively ACKed. With this design, if reneging does not happen or happens

rarely, SACKed data are unnecessarily stored in the send buffer wasting operating

system resources.

To understand the potential gains for a protocol that does not tolerate reneging,

SCTP’s NR-SACKs (Non-Renegable SACKs) are detailed in Section 1.2.2. With NR-

SACKs, an SCTP data receiver takes the responsibility for non-renegable data (NR-

SACKed), and, an SCTP data sender needs not to retain copies of NR-SACKed data in

its send buffer until cumulatively ACKed. Therefore, memory allocated for the send

buffer is better utilized with NR-SACKs. NR-SACKs also improve end-to-end

 103

application throughput. When the send buffer is full, no new data can be transmitted

even when congestion and flow control mechanisms allow. When NR-SACKed data

are removed from the send buffer, new application data can be read and potentially

transmitted.

If current TCP was designed not to tolerate reneging, the send buffer utilization

would be always optimal, and the application throughput might be improved for data

transfers with constrained send buffers (assuming asymmetric buffer sizes (send buffer

< receive buffer) and no auto-tuning). Unfortunately, TCP is designed to tolerate

reneging.

Let us compare TCP’s current design to tolerate reneging with a TCP that does

not support reneging using the results from our reneging analysis. With current design,

TCP tolerates reneging to achieve the reliable data transfer of 104 reneging flows. The

202,773 non-reneging flows waste main memory allocated to send buffer and

potentially achieve lower throughput.

I argue that the current design to tolerate reneging is wrong since reneging is a

rare event. Instead, I suggest that the current semantics of SACKs should be changed

from advisory to permanent prohibiting a data receiver to renege. If a data receiver

does have to take back memory that has been allocated to received out-of-order data, I

propose that the data receiver must RESET the transport connection. With this change,

104 reneging flows would be penalized by termination. On the other hand, 202,773

non-reneging flows benefit from better send buffer utilization and possible increased

throughput. The increased throughput is only possible for data transfers with

constrained send buffers (assuming asymmetric buffer sizes (send buffer < receive

 104

buffer) and no auto-tuning) and needs modifications in TCP’s send buffer

management.

Initially, reneging was thought as a utility mechanism to help an operating

system to reclaim main memory back under low-memory situations. In our

investigation, we found that the average main memory returned to the reneging

operating system per reneging instance is on the order of 2 TCP segments (2715,

3717, and 1371 bytes for Linux, FreeBSD, and Windows operating systems,

respectively.) This average amount of main memory reclaimed back to operating

system seems relatively insignificant. For example, to reclaim 3MB of main memory

back to FreeBSD, 846 simultaneous TCP flows each having 3717 bytes of out-of-

order data would need to be reneged. On the other hand, our experimentation with

FreeBSD showed that terminating a single TCP flow established to Apache web server

releases ~3MB of main memory in FreeBSD. Therefore, I believe that RESETing a

TCP flow is a better strategy to help an operating system rather than the current

handling of reneging.

I also had a chance to discuss why reneging is tolerated in TCP with Matt

Mathis, the main editor of [RFC2018]. He told me that the semantics of SACKs are

advisory since a reliable data transfer would fail if SACKs were permanent and some

TCP stacks implement SACKs incorrectly. By specifying SACKs advisory, TCP is

more robust to SACK implementations having bugs. I argue that this design choice is

wrong. Similarly, a TCP stack implementing a wrong ACK mechanism would cause a

data transfer to fail. I believe it is the protocol implementor’s responsibility to provide

a conformant implementation. In my opinion, the protocols should be specified to

achieve the best performance and not be designed to tolerate incorrect

 105

implementations. I argue that TCP’s current mechanism to tolerate reneging achieves

a lower memory utilization when compared to a TCP with no reneging support and

should be changed.

 106

Chapter 4

RENEGING SUPPORT IN OPERATING SYSTEMS

This chapter presents reneging support within the following operating systems:

FreeBSD, Linux (Android), Mac OS X, OpenBSD, Solaris and Windows. Reneging

has been studied only once in the research community to report its frequency [Blanton

2008], but the causes of reneging are unknown. The general assumption is that

reneging happens when an operating system goes low on memory to help the

operating system recover and resume normal operation. But no one knows if this

assumption is true. Our objective is to document the circumstances of reneging in

detail for operating systems with reneging support. For that, various TCP stacks are

inspected and the interactions between the TCP stack and operating system during

reneging are reported. Once the circumstances of reneging are better understood, a

tool to cause a remote host to renege can be implemented. In Chapter 5, such a tool is

presented, and three operating systems are purposefully reneged to inspect the

consequences on the operating system and its transport layer connections. In this

chapter, we first investigate what causes reneging.

To determine which operating systems to study for reneging, we decided to

inspect those operating systems which are both popular and support SACKs

[RFC2018]. Table 4.1 presents the operating systems with at least 0.01% market share

on 10/21/2009 reported by www.netmarketshare.com [Market]. Microsoft’s Windows

occupies the major portion of the market share (greater than 91%). Unfortunately,

Microsoft’s operating systems are not open source, so their TCP stack cannot be

 107

inspected for reneging. To learn more about reneging support in Windows, I contacted

implementors of Microsoft’s TCP stack and asked if the stack has any support for

reneging. Their responses are discussed in Section 4.1.

Table 4.1: Market share of popular operating systems in 2009 [Market]

Operating System Market Share RFC 2018 Support Reneging

Windows XP 71.51% yes
Windows Vista 18.62% yes yes
Mac OS X 10.5 3.03% yes yes
Mac OS X 10.4 0.96% yes yes
Windows 2000 0.85% yes
Linux 0.95% yes yes
iPhone 0.35%
Mac OS X Mach-O 0.08% yes yes
Windows 98 0.11% yes
Windows ME 0.06% yes
iPod 0.07%
Windows NT 0.10% no
Java ME 0.30%
Android 1.5 0.02% yes yes
Symbian 0.15%
Windows CE 0.04%
PLAYSTATION 3 0.02%
PSP 0.01%
BlackBerry 0.02%
FreeBSD 0.01% yes yes
Total 97.26%

The second most popular operating system after Microsoft’s Windows is

Apple’s Mac OS X. Reneging support in Mac OS X is detailed in Section 4.2.

Linux is the third most popular operating system. Reneging support for Linux

and Linux-based Android is presented in Section 4.3.

Reneging is expected to happen on hosts which go low on main memory.

Therefore, a web server with thousands of active TCP connections is a stronger

 108

candidate to renege rather than a web client averaging a few active TCP connections at

the time. So in addition to operating systems with a significant market share, we

decided to inspect operating systems that are used by busy web servers.

One can argue that most web servers are data senders, and reneging is expected

to take place at a data receiver. So why should we inspect TCP stacks of the operating

systems hosting web servers? Web pages such as www.rapidshare.com,

www.flickr.com, photobucket.com, imageshack.us, www.dailymotion.com and

megaupload.com provide online data storage services to their users. These web pages

play the role of both a data sender and a data receiver. Hence, reneging support should

be investigated for those operating systems.

To find out which operating systems are used by popular web servers, I ran the

Network Mapper (nmap) tool [Nmap] on [Alexa]’s most visited 100 web pages in

2009. Nmap can detect the operating system and services of a remote host. Table 4.2

presents the results for operating systems and services detected by nmap for the most

visited 100 web pages in 2009. For the Microsoft web pages, www.msn.com and

www.microsoft.com, nmap could not detect the operating system running. We can

infer that those web pages are hosted on a Windows operating system by simply

inspecting the services used (Microsoft IIS Webserver.)

Several top 100 web pages are hosted on FreeBSD, Linux, OpenBSD, and

Windows. Reneging support for FreeBSD and OpenBSD is detailed in Sections 4.4

and 4.5, respectively.

Solaris is an operating system with SACK support [RFC2018] that we tested in

Chapter 2 for proper TCP SACK generation. While analyzing the TCP stack of

 109

Solaris, a cause for reneging was found accidentally. Section 4.6 details reneging in

Solaris.

Table 4.2: Nmap detected operating systems of some of the Alexa's Top Sites

Rank Domain Operating System Services

1 google.com OpenBSD 4.0 Google Httpd 2.0 (GFE)
3 yahoo.com FreeBSD 6.3
5 live.com Linux 2.6.5-2.6.12 Akamai SSH Server-VII
6 wikipedia.com Linux 2.6.9-2.6.27 Apache httpd
8 msn.com UNKNOWN Microsoft IIS webserver 6.0

16 microsoft.com UNKNOWN Microsoft IIS webserver 7.5
21 rapidshare.com Linux 2.6.15 - 2.6.26 http?
25 amazon.com OpenBSD 4.0 http?
32 flickr.com Linux 2.4.32 Apache httpd
34 craigslist.org FreeBSD 6.2 http?
42 photobucket.com Linux 2.4.31 - 2.4.34 Apache httpd
62 imageshack.us Linux 2.6.9 - 2.6.24 lighttpd 1.5.0
83 dailymotion.com Linux 2.6.9 http?
85 megaupload.com Linux 2.6.15 - 2.6.26 Apache httpd

In the following sections, variables, functions, structures and file names related

to the TCP implementations are shown in italics.

4.1 Reneging in Microsoft’s Windows

Microsoft’s operating system code is not publicly available. To gain insight

into reneging behavior in Windows systems, I contacted Dave MacDonald, the author

of Microsoft Windows 2000 TCP/IP Implementation Details [MacDonald 2000]. Dave

confirmed that reneging is not possible in Windows 2000, XP and Server 2003.

Vista and its successors (Windows Server 2008 and 7) have a brand new TCP

stack. Dave stated that “in Vista+ (Vista and its successors), the only time we renege

on reassembly data is if we think the memory consumption of total reassembly data in

 110

relation to the global memory limits is significant.” From the emails exchanged, I

believe Vista’s reneging mechanism makes sure a connection maintains a minimum

amount of forward progress in its end-to-end data transfer. If forward progress

happens, reneging does not occur. If no forward progress happens for a maximum

time, reneging is invoked and out-of-order data are consequently discarded. Recall that

the Microsoft’s TCP stack code is not publicly available, so our conclusion for

reneging behavior in Windows is only a conjecture.

Dave stated that the purpose of the reneging mechanism in Windows is to

protect the operating system against denial of service (DoS) attacks where attackers

force Windows to create state and exhaust resources. Initially, reneging is thought of

as a mechanism that helps an operating system which goes low on system resources.

Using reneging, an operating system would reclaim some resources back to resume its

normal operation. In Windows, on the other hand, reneging seems to have a different

purpose: to protect the operating system from DoS attacks similar to SYN flood. In a

SYN flood attack, attackers send SYN requests to a victim to open fake connections

and consume the victim’s resources, and in the extreme make the victim’s services

unavailable. To consume even more resources, an attacker could fill open TCP

connections with out-of-order data thus using up memory for receive buffers. To

protect from such attacks, Windows uses reneging as an attack protection mechanism.

In Section 5.4, Windows Vista and 7 hosts are reneged and the consequences

of reneging are presented.

4.2 Reneging in Mac OS X

This section details reneging support in Mac OS operating system. The Mac

OS X kernel is called X is Not Unix (XNU) [Singh 2003]. The TCP/IP stack of XNU

 111

is based on XNU's Berkeley Software Distribution (BSD) component whose primary

reference codebase is FreeBSD (5.x). XNU has the same mechanism for turning on/off

data reneging as does FreeBSD which is detailed in Section 4.4. A major difference

between Mac OS and FreeBSD is that currently reneging is off by default in Mac OS

X (xnu 1699.24.8) [MacOS] while on by default in FreeBSD. The code segment in

Figure 4.1 sets the default behavior for reneging in Mac OS X to off (lines 2, 3),

defined in bsd/netinet/tcp_subr.c.

Figure 4.1: Setting up the default reneging behavior in Mac OS X

Figure 4.2: Call graph for reneging in Mac OS X

 112

The call graph in Figure 4.2 summarizes the function calls causing a TCP data

receiver to renege in Mac OS X.

Figure 4.3: mbuf_slab_alloc() function in Mac OS X

In Mac OS X, caches of mbufs and mbuf clusters exist per CPU. Mbufs/mbuf

clusters are structures which store network packets such as Ethernet, IP, and TCP

PDUs. Both mbufs and mbuf clusters are defined by rudimentary object type in Mac

OS X. Allocation requests for a rudimentary object are first satisfied from the CPU

cache using mcache_alloc() or mcache_alloc_ext() functions. When not enough mbufs

or mbuf clusters exist in the CPU cache, mbuf_slab_alloc(), defined in

 113

bsd/kern/uipc_mbuf.c, is used to allocate rudimentary objects from a global freelist of

the slab layer. Figure 4.3 shows a code segment from the mbuf_slab_alloc() function.

If the global freelist is empty, mbuf_slab_alloc() attempts to populate it (line 1) first. If

the attempt to populate the freelist fails, the mbuf_sleep() function is called for the

blocking allocation calls (line 31).

mbuf_sleep(), defined in bsd/kern/uipc_mbuf.c and shown in Figure 4.4, is

called during a blocking allocation. mbuf_sleep() tries to serve the request from the

CPU cache layer first (line 14). If the request cannot be allocated from the cache layer,

m_reclaim() is invoked (line 20).

Figure 4.4: mbuf_sleep() function in Mac OS X

m_reclaim(), defined in bsd/kern/uipc_mbuf.c, sets a global variable called

do_reclaim to 1 (on) which is used by the pfslowtimo() function. pfslowtimo(), shown

in Figure 4.5 and defined in bsd/kern/uipc_domain.c, causes reneging in Mac OS X.

 114

The pfslowtimo() is similar to FreeBSD’s mb_reclaim() function shown in Figure

4.15. The pr_drain function of each protocol is invoked (line 21) when do_reclaim is

set to 1 (on). In Mac OS X, pr_drain for TCP is initialized in bsd/netinet/in_proto.c

with the value tcp_drain.

Figure 4.5: pfslowtimo() function in Mac OS X

Reneging in Mac OS X happens when the tcp_drain() function is called,

defined in bsd/netinet/tcp_subr.c, by the pfslowtimo() function. The

net.inet.tcp.do_tcpdrain sysctl should be set to on (1) beforehand by a system

administrator for data reneging to happen. Remember that reneging is turned off by

default in Mac OS X. tcp_drain() uses the m_freem() function in Figure 4.6 (line 27)

to delete the reassembly queue which is formed as an mbuf/mbuf cluster chain. Again

 115

the tcp_drain() function is similar to its corresponding sibling in FreeBSD shown in

Figure 4.18.

Figure 4.6: tcp_drain() function in Mac OS X

In Mac OS X, reneging is supported by the operating system, and the function

calls that can cause a machine to renege are explained above. By default, reneging is

turned off. In conclusion, reneging does not happen in Mac OS X unless enabled by a

system administrator beforehand.

 116

4.3 Reneging in Linux

This section explains the reneging support in the Linux and Android operating

systems. Android is a Linux-based operating system for mobile devices such as cell

phones. The Android kernel is based on Linux kernel 2.6.xx and complies with Linux’

reneging behavior explained in this section. The call graph in Figure 4.7 summarizes

the function calls which cause reneging.

Figure 4.7: Call graph for reneging in Linux

In Linux, out-of-order data are stored in out_of_order_queue defined in

include/linux/tcp.h [Linux]. The tcp_prune_ofo_queue() function, shown in Figure 4.8,

clears the out_of_order_queue of a TCP connection, causing a Linux data receiver to

renege (line 12) with the __skb_queue_purge() call for the out_of_order_queue.

 117

Related SACK information for out-of-order data are deleted using the function

tcp_sack_reset() (line 20). As a result, reneging in Linux is possible and happens when

tcp_prune_ofo_queue() is invoked.

Figure 4.8: tcp_prune_ofo_queue() function in Linux

Linux’s TCP stack (specifically kernel version: 2.6) [Linux] includes a

function, tcp_prune_queue(), that reduces a socket’s allocated memory if the socket

exceeds its available memory limit. When a socket’s allocated memory exceeds the

limit, the tcp_prune_queue() function can delete out-of-order data from the receive

buffer by calling the tcp_prune_ofo_queue () function as shown in Figure 4.9 (line

30).

 118

Figure 4.9: tcp_prune_queue() function in Linux

Both the tcp_prune_queue() and the tcp_prune_ofo_queue() functions can be

invoked from the tcp_try_rmem_schedule() function shown in Figure 4.10. If the

tcp_prune_queue() call (line 6) returns a negative value (meaning that

tcp_prune_ofo_queue() is already called by the tcp_prune_queue()),

tcp_try_rmem_schedule() returns. Otherwise, the tcp_prune_ofo_queue() can be

invoked (line 10). Note that tcp_try_rmem_schedule() invokes the tcp_prune_queue()

and tcp_prune_ofo_queue() functions when the memory allocated for receive buffer

exceeds the socket’s limit for receive buffer (line 3).

 119

Figure 4.10: tcp_try_rmem_schedule() function in Linux

In [Seth 2008], the authors state that calling tcp_try_rmem_schedule()

eventually may lead to reneging when the socket’s memory pool is exhausted and

allocation needs to be done from the global TCP memory pool. According to [Seth

2008], this situation happens when a) an application is unable to read data queued up

at the receive buffer, and b) a large number of out-of-order segments are received.

4.3.1 Local vs. Global Reneging

In Linux, reneging happens only for the connection(s) exceeding their receive

buffer limits. So it is possible to have reneging and non-reneging TCP connections

simultaneously. We define this behavior as local reneging. On the other hand,

reneging in Mac OS X and FreeBSD happens for all the active connections with out-

of-order data. We define this behavior as global reneging. In Chapter 5, we cause

operating systems to renege, inspect the consequences of reneging, and in Section 5.5

compare the pros and cons of local vs. global reneging.

 120

In conclusion, reneging happens in Linux and Android when the memory

allocated for receive buffer exceeds the memory limit available to the receive buffer.

4.4 Reneging in FreeBSD

This section details reneging support and its implementation in the FreeBSD

operating system. FreeBSD comes with built-in reneging support [Freebsd], as does

Mac OS X. In FreeBSD, a sysctl mechanism enables processes to get and set the

kernel state. To turn on/off reneging, the net.inet.tcp.do_tcpdrain sysctl is used.

Reneging can happen when the system runs out of main memory and

net.inet.tcp.do_tcpdrain is on (1). The code segment shown in Figure 4.11, defined in

/usr/src/sys/netinet/tcp_subr.c, sets the default TCP behavior for reneging to on (1),

(lines 2, 3), for FreeBSD.

Figure 4.11: Setting up the default reneging behavior in FreeBSD

When net.inet.tcp.do_tcpdrain is set to 0 (off), reneging is disabled. In this

case, all out-of-order data effectively becomes non-renegable (out-of-order data are

never purged from the receive buffer).

The call graph in Figure 4.12 summarizes the function calls/events causing a

TCP data receiver to renege in FreeBSD. Now we detail the functions, structures, and

event handlers used for reneging.

 121

Two functions in FreeBSD kernel invoke the vm_lowmem event when the

available main memory goes below a certain threshold. The first function is the

kmem_malloc() function, defined in /usr/src/sys/vm/vm_kern.c, and the second

function is vm_pageout_scan(), defined in /usr/src/sys/vm/vm_pageout.c. A code

segment from vm_pageout_scan() is shown in Figure 4.13. When the available main

memory goes low, vm_pageout daemon (daemon responsible for page replacement)

invokes the function vm_pageout_scan() to scan main memory to free some pages. If

the memory shortage is severe enough, the largest process is killed. The vm_pageout

daemon uses values that, for the most part, are hard-coded or tunable in order to

determine paging thresholds [Bruning 2005]. In such a low memory situation, the

vm_lowmem event is set (line 19) in Figure 4.13.

Figure 4.12: Call graph for reneging in FreeBSD

 122

Figure 4.13: vm_pageout_scan() function in FreeBSD

The event handler for vm_lowmem is defined and initialized in

/usr/src/sys/kern/kern_mbuf.c. In a low memory situation, first the vm_lowmem event

is set, and later the mb_reclaim() is invoked as a consequence. The registration of the

vm_lowmem event to the mb_reclaim() function is shown (line 6) in Figure 4.14.

Figure 4.14: Event handler for low-memory situation in FreeBSD

 123

The mb_reclaim() function, defined in /usr/src/sys/kern/kern_mbuf.c, is shown

in Figure 4.15. The mb_reclaim() calls the initialized pr_drain function for each

protocol (line 20) in each domain.

Figure 4.15: mb_reclaim() function in FreeBSD

/usr/src/sys/sys/protosw.h defines the generic protocol switch table structure

that is used for protocol-to-protocol and system-to-protocol communication. This

protocol switch table structure, shown in Figure 4.16, is initialized for different

protocols supported by FreeBSD such as IP, TCP, UDP and SCTP. The pr_drain

function pointer for drain routines is defined (line 16).

The protocol switch table structure for TCP is initialized, as shown in Figure

4.17, in /usr/src/sys/netinet/in_proto.c. Note that the pr_drain function pointer is

initialized (line 14) with tcp_drain. Similarly, the pr_drain functions for other

protocols such as IP and SCTP are defined with the ip_drain and sctp_drain functions.

 124

Figure 4.16: Protocol switch table structure in FreeBSD

Figure 4.17: Protocol switch table initialization for TCP in FreeBSD

The tcp_drain() function causes reneging by deleting all of the reassembly

queues of all active TCP connections (global reneging) by calling the

tcp_reass_flush() function for each queue. The tcp_drain(), defined in

/usr/src/sys/netinet/tcp_subr.c and shown in Figure 4.18, goes through all existing

TCP connections, and calls tcp_reass_flush() for each connection (line 29). Since the

 125

reassembly queue of each TCP connection is cleared, the related SACK information

(scoreboard) is pruned with a tcp_clean_sackreport() call (line 30).

Figure 4.18: tcp_drain() function in FreeBSD

Shown in Figure 4.19, tcp_reass_flush() is defined in

/usr/src/sys/netinet/tcp_reass.c. The function tcp_reass_flush() uses m_freem() (line

10) to free an entire mbuf chain, including any external storage (mbuf clusters)

[FreebsdImpl]. Mbufs and mbuf clusters are structures which store network packets

 126

such as Ethernet, IP, and TCP PDUs in FreeBSD. The reassembly queue of a TCP

connection is implemented as an mbuf chain of TCP PDUs. A detailed explanation of

FreeBSD’s network buffers and structures can be found in Section 5.2.1.

Figure 4.19: tcp_reass_flush() function in FreeBSD

In conclusion, FreeBSD is an operating system with built-in support for

reneging which can be turned on/off by a system administrator. Reneging would

happen when a FreeBSD host goes low on main memory. In Section 5.2, a FreeBSD

8.1 host is reneged and the consequences of reneging are presented.

4.5 Reneging in OpenBSD

OpenBSD is a free, 4.4BSD-based Unix-like operating system with the latest

release OpenBSD 5.0 [Openbsd].

As in FreeBSD, /usr/src/sys/sys/protosw.h defines the generic protocol switch

table structure used for protocol-to-protocol and system-to-protocol communication

for OpenBSD. The protocol switch table structure for OpenBSD shown in Figure 4.20

 127

is similar to FreeBSD’s protocol switch table shown in Figure 4.16 (only minor

differences exist between the two protocol switch tables.)

Figure 4.20: Protocol switch table structure in OpenBSD

The protocol switch table structure is initialized, as shown in Figure 4.21, in

/usr/src/sys/netinet/in_proto.c. Contrary to FreeBSD, the pr_drain function pointer for

TCP in OpenBSD is initialized to 0 (NULL) (line 13) instead of a tcp_drain()

function. This difference reveals that OpenBSD does not have operating system

support for reneging (so out-of-order data are non-renegable).

In conclusion, reneging is not possible in OpenBSD.

 128

Figure 4.21: Protocol switch table initialization for TCP in OpenBSD

4.6 Reneging in Solaris

In Solaris, no built-in support exists for reneging as in FreeBSD or Mac OS X.

However, reneging can happen under specific circumstances which are detailed below.

In Solaris, the TCP reassembly queue (queue to store out-of-order data) is

referenced by two pointers named tcp_reass_head and tcp_reass_tail, defined in

common/inet/tcp.h and shown in Figure 4.22.

Figure 4.22: Reassembly queue in Solaris

When an IP packet is received, the data part of the IP PDU is passed to TCP

via the tcp_input_data() function. The tcp_input_data() function passes the new data

to the tcp_reass() function to either store data in the reassembly queue if the data are

out-of-order, or to get all the in-order data when the new data fills the first gap in the

 129

reassembly queue. When the in-order data are returned from tcp_reass(), they are

delivered to the receiving application.

Figure 4.25 shows part of the tcp_input_data() function. tcp_reass() is called

first (line 5). If some out-of-order data still exist in the reassembly queue when

tcp_reass() returns, a timer called tcp_reass_timer (TCP reassembly timer) is restarted

with tcps->tcps_reass_timeout (timeout value for reassembly timer) value (line 33).

The variable tcps_reass_timeout is defined in common/inet/tcp_impl.h as shown in

Figure 4.23. Its default value of 100*SECONDS is defined in

common/inet/tcp/tcp_tunables.c as shown in Figure 4.24.

Figure 4.23: Definition of tcps_reass_timeout in Solaris

Figure 4.24: tcp_propinfo_tbl[59] value in Solaris

When the tcp_reass_timer expires after 100 seconds, the tcp_reass_timer()

function, shown in Figure 4.26 and defined in common/inet/tcp/tcp_timers.c, is

invoked. All out-of-order data in the reassembly queue are deleted (i.e., reneged) with

the tcp_close_mpp() call (line 15). Before the out-of-order data are pruned, all related

SACK information is cleared with the tcp_sack_remove() function (line 12). Since the

reassembly queue is emptied, the pointer tcp_reass_tail is set to NULL (line 16). In

Solaris, reneging happens when the tcp_reass_timer timer expires.

 130

Figure 4.25: tcp_input_data() function in Solaris

Figure 4.26: tcp_reass_timer() function in Solaris

 131

In Solaris, the default value for tcp_reass_timeout can be read and modified

with the ndd (the command to get/set driver configuration parameters). Figure 4.27

shows how to read the default tcp_reass_timeout value and change it to 10*SECONDs

(10000).

Figure 4.27: ndd command to change TCP parameters in Solaris

To our best knowledge, a timer for the TCP reassembly queue is not defined in

any TCP specification. The best known and most widely used TCP timers are the

retransmission timer, the TIME-WAIT timer, the delayed ACK timer, the persist

timer, the keep-alive timer, the FIN-WAIT-2 timer, and the SYN-ACK timer. Those

timers are enough for TCP to achieve reliable data transfer. None of the open-source

operating systems, inspected for reneging in this chapter except Solaris, have a TCP

reassembly timer. I inquired what the purpose of this timer was in the Oracle’s

Developer and Networking forums but nobody replied. I believe the TCP reassembly

queue timer in Solaris serves a similar purpose, as does Windows’ reneging

mechanism: to protect the operating system from a SYN flood-like attack. The

reassembly queue is emptied if no data are delivered to receiving application within

100 seconds of receiving any out-of-order data. The allocated resources for the out-of-

order data are returned back to the operating system.

To summarize, reneging occurs in Solaris when a data receiver receives some

out-of-order data and that data remains in TCP’s reassembly queue for at least 100

 132

seconds (the default timeout value). Then, tcp_reass_timer timer expires and calls the

tcp_reass_timer() function which prunes all the data in the reassembly queue. As in

Linux, reneging in Solaris is an example of local reneging since only the individual

TCP connection(s) are reneged. In Section 5.3, we confirm that reneging happens on a

Solaris 11 host when the conditions described above hold.

4.7 Conclusion

In this investigation, several TCP stacks from popular operating systems are

inspected to find out the circumstances of reneging. The primary contribution of our

investigation is that we found out that operating systems use reneging for different

purposes.

Initially, reneging was expected to happen on operating systems that go low on

main memory to help the operating system to resume normal operation. FreeBSD

supports that type of reneging. In low memory situations, all TCP connections with

out-of-order data renege (global reneging) and memory used for the out-of-order data

is given back to the operating system.

For Microsoft Windows, reneging is not supported by 2000, XP and Server

2003. Vista+ (Vista, Server 2008, 7) comes with a new TCP stack in which reneging is

possible. Reneging in Windows Vista+ is of different type and was introduced to

protect a host against DoS attacks. An attacker can open multiple TCP connections

and fill each one’s receive buffers with out-of-order data to exhaust system resources

to make services unavailable. Reneging happens when the memory consumption of

total reassembly data in relation to the global memory limits is significant.

 133

In Mac OS X, reneging is supported by the operating system. Reneging does

not happen in Mac OS X unless enabled by a system administrator. As in FreeBSD,

Mac OS X employs a global reneging mechanism.

In Linux (Android), reneging happens when the memory allocated for a

receive buffer exceeds the memory limit available to the receive buffer. Allocated

buffer space for the out-of-order data is freed and returned back to the global TCP

memory pool to be used by other TCP connections. Note that only individual

connections exceeding the receive buffer limit renege (local reneging).

Reneging is not supported in Solaris but happens to the connections where

TCP reassembly queue timer expires (local reneging). To our best knowledge, a timer

for the reassembly queue is not defined in the TCP specification. We believe reneging

(having a reassembly queue timer) in Solaris has the same purpose as Windows

reneging: to protect the operating system against a DoS attack.

Initially, we expected reneging not to be supported by any operating systems.

Interestingly, our investigation revealed that five out of six inspected operating

systems can renege (FreeBSD, Linux (Android), Apple’s Mac OS X, Oracle’s Solaris

and Microsoft’s Windows Vista+.) The only operating system that does not support

reneging in our investigation is OpenBSD. We also initially expected that reneging

would occur to help operating system to resume normal operation by providing extra

memory (FreeBSD). Surprisingly, we discovered that reneging is also used as a

protection mechanism against DoS attacks (Solaris, Vista+.) We conclude that

reneging is a common mechanism implemented in many of today’s popular operating

systems.

 134

Chapter 5

CAUSING RENEGING ON A REMOTE HOST

The consequences of reneging on operating systems and active transport

connections are unknown. Does reneging help an operating system to resume its

operation? Can a reneged TCP connection complete a data transfer? To answer these

questions, operating systems and TCP connections should be inspected after reneging.

But how can we cause a machine(s) to renege? In the previous chapter, we learn that

reneging happens (a) when system resources such as main memory/network buffers

become scarce, or (b) when out-of-order data sit in a receive buffer for long time

without being delivered to a receiving application. To cause reneging, a tool can

exhaust system resources by filling TCP receive buffers of a remote host with out-of-

order data and not transmitting in-order data, satisfying (a) and (b), respectively. This

chapter presents a tool which causes a remote host to renege, and the tool’s application

on FreeBSD, Solaris, and Windows operating systems. For those operating systems,

the consequences of reneging are detailed by answering the following two questions.

(1) Does reneging help an operating system avoid crashing, thereby resuming

normal operation? If yes, we can conclude that reneging is a useful and essential

mechanism. On the other hand, after reneging if a machine still cannot resume normal

operation (i.e., it crashes), then why bother even implementing reneging?

(2) Can an active TCP connection complete a data transfer successfully when

some of the out-of-order data are reneged? When reneging happens, a TCP data

receiver deletes all out-of-order data from its receive buffer. In general, a TCP data

 135

sender does not have a mechanism to infer reneging. To tolerate reneging, a sender is

expected to discard its SACK scoreboard upon a retransmission timeout, and

retransmit bytes at the left edge of the window [RFC2018]. If the TCP sender does not

implement tolerating reneging properly, reneging may cause a data transfer to fail.

To answer (1) and (2), operating systems that renege should be analyzed. To

analyze a reneging host and its connections, exact timing of reneging needs to be

known beforehand. Reneging, in general, is expected to happen under rare

circumstances (conditions) when the available main memory/network buffers of a host

become scarce. We cannot just sit and wait for reneging to happen. Instead of waiting

for a rare event such as reneging to eventually happen, a tool to cause reneging on a

remote host can be developed to investigate consequences of reneging in a lab

controlled environment. Using such a tool, remote hosts with different operating

systems can be analyzed in detail to characterize the consequences of reneging.

Our tool to cause a remote host to renege is called CauseReneg and is detailed

in Section 5.1. CauseReneg exhausts a remote host’s resources using TCP until the

point that reneging is triggered. Figure 5.1 depicts a simple architecture. An attacker

runs CauseReneg to attack a remote host (victim). During the attack, the TCP traffic

between the attacker and the victim is recorded for later analysis.

The remote host is called a victim since CauseReneg exhausts the victim’s

operating system resources such as main memory, network buffers, and CPU cycles.

CauseReneg is hostile to the victim’s operating system and falls into the category of a

denial-of-service (DoS) attack tool.

Using CauseReneg, FreeBSD, Solaris and Windows victims are reneged. The

consequences of reneging on those operating systems and their TCP connections are

 136

presented in Section 5.2, 5.3 and 5.4, respectively. Section 5.5 summarizes our effort

to cause reneging on remote hosts.

Figure 5.1: Causing a remote host to renege

5.1 A Tool to Cause a Remote Host to Renege: CauseReneg

CauseReneg tries to exhaust a victim’s resources such as main memory and

network buffers. Once a victim has reneged, the consequences of reneging to the

victim’s operating system and its active transport connections can be documented.

Reneging occurs when a TCP data receiver receives, SACKs, and discards out-

of-order data from its receive buffer. To cause a victim to renege, CauseReneg needs

to make sure that out-of-order data are present in the receive buffers of the victim. For

that, CauseReneg exhausts a victim’s resources by filling a TCP receiver’s receive

buffer almost fully with out-of-order data. A victim’s TCP allocates main memory and

network buffers to store that out-of-order data in a receive buffer (or a reassembly

queue). Since out-of-order data cannot be delivered to the receiving application,

resources are held for the time out-of-order data sit in the receive buffer. To exhaust

more main memory or network buffers, CauseReneg establishes n parallel TCP

 137

connections to the victim. As n increases, the victim is expected to go low on main

memory and network buffers. Eventually, with enough connections, reneging occurs

and main memory used for the out-of-order data is reclaimed back to the victim’s

operating system.

We consider two possible options for CauseReneg to fill a victim’s receive

buffers with out-of-order data. The options involve either using Dummynet or TCP

Behavior Inference Tool (TBIT).

The first option is to use the Dummynet traffic shaper [Dummynet] along the

kernel TCP. To create out-of-order data, Dummynet specifies TCP PDUs at the left

edge of the window to be dropped for each TCP connection established by

CauseReneg to a victim. Since kernel TCP is used, a problem exists with the

Dummynet option.

The loss recovery mechanism limits the duration of an attack. TCP’s loss

recovery mechanism retransmits a dropped TCP PDU r times (for example,

TcpMaxDataRetransmissions in Windows Server 2003 defines r=5 by default.) After r

retransmissions, kernel TCP would terminate a TCP connection. This problem limits

the duration of each TCP connection to 1-2 minutes (assuming back to back timeouts,

an initial retransmission timeout value (RTO) of 1 second, and r=5). When a TCP

connection is terminated, the resources allocated to the connection are reclaimed by

the victim’s operating system. Reneging is expected to happen when the victim’s

resources are scarce. On the other hand, terminating a connection increases available

resources of the victim, and decreases the possibility of reneging. To increase the

possibility of reneging, active TCP connections should remain alive to retain resources

for longer times.

 138

The second option to implement CauseReneg is to use TBIT [Padhye 2001].

TBIT is a user level traffic generator that produces synthetic TCP PDUs, and does not

conform to congestion and loss recovery mechanisms of a standard TCP data sender.

TCP PDUs can be sent in any arbitrary order to a TCP receiver. Using TBIT,

CauseReneg can avoid sending some bytes at the left edge of the window (say the first

1455 bytes), and fill the rest of the receive buffer with out-of-order data as intended.

The TBIT option does not have the problem of the Dummynet option. As

stated above, TBIT does not have to conform to TCP’s loss recovery mechanism. So,

no retransmissions are needed for the missing TCP PDUs. A victim’s TCP receiver

has no mechanisms to validate/correct a TCP sender’s (TBIT) congestion control or

loss recovery mechanisms. A victim’s TCP can only dictate flow control which is

limited to the advertised receiver window (rwnd). Hence, a victim’s TCP would accept

any sequence of bytes from CauseReneg when TCP data falls within the rwnd. Once

the out-of-order data are received by a victim, a TCP connection is active for at least

the keep-alive timer duration. The keep-alive timer is specified to be no less than 2

hours in [RFC1122]. I believe that 2 hours is enough time to cause a victim to renege

as compared to Dummynet option’s 1-2 minute long TCP connection time.

We consider the TBIT option to be more appropriate for CauseReneg. Thus

TBIT is extended with a new test called CauseReneging. CauseReneging fills a

victim’s TCP receive buffer with out-of-order data. CauseReneg runs n

CauseReneging TBIT tests to establish n TCP connections in parallel with a victim.

The number of parallel TCP connections (n) used by CauseReneg tool is dynamic and

depends on a victim’s main memory, available network buffers, and operating system.

 139

In CauseReneg, each CauseReneging test maps to a single TCP connection. The

CauseReneging TBIT test is shown in Figure 5.2 and operates as follows:

CauseReneging

1. TBIT establishes a connection to a victim with SACK-Permitted option and Initial
Sequence Number (ISN) 10000

2. Victim replies with SACK-Permitted option

3. TBIT sends segment (10001-10006) in order

4. Victim acks the in order data with ACK (10006)

5. TBIT skips sending 1455 bytes (10006-11461) and starts sending m consecutive
out-of-order segments each 1460 bytes to exhaust main memory

6. Victim acks the out-of-order data with SACKs

7. TBIT sends a 10 byte out-of-order segment after x seconds

8. Victim acks the out-of-order data with SACK

9. TBIT sends m+1 data segments in-order to complete the data transfer

10. Victim acks the in-order data with ACKs/SACKs

11. TBIT sends three RSTs to abort the connection

Now we explain the CauseReneging TBIT test in detail. First, a TCP

connection is established to a victim with 3-way handshake (step #1, #2, and #3) with

SACK-Permitted option. A 5 byte in-order data is sent to the victim along the ACK

(step #3). Next, the victim’s receive buffer is filled with m out-of-order segments (step

#5) based on the advertised window (step #2). As more TCP connections are

established to the victim, we expect reneging to happen. Let us assume that reneging

happens after y seconds. In (step #7), a 10 byte out-of-order data is sent after x

seconds. The x second value (step #7) is set to a value greater than y to detect reneging

 140

Figure 5.2: The CauseReneging TBIT Test with m=40 (step #5, #9)

using the response SACK (step #8). If that response SACKs only 10 bytes of out-of-

order data as shown in Figure 5.2, one can conclude reneging occurred. To mimic a

[RFC2018] conformant SACK implementation, m+1 in-order segments are

retransmitted (step #9), assuming a retransmission timeout value of x seconds. Recall

that a TCP data sender is expected to discard SACK scoreboard at a retransmission

timeout and retransmit bytes at the left edge of the window as specified in [RFC2018].

 141

If reneging happens, ACKs (step #10) increase steadily after each in-order

retransmission (step #9) as shown in Figure 5.2. Otherwise, the first ACK (step #10)

acknowledges all the out-of-order data.

CauseReneg is a generic tool that can cause reneging on various victims

(operating systems.) Only minimal changes are needed to run CauseReneg on different

victims. The changes needed are setting the m value (step #5, #9) and x value (step #7)

in the CauseReneging test, and the number of parallel TCP connections n that change

dynamically from victim to victim. The values are determined by the victim’s

operating system, available main memory, and network buffers.

CauseReneg needs the ability to establish TCP connections to a victim. To

establish a TCP connection, a port that is accessible (a server socket should be

listening on the port and accept incoming TCP connections) is needed. Today, the

majority of a machine’s ports are blocked by firewalls for security purposes. Web

servers on contrary are purposefully accessible. For that, CauseReneg is designed to

attack a victim which deploys a web server (step #3 in Figure 5.2 sends the first 5

bytes of a HTTP GET request in-order). In our attempts to cause reneging, we

installed Apache 2.2 in all potential victims. By default, Apache supports at most 256

TCP simultaneous connections. Recall that a busy web server with thousands TCP

connections is a stronger candidate to renege. To simulate a busy web server, we

increased the limit for simultaneous connections to 2000 which is enough to cause all

victims to renege.

CauseReneg can attack victims regardless of their operating systems when a

web server is running. Figure 5.3 presents an updated architecture for causing a remote

host (victim) to renege. CauseReneg is used to attack various victims in a controlled

 142

network environment. A packet capture utility, tcpdump [Tcpdump], records TCP

traffic between CauseReneg and a victim for later analysis. By analyzing the recorded

TCP traffic, reneging instances can be detected via the RenegDetect tool detailed in

Section 3.2.

Next we need to decide what victims to cause reneging. In Chapter 4, operating

support for reneging is detailed for FreeBSD, Linux, Mac OS X, OpenBSD, Solaris

and Windows. In Max OS X and OpenBSD, reneging is not possible by default.

Therefore, we attempted to cause reneging on the following operating systems in

which reneging is possible: FreeBSD 8.1, Linux 2.6.31, Solaris 11, Windows Vista

and Windows 7. These systems are representative of popular operating systems with

reneging support.

Four out of five operating systems (victims) are successfully reneged using

CauseReneg tool. Unfortunately, we failed to cause a Linux 2.6.31 victim to renege.

Linux implements dynamic right-sizing (DRS) where the rwnd dynamically changes

based on the receiver’s estimate of the sender’s congestion window [Fisk 2001]. A

data receiver increases rwnd when in-order data are received meaning the cwnd is

increased. The initial advertised rwnd in Linux is 5840 bytes. CauseReneging sends

only 5 bytes in-order data (step #3). Therefore, rwnd is not increased and limits

CauseReneg to send 4380 (5840 – 1460) bytes of out-of-order data to the victim. In

Linux, the receive buffer size is specified with net.ipv4.tcp_rmem sysctl with a default

value of 87380 bytes. Recall from Section 4.3 that reneging in Linux is expected to

happen when the memory allocated for receive buffer exceeds the memory limit

available to the receive buffer. The minimum size of the receive buffer is specified

with net.ipv4.tcp_rmem sysctl and is initialized to 4096 bytes. Apparently, sending

 143

4380 bytes of out-of-order data was not enough to exceed the memory limit available

to the receive buffer. Thus, DRS prohibited CauseReneg from sending more out-of-

order data to trigger reneging. As a result, CauseReneg was unable to cause reneging

in Linux.

The following sections, 5.2, 5.3 and 5.4, present consequences of reneging on

FreeBSD, Solaris, and Windows victims, respectively. Section 5.5 concludes our

efforts.

Figure 5.3: Causing a remote host to renege using CauseReneg

 144

5.2 Causing a FreeBSD Host to Renege

In this section, a FreeBSD 8.1 victim is reneged using CauseReneg. In Section

5.2.1, we first explain network buffers which are FreeBSD’s structures to store TCP

PDUs. In Section 5.2.2, two types of attacks are performed to cause a FreeBSD victim

to renege. While one of the attacks crashes the operating system, the other one causes

reneging. The circumstances of reneging are presented in Section 5.2.3.

5.2.1 Network Buffers

This section describes the network buffers used by FreeBSD to store network

packets and FreeBSD’s limits (sysctls) for TCP reassembly queues. In FreeBSD, all

network packets are stored in structures known as mbuf(s) and mbuf clusters. An mbuf

consists of a small internal buffer for data and a variable-sized header. While a

network packet moves between different layers in the kernel, variable-size header

changes as Ethernet, IP, and TCP headers are appended or removed from the mbuf

header. The size of an mbuf is 256 bytes (specified in /usr/src/sys/sys/param.h). If a

TCP segment is small enough (less than 256 bytes), the segment’s data are stored in

the internal data buffer of an mbuf. If the segment is larger, either another mbuf is

added to form an mbuf chain (implemented as linked list of mbufs) or external storage

is associated with the mbuf [FreebsdImpl].

FreeBSD supplies a default type of external storage buffer called an mbuf

cluster. The size of an mbuf cluster is machine dependent. Our victim is a FreeBSD

8.1 host where an mbuf cluster is 2048 bytes (defined in /usr/src/sys/sys/param.h).

The number of available external mbuf clusters can be read and modified via the

kern.ipc.nmbclusters sysctl. Recall from Section 4.4 that a sysctl mechanism enables

 145

processes to get and set the kernel state in FreeBSD. Our victim has 16960 mbuf

clusters by default shown in Figure 5.4 (line 3).

The netstat -m command reports the statistics recorded by the memory

management routines for the available mbufs/mbuf clusters. Figure 5.4 shows an

example output for the victim.

Figure 5.4: Network status output of a FreeBSD host

To gain insight on how network packets are stored in network buffers, variable

number of consecutive out-of-order TCP segments of three different sizes (10, 100, or

1460 bytes) are sent to the victim. Table 5.1 presents numbers for the mbufs and mbuf

clusters used to store the received out-of-order data. We conclude that irrespective of

the segment size, an mbuf cluster (2048 bytes) is assigned to store an out-of-order

TCP segment.

 146

Table 5.1: Mbuf statistics for variable size out-of-order data for a single TCP
connection

Segment size Segments Mbufs used Mbuf clusters used
10 byte 1 1 1
10 byte 2 2 2
10 byte 4 4 4
100 byte 1 1 1
100 byte 2 2 2
100 byte 4 4 4
1460 byte 1 1 1
1460 byte 2 2 2
1460 byte 4 4 4

In FreeBSD, a TCP reassembly queue (or receive buffer) is implemented as an

mbuf chain where data is stored in an external mbuf cluster. A reassembly queue is

limited to store at most net.inet.tcp.reass.maxqlen (“Maximum number of TCP

segments per individual Reassembly queue”) out-of-order segments. The default value

for net.inet.tcp.reass.maxqlen is 48 segments (48 * 1460 bytes = 70080 bytes). Using

CauseReneg, a reassembly queue can be filled almost fully with out-of-order data

since the victim’s advertised TCP receive window of 65535 bytes is less than the

reassembly queue limit.

Another sysctl, net.inet.tcp.reass.maxsegments (“Global maximum number of

TCP segments in Reassembly queue”), defines the global limit for all segments in the

all reassembly queues. FreeBSD assigns 1/16th of total mbuf clusters (16960) to

net.inet.tcp.reass.maxsegments (1060). Once that limit is reached, arrived out-of-order

segments are dropped. The net.inet.tcp.reass.overflows (“Global number of TCP

Segment Reassembly Queue Overflows”) sysctl reports the total number of dropped

out-of-order segments. The net.inet.tcp.reass.cursegments (“Global number of TCP

 147

Segments currently in Reassembly Queue”) sysctl reports the total number of

segments in all reassembly queues.

Now let us run a simple attack to the victim, using CauseReneg with n=32

parallel connections, to investigate the limits for the reassembly queues. The values

for m and x are set to 40 and 200 seconds in the CauseReneging test (Figure 5.2),

respectively. Figure 5.5 shows the statistics for mbuf/mbuf clusters along the TCP

reassembly queue usage. CauseReneg sends a total of 1280 (n=32 * m=40) out-of-

order segments to the victim where 1059 (line 18) of those segments are stored in the

reassembly queues and 221 segments are dropped (line 16). When the maximum

amount of out-of-order data are stored in the reassembly queues, the amount of

memory allocated to network is 3222K. If reneging happened, FreeBSD would

reclaim ~3M of main memory consumed by network buffers.

Figure 5.5: Statistics for mbuf and TCP reassembly queue size usage for 32 parallel
TCP connections

 148

5.2.2 Causing Reneging in FreeBSD

In this section, we explain two attacks to a FreeBSD victim using CauseReneg.

The first attack crashes the victim accidentally while the second attack results in

reneging.

As explained in Section 4.4, reneging in FreeBSD happens if the page

replacement daemon (vm_pageout) invokes the vm_pageout_scan() function. When

the available main memory goes low, and hard-coded or tunable paging thresholds are

exceeded, vm_pageout_scan() is invoked to scan main memory to free some pages. If

the memory shortage is severe enough, the largest process is also killed [Bruning

2005].

(A) To cause reneging, a variable number of parallel TCP connections are

established to the victim using CauseReneg. The goal is to exhaust the main memory

as much as possible to trigger reneging. Table 5.2 presents the initial memory statistics

when n parallel TCP connections are established to the victim. Each TCP connection

exhausts ~2.8MB of main memory. When more than ~250 active TCP connections are

established, active virtual pages (the term used in FreeBSD for virtual pages of the

running processes) stop increasing and the total memory allocated for the TCP

connections is ~700MB. This amount of memory consumption is not enough to trigger

reneging. The problem is due to Apache’s initial MaxClients value (Maximum number

of connections that will be processed simultaneously) that is set to 256 by default. As

stated before, we expect reneging to happen at busy web servers serving thousands of

TCP connections simultaneously. For this purpose, Apache is configured to support

2000 simultaneous connections.

 149

Table 5.2: Memory usage statistics for n parallel TCP connections

n parallel TCP connections Active virtual pages usage
1 3MB
2 6MB
4 11MB
8 22MB
16 45MB
32 90MB
200 558MB
300 701MB
400 701MB

Table 5.3 presents the updated memory statistics when n parallel TCP

connections are established to the victim and Apache can serve up to 2000 connections

simultaneously. With the ability to serve more TCP connections, the active virtual

pages usage is increased beyond 700MB. While we expect reneging to happen with

increased memory usage, the victim crashes instead of reneging! When the number of

parallel connections exceeds 1241, the victim crashes with the following panic

messages: (a) “Approaching the limit on PV entries, consider increasing either the

vm.pmap.shpgperproc (“Page share factor per proc”) or the vm.pmap.pv_entry_max

(“Max number of PV entries”) tunable” and (b) “panic: get_pv_entry: increase

vm.pmap.shpgperproc”. The panic messages are related to mapping of physical/virtual

addresses of pages. To track the number of connections causing the victim crash

easily, CauseReneg attacks the victim with the following configuration: n=1300, m=1,

x=240 seconds. With this configuration, each TCP connection sends only 1 out-of-

order segment to the victim. Figure 5.6 shows the statistics for TCP reassembly queue

size and memory usage when 1241 parallel TCP connections

(net.inet.tcp.reass.cursegments: 1059 (line 4) + net.inet.tcp.reass.overflows: 182 (line

2) = 1241) are established to the victim just before crashing.

 150

Figure 5.6: Statistics for TCP reassembly queue size and memory usage for 1200+
parallel TCP connections

Table 5.3: Memory usage statistics for n parallel TCP connections (updated)

n parallel TCP connections Active virtual pages usage
300 834MB
400 1127MB
500 1391MB
600 1687MB
700 1947MB
800 2267MB
900 2541MB
1000 2807MB
1100 3072MB
1200 3338MB
1241 3418MB

(B) In the second attack, to cause the page replacement daemon to call the

vm_pageout_scan() function, a user process, shown in Figure 5.7, that consumes

specified amount of main memory, is executed along with CauseReneg. If the memory

shortage is severe enough due to the user process’ excessive memory allocation and

the victim goes low on main memory, the pageout replacement daemon is expected to

kill the process using the largest memory (in that case the user process) and cause

reneging.

For the second attack, CauseReneg attacks the victim with the following

configuration: n=20, m=40, x=180 seconds. The attack is performed for two cases:

 151

(B1) reneging is on (net.inet.tcp.do_tcpdrain=1), and (B2) reneging is off

(net.inet.tcp.do_tcpdrain=0) at the victim.

Figure 5.7: Main memory consumer program

If reneging happens, all the out-of-order data sent (step #5, Figure 5.2) are

deleted from the receive buffers since FreeBSD employs global reneging. The SACK

reply (step #8) for the 10 byte out-of-order data should be as 69861-69871 (10 bytes)

as shown in Figure 5.2 for all TCP connections. ACKs (step #10) are expected to

 152

increase steadily after each in-order retransmission (step #9) along a SACK for the 10-

byte out-of-order data.

If reneging does not happen, the out-of-order data should remain in the receive

buffers. The SACK reply (step #10) for the 10 byte out-of-order data should be as

11461-69871 (58410 bytes). When the first in-order segment (10006-11466) is

received (step #9) at the victim, the missing data between ACK and out-of-order data

is received; hence an ACK with value 69871 should be returned (step #10.)

For the attacks, the architecture shown in Figure 5.3 is used. The victim (IP

address: 128.4.30.23) has ~500MB physical memory, runs FreeBSD 8.1, and deploys

Apache 2.2. During all attacks, the statistics for mbuf /mbuf clusters and TCP

reassembly queue sizes are recorded. The TCP traffic between CauseReneg and the

victim is also recorded for reneging analysis. The results are explained in the next

Section 5.2.3.

5.2.3 Results

This section details the results of the attacks (A), (B1), (B2) described in the

previous section. When the FreeBSD victim reneges, the following questions are

answered to infer the consequences of reneging: (1) Does reneging help an operating

system to resume its operation? (2) Can a reneged TCP connection complete a data

transfer?

(A) Reneging does not happen, although memory consumption is high

(3533MB), as shown in Figure 5.6. The reason is that the paging thresholds are not

exceeded. If reneging happened, the operating system would reclaim ~3MB of main

memory (recall from Figure 5.5 where all available space for out-of-order data is

allocated). Since each TCP connection established consumes ~2.8MB, reclaimed

 153

memory would be consumed for the next TCP connection. Eventually, machine would

crash anyways. I conclude that reneging does not benefit FreeBSD for such an attack.

For attacks (B1) and (B2), CauseReneg attacks the victim with the following

configuration: n=20, m=40, x=180 seconds. Both attacks, (B1) (reneging is on) and

(B2) (reneging is off), are performed in the following 7 step:

i. Start capturing the TCP traffic between the attacker and the victim on the
attacker

ii. Record netstat –m output (mbuf statistics) and sysctl –a | grep tcp.reass output
(reassembly queue size statistics) on the victim

iii. Attack the victim using CauseReneg

iv. Record netstat –m output (mbuf statistics) and sysctl –a | grep tcp.reass output
(reassembly queue size statistics) on the victim

v. Run the user process (Figure 5.7) to allocate 2GB of main memory (./a.out
2147483648) on the victim

vi. Record netstat –m output (mbuf statistics) and sysctl –a | grep tcp.reass output
(reassembly queue size statistics) on the victim

vii. Terminate capturing the TCP traffic between the attacker and the victim on the
attacker after 5 minutes

Figure 5.8 shows the initial values of mbufs: 324 (line 2), mbuf clusters: 320

(line 3), and net.inet.tcp.reass.cursegments: 0 (line 18) for the attack (B1) before

parallel TCP connections are established (step iii).

When the parallel connections are established, Figure 5.9 shows the updated

statistics (step iv). The values for mbufs: 324 (initial) + 800 (out-of-order data) = 1124

(line 2), mbuf clusters: 320 (initial) + 800 (out-of-order data) = 1120 (line 3), and

net.inet.tcp.reass.cursegments: 800 (line 18) are all consistent.

 154

Figure 5.8: Step ii of causing reneging (reneging is on)

Figure 5.9: Step iv of causing reneging (reneging is on)

Figure 5.10 shows the execution of the user process (step v). FreeBSD

allocates ~1.5GB of main memory to the user process before the user process is killed

(line 18) by the page replacement daemon. At this point, reneging is expected to

 155

happen and the values for mbuf, mbuf clusters and net.inet.tcp.reass.cursegments

should be the same as their initial values in Figure 5.8.

Figure 5.10: Step v of causing reneging (reneging is on)

Figure 5.11: Step vi of causing reneging (reneging is on)

 156

The output of (step vi) is shown in Figure 5.11. The number of mbufs: 324

(line 2) and mbuf clusters: 320 (line 3) are the same as their initial values. More

importantly, net.inet.tcp.reass.cursegments is 0 (line 18) which concludes that

reneging happens.

In Figure 5.11, network status output (netstat -m) reports the number of calls to

the protocol drain routines (line 15) to be 0 even though reneging happens. We believe

the functionality of netstat to report calls to protocol drain routines is not working

properly and needs to be fixed.

Next, the attack (B2) is performed in 7 steps. When reneging is off, no out-of-

order data are expected to be purged from the reassembly queues even though page

replacement daemon invokes the vm_pageout_scan() function.

For the attack (B2), the outputs of step ii (Figure 5.8), iii, iv (Figure 5.9) and v

(Figure 5.10) are all the same as of (B1).

Figure 5.12: Step vi of causing reneging (reneging is off)

 157

Figure 5.12 shows the memory statistics for the attack (B2) (step vi) after the

user process is terminated by the page replacement daemon. The values for mbufs:

1124 (line 2), mbuf clusters: 1120 (line 3), and net.inet.tcp.reass.cursegments: 800

(line 18) are the same as of Figure 5.9 (step iv). Even though the vm_pageout_scan()

is invoked and the user process is killed, the tcp_drain() is not called since reneging is

disabled (off).

Both attacks (B1) and (B2) are analyzed using the RenegDetect tool detailed in

Section 3.2. For (B1), RenegDetect successfully detects that all of the connections

experience reneging. Figure 5.13 shows the tcpdump output of the last TCP

connection (20th). The 40th out-of-order segment (68401-69861) is sent (lines 1, 2). In

response, the victim sends an ACK (lines 3, 4) with SACK 11461-69861. After x=180

seconds, TBIT sends the 10 byte data (69861-69871) (lines 5, 6). The ACK for the 10

byte out-of-order data (lines 7, 8) has the SACK option 69861-69871; only for the 10

bytes sent giving the impression that reneging happens. When the first in-order data

(10006-11466) are received (lines 9, 10), the victim returns an ACK 11466. This ACK

strongly gives the impression that reneging happens. The next in-order data causes the

victim to ACK 12926 (line 15). Consequently, ACKs are increased steadily after each

in-order retransmission. This behavior concludes that reneging happens.

(B2) RenegDetect successfully detects that none of the connections experience

reneging. Figure 5.14 shows the tcpdump output of the last TCP connection (20th).

When the 40th out-of-order data (68401-69861) are received (lines 1, 2), an ACK with

the SACK 11461-69861 is sent back (lines 3, 4). When the 10 byte out-of-order data

are received, reply SACK is 11461-69871 as expected (lines 7, 8). Finally, when the

first in-order data are received (lines 9, 10) at the victim, the gap in the reassembly

 158

queue is filled. As a result, ACK 69871 is sent back (lines 11, 12). This behavior

concludes that reneging does not happen when reneging is turned off.

Figure 5.13: Tcpdump output of a TCP connection from causing reneging (reneging is
on)

Figure 5.14: Tcpdump output of a TCP connection from causing reneging (reneging is
off)

A FreeBSD victim is reneged with the attack (B1). Now, we answer the

following questions to gain insight to the consequences of reneging: (1) Does reneging

help an operating system to resume its operation? (2) Can a reneged TCP connection

complete a data transfer?

 159

(1) After the attack (B1), the FreeBSD victim continues to resume normal

operation. As stated before, only ~3MB of main memory (the maximum amount

possible for the victim) used for the network buffers is reclaimed back to the operating

system. Since the memory shortage, caused by the attack, is severe, the largest process

(~1.5GB) is killed. I believe the amount of main memory used for network buffers is

negligible compared to the process using the most memory. Reneging alone does not

seem to help an operating system resume normal operation, and the reassembly

queues’ memory was wastefully purged. The attack (B2), where reneging was disabled

for the second attack, demonstrated that FreeBSD could resume normal operation

without reneging. Therefore, I argue that the current handling of reneging is wrong

and reneging should be turned off by default in FreeBSD as in Mac OS X.

To answer (2), we need to test if the TCP data senders do implement tolerating

reneging properly as specified in [RFC2018]. Recall that a TCP sender needs to

discard its SACK scoreboard at a retransmission timeout and start sending bytes at the

left edge of the window. Otherwise, reneging may cause a data transfer to stall (fail).

FreeBSD employs a global reneging strategy that all TCP connections with

out-of-order data are reneged. If TCP connections with out-of-order data from various

TCP data senders are established to the FreeBSD victim before the (B1) attack, those

TCP connections would renege too. To test if [RFC2018] conformant tolerating

reneging is implemented, a 5MB file is transferred using secure shell (ssh) to the

FreeBSD victim from various operating systems listed in Table 5.4. To create out-of-

order data for those transfers, Dummynet is configured on the FreeBSD victim to drop

15-20% of the TCP PDUs. The traffic between a TCP data sender and the FreeBSD

victim is recorded for reneging analysis. Once a data transfer starts, the FreeBSD

 160

victim is reneged using the attack (B1) and we observe if the file transfer experiencing

reneging can be completed. In all data transfers, reneging is detected by analyzing the

recorded traffic using the RenegDetect tool. We confirm that all of the TCP data

senders in Table 5.4 complete the data transfer successfully. In conclusion, [RFC2018]

conformant tolerating reneging is implemented in all TCP stacks tested.

Table 5.4: Testing [RFC2018] conformant TCP data senders

Operating System Transfer Completed Reneging
FreeBSD 8.0 yes yes
Linux 2.6.24 yes yes
Mac OS X 10.8.0 yes yes
NetBSD 5.0.2 yes yes
OpenBSD 4.8 yes yes
OpenSolaris 2009.06 yes yes
Solaris 11 yes yes
Windows XP yes yes
Windows Vista yes yes
Windows 7 yes yes

5.3 Causing a Solaris Host to Renege

In this section, a Solaris 11 victim is reneged and the consequences of reneging

are detailed. First, Section 5.3.1 details the attack to cause reneging. Next, in Section

5.3.2, the consequences of reneging in Solaris are presented.

5.3.1 Causing Reneging in Solaris

The circumstances to cause a Solaris host to renege are detailed in Section 4.6.

If out-of-order data sits in the TCP reassembly queue for at least 100 seconds (the

default reassembly timer timeout value), a Solaris receiver would renege and purge the

 161

entire reassembly queue. Reneging, in such case, protects the operating system against

DoS attacks.

In the CauseReneging test (see Figure 5.2), m out-of-order segments are sent

(step #5) to the victim. Later, 10 byte out-of-order data are sent (step #7) after x

seconds to check if reneging happened. Reneging in Solaris is expected to happen 100

seconds after the arrival of out-of-order data (step #5). To force the reassembly queue

timer to expire, x should be set to a value > 100 seconds. The number of parallel

connections (n) and out-of-order segments (m) can be set arbitrarily since reneging in

Solaris only depends on x. CauseReneg attacks the victim with the following

configuration: n=20, m=40, x=180 seconds. The value for m is set to 40 purposefully

to explain reneging using Figure 5.2. With this configuration, reneging is expected to

happen before 10 byte out-of-order data are sent (step #7).

If reneging happens, the out-of-order data sent (11461-69861) (step #5) are

removed from the reassembly queues of all the 20 parallel TCP connections before

(step #7.) The reply SACK for 10 byte out-of-order data should be 69861-69871 (step

#8). Consequently, ACKs (step #10) should be increased steadily after each in-order

data retransmission (step #9.)

If reneging does not happen, the reply SACK (step #8) for the 10 byte out-of-

order data should be 11461-69871 (58410 bytes). In (step #9), the first in-order data

should fill the gap between the ACK and out-of-order data, and increase ACK to

69871 (step #10.)

For the attack, the architecture shown in Figure 5.3 is used. Solaris 11 is

installed on an Ubuntu 9.10 host (Linux 2.6.24) using Oracle’s VirtualBox virtualization

software [Virtualbox]. The victim has 1024MB physical memory, runs Solaris 11, and

 162

deploys Apache 2.2. The TCP traffic between CauseReneg and the victim is recorded

for latter analysis. The result of the attack is explained in the next Section 5.3.2.

5.3.2 Results

Data reneging happens when the TCP reassembly queue timer expires after

100 seconds (the default value of reassembly queue timer) for the out-of-order data

sent (step #5) in CauseReneging test, shown in Figure 5.2. A tcpdump output of the 6th

parallel connection is shown in Figure 5.15. Please refer to Figure 5.2 for references

using (step #p) and Figure 5.15 for references using (lines p). The 40th out-of-order

data (68401-69861) (step #5) from CauseReneging is shown (lines 1, 2). The reply

SACK (step #6) acknowledges all the out-of-order data received (11461-69861) (lines

3, 4). After x=180 seconds, 10 byte out-of-order data (69861-69871) are sent (step #7)

(lines 5, 6). The reply SACK (step #8) demonstrates evidence of reneging since only

10 out-of-order bytes are selectively acknowledged (69861-69871) (lines 7, 8). After

the in-order received data (step #9), the victim’s ACKs (step #10) are steadily

increased as expected.

Figure 5.15: Tcpdump output of a TCP connection from causing reneging attack on
Solaris 11

 163

The traffic recorded during the attack is analyzed using RenegDetect tool

explained in Section 3.2.The RenegDetect detects that all the connections (20) used in

the attack experienced reneging.

We believe reneging in Solaris is used as a mechanism to protect against DoS

attacks. A TCP sender is expected to retransmit lost segments r times (for example,

TcpMaxDataRetransmissions in Windows Server 2003 defines r=5 by default.) After r

retransmissions, a TCP sender would terminate a TCP connection. The loss recovery

period takes at most 1-2 minutes (assuming back to back timeouts, an initial

retransmission timeout value (RTO) of 1 second, and r=5.) When out-of-order data sit

in the reassembly queue for at least 100 seconds (the default reassembly queue timer

value) at the Solaris receiver, one can infer that either the TCP sender terminated the

connection or the host is under a DoS attack where the out-of-order data intentionally

exhaust host’s resources. Therefore, cleaning the reassembly queue seems a useful

mechanism in both cases. Instead of just releasing the out-of-order data, a better option

would be to RESET the connection when reneging is caused by either a terminated

TCP connection (due to loss recovery) or a DoS attack. With that change, all the

resources used for the TCP connection are released, therefore better utilized.

5.4 Causing Windows Hosts to Renege

In this section, Windows Vista and 7 victims are reneged, and the

consequences of reneging in Windows systems are detailed. Section 5.4.1 details the

attacks to cause reneging and Section 5.4.2 presents the consequences of reneging in

Windows.

 164

5.4.1 Causing Reneging in Windows

Reneging support for Microsoft’s Windows is detailed in Section 4.1. Dave

MacDonald, the author of Microsoft Windows 2000 TCP/IP Implementation Details

[MacDonald 2000], stated that Vista and its successors implement reneging as a

protection mechanism against DoS attacks. Reneging happens when the memory

consumption of total TCP reassembly data in relation to the global memory limits is

significant. To investigate the consequences of reneging, CauseReneg attacks a

Windows victim (either Vista or 7) by increasing the number of parallel connections to

make the memory consumption of the total reassembly data so significant that

reneging is triggered.

The initial advertised window (rwnd) in both Window’s Vista and 7 is 64240

bytes corresponding to 44 * 1460 byte TCP PDUs. Based on the initial rwnd, the m

value, the number of out-of-order segments, in the CauseReneging test (step #5) is set

to 43 to fill each reassembly queue almost fully with out-of-order data. In the attacks,

the number of parallel connections established to the victim (n) and the x seconds

(step #7) values in the CauseReneging test are variable.

For the attacks, the architecture shown in Figure 5.3 is used. Windows Vista

and 7 operating systems are installed on an Ubuntu 9.10 host (Linux 2.6.24) using

Oracle’s VirtualBox virtualization software [Virtualbox]. The Vista victim has 2GB

physical memory whereas the Windows 7 victim has 1GB memory. Both victims

deploy Apache 2.2 which can serve 2000 simultaneous TCP connections. The TCP

traffic between CauseReneg and the victims is recorded for latter analysis. The results

of the attacks are explained in the next Section 5.4.2.

 165

5.4.2 Results

First, the Vista victim is attacked by CauseReneg using the following

configuration: n=variable, m=43, x=200 seconds. Table 5.5 presents the results of the

attacks. When the parallel connections established are 100 or 200, reneging does not

happen. When 300 parallel connections are established, only the last 33 connections

renege. When the parallel connections established are 400, a similar behavior happens.

The first 267 connections do not renege but the last 133 connections do renege. This

behavior implies that the memory consumption of total reassembly data in relation to

the global memory limit is considered significant in Vista when the out-of-order data

in the reassembly queue is at least ~16MB (267 (parallel connections) * 43 (out-of-

order segments) * 1460 bytes). To verify that the global memory limit for reneging is

~16MB, another attack is performed with the configuration: n=600, m=20, x=200

seconds. With this configuration, only ~half of the rwnd is filled with out-of-order

data. The observed behavior is consistent: only the last 25 of 600 connections renege,

and the memory allocated to out-of-order data before reneging happens is again

~16MB (575 (parallel connections) * 20 (out-of-order segments) * 1460 bytes).

Table 5.5: CauseReneg attack to a Vista victim with variable number of parallel
connections

n parallel TCP connections Reneging
100 No
200 No
300 Yes (33 connections renege)
400 Yes (133 connections renege)

Next, we test if Windows implements a reassembly queue timer similar to

Solaris 11. For that purpose, CauseReneg attacks the Vista victim using the following

 166

configuration: n=300, m=43, x=variable seconds. The attacks are performed for x =

{30, 40, 50, 100, 200 seconds}. The same behavior is observed in the all attacks: only

the last 33 of 300 connections renege.

Last, the Windows 7 victim is attacked by CauseReneg using the following

configuration: n=variable, m=43, x=200 seconds. Table 5.6 presents the results of the

attacks. When the parallel connections established are 100, reneging does not happen.

When 200 parallel connections are established, the first 133 connections do not renege

but the last 67 connections renege. When the parallel connections established are 300,

the first 133 connections do not renege but the last 167 connections renege. This

behavior implies that the memory limit for the reassembly queue for the Windows 7

victim is ~8MB (133 (parallel connections) * 43 (out-of-order segments) * 1460

bytes). Recall that the Vista victim has a physical memory of 2GB whereas the

Windows 7 victim’s memory is 1GB. The memory limit used for the reassembly data

to trigger reneging in both systems is ~0.78% of the physical memory and seems to

scale with the physical memory.

Table 5.6: CauseReneg attack to a Windows 7 victim with variable number of
parallel connections

n parallel TCP connections Reneging
100 No
200 Yes (67 connections renege)
300 Yes (167 connections renege)

In conclusion, Windows Vista+ supports reneging as a protection mechanism

against DoS attacks, reneges when the memory threshold for reassembly data is

reached, and resumes normal operation after reneging.

 167

5.5 Conclusion

We detailed a tool, CauseReneg, to cause a victim to renege in Section 5.1.

CauseReneg achieves its goal by exhausting a victim’s resources by sending out-of-

order data using multiple TCP connections. To document the consequences of

reneging, CauseReneg attacks various victims deploying popular operating systems

with reneging support such as FreeBSD, Linux, Solaris, and Windows.

For FreeBSD, two attacks are performed to a victim. The first one caused the

victim to crash and the second one to renege. In both attacks, the available main

memory is largely consumed by out-of-order data to trigger reneging. In the first

attack, the page replacement daemon does not invoke the reneging routines, probably

due to low paging activity, even though the total memory used for 1240+ parallel TCP

connections is ~3.3GB (victim has 500MB of physical memory.) In this attack, the

victim crashes and reneging does not help the operating system to resume normal

operation. In the second attack, a user process allocating 2GB of main memory is used

along CauseReneg to cause high paging activity and reneging. This time, the page

replacement daemon invokes drain routines, and TCP reneges. All of the reassembly

queues of active TCP connections are purged to reclaim main memory to FreeBSD,

and the process using the largest memory allocation is terminated by the page

replacement daemon.

Initially, it was thought that an operating system starving for main memory

would eventually crash. Our first attack is such an example. In the second attack, when

the paging activity is high and the available memory is low, reneging happens in

addition to the largest process getting killed. This time, FreeBSD resumes normal

operation. The maximum amount of memory that can be allocated to reassembly

queues by reneging is limited to ~3MB (0.6% of the physical memory) for the victim

 168

attacked. That amount of memory seems negligible compared to the process using the

most memory. Reneging alone does not seem to help FreeBSD resume normal

operation, and the reassembly queues’ memory was wastefully purged. The attack

(B2), where reneging was disabled for the second attack, demonstrated that FreeBSD

could resume normal operation without reneging. Therefore, I argue that reneging

support should be turned off by default in FreeBSD as in Mac OS X.

A reneging TCP connection can complete a data transfer only if the TCP

sender implements tolerating reneging as specified in [RFC2018]. Otherwise, the data

transfer would fail (stall). To tolerate reneging, a TCP sender is expected to clear its

SACK scoreboard at a retransmission timeout (RTO) and retransmit bytes from the

left edge of the window. To validate this behavior, we transferred a 5MB file from

various operating systems, listed in Table 5.4, to a reneging FreeBSD victim. Our

experiment confirms that all the operating systems tested complete a data transfer after

the connection experiences reneging.

FreeBSD employs global reneging as explained in Section 4.4. When reneging

happens, all the reassembly queues are cleared. On the other hand, Linux and Solaris

employ local reneging as explained in Sections 4.3 and 4.6, respectively. In local

reneging, only the individual connections are reneged.

Global reneging is easy to implement. A single reneging function is defined,

and no bookkeeping is needed. The reneging function is invoked for all active TCP

connections when reneging is needed. The disadvantage with global reneging is that if

the memory required by the operating system to resume normal operation is less than

the total memory allocated for the reassembly queues, some TCP connections are

unnecessarily penalized.

 169

Local reneging, on the other hand, is more complex to implement, and requires

bookkeeping for each TCP connection and global memory pools. As a connection

progresses, the amount of allocated receive buffer space is recorded as data is

appended/removed from the receive buffer. In local reneging, only those connections

exceeding memory limits experience reneging. Therefore, local reneging is fairer

compared to global reneging. If I were to implement reneging, I would choose local

reneging.

A Solaris 11 victim is reneged in Section 5.3. In Section 5.4, Windows Vista

and 7 victims are reneged. Both operating systems, Solaris and Windows, use reneging

as a protection mechanism against DoS attacks. The difference between Solaris and

Windows is that the former uses a uses a reassembly queue timer to renege whereas

the latter uses a memory threshold for the out-of-order data for the same purpose.

In Solaris, when out-of-order data sit in the reassembly queue for at least 100

seconds, reneging happens. It can be inferred that the connection is either terminated

due to loss recovery or exhausts resources intentionally (a DoS attack.) In both cases,

instead of reneging, terminating the connection with RESETs seems to be a better

option. RESETing would release all of the resources held.

In Windows, reneging happens when the memory allocated for out-of-order

data exceeds the memory threshold available for the reassembly data. This threshold

appears to be ~0.78% of the available physical memory. The current reneging

implementation has a potential problem. The out-of-order data that cause reaching the

threshold are not reneged. Instead, the out-of-order data received afterwards are

reneged. Were an attacker to find out the memory threshold (as we did in Section

5.4.1) and only send that amount of out-of-order data, all future connections

 170

experiencing losses and receiving out-of-order data afterwards would renege. A TCP

data sender would not retransmit SACKed data until a retransmission timeout (RTO)

[RFC2018]. In such a case, losses would be recovered with RTOs resulting in

increased transfer times (lower throughput.) The quality of service, data transfer times

for legitimate users, would be reduced. That type of an attack can be referred as

reduction of service (RoS) attack. We believe that a RoS attack would be harder to

detect compared to a DoS attack since the service provided in not interrupted but

slowed.

When we compare reneging in Solaris vs. Windows, Solaris’s approach seems

to be a better protection mechanism: only the DoS connections are penalized. An

important disadvantage of Solaris’s implementation is using a timer. Managing a TCP

timer is an expensive operation.

In summary, reneging is caused for FreeBSD, Solaris, and Windows victims

using CauseReneg tool. The consequences of reneging are detailed for those systems.

When an operating system (e.g. FreeBSD) is starving for memory, reneging alone

cannot help the system to resume normal operation. Therefore, I argue that reneging

support should be turned off for systems employing that type of reneging. Reneging in

Solaris and Windows protects the system against DoS attacks. I argue that type of

protection is essential to operating systems but I believe that a better approach would

be to RESET the connection under the attack instead of reneging.

 171

Chapter 6

PRIOR COLLOBORATIVE RESEARCH

Prior to the research contributions of this dissertation, I have been involved

with ns-2’ [Ns-2] SCTP module for more than three years. Currently, I maintain the

SCTP module which was developed in UD’s Protocol Engineering Lab (PEL). I have

been involved with two completed projects to support past PhD student Preethi

Natarajan. The activities I have been involved include running ns-2 experiments,

fixing bugs and adding new extensions to the ns-2’ SCTP module. The next two

sections present my contributions to Non-Renegable Selective Acknowledgments

(NR-SACKs) and Concurrent Multipath Transfer (CMT)/Potentially Failed (PF)

projects.

6.1 NR-SACKs

In both TCP and SCTP, selectively acknowledged (SACKed) out-of-order data

is implicitly renegable; that is, the receiver can later discard SACKed data. The

possibility of reneging forces the transport sender to maintain copies of SACKed data

in the send buffer until they are cumulatively ACKed.

In [Natarajan 2008b], we investigated the situation where all out-of-order data

are non-renegable, such as when the data has been delivered to the application, or

when the receiver simply never reneges either by agreement or if the user has

explicitly turned off reneging using sysctl controls. Using ns-2 simulations, we

showed that SACKs result in inevitable send buffer wastage, which increases as the

 172

frequency of loss events and loss recovery durations increases. We introduced a

fundamentally new ACK mechanism, Non-Renegable Selective Acknowledgments

(NR-SACKs), for SCTP. Using NR-SACKs, an SCTP receiver explicitly identifies

some or all out-of-order data as being non-renegable, allowing the data sender to free

up send buffer sooner than if the data were only SACKed. We compared and showed

that NR-SACKs enable efficient utilization of a transport sender’s memory. We

further investigated the effects of using NR-SACKs in Concurrent Multipath Transfer

(CMT). Using ns-2 simulations, we showed that NR-SACKs not only reduce transport

sender’s memory requirements, but also improve throughput in CMT.

In [Yilmaz 2010], we extended the investigation of the throughput

improvements that NR-SACKs can provide, particularly when all out-of-order data are

non-renegable. Using ns-2 simulations, for various loss conditions and bandwidth-

delay combinations, we showed that the throughput observed with NR-SACKs is at

least equal and often better than the throughput observed with SACKs. We introduced

“region of gain” which defines for a given bandwidth, delay, and send buffer size

combination, what interval of loss rates results in significant throughput improvement

when NR-SACKs are used instead of SACKs. In both SCTP and CMT, NR-SACKs

provided greater throughput improvement as the send buffer size decreases, and as the

end-to-end delay decreases. Provided that the bandwidth-delay product (BDP) ≥ send

buffer size, additional bandwidth does not affect NR-SACKs’ throughput

improvements for either SCTP or CMT. For BDPs < send buffer size, the throughput

improvement using NR-SACKs decreases as the BDP decreases. We also presented

details of our NR-SACK implementation in FreeBSD, and analyzed NR-SACKs vs.

SACKs over a Dummynet-emulated network [Dummynet] using our FreeBSD SCTP

 173

stack. Note: Preethi Natarajan and I added the support for NR-SACKs in the ns-2’

SCTP module, and Ertugrul Yilmaz implemented NR-SACKs in the FreeBSD SCTP

stack.

I am the co-author of [Natarajan 2008b], [Natarajan 2009 (b)] and [Yilmaz

2010]. In the NR-SACK project, I ran the experiments to compare NR-SACK vs.

SACK on various network topologies, path characteristics and loss models. Preethi

and I added support for NR-SACKs for SCTP, CMT and CMT-PF in the SCTP

module. I also added the support to track send buffer utilization for both NR-SACKs

and SACKs. I included new validation tests for both NR-SACK and SACK, and

submitted a patch (SCTP module 3.8 released with ns-2.35) to the main trunk of ns-2

which adds support for NR-SACKs.

Varun Notibala and I also implemented viewing and graphing NR-SACKs data

transfers in the Wireshark network protocol analyzer tool [Wireshark].

6.2 Concurrent Multipath Transfer (CMT)/Potentially Failed (PF)

Concurrent Multipath Transfer (CMT) uses SCTP’s multihoming feature to

distribute data across multiple end-to-end paths in a multihomed SCTP association

[Iyengar 2006]. Since data are sent simultaneously on different paths, data reordering

is inevitable. The author investigated the negative effects of data reordering and

introduced new algorithms to deal with data reordering problem.

[Iyengar 2007] explored the performance of CMT in the presence of a

constrained receive buffer and investigated the receive buffer blocking problem

observed in CMT transfers. Different retransmission policies were evaluated under

various bounded receive buffer sizes. The authors showed that the receive buffer

 174

blocking cannot be eliminated but can be reduced with a well-chosen retransmission

policy.

Janardhan Iyengar extended ns-2’ SCTP module to support CMT and

implemented CMT in the FreeBSD SCTP stack.

[Natarajan 2006] investigated CMT’s throughput degradation caused by

receive buffer blocking during complete and/or short-term network failures. To

improve CMT’s performance during a failure, a new state for each destination called

the “Potentially-Failed” (PF) state and a retransmission policy that takes into account

the PF state was introduced. Using ns-2 simulations, CMT-PF was evaluated, and

throughput improvements were shown over CMT in failure-prone networks.

[Natarajan 2008a] completed the evaluation of CMT vs. CMT-PF. Using ns-2

simulations we showed that CMT-PF performs on par or better than CMT during more

aggressive failure detection thresholds than recommended by [RFC4960]. We also

examined whether the modified sender behavior in CMT-PF degrades performance

during non-failure scenarios. Our evaluations considered: (1) realistic loss model with

symmetric and asymmetric path loss, (2) varying path RTTs. We found that CMT-PF

performs as well as CMT during non-failure scenarios, and interestingly, outperforms

CMT when the paths experience asymmetric receive buffer blocking conditions. We

recommended that CMT be replaced by CMT-PF in future CMT implementations and

RFCs.

In [Natarajan 2009], we confirmed our simulations results using FreeBSD

implementations of CMT and CMT-PF.

Preethi Natarajan added the support for CMT-PF in the SCTP module of ns-2

and Joe Szymanski implemented CMT-PF in the FreeBSD SCTP stack.

 175

I am the co-author of [Natarajan 2008a] and [Natarajan 2009] and I have been

involved with the following activities for this research project. I ran the experiments to

compare CMT vs. CMT-PF on various network topologies, path characteristics and

loss models. I discovered several bugs in ns-2’ SCTP module for CMT and CMT-PF

and then fixed them. I wrote new validation tests for both CMT and CMT-PF, and

submitted a patch (SCTP module 3.7 released with ns-2.32) to the main trunk of ns-2

which adds support for CMT-PF. I was also involved with debugging the FreeBSD’s

CMT-PF code.

 176

Chapter 7

CONCLUSIONS & FUTURE WORK

7.1 Conclusions

Reneging occurs when a data receiver SACKs data, and later discards these

data from its receive buffer prior to delivering these data to the receiving application.

TCP is designed to tolerate reneging. Specifically [RFC2018] states that: “The SACK

option is advisory, in that, while it notifies the data sender that the data receiver has

received the indicated segments, the data receiver is permitted to later discard data

which have been reported in a SACK option”. Reneging may happen when an

operating system needs to recapture previously allocated receive buffer memory for

another process, say to avoid deadlock.

Because TCP is designed to tolerate possible reneging by a data receiver, a

TCP data sender must keep copies of all transmitted data segments in its send buffer,

even SACKed data, until cumulatively ACKed. If reneging does happen, a copy of the

reneged data exists and can be retransmitted to complete the reliable data transfer.

Inversely if reneging does not happen, SACKed data are unnecessarily stored in the

send buffer until cumulatively ACKed.

I argue that this design assumption to tolerate reneging is wrong. To support

my argument, this dissertation investigated (1) the instances, (2) causes and (3) effects

of TCP reneging in today’s Internet.

(1) To document the instances and the frequency of TCP reneging in Internet

traces, we proposed a mechanism to detect reneging instances. The proposed

 177

mechanism is based on how an SCTP data sender infers reneging. A state of the

receive buffer is constructed at an intermediate router and updated as new acks are

monitored. When an inconsistency occurs between the state of the receive buffer and a

new ack, reneging is detected. We implemented the proposed mechanism as a tool

called RenegDetect v1.

While verifying RenegDetect v1 with real TCP flows, we discovered that some

TCP implementations were generating SACKs incompletely under some

circumstances giving a false impression that reneging was happening. Our discovery

led us to a side investigation to precisely identify five misbehaving TCP stacks.

For that, we designed a methodology and verified conformant SACK

generation on 29 TCP stacks for a wide range of OSes: FreeBSD, Linux, Mac OS X,

OpenBSD, Solaris and Windows. We eventually identified the characteristics of seven

misbehaviors, and designed seven TBIT tests to document these misbehaviors.

For the first five misbehaviors (A-E) which were observed in the CAIDA trace

files, we found at least one misbehaving TCP stack. We reported various versions of

OpenBSD and Windows OS to have misbehaving SACK generation implementations.

In general, the misbehaving SACK implementations can cause a less efficient SACK-

based loss recovery yielding to decreased throughput and longer transfer times.

During the TBIT testing, we identified two additional misbehaviors (F and G).

Misbehavior F decreases the throughput by sending less than expected data while

using SACKs. Most Linux and OpenSolaris systems show this misbehavior.

Misbehavior G is more serious. SACK information from a prior connection reappears

in a new connection and can cause a TCP connection to be inconsistent should the

sequence number space of one connection overlap that of a prior connection. Solaris

 178

10 and OpenSolaris systems misbehave in this manner. Based on our [RFC2018]

SACK generation investigation results, we concluded that while simple in concept,

SACK handling is complex to implement.

To identify reneging instances more accurately and identify SACK generation

misbehaviors, we updated RenegDetect v2 to better analyze the flow of data, in

particular, to analyze data retransmissions which are a more definitive indication that

reneging happened.

Our initial hypothesis was that reneging rarely if ever occurs in practice. For

that purpose, TCP traces from three domains (Internet backbone (CAIDA), wireless

(SIGCOMM), enterprise (LBNL)) were analyzed using RenegDetect v2.

Contrary to our initial expectation that reneging is an extremely rare event,

trace analysis demonstrated that reneging does happen. Therefore, we could not reject

our initial hypothesis H0 that P(reneging) < 10-5. Since reneging instances were found,

analyzing 300K TCP flows were no longer necessary. As a result, we ended up

analyzing 202,877 TCP flows using SACKs from the three domains. In the TCP

flows using SACKs, we detected 104 reneging flows. We estimated with 95%

confidence that the true average rate of reneging is in the interval [0.041%, 0.059%],

roughly 1 flow in 2,000 (0.05%).

In the TCP flows analyzed, we detected 104 reneging flows, or approximately

0.05% in the analyzed TCP connections using SACKs. The frequency of TCP

reneging found in [Blanton 2008] was 0.017%. Together the results of these two

studies allow us to conclude that reneging is a rare event.

In the 104 reneging flows, a total of 200 reneging instances were detected. This

behavior suggests that when reneging occur in a TCP flow, it is much more likely to

 179

happen again. It is unclear however if reneging is due to something occurring in the

flow, or correlated to what is going on in a host at the given moment in time. For each

reneging flow, we tried to fingerprint the operating system of the reneging data

receiver, and generalize reneging behavior according to operating system.

Our motivation to investigate the frequency of TCP reneging was primarily to

conclude if TCP’s design to tolerate reneging is correct. If we could document that

reneging never occurs, TCP had no need to tolerate reneging. Upon observing

reneging occurs rarely (less than 1 flow per 1000), we believe the current handling of

reneging in TCP can be improved.

TCP is designed to tolerate reneging by defining a retransmission policy for a

data sender [RFC2018] and keeping the SACKed data in the data sender’s send buffer

until cumulatively ACKed. With this design, if reneging happens rarely, SACKed data

are unnecessarily stored in the send buffer wasting operating system resources.

To understand the potential gains for a protocol that does not tolerate reneging,

SCTP’s NR-SACKs (Non-Renegable SACKs) are detailed in Section 1.2.2. With NR-

SACKs, an SCTP data receiver takes the responsibility for non-renegable data (NR-

SACKed), and, an SCTP data sender needs not to retain copies of NR-SACKed data in

its send buffer until cumulatively ACKed. Results demonstrated that memory

allocated for the send buffer is better utilized with NR-SACKs [Natarajan 2008b]. NR-

SACKs also improve end-to-end application throughput. When the send buffer is full,

no new data can be transmitted even when congestion and flow control mechanisms

allow. When NR-SACKed data are removed from the send buffer, new application

data can be read and potentially transmitted. [Yilmaz 2010] shows that the throughput

achieved with NR-SACKs is always ≥ throughput observed with SACKs.

 180

If current TCP was designed not to tolerate reneging, the send buffer utilization

would be always optimal, and the application throughput might be improved for data

transfers with constrained send buffers. Preliminary analysis suggests throughput

gains assuming asymmetric buffer sizes (send buffer < receive buffer) and no auto-

tuning.

Let us compare TCP’s current design to tolerate reneging with a TCP that does

not support reneging using the results from our reneging analysis. With current design,

TCP tolerates reneging to achieve the reliable data transfers of 104 reneging flows.

The 202,773 non-reneging flows waste main memory allocated to send buffer and

potentially achieve lower throughput.

I argue that the current design to tolerate reneging is wrong since reneging is a

rare event. Instead, I suggest that the current semantics of SACKs should be changed

from advisory to permanent prohibiting a data receiver to renege. If a data receiver

does have to take back memory that has been allocated to received out-of-order data, I

propose that the data receiver must RESET the transport connection. With this change,

104 reneging flows would be penalized by termination. On the other hand, 202,773

non-reneging flows benefit from better send buffer utilization and possible increased

throughput.

Initially, reneging was thought as a utility mechanism to help an operating

system reclaim main memory under low-memory situations perhaps to avoid a

deadlock situation. In our investigation, we found that the average main memory

returned to the reneging operating system per reneging instance is on the order of 2

TCP segments (2715, 3717, and 1371 bytes for Linux, FreeBSD, and Windows

operating systems, respectively.) This amount of main memory reclaimed seems

 181

insignificant. For example, to reclaim 3MB of main memory back to FreeBSD, 846

simultaneous TCP flows each having 3717 bytes of out-of-order data would need to be

reneged. On the other hand, our experimentation with FreeBSD showed that

terminating a single TCP flow established to Apache web server releases ~3MB of

main memory in FreeBSD. I believe that RESETing one TCP flow is a better strategy

to help an operating system rather than reneging 800+ connections as would be needed

in the current handling of reneging.

I had a chance to discuss why reneging is tolerated in TCP with Matt Mathis,

the main editor of [RFC2018]. He told me that the semantics of SACKs are advisory

since a reliable data transfer would fail if SACKs were permanent and some TCP

stacks implement SACKs incorrectly. By specifying SACKs advisory, TCP is more

robust to SACK implementations having bugs. I argue that this design choice which

perhaps is practical to get the choice accepted by the research community is wrong. By

analogy, a TCP stack implementing a wrong ACK mechanism would cause a data

transfer to fail but we do not consider ACKs as advisory. I believe it is the protocol

implementor’s responsibility to provide a correct implementation. Protocols should be

specified to achieve the best performance, and not be designed to tolerate incorrect

implementations. I argue that TCP’s current mechanism to tolerate reneging achieves

a lower memory utilization when compared to a TCP with no reneging support and

should be improved.

(2) To investigate the causes reneging, several TCP stacks from popular

operating systems were inspected to characterize the circumstances of reneging. The

primary contribution of our investigation is that we found out that operating systems

use reneging for different purposes.

 182

Initially, reneging was expected when an operating system went low on main

memory to help the operating system resume normal operation. FreeBSD, for

example, supports that type of reneging. In low memory situations, all TCP

connections with out-of-order data renege simultaneously (global reneging).

For Microsoft Windows, I was informed by Dave MacDonald that reneging is

not supported by 2000, XP and Server 2003. On the contrary, we found 53 reneging

flows in trace analysis where TCP fingerprints strongly suggested these Microsoft

systems were reneging. I was also informed by Dave that Vista+ (Vista, Server 2008,

7) comes with a new TCP stack in which reneging is possible. Reneging in Windows

Vista+ was introduced to protect a host against DoS attacks. An attacker can open

multiple TCP connections and fill each one’s receive buffers with out-of-order data to

exhaust system resources thus making services unavailable. Reneging happens when

the memory consumption of total reassembly data in relation to the global memory

limits is significant.

In Mac OS X, reneging is supported by the operating system. But, by default

reneging is not enabled. So, TCP can be modified to operate as a non-reneging

protocol in Mac OS X.

In Linux (Android), reneging happens when the memory allocated for a

receive buffer exceeds the memory limit available to the receive buffer. Allocated

buffer space for the out-of-order data is freed and returned back to the global TCP

memory pool to be used by other TCP connections. In Linux, only individual

connections exceeding the receive buffer limit renege (local reneging).

Reneging is not supported in Solaris but happens to connections where the

TCP reassembly queue timer expires (local reneging). To our best knowledge, a timer

 183

for the reassembly queue is not defined in the TCP specification. We believe (but

could not confirm) reneging in Solaris has the same purpose as Windows reneging: to

protect the operating system against a DoS attack.

Initially, we expected reneging not to be supported by any operating systems.

To the contrary, our investigation revealed that five out of six inspected operating

systems can renege (FreeBSD, Linux (Android), Apple’s Mac OS X, Oracle’s Solaris

and Microsoft’s Windows Vista+.) The only operating system that does not support

reneging in our investigation is OpenBSD. We also initially expected that reneging

would occur to help operating system to resume normal operation by providing extra

memory (FreeBSD). Surprisingly, we discovered that reneging is also used as a

protection mechanism against DoS attacks (Solaris, Vista+.) We conclude that

reneging is a common mechanism implemented in most of today’s popular operating

systems.

(3) To document the effects of reneging, we designed a tool, CauseReneg, to

cause a victim to renege. Using this tool, we attacked various victims deploying

popular operating systems with reneging support such as FreeBSD, Linux, Solaris, and

Windows using CauseReneg. CauseReneg achieves its goal by exhausting a victim’s

resources by sending out-of-order data using multiple TCP connections.

For FreeBSD, two attacks were performed to a victim. The first one caused the

victim to crash and the second one caused the victim to renege. In both attacks, the

available main memory was largely consumed by out-of-order data to trigger

reneging. In the first attack, CauseReneg established 1240+ parallel connections to the

victim, and the page replacement daemon did not invoke the reneging routines,

probably due to low paging activity. In this attack, the victim crashed. Reneging did

 184

not help the operating system to resume normal operation. In the second attack, a user

process allocating 2GB of main memory was used along with CauseReneg to cause

high paging activity and reneging. This time, the page replacement daemon invoked

drain routines, and reneging happened. All of the reassembly queues of active TCP

connections were purged to reclaim main memory to FreeBSD, and the process using

the largest memory allocation was terminated by the page replacement daemon.

Initially, it expected that an operating system starving for main memory would

eventually crash. Our first attack to FreeBSD is such an example. In the second attack,

when the paging activity was high and the available memory was low, reneging

happened in addition to the largest process getting killed. This time, FreeBSD resumed

normal operation. The maximum amount of memory that could be allocated to

reassembly queues by reneging was limited to ~3MB only (0.6% of the physical

memory) for the victim attacked. That amount of memory is negligible compared to

the process using the most memory. I believe reneging alone cannot help an operating

system to resume normal operation. In this case, the memory used for the reassembly

queues was wastefully purged. The operating system resumed normal operation since

the page replacement daemon killed the largest process. I argue that reneging support

should be turned off by default in FreeBSD as in Mac OS X.

Next, Solaris 11, Windows Vista, and Window 7 victims were attacked using

CauseReneg. Both Solaris and Windows use reneging as a protection mechanism

against DoS attacks. Solaris uses a uses a reassembly queue timer to renege whereas

Windows uses a memory threshold for the out-of-order data for the same purpose.

In Solaris, when out-of-order data sit in the reassembly queue for at least 100

seconds, reneging happens. The system infers that the connection is either terminated

 185

due to a failed loss recovery or exhausts resources intentionally (a DoS attack.) In both

cases, instead of reneging, terminating the connection with RESETs seems to be a

better option. RESETing the connection would release all of the resources held.

In Windows, reneging happens when the memory allocated for out-of-order

data exceeds the memory threshold available for the reassembly data. This threshold

appears to be ~0.78% of the available physical memory. The current reneging

implementation has a potential problem. The out-of-order data that cause reaching the

threshold are not reneged. Instead, the out-of-order data received afterwards are

reneged. Were an attacker to learn the memory threshold and only send that amount of

out-of-order data, all future connections experiencing losses and receiving out-of-

order data afterwards would renege. A TCP data sender would not retransmit SACKed

data until a retransmission timeout (RTO) [RFC2018]. In such a case, losses would be

recovered with RTOs resulting in increased transfer times (lower throughput.) The

quality of service, data transfer times for legitimate users, would be reduced. We name

this type of an attack a “reduction of service” (RoS) attack. We believe that a RoS

attack would be harder to detect compared to a DoS attack since the service provided

is not interrupted, but only degraded.

When we compare reneging in Solaris vs. Windows, Solaris’s approach seems

to be a better protection mechanism: only the DoS connections are penalized. An

important disadvantage of Solaris’s implementation is using a timer since managing a

TCP timer is an expensive operation.

Next, we compare global vs. local reneging. FreeBSD employs global

reneging. When reneging happens, all the reassembly queues are cleared. On the other

 186

hand, Linux and Solaris employ local reneging where each TCP connection reneges

independently.

Global reneging is easier to implement. A single reneging function is defined,

and no bookkeeping is required. The reneging function is invoked for all active TCP

connections when reneging is needed. The disadvantage with global reneging is that if

the memory required by the operating system to resume normal operation is less than

the total memory allocated for the reassembly queues, some TCP connections are

unnecessarily penalized.

Local reneging, on the other hand, is more complex to implement, and requires

bookkeeping for each TCP connection and global memory pools. As a connection

progresses, the amount of allocated receive buffer space is recorded as data is

appended/removed from the receive buffer. In local reneging, only those connections

exceeding memory limits experience reneging. Therefore, local reneging is fairer

compared to global reneging.

In summary, reneging was caused for FreeBSD, Solaris, and Windows victims

using CauseReneg tool. The consequences of reneging were detailed for those

systems. When an operating system (e.g. FreeBSD) is starving for memory, reneging

alone cannot help the system to resume normal operation. Therefore, I argue that

reneging support should be turned off for systems employing that type of reneging.

Reneging in Solaris and Windows protects the system against DoS attacks. I argue that

type of protection is essential to operating systems but I believe that a better approach

would be to RESET the connection under the attack instead of reneging.

In this dissertation, we investigated (1) the instances, (2) causes and (3) effects

of TCP reneging in today’s Internet to argue that TCP’s design to tolerate reneging is

 187

wrong. Our investigation showed that reneging is a rare event and in general cannot

help an operating system alone to resume normal operation. Therefore, I argue that

TCP should be redesigned not to renege by (1) changing semantics of SACKs from

being advisory to permanent and (2) RESETing a connection if an operating system

has to take back the main memory allocated to out-of-order data, or defend against a

DoS attack.

7.2 Future Work

During the reneging analysis on Internet traces, we discovered two additional

SACK generation misbehaviors after publishing [Ekiz 2011b]. New TBIT tests are

needed to identify the misbehaving stacks for the two additional misbehaviors.

To document the consequences of reneging, FreeBSD, Solaris and Windows

hosts were reneged using CauseReneg. Unfortunately, we could not succeed to renege

a Linux host yet. In the trace analysis, we detected 40 reneging flows from various

Linux data receivers. Deeper investigation showed that reneging happens when the

receiving application is unable to read in-order data from the receive buffer. In our

attempts to cause reneging on a Linux host, an Apache web server (the receiving

application) was reading the in-order data (5 bytes) immediately. To document the

consequences of reneging in Linux, CauseReneg needs to be updated to send larger

amount of in-order data (10K-20K?) in addition to out-of-order data, and attack an

application that would not read in-order data immediately. For that, a custom

application that does not read in-order data for long time needs to be developed.

 In Section 7.1, we stated that increased throughput for TCP is possible for

data transfers with constrained send buffers (assuming asymmetric buffer sizes (send

buffer < receive buffer) and no auto-tuning) if TCP were designed not to renege.

 188

When the send buffer is full, no new data can be transmitted even when congestion

and flow control mechanisms allow. If SACKs were non-renegable, SACKed data

could be removed from the send buffer immediately, and new application data could

be read and potentially transmitted if the data receivers receive buffer has space to

receive more data. For that, TCP’s send buffer management needs to be modified to

release SACKed data immediately and read more data into the send buffer with a

receipt of a SACK. To document possible throughput improvements, a TCP stack

should be modified to operate as a non-renegable TCP and experiments needs to be

conducted between two TCP end-points having asymmetric buffer sizes (send buffer <

receive buffer) and no auto-tuning.

 189

REFERENCES

[Alexa] ALEXA, "The top 500 sites on the web," [Online]. Available:
http://www.alexa.com/topsites.

[Allman 1997] M. Allman, C. Hayes, H. Kruse and S. Ostermann, "TCP performance
over satellite links," in 5th International Conference on Telecommunications
Systems, 3/97.

[Apache] The Apache Software Foundation, "Apache HTTP Server Project," [Online].
Available: http://httpd.apache.org/.

[Blanton 2008] J. T. Blanton, “A Study of Transmission Control Protocol Selective
Acknowledgement State Lifetime Validity”, MS Thesis, November 2008

[Bruning 2005] M. Bruning, "A Comparison of Solaris, Linux, and FreeBSD
Kernels," [Online]. Available:
http://hub.opensolaris.org/bin/view/Community+Group+advocacy/solaris-
linux-freebsd

[Bruyeron 1998] R. Bruyeron, B. Hemon and L. Zhang, "Experimentations with TCP
selective acknowledgment," ACM Computer Communication Review, vol. 28,
no. 2, pp. 54-77, 4/98.

[Caida] CAIDA, "CAIDA Internet Data – Passive Data Sources," [Online]. Available:
www.caida.org/data/passive/.

[Dummynet] Dummynet, "Dummynet," [Online]. Available:
http://info.iet.unipi.it/~luigi/dummynet/.

[Ekiz 2010] N. Ekiz, P. D. Amer, “A Model for Detecting Transport Layer Data
Reneging”, PFLDNeT 2010, Lancaster, PA, 11/10

[Ekiz 2011a] N. Ekiz, P. D. Amer, P. Natarajan, R. Stewart and I. Iyengar, "Non-
Renegable Selective Acks (NR-SACKs) for SCTP," IETF Internet Draft, draft-
natarajan-tsvwg-sctp-nrsack, 08/2011.

[Ekiz 2011b] N. Ekiz, A. H. Rahman and P. D. Amer, "Misbehaviors in TCP SACK
Generation," ACM SIGCOMM Computer Communication Review, p. 16–23,
2011.

 190

[Ekiz 2011c] N. Ekiz, A. H. Rahman and P. D. Amer, "TBIT tests and TBIT packet
captures," [Online]. Available: pel.cis.udel.edu/tbit-tests/, 2/11

[Fall 1996] K. Fall and S. Floyd, "Simulation-based comparisons of Tahoe, Reno, and
SACK TCP," ACM Computer Communication Review, vol. 26, no. 3, pp. 5-21,
6/96.

[Fisk 2001] M. Fisk, W. Feng, “Dynamic Right-Sizing: TCP Flow-Control
Adaptation”, Proc. of ACM/IEEE Supercomputing Conference, pp. 1-3, 11/01

[Fraleigh 2003] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R.
Rockell, T. Seely and C. Diot, "Packet-Level Traffic Measurements from the
Sprint IP Backbone," IEEE Network, vol. 17, no. 6, pp. 6-16, 11/03.

[Freebsd] The FreeBSD Foundation, "FreeBSD," [Online]. Available:
www.freebsd.org.

[FreebsdImpl] FreeBSD TCP and SCTP Implementation, October 2007. [Online].
Available: www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet

[Iyengar 2006] J. R. Iyengar, P. D. Amer and R. Stewart, "Concurrent Multipath
Transfer using SCTP Multihoming Over Independent End-to-End Paths,"
IEEE/ACM Transactions on Networking, vol. 14, no. 5, pp. 951-964, 10/06.

[Iyengar 2007] J. R. Iyengar, P. D. Amer and R. Stewart, "Performance implications
of a bounded receive buffer in concurrent multipath transfer," Computer
Communications, vol. 30, no. 4, pp. 818-829, 2/07.

[Jaiswal 2004] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose and D. Towsley,
"Inferring TCP Connection Characteristics Through Passive Measurements,"
in Proc. IEEE INFOCOMM, 3/04.

[Ladha 2004] S. Ladha, P. D. Amer, A. J. Caro and J. R. Iyengar, "On the Prevalence
and Evaluation of Recent TCP Enhancements," in IEEE Globecom, 11/04.

[LBNL 2004] Lawrence Berkeley National Laboratory, "LBNL/ISCI Enterprise
Tracing Project," [Online]. Available: http://www.icir.org/enterprise-tracing/

[Linux] Linux Kernel Organization, Inc., "The Linux Kernel Archives," [Online].
Available: http://www.kernel.org/.

[MacOS] Mac OS TCP Implementation, [Online]. Available:
http://fxr.watson.org/fxr/source/bsd/netinet/?v=xnu-1699.24.8;im=3.

 191

[Market] Net Applications, "Operating System Market Share," [Online]. Available:
http://marketshare.hitslink.com/operating-system-market-share.aspx?qprid=8.

[MacDonald 2000] D. MacDonald and W. Barkley, "Microsoft Windows 2000
TCP/IP Implementation Details," Microsoft, [Online]. Available:
http://technet.microsoft.com/en-us/library/bb726981.aspx.

[Medina 2004] A. Medina, M. Allman and S. Floyd, "Measuring interactions between
transport protocols and middleboxes," in Proc. of ACM SIGCOMM, 10/04.

[Medina 2005] A. Medina, M. Allman and S. Floyd, "Measuring the Evolution of
Transport Protocols in the Internet," ACM SIGCOMM Computer
Communication Review, vol. 35, no. 2, pp. 52-66, 4/05.

[Moore 1993] D. S. Moore, G. P. McCabe, “Introduction to the Practice of Statistics”,
Freeman, New York, 1993

[Natarajan 2006] P. Natarajan, J. R. Iyengar, P. D. Amer and R. Stewart, "Concurrent
Multipath Transfer Using Transport Layer Multihoming: Performance during
Network Failures," in MILCOM 2006, 10/06.

[Natarajan 2008a] P. Natarajan, N. Ekiz, P. D. Amer, J. R. Iyengar and R. Stewart,
"Concurrent Multipath Transfer using SCTP Multihoming: Introducing the
Potentially-Failed Destination State," in IFIP Networking 2008, 5/08.

[Natarajan 2008b] P. Natarajan, N. Ekiz, E. Yilmaz, P. D. Amer, J. R. Iyengar and R.
Stewart, "Non-renegable selective acks (NR-SACKs) for SCTP," in Int'l Conf
on Network Protocols (ICNP), 10/08.

[Natarajan 2009] P. Natarajan, N. Ekiz, P. D. Amer and R. Stewart, "Concurrent
Multipath Transfer during path failure," Computer Communications, vol. 32,
no. 15, pp. 1577-1587, 9/09.

[Nmap] Nmap, "nmap," [Online]. Available: www.nmap.org.

[Ns-2] "The Network Simulator - ns-2," [Online]. Available:
http://www.isi.edu/nsnam/ns/.

[Openbsd] OpenBSD Foundation, "OpenBSD," [Online]. Available:
http://www.openbsd.org.

[Padhye 2001] J. Padhye and S. Floyd, "On inferring TCP behavior," in ACM
SIGCOMM, 8/01.

 192

[Paxson 1997] V. Paxson, "Automated Packet Trace Analysis of TCP
Implementations," ACM SIGCOMM Computer Communication Review, vol.
27, no. 4, pp. 167-179, 9/97.

[RFC793] J. Postel, "Transmission Control Protocol," RFC 793, 10/81.

[RFC1122] R. Braden, “Requirements for Internet Hosts -- Communication Layers,”
RFC 1122, 10/89

[RFC1323] V. Jacobson, R. Braden, D. Borman, “TCP Extensions for High
Performance,” RFC 1323, 05/92

[RFC1945] T. Berners-Lee, R. T. Fielding and H. F. Nielsen, "Hypertext Transfer
Protocol -- HTTP/1.0," RFC 1945, 5/96.

[RFC2018] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, "TCP Selective
Acknowledgment Options," RFC 2018, 9/96.

[RFC2119] S. Bradner, “Key words to use in RFCs to Indicate Requirement Levels,”
RFC 2119, 3/97

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T.
Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1," RFC 2616, 6/99.

[RFC2883] S. Floyd, J. Mahdavi, M. Mathis and P. Matthew, "An Extension to the
Selective Acknowledgement (SACK) Option for TCP," RFC 2883, 7/00.

[RFC3390] M. Allman, S. Floyd, C. Partridge, “Increasing TCP’s Initial Window,”
RFC 3390, 10/02

[RFC3517] E. Blanton, M. Allman, K. Fall and L. Wang, "A Conservative Selective
Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP," RFC
3517, 4/03.

[RFC4960] R. Stewart, "Stream Control Transmission Protocol," RFC 4960, 9/07.

[Seth 2008] S. Seth and V. M. Ajaykumar, TCP/IP Architectures, Design, and
Implementation in Linux, John Wiley & Sons, Inc., 2008.

[Sigcomm 2008] SIGCOMM 2008 Traces, [Online]. Available:
http://www.cs.umd.edu/projects/wifidelity/sigcomm08_traces/

[Singh 2003] A. Singh, "What is Mac OS X?," [Online]. Available:
http://osxbook.com/book/bonus/ancient/whatismacosx/arch_xnu.html, 12/03

 193

[Tbit] TBIT, "The TCP Behavior Inference Tool," [Online]. Available:
www.icir.org/tbit/.

[Tcpdump] Tcpdump, "Tcpdump," [Online]. Available: www.tcpdump.org.

[Virtualbox] VirtualBox, "VirtualBox," [Online]. Available: www.virtualbox.org.

[Windows 2003] Microsoft Corporation, “Microsoft Windows Server 2003 TCP/IP
Implementation Details”, 06/2003

[Wireshark] Wireshark, "Wireshark," [Online]. Available: www.wireshark.org.

[Yilmaz 2010] E. Yilmaz, N. Ekiz, P. Natarajan, P. D. Amer, J. T. Leighton, F. Baker
and R. R. Stewart, "Throughput analysis of Non-Renegable Selective
Acknowledgments (NR-SACKs) for SCTP," Computer Communications, vol.
33, no. 16, pp. 1982-1991 , 10/10.

