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ABSTRACT 

Reneging occurs when a data receiver SACKs data, and later discards that data 

from its receiver buffer prior to delivering it to the receiving application. Today’s 

reliable transport protocols (TCP, SCTP) are designed to tolerate data reneging. I 

argue that this design assumption is wrong based on our hypothesis that reneging 

rarely if ever occurs in practice. To support this argument, this dissertation provides 

the literature’s first comprehensive analysis of reneging. We investigate (1) the 

instances, (2) causes and (3) effects of reneging in today’s Internet.  

For (1), this dissertation proposes a model to detect reneging instances. The 

model builds upon the way an SCTP data sender detects reneging. A state of the data 

receiver’s receive buffer is constructed at an intermediate router and updated as new 

acks are observed. When an inconsistency occurs between the state of the receive 

buffer and a new ack, reneging is detected. We implemented the proposed model as a 

tool called RenegDetect v1. While verifying RenegDetect v1 with real TCP flows, we 

discovered that some TCP implementations were generating SACKs incompletely 

under some circumstances giving a false impression that reneging was happening. Our 

discovery led us to a side investigation to precisely identify five misbehaving TCP 

stacks observed in the Internet (CAIDA) traces. For that, we designed a methodology 

and verified RFC2018-conformant SACK generation on 29 TCP stacks for a wide 

range of OSes. We found at least one misbehaving TCP stack for the five 

misbehaviors observed during the verification of RenegDetect v1 and concluded that 

while simple in concept, SACK handling is complex to implement.  
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To identify reneging instances more accurately and distinguish them from 

SACK generation misbehaviors, we updated RenegDetect v1 to v2 to better analyze 

the flow of data, in particular, to analyze data retransmissions which are a more 

definitive indication that reneging happened. To report the frequency of reneging in 

trace data, traces from three domains were analyzed: Internet backbone, a wireless 

network, and an enterprise network. Contrary to our initial expectation that reneging is 

an extremely rare event, trace analysis demonstrated that reneging does happen. We 

analyzed 202,877 TCP flows using SACKs from the three domains. In the flows, we 

confirmed 104 reneging instances (0.05%). With 95% statistical confidence, we report 

that the true average rate of reneging is in the interval [0.041%, 0.059%], roughly 1 

flow in 2000.   

For the reneging instances that were found, the operating system of the data 

receiver was identified thus allowing the reneging behavior of Linux, FreeBSD and 

Windows hosts to be more precisely characterized.  

Since TCP is designed to tolerate reneging, SACKed data are unnecessarily 

stored in the send buffer wasting operating system resources when reneging does not 

happen. Since reneging does happen rarely (less than 1 flow per 1000), we recommend 

that TCP should be changed to not tolerate reneging by (a) changing the semantics of 

SACKs from being advisory to permanent and (b) RESETing (terminating) a 

connection if a data receiver does have to take back memory that has been allocated to 

received out-of-order data. With this recommended change, the send buffer is better 

utilized for the large majority of flows that do not renege.  

In trace analysis, we also found that the average main memory returned to a 

reneging operating system per reneging instance was on the order of 2 TCP segments 
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(2715, 3717, and 1371 bytes for Linux, FreeBSD, and Windows operating systems, 

respectively.) This average amount of main memory reclaimed back to the operating 

system seems relatively insignificant. I argue that reneging to save so little memory is 

not worth the trouble. Reclaiming such an amount of memory to an operating system 

is unlikely to help resume normal operation.  

The causes of reneging (2) were identified by analyzing TCP stacks of popular 

operating systems with reneging support. Our investigation revealed that five popular 

operating systems (FreeBSD, Linux (Android), Apple’s Mac OS X, Oracle’s Solaris 

and Microsoft’s Windows Vista+) can renege. Initially, reneging was expected to 

happen on operating systems that go low on main memory to help the operating 

system to resume normal operation. Surprisingly, we discovered that reneging also is 

used as a protection mechanism against Denial of Service (DoS) attacks (Solaris and 

Windows Vista/7). We concluded that reneging is a common mechanism implemented 

in many of today’s popular operating systems.  

To investigate the consequences of reneging (3), a tool, CauseReneg, to cause 

a remote host to renege was designed, and used to force FreeBSD, Solaris, and 

Windows Vista victims to renege. CauseReneg achieves its goal by exhausting a 

victim’s resources by sending out-of-order data using multiple TCP connections. For 

an operating system (e.g., FreeBSD) starving for memory, we demonstrated that 

reneging alone cannot help the system to resume normal operation. Therefore, we 

recommend that reneging support should be turned off for systems using reneging as a 

mechanism to reclaim memory to resume normal operation. For operating systems 

using reneging to protect against DoS attacks, reneging appears to be a useful 

mechanism. We argue that a better approach would be to RESET a connection under 
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attack instead of reneging since terminating the connection would release all of the 

resources held. For example, in FreeBSD, reneging would reclaim at most 64 Kbytes 

(the default receive buffer size) per connection while terminating a connection would 

release ~3MB of memory. By RESETing a connection, the victim’s system resources 

are better utilized. 
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Chapter 1 

INTRODUCTION 

1.1 Proposed Research 

This dissertation investigates data reneging within the transport layer. Data 

reneging occurs when a data receiver buffers and selectively acknowledges out-of-

order received data, and then purges that data from its receive buffer without 

delivering the data to the receiving application. Today’s reliable transport protocols 

Transmission Control Protocol (TCP) [RFC793] and Stream Control Transmission 

Protocol (SCTP) [RFC4960] are designed to tolerate reneging. This dissertation argues 

this design assumption is wrong. To develop and support this argument, this 

dissertation investigates the instances, causes and effects of data reneging in today’s 

Internet.  

1.2 Definitions and Problem Statement 

1.2.1 Transport Layer “Shrinking the Window” and “Reneging” 

Data reneging is a transport layer behavior of which little is known: its 

frequency of occurrence, its causes, its effects, etc. This section discusses data 

reneging in more detail and motivates the study of data reneging in transport protocols 

such as TCP and SCTP. 

TCP specifies sequence numbers and cumulative acknowledgments (ACKs) to 

help achieve reliable data transfer. A TCP data receiver uses sequence numbers to sort 
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arrived data segments. Data arriving in expected order, i.e., ordered data, are 

acknowledged to the data sender via cumulative ACKs. The data receiver accepts 

responsibility of delivering ACKed data to the receiving application. Thus the data 

sender can safely delete all cumulatively ACKed data from its send buffer, even 

before these data are delivered to the receiving application. 

The data receiver stores incoming data segments in a receive buffer. The 

receive buffer consists of two types of data: ordered data which have been 

cumulatively ACKed but not yet delivered to the application, and out-of-order data 

caused by loss or reordering in the network. A correct TCP data receiver 

implementation is not allowed to delete cumulatively ACKed data without first 

delivering these data to the receiving application since the data sender removes 

ACKed data from its send buffer. 

Related to reneging is a behavior known as shrinking the window. For 

purposes of flow control, a data receiver advertises a receive window (rwnd) which 

specifies the amount of available buffer space at the data receiver. As a means of flow 

control, a data receiver constrains a data sender to have at most an rwnd of data 

outstanding. A TCP data receiver is technically allowed to advertise a window, and 

later advertise a smaller window. This shrinking the window behavior while permitted 

by the TCP specification is strongly discouraged [RFC793]. When a data receiver 

shrinks its window, no ACKed data are actually deleted from the receive buffer, only 

advertised empty buffer space is retracted. 

TCP’s Selective Acknowledgment Option (SACK) [RFC2018] extends TCP’s 

cumulative ACK mechanism by introducing SACKs. SACKs allow a data receiver to 

acknowledge arrived out-of-order data to the data sender. The intention is that 



 3

SACKed data do not need to be retransmitted during loss recovery. The data receiver 

informs the data sender of out-of-order data by including SACK(s) in the TCP 

segment’s options field. 

Data receiver reneging (or simply, reneging) occurs when a data receiver 

SACKs data, and later discards these data from its receive buffer prior to delivering 

these data to the receiving application (or socket buffer). TCP is designed to tolerate 

reneging. Specifically [RFC2018] states that: “The SACK option is advisory, in that, 

while it notifies the data sender that the data receiver has received the indicated 

segments, the data receiver is permitted to later discard data which have been 

reported in a SACK option”. As is shrinking the window, reneging also is strongly 

discouraged but permitted when, for example, an operating system needs to recapture 

previously allocated receive buffer memory for another process, say to avoid 

deadlock. 

Because TCP is designed to tolerate possible reneging by a data receiver, a 

TCP data sender must keep copies of all transmitted data segments in its send buffer, 

even SACKed data, until cumulatively ACKed. If reneging does happen, a copy of the 

reneged data exists and can be retransmitted to complete the reliable data transfer. 

Inversely if reneging does not happen, SACKed data are unnecessarily stored in the 

send buffer until cumulatively ACKed. 

Reneging is more serious than shrinking the window. Note that while out-of-

order data are deleted from the receive buffer when reneging occurs, no removal of 

out-of-order data occurs with shrinking the window. A TCP data sender needs a 

mechanism (and its associated overhead) to deal with reneging while no extra 

mechanism is needed to handle shrinking the window. 
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This dissertation investigates if reneging actually occurs in the current Internet. 

If reneging never occurs, transport protocols have no need to manage the event and 

current TCP and SCTP implementations can be improved. Further, if reneging occurs 

rarely, we believe the current handling of reneging in transport protocols can be 

improved. 

To further motivate the study of reneging, we need to understand the potential 

gains for a transport protocol that does not tolerate reneging. For that, we first explain 

Non-Renegable Selective Acknowledgments (NR-SACKs). 

1.2.2 Non-Renegable Selective Acknowledgments (NR-SACKs) 

The Non-Renegable Selective Acknowledgment (NR-SACKs) is a new 

acknowledgment mechanism for SCTP [Ekiz 2011a]. With an NR-SACK extension, 

an SCTP data receiver takes responsibility for non-renegable data (NR-SACKed), and, 

an SCTP data sender needs not to retain copies of NR-SACKed data in its send buffer 

until cumulatively ACKed. NR-SACKed data can be removed from the send buffer 

immediately on the receipt of the NR-SACK. 

In SCTP, non-renegable data are possible in three ways.  

(1) SCTP offers an unordered delivery service in which data marked 

UNORDERED can be delivered to the receiving application immediately even if the 

data are out-of-order according to the transport sequence number (TSN). After 

UNORDERED data are delivered to the application, they are by definition non-

renegable. 

(2) SCTP provides a multistream delivery service in which each stream is 

logically independent, and data received in-order within a stream can be delivered to 

the application. In multistream applications, data delivered to the application are non-
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renegable, even though these data are out-of-order within the SCTP association 

(SACKed). Note that out-of-order data which are also out-of-order within a stream are 

renegable. 

(3) It is possible to make all out-of-order data non-renegable in both TCP and 

SCTP with operating system support. Some operating systems allow turning reneging 

on and off. When reneging is off, the operating system guarantees not to renege on 

out-of-order data. In FreeBSD [Freebsd], for example, the sysctl variable 

net.inet.tcp.do_tcpdrain (a mechanism to get/set kernel state) can be used to turn 

reneging off for TCP. This variable is on by default. Analogously, the sysctl variable 

net.inet.sctp.do_sctp_drain is provided for SCTP. When reneging is turned off, all out-

of-ordered data become non-renegable. 

NR-SACKed data are released from a data sender’s send buffer immediately. 

With NR-SACKs, only renegable (necessary) data reside in the send buffer, while 

with SACKs both renegable and non-renegable (unnecessary) data are kept. As a 

result, memory allocated for the send buffer is better utilized with NR-SACKs. 

[Natarajan 2008b] presents send buffer utilization results for unordered data transfers 

over SCTP under mild (~1-2%), medium (~3-4%) and heavy (~8-9%) loss rates using 

NR-SACKs vs. SACKs. For the bandwidth-delay parameters studies with SACKs, the 

memory wasted by keeping copies of non-renegable data is on average ~10%, ~20% 

and ~30% for the given loss rates, respectively. 

NR-SACKs also improve end-to-end application throughput. To send new 

data, in TCP and SCTP, a data sender is constrained by three factors: the congestion 

window (congestion control), the advertised receive window (flow control), and the 

send buffer. When the send buffer is full, no new data can be transmitted even when 
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congestion and flow control mechanisms allow. When NR-SACKed data are removed 

from the send buffer, new application data can be read and potentially transmitted. 

[Yilmaz 2010] shows that the throughput achieved with NR-SACKs is always ≥ throughput observed with SACKs. For example, using NR-SACKs, the throughput 

for an unordered data transfer over SCTP is improved by ~14% for a data sender with 

32KB send buffer under low (~0-1%) loss rate. 

1.2.3 Problem Statement 

Suppose that reliable transport protocols were designed to NOT tolerate 

reneging. What would be the advantages and disadvantages? In such a case, the send 

buffer utilization would be always optimal, and the application throughput would be 

improved for data transfers with constrained send buffers. Current transport protocols 

employing SACKs such as TCP and SCTP suffer because of the assumption that 

reneging may happen. Note that, a non-reneging transport protocol (that is when all 

out-of-order data are non-renegable) would perform even better than a protocol using 

NR-SACKs since there is no constraint on data delivery service used.  

If we can document that reneging never happens or happens rarely, we can 

argue that reliable transport protocols should be modified to operate on the assumption 

that all data are non-renegable. As simplified argument, let us assume that reneging 

happens rarely, say once in a million TCP flows. Case A (current practice): TCP 

implementations tolerate reneging to maintain the reliable data transfer of the single 

reneging connection. The 999999 non-reneging connections waste ~10% of the main 

memory allocated for send buffer (under mild (~1-2%) loss rates) and achieve lower 

application throughput. 
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Case B (proposed change): TCP does not tolerate reneging. For our simplified 

argument, 999999 connections have improved performance and 1 connection gets 

RESET.  

Changing TCP or SCTP with their current support for reneging into non-

reneging transport protocols requires only minor modifications to current practice. 

First, the semantics for SACK is changed from advisory to permanent. Once a data 

receiver SACKs data, that out-of-order data may not be reneged (Note: with this 

simple change, the NR-SACK extension is not needed; SACKed data become non-

renegable.) If a data receiver does have to recapture allocated receive buffer space, we 

propose that the data receiver MUST RESET the connection prior to reneging (i.e., 

only penalize the reneging connection). A data sender needs no mechanism to handle 

reneging, since the data receiver must reset the connection when reneging is 

necessary. 

Our hypothesis is that the inefficiency of the transport protocols due to 

possible reneging needs to be corrected by designing TCP and SCTP to not tolerate 

reneging. We argue that penalizing a few reneging connections by making them 

RESET worthwhile so that the large majority of non-reneging connections benefit 

from better send buffer utilization and increased throughput. 

One might criticize our proposed change, “What if a data receiver were to 

renege on SACKed data and not RESET?” That incorrect behavior would cause a 

failure in the reliable data transfer or a deadlock to occur. But currently a TCP receiver 

may not renege on cumulatively ACKed data. If a TCP data receiver did such an 

incorrect behavior, a failure or deadlock will occur. Our proposed change simply 

defines SACKed data to have the same status as ACKed data. 
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Our original expectation was that reneging never happens in practice. As it 

turns out, this dissertation research observes that data reneging does happen, albeit 

rarely. Given this observation, we characterize the circumstances causing reneging. 

Once the circumstances are known, we analyze the pros and cons of reneging on the 

operating system’s operation. If reneging does not help the operating system to resume 

its operation, reneging should be disabled. Randall Stewart, the designer of SCTP and 

implementor of the its FreeBSD reference implementation, hypothesized that an 

operating system would eventually crash if the operating system ever arrived to a state 

in which reneging was needed. If so, then why bother tolerating data reneging! 

To better understand reneging in current practice, this dissertation identifies 

operating systems that have built-in mechanisms for reneging, and ones that do not 

(Chapter 4). If the majority of the operating systems did not have mechanisms to deal 

with reneging, employing the current SACK mechanism would be inefficient and 

designing non-reneging transport protocols would be absolutely called for. Our 

investigation reveals that several operating systems (FreeBSD, Linux, Mac OS, 

Solaris, and Windows) have reneging mechanisms. 

Simply put – does reneging occur or not? We know of only one study of 

reneging (an MS thesis) in the research community. We do not know what percentage 

of connections renege, nor if today’s TCP implementations handle reneging instances 

correctly. The Internet is evolving continuously; we should model actual practice. By 

analogy, a study by [Medina 2005] examined a large number of web-servers and 

showed that Tahoe TCP was used in only 2.6% of web-servers in 2005. Thus, there is 

no need to compare new TCP extensions with TCP Tahoe since TCP Tahoe is now 
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past practice. If we observe reneging occurs rarely or never, we will have evidence to 

change the basic assumptions of transport layer protocols. 

1.2.4 Research Goals – Why Study Data Reneging? 

The primary research goal is to investigate reneging in the current Internet and 

attempt to detect reneging instances through a passive measurement technique. 

Findings from the passive measurement analysis of Internet traces are presented in 

Chapter 3. 

A secondary research goal is to design a tool to cause a remote machine to 

renege. Inspecting reneging mechanisms in various operating systems (Chapter 4) 

provides a basis for building a reneging causing tool.  Chapter 5 presents a tool to 

cause a machine to renege, and investigates the effects of reneging on transport 

connections and operating systems. 

1.3 Related Research 

To the best of this author’s knowledge, the first and only prior study of 

reneging is [Blanton 2008]. In this MS thesis which was not published elsewhere, the 

author presents a reneging detection algorithm for a TCP data sender, and analyzes 

TCP traces using the detection algorithm to report frequency of reneging.  

In general, a TCP data sender is not designed to detect reneging. Instead, a 

TCP sender is designed to tolerate reneging as specified in [RFC2018]. The SACK 

scoreboard should be cleared at a retransmission timeout (RTO) and the segment at the 

left edge of the window must be retransmitted. In [Blanton 2008], the author 

hypothesized that discarding the SACK scoreboard may have a detrimental impact on 

a connection’s ability to recover loss without unnecessary retransmissions. To 
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decrease unnecessary retransmissions, an algorithm to detect reneging at a TCP sender 

is proposed which clears SACK scoreboard when reneging is detected instead of 

waiting until the RTO. The reneging detection algorithm compares existing SACK 

blocks (scoreboard) with incoming ACKs and when an ACK is advanced to the 

middle of a SACK block, reneging is detected. Using real traces, the author analyzed 

TCP connections with SACKs to report frequency of reneging. Out of 1,306,646 

connections analyzed, the author’s reneging detection algorithm identified 227 

connections (0.017%) having reneged. The author concluded that reneging is an 

infrequent event, and in general was found in systems running servers on well-known 

ports (email servers, HTTP servers.) Another finding is that multiple instances of 

reneging were often observed in a single connection.    

The reneging detection algorithm proposed in [Blanton 2008] is simple, robust 

to packet reordering, and does not rely on any external timers or events. The algorithm 

does not detect reneging until an ACK advances to the middle of a SACK block. The 

author acknowledges that reneging can be detected earlier when the TCP receiver 

skips previously SACKed data. For such a case, SACKs are used for reneging 

detection. The author is concerned that reordered ACKs would look like reneging with 

this technique, so a mechanism is needed to ensure that ACKs are not reordered. For 

that, the author suggests the use of TCP timestamps [RFC1323]. Unfortunately, ACKs 

from the same window in general have the same TCP timestamp value which makes 

timestamps less robust to reordering check. Our approach to detect reneging, detailed 

in Section 3.2, uses both ACKs and SACKs. To infer ACK reordering, our approach 

uses IP ID and TCP ACK fields instead of TCP timestamps.  
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During the trace analysis [Blanton 2008], a common behavior is observed. An 

ACK would advance to the middle of a SACK block and the next ACK observed 

within 5ms would cover the entire SACK block. That type of reneging is referred as 

“spurious” reneging. Our approach to detect reneging relies on retransmissions and 

ignores “spurious” reneging instances when there are no retransmissions.  

[Paxson 1997] presents “tcpanaly” a tool which automatically analyses the 

correctness of TCP implementations by inspecting passive traces collected for bulk 

data transfers in both directions (data and ACK traffic). The tool can identify large 

number of TCP implementations employed at the time and reports errors when the 

TCP flows inspected show non-conformant TCP behavior. In [Paxson 1997], the main 

interests are data sender’s congestion window evolution and data receiver’s proper 

ACK generation. With analysis, non-conformant TCP stacks are identified and 

reported to the stack implementors. Similar to the [Paxson 1997], we detect reneging 

instances through a passive measurement as detailed in Section 3.2 using bidirectional 

TCP traffic.  

[Padhye 2001] describes the TCP Behavior Inference Tool (TBIT) [Tbit] 

which is used to infer the TCP behavior of remote web servers. The authors define a 

number of test cases that can determine, for examples, the initial congestion window 

size, the congestion control algorithm used, the time wait duration time, and ECN 

usage of web servers. 

The test case of importance to this research is the SACK mechanism test. This 

test checks if a web server supports SACKs. A TCP end-point acknowledges its peer 

that it is SACK enabled by sending a SACK-Permitted option in the SYN/SYN-ACK 

packet [RFC2018]. If the web server is SACK enabled, this test further checks if 
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SACKs sent by TBIT are correctly processed by the web server when it retransmits 

segments during the loss recovery period. 

In 2001, out of 4550 web servers tested by TBIT, only 1854 (~41%) were 

SACK enabled. The authors also reported that only 42% of SACK enabled web 

servers used SACK information correctly, the rest did not use SACK information to 

minimize retransmissions during loss recovery. 

Our tool to cause a remote machine to renege (see Section 5.1) is based on 

TBIT, and needs to send specific sequences of TCP PDUs. The TCP traffic generated 

by TBIT is restricted not to be hostile to the remote web servers. On the other hand, 

our reneging causing tool tries to exhaust a remote machine’s main memory as much 

as possible to trigger a reneging instance. TCP PDUs generated by our tool are hostile 

and may eventually cause the remote machine to renege or even crash. 

[Fraleigh 2003] describes the architecture and capabilities of the IPMON 

system which is used for IP monitoring at Sprint IP backbone network. IPMON 

consists of passive monitoring entities, a data repository to store collected trace files 

and an offline analysis platform to analyze the collected data. The authors analyze 

individual flows and traffic generated by different protocols and applications. The 

authors present statistics such as traffic load (weekly and daily), traffic load by 

applications (web, mail, file transfer, p2p, streaming), traffic load in flows. Also TCP 

related statistics such as packet size distribution, RTT, out-of-sequence rate, and delay 

distributions are presented. IPMON is another passive measurement tool as is tcpanaly 

[Paxson 1997], and our method for detecting reneging instances (presented in Section 

3.2). 



 13

In [Jaiswal 2004], the authors introduce a passive measurement technique to 

infer and keep track of the congestion window (cwnd) and round trip time (RTT) of a 

TCP data sender. To infer a data sender’ cwnd, the authors construct a replica of the 

data sender’s TCP state using a finite state machine (FSM). The FSM is updated 

through ACKs and retransmissions seen at the data collection point. We employ the 

same technique to update the view of a data receiver’s receive buffer. This view is 

then used to detect reneging instances (detailed in Chapter 3.) 

Using passive monitoring at an intermediate point, the cwnd evolution may be 

under-estimated when three dup ACKs get lost after the intermediate point or over-

estimated if an entire window of packets gets lost before reaching to the intermediate 

point. Our passive measurement approach to detect reneging is more robust to SACK 

losses when compared to [Jaiswal 2004]. The robustness comes from the SACKs 

being cumulative. Some of the information contained in lost or missing SACK 

segments will be learnt from subsequent SACKs. 

[Medina 2004] investigates the effect of “middleboxes” (firewalls, NATs, 

proxies, etc.) on the performance of IP and TCP protocols. The authors use TBIT, the 

tool described in [Padhye 2001], to send SYN packets with various IP or TCP options 

to web servers in order to detect how middleboxes react to the options. 

When no IP options are sent, most of the connections (98%) are established. 

When IP options such as Record Route, Timestamp, and Unallocated Option are 

present, the number of established connections drops dramatically to 45%, 36% and 

0%, respectively. On the other hand, middleboxes have little effect on connection 

establishment (connection failures are around 3%) when TCP options such as 

Timestamp and Unallocated Option are present. 
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[Ladha 2004] is an independent and parallel work to [Medina 2005] in which 

the authors measure the current deployment status of recent TCP enhancements using 

the TBIT tool. The authors added three new tests cases for recent TCP extensions 

(limited transmit, appropriate byte counting (ABC), and early retransmit) to the TBIT. 

In addition to the new test cases added, the SACK and initial congestion window tests 

of [Padhye 2001] are rerun to evaluate the deployment status of these extensions. A 

simulation study is performed to evaluate the performance of TCP extensions 

mentioned above against TCP New Reno. TCP New Reno is compared against TCP 

SACK with each extension added one at a time based on the standardization time in 

the IETF. 

In [Medina 2005], the authors investigate the correctness of modern TCP 

implementations through active and passive measurements. The active measurements 

are taken by the use of TBIT tool. All TBIT tests are rerun and compared with 2001’s 

results [Padhye 2001]. Also, new test cases such as Byte Counting and Limited 

Transmit are added to TBIT where the deployment status of new extensions to TCP is 

explored. 

SACK related results are of particular interest. SACK-enabled web servers 

increased from being 41% in 2001 to 68% in 2004. Half of the SACK enabled web 

servers also implement D-SACK [RFC2883]. Also the correct use of SACK 

information by data senders (web servers) increased more dramatically: 90% in 2004 

as opposed to 2001’s 42%. A new test is introduced to test if the web servers correctly 

generate SACK blocks and around 91% of the web servers tested generated correct 

SACK blocks. 
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The authors also extended their previous work [Medina 2004] through passive 

packet trace analysis to characterize the TCP behavior of the data receivers (web 

clients). Statistics for advertised window and TCP options such as window scale 

factor, timestamp, ECN capability and advertised MSS are provided for web clients. 

The authors suggest developing tools to validate new transport protocols such as 

SCTP and Datagram Congestion Control Protocol (DCCP). 

Three studies summarized above, [Medina 2004], [Ladha 2004] and [Medina 

2005], are active measurement studies as is our tool to cause a remote host to renege. 

The main difference between these studies and our proposed study is the amount of 

data traffic generated. In general, studies above send a small number of TCP PDUs 

using a single TCP connection. Our reneging tool, on the other hand, requires sending 

large amount of out-of-order data in order to cause reneging by consuming the main 

memory allocated for network buffers using parallel TCP connections. While the 

traffic generated by above studies is harmless to the tested web server, our tool to 

cause a remote host to renege may cause the remote host to renege or even crash. 
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Chapter 2 

MISBEHAVIORS IN TCP SELECTIVE ACKNOWLEDGMENT (SACK) 
GENERATION 

While analyzing Internet traces of TCP traffic to detect instances of data 

reneging, detailed in Chapter 3, we frequently observed seven misbehaviors in the 

generation of TCP SACKs. These misbehaviors gave us the impression that data 

reneging was happening frequently. Upon closer inspection of the reneging instances, 

we concluded that in fact some TCP implementations were generating SACKs 

incompletely under some circumstances. To confirm whether or not the misbehaviors 

observed in the Internet traces were actual reneging instances (misbehaving TCP 

stacks), we tested the RFC 2018 conformant SACK generation on wide range of 

operating systems. In our testing, we simply mimicked the traffic behavior observed in 

the Internet traces prior to observed misbehaviors.  

In this chapter, we present a methodology and its application to test a wide 

range of operating systems for SACK generation. The research findings for this 

chapter appear in the journal paper [Ekiz 2011b].    

2.1 Introduction 

The Selective Acknowledgment (SACK) mechanism, [RFC2018], an extension 

to Transmission Control Protocol’s (TCP) [RFC793] ACK mechanism, allows a data 

receiver to explicitly acknowledge arrived out-of-order data to a data sender. When 

using SACKs, a TCP data sender need not retransmit SACKed data during the loss 

recovery period. Previous research [Allman 1997], [Bruyeron 1998], [Fall 1996] 
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showed that SACKs improve TCP throughput when multiple losses occur within the 

same window. The success of a SACK-based loss recovery algorithm [RFC3517] is 

proportional to the SACK information received from the data receiver. In this research, 

we investigate RFC 2018 conformant SACK generation. 

Deployment of the SACK option in TCP connections has been a slow, but 

steadily increasing trend. In 2001, 41% of the web servers tested were SACK-enabled 

[Padhye 2001]. In 2004, SACK-enabled web servers increased to 68% [Medina 2005].  

All of the operating systems tested in this study accept SACK-permitted TCP 

connections. 

Today’s reliable transport protocols such as TCP [RFC793] and SCTP 

[RFC4960] are designed to tolerate data receiver reneging (simply, data reneging) 

(Section 8 of [RFC2018]). As defined in Section 1.2.1, data reneging occurs when a 

data receiver SACKs data, and later discards that data from its receive buffer prior to 

delivering it to a receiving application (or receiving socket buffer). 

In our research, we argue that reliable transport protocols should not be designed 

to tolerate data reneging, largely because we found data reneging occurs rarely in 

practice. While developing our software to discover data reneging in trace data, Section 

3.2 in Chapter 3, we analyzed TCP SACK information within Internet traces provided 

by the Cooperative Association for Internet Data Analysis (CAIDA) [Caida]. At first it 

seemed that data reneging was happening frequently contrary to our hypothesis. On 

closer inspection however, it appeared that the generation of SACKs in many TCP 

connections potentially was incorrect according to RFC 2018. Sometimes SACK 

information that should have been sent was not. Sometimes the wrong SACK 

information was sent. In one misbehavior, SACKs from one connection were sent in the 
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SYN-ACK used to open a later connection! These misbehaviors wrongly gave the 

impression that data reneging was occurring. 

Our discovery led us to verifying SACK generation behavior of TCP data 

receivers for a wide range of operating systems. In our research, our goal is to present a 

methodology for verifying SACK behavior, and to apply the methodology to report 

misbehaving TCP stacks. The goal of the research is not to measure how much the 

misbehaviors degrade the performance, but rather to identify misbehaving TCP stacks 

so they will be corrected. 

We first present in Section 2.2 seven misbehaviors, five (A-E) observed in the 

CAIDA traces, and two (F-G) additional SACK related misbehaviors observed during 

our testing of A-E. Technically, misbehaviors A-E indicate that SHOULD requirements 

of [RFC2018] are not being followed, and SHOULD means “that there may exist valid 

reasons in particular circumstances to ignore a particular item, but the full implications 

must be understood and carefully weighed before choosing a different course” 

[RFC2119].  Upon analysis, we believe these misbehaviors to be accidental, not 

incidental. 

Misbehaviors A-F can reduce the effectiveness of SACKs.  Misbehavior G is the 

worst one where a data receiver transmits a SACK for data that was never received, thus 

questioning the data transfer reliability of the connection. To discover which 

implementations are misbehaving, we defined seven test extensions to the TCP 

Behavior Inference Tool (TBIT) [Tbit], a tool that verifies TCP endpoint behavior. 

The methodology using TBIT is described in Section 2.3, and the results of our 

TBIT tests are presented in Section 2.4. Section 2.5 summarizes our research in SACK 

generation misbehavior.  
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2.2 Testing Seven SACK Misbehaviors 

The five SACK generation misbehaviors observed in CAIDA traces are 

described as: 

A. Fewer than max number of reported SACKs 

B. Receiving data between CumACK and first SACK 

C. Receiving data between two previous SACKs 

D. Failure to report SACKs in FIN segments 

E. Failure to report SACKs during bidirectional data flow 
 

The two additional SACK-related misbehaviors observed during our TBIT 

testing of A-E are: 

F. Mishandling of data due to SACK processing 

G. SACK reappearance in consecutive connections 
 

2.2.1 Fewer than Max Number of Reported SACKs 

RFC 2018 Section 3 specifies that “the data receiver SHOULD include as 

many distinct SACK blocks possible in the SACK option,” and that “the 40 bytes 

available for TCP options can specify a maximum of four SACK blocks.” For some 

TCP flows, we observed that only two or sometimes three SACK blocks were reported 

by a data receiver even though more SACKs were available and additional space 

existed in the TCP header. 

That is, more than two SACK blocks at the data receiver are known to exist 

(say Xl-Xr, Yl-Yr, and Zl-Zr) but only two SACK blocks are reported (Xl-Xr and Yl-

Yr). A SACK block is presented with the following notation: Xl-Xr, where Xl and Xr 

stand for the left and right edge, respectively. When the cumulative ACK advances 
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beyond Xr, SACK block Xl-Xr, is correctly no longer reported, and SACK block Zl-Zr 

is reported along with block Yl-Yr. This misbehavior implies that the data receiver 

reports less than the recommended maximum SACK blocks. 

We extended the existing TBIT test “SackRcvr” [Tbit] to determine a 

receiver’s maximum number of reported SACK blocks. For clarity, most TCP 

segments sent by TBIT in our Figures 2.1-2.7 are shown to carry 1 byte of data and 

create 1 byte gaps.   This numbering scheme makes the TBIT tests easy to understand. 

In the actual tests performed (see traces [Ekiz 2011c]), segments carry 1460 bytes of 

data and create 1460 byte gaps. The only exception was for Tests A, F for Linux 

systems. The Linux advertised receiver window is only 5840 bytes.  To simulate 4 

gaps, TBIT segments for two Linux tests carry 600 bytes of data and create 600 byte 

gaps. 

The TBIT test in Figure  2.1 operates as follows. Sequence numbers of segments 

are shown in parenthesis: 
 

Test A 

1. TBIT establishes a connection to TCP Implementation Under Test (IUT) with 
SACK-Permitted option and Initial Sequence Number (ISN) 400 

2. IUT replies with SACK-Permitted option 

3. TBIT sends segment (401) in order 

4. IUT acks the in order data with ACK (402) 

5. TBIT sends segment (403) creating a gap at IUT 

6. IUT acks the out-of-order data with SACK 

7. TBIT sends segment (405) creating 2nd gap at IUT 

8. IUT acks the out-of-order data with SACK 
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9. TBIT sends segment (407) creating 3rd gap at IUT 

10. IUT acks the out-of-order data with SACK 

11. TBIT sends segment (409) creating 4th gap at IUT 

12. IUT acks the out-of-order data with SACK 

13. TBIT sends three resets (RST) to abort the connection 
 

 

Figure 2.1: Fewer than max number of reported SACKs 

The last SACK from the IUT reflects an implementation’s support for 

maximum number of SACK blocks reported. A conformant implementation’s last 

SACK should be as SACK #12 in Figure 2.1. A misbehaving implementation would 

not SACK block Y (Misbehavior A1), or blocks X and Y (Misbehavior A2). 
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2.2.2 Receiving Data between CumACK and First SACK 

For some TCP flows having at least two SACK blocks, we observed the 

following misbehavior. Once the data between the cumulative ACK and the first SACK 

block was received, the data receiver increased the cumulative ACK, but misbehaved 

and did not acknowledge other SACK blocks. (The acknowledgment with no SACK 

blocks implies an instance of data reneging.) 

RFC 2018 specifies that: “If sent at all, SACK options SHOULD be included in 

all ACKs which do not ACK the highest sequence number in the data receiver's 

queue.” So, SACKs should be included when the cumulative ACK is increased and 

out-of-order data exists in the receive buffer. 

Test B, illustrated in Figure 2.2, checks this misbehavior.  The second SACK 

block should remain present when the cumulative ACK is increased beyond the first 

SACK block but is less than the second SACK block. 
 

Test B 

1. TBIT establishes a connection to IUT with SACK-Permitted option and ISN 400 

2. IUT replies with SACK-Permitted option 

3. TBIT sends segment (401) in order 

4. IUT acks the in order data with ACK (402) 

5. TBIT sends segment (404) creating a gap at IUT (the gap between Cum ACK and 
first SACK block) 

6. IUT acks the out-of-order data with SACK 

7. TBIT sends segment (406) creating 2nd gap at IUT 

8. IUT acks the out-of-order data with SACK 

9. TBIT sends segment (403) 
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10. IUT acks the out-of-order data with SACK 

11. TBIT sends segment (402) to fill the gap between Cum ACK and first SACK 

12. IUT acks the in order data with SACK 

13. TBIT sends three RSTs to abort the connection 
 

 

Figure 2.2: Receiving data between CumACK and first SACK 

A conformant implementation should report SACK block (406-407) as shown 

in #12 in Figure 2.2. A misbehaving implementation omits reporting the SACK block. 

2.2.3 Receiving Data between Two Previous SACKs 

We observed that some TCP flows report SACK information incompletely once 

the missing data between two SACK blocks (say Xl-Xr and Yl-Yr) are received. The next 
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SACK should report a single SACK block concatenating the first SACK block (Xl-Xr), 

the missing data in between, and the second SACK block (Yl-Yr). Instead some 

implementations generate a SACK covering only the first SACK block and the missing 

data, i.e., (Xl-Yl), omitting the second SACK block. This behavior implies that the 

second SACK block is reneged. 

Test C, illustrated in Figure 2.3, tests this misbehavior. The data receiver should 

report one SACK block covering the two SACK blocks and the data in between. 
 

Test C 

1. TBIT establishes a connection to IUT with SACK-Permitted option and ISN 400 

2. IUT replies with SACK-Permitted option 

3. TBIT sends segment (401) in order 

4. IUT acks the in order data with ACK (402) 

5. TBIT sends segment (403) creating a gap at IUT 

6. IUT acks the out-of-order data with SACK 

7. TBIT sends segment (405) creating 2nd gap at IUT 

8. IUT acks the out-of-order data with SACK 

9. TBIT sends segment (404) with missing data between the first and the second 
SACK blocks 

10. IUT acks the out-of-order data with SACK 

11. TBIT sends three RSTs to abort the connection 
 

A proper implementation is expected to report the out-of-order data (403-406) 

as shown in #10 in Figure 2.3. A misbehaving implementation would report the SACK 

block partially (403-405). 
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Figure 2.3: Receiving data between two previous SACKs 

2.2.4 Failure to Report SACKs in FIN Segments 

When closing a connection, a receiving side sends a FIN segment along with the 

acknowledgment (ACK and SACK) for the data received. But for some data flows, we 

observed the FIN segment does not carry SACK information. As discussed in Section 

2.2.2, the receiver should include the SACK information along with the ACK. 

Test D, in Figure 2.4, operates as follows: TBIT opens a connection and sends a 

GET request (HTTP/1.0) to the IUT. The IUT sends the requested data, and 

immediately closes the connection with a FIN since HTTP/1.0 is non-persistent 

[RFC1945]. 
 

Test D 

1. TBIT establishes a connection to IUT with SACK-Permitted option and ISN 400 

2. IUT replies with SACK-Permitted option 

3. TBIT sends segment (401-450: GET /index.pdf HTTP/1.0 request) in order 
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4. IUT acks the in order data with ACK (450) 

5. IUT starts sending segments with contents of index.pdf 

6. TBIT sends segment (451) creating a gap at IUT 

7. TBIT acks segments of IUT 

8. IUT acks the out-of-order data with SACK 

9. IUT continues sending contents of index.pdf with SACK 

10. Once index.pdf is sent completely, IUT sends a FIN to close the connection 
 

 

Figure 2.4: Failure to report SACKs in FIN segments 
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The conformed behavior of a data receiver is to include SACK information in 

the FIN segment as shown in #10 in Figure 2.4. A misbehaving implementation sends 

an ACK, but no SACK information. 

2.2.5 Failure to Report SACKs during Bidirectional Data Flow 

This misbehavior occurs when the data flow is bidirectional. In some TCP flows, 

SACK information is not conveyed when the TCP segment carries data. If a TCP host is 

sending data continuously (e.g., an HTTP server), only one SACK is sent when out-of-

order data are received, and SACK information is not piggybacked with the following 

segments. This misbehavior can cause less efficient SACK-based loss recovery since 

SACKs are sent only once for each out-of-order data arrival. 

As stated in Section 2.2.2, a conformant data receiver should include SACK 

information with all ACKs. If ACKs are piggybacked while sending data, SACKs 

should also be piggybacked in the TCP segments. 

We added a new TBIT test for misbehavior E. To have bidirectional data flow 

and out-of-order data simultaneously, we used HTTP/1.1 GET requests [RFC2616]. 

HTTP/1.1 opens a persistent connection between TBIT and an IUT. TBIT requests the 

file index.pdf (11650 bytes) which is large enough to have a data transfer requiring 

several round trips so that SACK information can be observed in the segments. 
 

Test E 

1. TBIT establishes a connection to IUT with SACK-Permitted option and ISN 400 

2. IUT replies with SACK-Permitted option 

3. TBIT sends segment (401-450: GET /index.pdf HTTP/1.1 request) in order 

4. IUT acks the in order data with ACK (450) 
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5. IUT starts sending segments with contents of index.pdf 

6. TBIT sends segment (451) creating a gap at IUT 

7. TBIT acks segments of IUT 

8. IUT acks the out-of-order data with SACK 

9. IUT continues sending contents of index.pdf with SACK 

10. Once index.pdf is retrieved completely, TBIT sends three RSTs to abort the 
persistent connection 

 

 

Figure 2.5: Failure to report SACKs during bidirectional data 

A conformant implementation appends SACK information in TCP segments 

carrying data as shown in Figure 2.5, whereas a misbehaving implementation does not. 
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2.2.6 Mishandling of Data Due to SACK Processing 

While running Test E, we observed another SACK-related misbehavior. Some 

segments do not carry maximal payload when SACKs are included. Rather they carry 

only the number of bytes equal to the SACK information appended. 

We explain the misbehavior in detail using Test F shown in Figure 2.6. Test F 

modifies Test E. Instead of sending one out-of-order data, four are sent to check how 

data is sent by the TCP IUT as the number of appended SACKs increases. 
 

Test F 

1-5. Same as Test E 

6. TBIT sends segment (451) creating a gap at IUT, and ACKing the 1st segment of 
IUT 

7. When the ACK for 1st segment of IUT is received, IUT’s congestion window 
(cwnd) is increased enabling sending two new segments. IUT sends two segments 
with one SACK block: 3rd segment (1448 bytes) and 4th segment (12 bytes) 

8. TBIT sends segment (453) creating a second gap at IUT, and ACKing the 2nd 
segment of IUT 

9. When the ACK for 2nd segment of IUT is received, IUT sends two segments each 
with two SACKs: 5th segment (1440 bytes) and 6th segment (20 bytes) 

10. TBIT sends segment (455) creating a third gap at IUT, and ACKing the 3rd segment 
of IUT 

11. When the ACK for 3rd segment of IUT is received, IUT sends two segments each 
with three SACKs: 7th segment (1432 bytes) and 8th segment (28 bytes) 

12. TBIT sends segment (457) creating a fourth gap at IUT, and ACKing the 4th 
segment of IUT 

13. When the ACK for 4th segment of IUT is received, IUT sends two segments each 
with four SACKs: 9th segment (1424 bytes) and 10th segment (36 bytes) 
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Figure 2.6: Mishandling of data due to SACK processing 

For every ACK received from TBIT, the IUT’s cwnd is increased to send two 

new segments. After the first ACK is received, the IUT sends segments with 1448 and 

12(!) bytes of data, respectively. Both segments from the IUT do include a SACK 

block. A proper SACK implementation is expected to send 1448 bytes of data in both 

segments each with 12 bytes of SACK in the TCP options. As the number of SACKs 

increase to 2, 3 and 4, the IUT sends two segments with (1440, 20), (1432, 28), (1424, 

36) bytes, respectively. Note that the second segment always (coincidentally?) carries 

a number of data bytes equal to bytes needed for the SACK blocks, not a full size 

segment. This misbehavior is observed continuously while out-of-order data exists at 
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the IUT. Throughput is decreased almost in half for the time when out-of-order data 

exists in the receive buffer. 

2.2.7 SACK Reappearance in Consecutive Connections 

When verifying misbehaviors A-E, we ran the TBIT tests successively using 

different port numbers. We observed that in some TCP stacks, SACK information of a 

prior connection, say from Test A, would sometimes appear in the SYN-ACK segment 

of a new connection, say from Test B! 

To further investigate the misbehavior, we developed Test G as shown in Figure 

2.7. This test purposely uses the same initial sequence numbers for consecutive 

connections to demonstrate a worst case: 
 

Test G 

1. TBIT establishes a connection to IUT with SACK-Permitted option and ISN 400 
on ephemeral port Eph1 

2. IUT replies with SACK-Permitted option on port 80 

3. TBIT sends segment (401) in order 

4. IUT acks the in order data with ACK (402) 

5. TBIT sends segment (403) creating a gap at IUT 

6. IUT acks the out-of-order data with SACK 

7. TBIT sends three RSTs segments to abort the connection 

8. After ‘X’ minutes, TBIT establishes a connection to IUT with SACK-Permitted 
option and ISN 400 on ephemeral port Eph2 

9. IUT replies with SACK-Permitted option on port 80 including a SACK block of the 
previous connection 
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Figure 2.7: SACK reappearance in consecutive connections 

In the second connection, the IUT sends an acknowledgment with SACK block 

403-404 which is from the first connection. TBIT assumes 403 is SACKed, but the IUT 

never received the data. TBIT later sends data 402-403 to check if the IUT increases 

ACK to 405. The IUT returns an inconsistent ACK 403, SACK 403-405, but fortunately 
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does not increase ACK to 405 so the connection remains reliable. In a real connection, 

eventually the sender will timeout on 403, discard all SACKed information, and 

retransmit the data, thus returning to a correct state [RFC2018].  However for a brief 

period of time, the data sender and receiver are in an inconsistent state. 

2.3 Experimental Design 

The TBIT tests described in Section 2.2 were performed over a dedicated local 

area network with no loss. Tests were performed between two machines, A and B, as 

shown in Figure 2.8. The round trip time was on average 10ms, and no background 

traffic was present. 

 

Figure 2.8: Experimental design for TBIT testing 
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The IUTs being verified were the standard TCP stacks of various operating 

systems. We installed 27 operating systems using Oracle’s VirtualBox virtualization 

software [Virtualbox] on machine B. We ran tests for Mac OS X on another machine. 

TBIT 1.0 [Tbit] was extended on FreeBSD 7.1 (machine A) with the seven 

TBIT tests detailed in the Section 2.2. 

For each operating system, we installed an Apache HTTP Server [Apache] on 

machine B since TBIT is originally designed to infer TCP behavior of a web server. 

The TCP segments transmitted between TBIT and each IUT were captured at machine 

B. For this purpose, we also installed wireshark [Wireshark] on each Windows OS, 

and tcpdump [Tcpdump] on each UNIX, UNIX-like and Mac OS. 

2.4 Results of TCP Behavior Inference Tool (TBIT) Testing 

We verified the operating systems in Table 2.1. Each TBIT test was repeated 

three times. In every case, all seven test outputs were consistent. Segment captures of 

tests and TBIT tests are available [Ekiz 2011c]. 

For test A, the early versions of FreeBSD, 5.3 and 5.4, and all versions of 

OpenBSD report at most three SACK blocks (Misbehavior A1). OpenBSD explicitly 

defines a parameter TCP_MAX_SACK = 3. Windows 2000, XP and Server 2003 

report at most two SACK blocks (Misbehavior A2).  Later Windows versions correct 

this misbehavior. 

If the return path carrying SACKs were lossless, a TCP data receiver reporting 

at most two or three SACK blocks would not cause a problem. A data sender would 

always infer the proper state of the receive buffer for efficient SACK-based loss 

recovery described in [RFC3517]. When more than four SACK blocks exist at a data 

receiver, and SACK segments are lost, the chance of a data sender getting less 
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accurate state of the receive buffer increases as SACK implementations’ number of 

blocks reported is decreased. This misbehavior can lead to less efficient SACK-based 

loss recovery, and therefore decreased throughput (longer transfer times) when 

multiple TCP segments are lost within the same window. 

Table 2.1: TBIT test results 

Operating System Test 
A1 A2 B C D E F G 

FreeBSD 5.3 X    X    
FreeBSD 5.4 X    X    
FreeBSD 6.0         
FreeBSD 7.3         
FreeBSD 8. 0         
Linux 2.2.20 (Debian 3)       X  
Linux 2.4.18 (Red Hat 8)       X  
Linux 2.4.22 (Fedora 1)       X  
Linux 2.6.12 (Ubuntu 5.10)       X  
Linux 2.6.15 (Ubuntu 6.06)       X  
Linux 2.6.18 (Debian 4)       X  
Linux 2.6.31 (Ubuntu 9.10)         
Mac OS X 10.5         
Mac OS X 10.6         
OpenBSD 4.2 X    X    
OpenBSD 4.5 X    X    
OpenBSD 4.6 X    X    
OpenBSD 4.7 X    X    
OpenBSD 4.8 X    X    
OpenSolaris 2008.05       X X 
OpenSolaris 2009.06       X X 
Solaris 10        X 
Solaris 11       X  
Windows 2000  X X X X X   
Windows XP  X X X X X   
Windows Server 2003  X X X X X   
Windows Vista     X X   
Windows Server 2008     X X   
Windows 7     X X   
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We report, for test B, that Windows 2000, XP and Server 2003, are 

misbehaving. SACK information is not reported where it should be, after the 

cumulative ACK is increased beyond the first SACK block. Later Windows versions 

correct this misbehavior. 

Misbehavior C is observed with Windows 2000, XP and Server 2003. SACK 

information is partially reported when the data between two previously reported 

SACK blocks are received. Later Windows versions correct this misbehavior. 

We observed misbehavior D, failure to report SACK information in FIN 

segment, in FreeBSD 5.3, FreeBSD 5.4, all versions of OpenBSD and Microsoft’s 

Windows.  The problem has been corrected in the later FreeBSD versions. 

Misbehavior E is observed with all versions of Windows OS. When the TCP 

traffic is bidirectional, SACKs are not carried within the opposite direction TCP 

segments. Out-of-order data are SACKed only once when they arrive. If a SACK is lost 

on the return path, subsequent segments with no SACKs will trigger a fast 

retransmission which can cause the data sender to unnecessarily retransmit data that as 

SACKed and already exists in the receiver’s buffer. 

The traffic pattern for testing misbehavior E is a typical web browsing 

scenario. TBIT represents a user’s web browser where HTTP 1.1 GET requests are 

pipelined, and the IUT represents an HTTP 1.1 web server. Since the scenario 

represents typical Internet traffic, we believe that the SACK generation misbehavior of 

the Windows OS is significant, and should be fixed. 

Misbehavior F is observed in Solaris 11, OpenSolaris and all Linux systems 

except the latest one tested Linux 2.6.31 (Ubuntu 9.10), so the problem may be fixed 

for Linux. Interestingly, misbehavior F did not occur in Solaris 10. When out-of-order 
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data exists at the data sender, thus sending both data payload and SACKs, every other 

segment carries only bytes equal to SACK information appended (at most 36 bytes). 

This misbehavior halves the throughput for the time out-of-order data exists at the 

receive buffer, and is the typical web browsing scenario described above. We consider 

the misbehavior significant, and needs to be fixed. 

Misbehavior G is observed on Solaris 10 and OpenSolaris systems. We ran the 

Test G multiple times with different time intervals X = {1, 5, 15} minutes. Even after 

15 minutes, we frequently observed the reappearance of SACK blocks from a prior 

connection in later connections.  The SACK-based loss recovery algorithm does not 

work efficiently, when the TCP implementation has this misbehavior. For example, 

when two connections have overlapping sequence numbers, the latter connection 

sends a SACK for a data block that was never received. This misbehavior will cause a 

decrease in throughput. We would like to note that the ISN of a new TCP connection 

is assigned randomly and the probability of having two TCP connections using the 

same ISN space is small.   

One time, we ran all the seven TBIT tests continuously on Solaris 10 and 

OpenSolaris machines, and noticed a scenario where a SACK block of the first 

connection in Test A appeared in the SYN-ACK segment of the third connection 

established in Test C. One time, all TBIT tests were executed and then repeated 45 

minutes later.   Even after 45 minutes, we observed an instance where the SACK block 

of Test E from the first set appeared in the SYN-ACK segment of Test E in the second 

set. We could not repeat this misbehavior with any regularity. Having a sender think 

data is acknowledged when in fact the data has not been received results in an 
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inconsistent (i.e., unreliable) state. Fortunately, this misbehavior is corrected in Solaris 

11. 

2.5 Conclusion 

In this research, we designed a methodology and verified conformant SACK 

generation on 29 TCP stacks for a wide range of OSes: FreeBSD, Linux, Mac OS X, 

OpenBSD, Solaris and Windows. We identified the characteristics of the seven 

misbehaviors, and designed seven new TBIT tests to uncover these misbehaviors. 

For the first five misbehaviors which are observed in the CAIDA trace files, 

we found at least one misbehaving TCP stack. We report various versions of 

OpenBSD and Windows OS to have misbehaving SACK generation implementations. 

In general, the misbehaving SACK implementations can cause a less efficient SACK-

based loss recovery which yields to decreased throughput and longer transfer times. 

During the TBIT testing, we identified two additional misbehaviors (F and G). 

Misbehavior F decreases the throughput by sending less than expected data while 

using SACKs. Most Linux and OpenSolaris systems show this misbehavior. 

Misbehavior G is more serious and can cause a TCP connection to be inconsistent 

should the sequence number space of one connection overlap that of a prior 

connection. Solaris 10 and OpenSolaris systems misbehave in this manner. 

We note that for all misbehaviors, because SACKs are advisory thus allowing 

a data receiver to renege on all SACKed out-of-order data, eventually the data sender-

receiver will timeout, discard all SACK information, and return to a correct state.  

Thus the data flow remains reliable; only performance degradation may occur. 

As stated in the Introduction (Section 2.1), we discovered SACK misbehaviors 

during our investigation of data reneging described in Chapter 3. In that investigation, 
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we argue that SACKs should be “permanent” (not advisory) meaning a data receiver 

MUST NOT renege on out-of-order data. If SACKs were to become permanent, 

misbehavior G would have to be fixed since it can result in unreliable data transfer. 

While we hope misbehaviors A-F will be fixed, even if left as is, as long as SACKs 

remains advisory the misbehaviors will only result in reduced performance, not 

unreliable data transfer. 

While simple in concept, SACK handling is complex to implement. 
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Chapter 3 

DETECTING RENEGING THROUGH PASSIVE MEASUREMENT 

To document the frequency of TCP reneging, a mechanism is needed to detect 

reneging instances. This section presents a model and its implementation as a tool, 

RenegDetect, which passively detects TCP reneging instances occurring in Internet 

traces. TCP does not support detecting reneging at a data sender. On the other hand, 

SCTP supports detecting reneging at a data sender. When previously SACKed data are 

not SACKed in a new acknowledgement (ack), an SCTP data sender infers reneging. 

Our model to detect TCP reneging instances is based on SCTP’s reneging detection 

mechanism. A state of the data receiver’s receive buffer is constructed at an 

intermediate router and updated as new acks are observed. When an inconsistency 

occurs between the state of the receive buffer and a new ack, reneging is detected. We 

implemented the model as a tool called RenegDetect and tested RenegDetect with 

artificial TCP flows mimicking reneging instances.  

RenegDetect was also verified by analyzing 100s of TCP flows from Internet 

traces. The analysis showed that reneging was happening frequently. On closer 

inspection, however, it turned out that reneging was not happening, rather the 

generation of SACKs in many TCP implementations was incorrect according to 

[RFC2018]. Some TCP implementations were generating SACKs incompletely under 

some circumstances. Sometimes the SACK information that should have been sent 

was not. Sometimes wrong SACK information was sent. We refer to these 

implementations as misbehaving. In Internet traces, we observed five different types 
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of misbehaviors which wrongly gave the impression that reneging was occurring. Our 

discovery led us to a side investigation to precisely identify the five misbehaving TCP 

stacks observed in the CAIDA traces. We tested [RFC 2018] conformant SACK 

generation on a wide range of operating systems and found at least one misbehaving 

TCP stack (see Section 2.4 for more detail) for each of the five misbehaviors.  

Discovering TCP SACK generation misbehaviors led us to change our initial 

method to detect reneging instances which was based only on monitored acks. In 

addition to acks, RenegDetect was extended to analyze the flow of data, in particular, 

retransmissions of data which are a more definitive indication that reneging has 

occurred.  

Initially, our hypothesis was that reneging rarely if ever occurs in practice. To 

statistically conclude with confidence that reneging is a rare event, say P(reneging) < 

10-5, we needed to analyze ~300K TCP connections using SACKs and document that 

no instances of reneging occurred. For that purpose, TCP traces from three different 

domains (Internet backbone, wireless, enterprise) were analyzed using our updated 

RenegDetect to report the frequency of reneging. 

Contrary to our initial hypothesis that reneging rarely if ever occurs in practice, 

trace analysis demonstrated that reneging does happen. For the reneging instances 

detected, we predicted reneged hosts operating systems with TCP fingerprints and 

characterized reneging behavior in detail.    

The outline of this chapter is as follows. First, we detail how a TCP or SCTP 

data sender infers reneging in Section 3.1. In Section 3.2.1, we present our initial 

model (RenegDetect v1) to detect reneging instances in the Internet traces. Section 

3.2.2 describes the validation of our original RenegDetect v1 using artificial TCP 
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flows and real TCP flows from the Internet. Internet trace analysis demonstrated that 

reneging is inferred wrongly due to SACK generation misbehaviors. Modifications 

made to RenegDetect to create v2 to infer reneging and misbehavior instances more 

accurately via data retransmissions are explained in Section 3.2.3. Section 3.2.4 details 

the probability theory to define a minimum number of TCP flows to analyze to test our 

initial hypothesis. We report the frequency of reneging in Section 3.2.5. Finally, 

Section 3.3 concludes our efforts. 

3.1 Detecting Reneging at TCP and SCTP Data Senders 

This section details reneging behavior of a data sender in reliable transport 

protocols. Reneging is possible both in TCP and SCTP. To generalize reneging 

behavior in the Internet, the frequency of reneging for both protocols should be 

documented. Unfortunately, SCTP is not sufficiently deployed to matter. TCP is the 

dominant protocol used for reliable data transfers in the Internet. Thus, to generalize 

reneging behavior, we need to document frequency of TCP reneging. For that, a 

mechanism is needed to detect reneging instances in the Internet traces. If a TCP 

sender had a mechanism to detect reneging, we could simply replicate that mechanism 

and apply the mechanism to TCP traces. Unfortunately, a TCP sender does not support 

detecting reneging. Instead, a TCP sender tolerates reneging with a retransmission 

policy specified in [RFC2018]. An SCTP data sender, on the other hand, supports 

detecting reneging by keeping a state for previously SACKed data. This state is 

compared to SACK information carried within new acks and reneging is detected 

when a comparison is inconsistent. We borrow SCTP’s approach and apply it to detect 

TCP reneging instances within Internet traces. For that, we detail how an SCTP data 

sender detects reneging with an example. We first present how a TCP data sender 
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tolerates reneging and possible limitations which might be reasons for not detecting 

reneging at a TCP data sender.  

In the current TCP and SACK specifications, a TCP data sender has no design 

to infer reneging. To tolerate reneging, a TCP data sender keeps copies of SACKed 

data in its send buffer until cumulatively ACKed. To achieve reliable data transfer, the 

following retransmission policy is specified in [RFC2018] for a data sender to resume 

the data transfer in the case of reneging.  

For each segment in the send buffer that is SACKed, an associated “SACKed” 

flag is set. The segments with “SACKed” bit set are not retransmitted until a 

retransmission timeout (RTO). At the RTO, the TCP data sender clears all the 

“SACKed” information due to possible reneging and begins retransmitting all 

segments beginning at the left edge of the send buffer. 

A TCP data sender’s lack of inferring reneging (a retransmission policy is 

specified to tolerate reneging instead) might be due to the following SACK 

limitations. First, there is a hard limit on the number of SACK blocks that can be 

acknowledged based on the constrained space in the TCP options field. At most, 4 

SACK blocks can be reported in a TCP segment if no other TCP options are used. 

Second, a data sender may not infer if a segment is “SACKed” or not when four 

consecutive SACKs are lost on the ack path. These limitations prohibit a TCP data 

sender from having an accurate view of the data receiver’s receive buffer state to 

detect reneging. 

SCTP, on the other hand, supports reneging detection at the data sender. 

Unlike TCP’s constrained number on reported SACK blocks (4 at maximum), an 

SCTP data receiver can generate SACK chunks with a large number of Gap Ack 
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Blocks (same semantics as SACK blocks). In SCTP [RFC4960], a data receiver must 

report as many Gap Ack Blocks as possible in a SACK chunk. While a limit still 

exists on the number of reported blocks restricted by the path’s maximum 

transmission unit (MTU) for practical purposes, the limit does not come into play. For 

example, for a path with MTU=512 bytes, a SACK chunk can report 116 Gap Ack 

Blocks (20 bytes for an IP header, 12 bytes for a SCTP common header, 16 bytes for a 

SACK chunk header + 116 * 4 byte Gap Ack Blocks). 

Thus, an SCTP data sender has a more accurate view (effectively complete) of 

the data receiver’s buffer state, and can accurately infer reneging by inspecting 

reported Gap Ack Blocks1. If a new SACK arrives and previously SACKed data is not 

present, the SCTP data sender infers reneging, and marks only the reneged data for 

retransmission. 

Let us look at an example reneging scenario shown in Figure 3.1 and see how 

an SCTP data sender infers reneging in detail. Without loss of generality, the example 

assumes 1 byte of data is transmitted in each data packet. A data sender sends a 

sequence of packets, 1 through 6, to a data receiver. Assume packet 2 is lost in the 

network. The data receiver receives packets 3 through 6, and sends ACKs and SACKs 

to notify the data sender about the out-of-order data received. When ACK 1 SACK 3-6 

arrives at the data sender, the state of the receive buffer is known to be as follows: 

ordered data 1 is delivered or deliverable to the receiving application, and out-of-order 

data 3-6 are in the receive buffer. 

                                                 
 
1 The likelihood of a data stream requiring more than 116 out-of-order blocks of data 
is negligible. 
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Before packet 2 is retransmitted via a fast retransmission, assume the operating 

system running the data receiver runs short of main memory, and reneges all out-of-

order data in the receive buffer. When packet 2’s retransmission arrives at the data 

receiver, only a cumulative ACK 2 is sent back to the data sender with no SACKs. 

When the data sender receives ACK 2, reneging is detected. Previously 

SACKed out-of-order data 3-6 are still not being SACKed. Data 3-6 are marked for 

retransmission as the data sender infers reneging. 

ACK 2 SACK 7-7 is sent when packet 7 arrives out of order. This SACK 

reinforces the fact that reneging (for data 3-6) occurred. 

 

Figure 3.1: Detecting reneging at the SCTP data sender 
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To report the frequency of TCP reneging, a mechanism to detect TCP reneging 

instances is needed. We next present a method to detect reneging instances which is 

based on how an SCTP data sender infers reneging.  

3.2 Detecting Reneging in the Middle 

To document the frequency of TCP reneging, a mechanism is needed to detect 

reneging instances. This section presents a model and its implementation as a tool, 

RenegDetect, which passively detects TCP reneging instances occurring in Internet 

traces. In passive measurement studies, collected trace files are analyzed to infer a 

specific protocol behavior (i.e., reneging). Our model infers reneging instances by 

analyzing TCP acknowledgment traffic monitored at an intermediate router. The 

model is based on how an SCTP data sender infers reneging. When previously 

SACKed data are not SACKed in a new ack, reneging is inferred. The model is 

detailed in Section 3.2.1. We implemented the model as a tool called RenegDetect v1. 

RenegDetect v1 was verified with artificial TCP flows mimicking reneging 

instances. The tool to validate the correctness of RenegDetect v1 is presented in 

Section 3.2.2. RenegDetect v1 was also verified with 100s of TCP flows from Internet 

traces. Preliminary Internet trace analysis showed that reneging albeit infrequent was 

happening. Upon deeper investigation, we revealed that some TCP stacks were 

generating partial or wrong SACKs falsely giving the impression that reneging was 

happening. Discovering that misbehaving SACK implementations exist led us to 

update our model.   

Our initial model infers reneging instances by analyzing acks. To detect 

reneging instances more accurately, our original RenegDetect v1 was updated to 
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analyze flow of data too, specifically data retransmissions. Section 3.2.3 details 

changes to RenegDetect v2. 

Once RenegDetect v2 was ready to analyze TCP traces, we needed to find the 

minimum number of TCP flows for analyzing to statistically conclude that reneging is 

a rare event, say P(reneging) < 10-5. Section 3.2.4 details the probability theory to 

determine the number of TCP flows to be analyzed for this investigation. To confirm 

our initial hypothesis that reneging is a rare event, we needed to analyze ~300K TCP 

connections using SACKs.  

Finally, TCP traces from three different domains (Internet backbone, wireless, 

enterprise) were analyzed using the RenegDetect v2 to report the frequency of 

reneging. The results of trace analysis are presented in Section 3.2.5. 

3.2.1 The Model (RenegDetect v1) 

This section details a model and its implementation, RenegDetect v1, which 

detects TCP reneging instances using the TCP trace files. The model described in this 

section appears in [Ekiz 2010]. The model is based on SCTP’s reneging detection 

mechanism. A state of the data receiver’s receive buffer is constructed at an 

intermediate router and updated through new acks. When an inconsistency occurs 

between the state of the receive buffer and a new ack, reneging is detected.   

A data receiver’s receive buffer consists of two types of data: ordered data, 

which has been ACKed but not yet delivered to the application, and out-of-order data 

that resulted from loss or reordering in the network. To detect an SCTP reneging 

instance, a data sender infers the state of the receiver’s buffer through ACKs and 

SACKs. Even though TCP does not have a mechanism to detect reneging instances, 

reneging can be detected by analyzing TCP ack traffic and inferring the state of 
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receiver’s buffer. The idea is to learn the state of the receive buffer and to employ a 

similar reneging detection mechanism as an SCTP data sender does based on the 

observed acks. From now on, all discussions regarding to detecting reneging instances 

apply only to TCP traffic. 

For a TCP data sender, the state of the receive buffer can be learned with the 

ACKs and SACKs, and updated through the new acks. The state consists of two items: 

a cumulative ACK value (stateACK) and a list of out-of-order data blocks 

(stateSACKs) known to be in the receive buffer. 

Now let us briefly describe how the state of the receive buffer is maintained 

and reneging is inferred at the data sender with the help of the reneging example 

shown in Figure 3.1. Assume that all acks sent by a TCP data receiver arrive at the 

corresponding TCP data sender. 

The first ack, ACK 1, indicates that no out-of-order data are in the receive 

buffer. The state of the receive buffer is initialized as follows: ordered data 1 is 

delivered or deliverable to the receiving application (stateACK is set to 1) and no out-

of-order data are in the receive buffer (no stateSACK blocks). The next ack, ACK 1 

SACK 3-3, notifies that out-of-order data 3 is received and stored in the receive 

buffer. This ack updates the state of the receive buffer: ordered data 1 is delivered or 

deliverable to the receiving application (stateACK is still 1) and out-of-order data 3 is 

in the receive buffer (add the first stateSACK 3-3 to the state). 

When the acks for packets 4-6 are each observed, the state of the receive buffer 

is updated and the out-of-order data 3-6 are known to be in the receive buffer. The 

state of the receive buffer is now: stateACK 1, stateSACK 3-6. The next ack, ACK 2, 

arrives with no SACK blocks (assuming there is enough space in the TCP segment to 
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report at least one SACK block). When the state of the receive buffer (stateACK 1, 

stateSACK 3-6) is compared to the new ack (ACK 2), an inconsistency is observed. 

The cumulative ACK informs that data up to 2 are delivered or deliverable to the 

receiving application and no out-of-order data are in the receive buffer. On the other 

hand, it is known that out-of-order data 3-6 have been previously SACKed 

(stateSACK 3-6). So, due to the lack of a SACK block for the out-of-order data 3-6, 

reneging is detected. 

Let us consider the example scenario when the ack traffic is monitored by an 

intermediate router. In the example shown in Figure 3.1, a reneging instance is 

detected when all of the acks arrive at the data sender. In practice, acks may traverse 

different paths, arrive at the intermediate router out of order, or get lost in the network 

before reaching the router. 

Figure 3.2 shows the same data transfer where only three acks are monitored at 

the intermediate router. Upon seeing ACK 1 SACK 3-4, the router determines that the 

state of receive buffer at the data receiver is: ordered data 1 is delivered or deliverable 

to the receiving application (stateACK 1) and out-of-order data 3-4 are in the receive 

buffer (stateSACK 3-4). The second ack, ACK 1 SACK 3-6, updates the state by 

adding out-of-order data 5-6 as SACKed (stateSACK 3-6.) When ACK 2 SACK 7-7 is 

received and compared to the state of the receive buffer (stateACK 1, stateSACK 3-6), 

an inconsistency is observed. Reneging is detected since previously SACKed data 3-6 

are not SACKed. 

Even though the number of acks observed at the intermediate router are 

limited, the state of the receive buffer is as for Figure 3.1. Because a SACK block 
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reports all of the consecutive out-of-order data as a single block, the intermediate 

router can infer the complete state of the receive buffer most of the time. 

 

Figure 3.2: Detecting reneging at an intermediate router 

Constructing the state of the receive buffer as accurately as possible is based 

on the actual number of SACK blocks at the data receiver. If the number of SACK 

blocks is more than 4, the data receiver is unable to report full SACK information. In 

this case, when consecutive acks get lost, the intermediate router will have less 

accurate state information.  

Table 3.1 shows the number of SACK blocks in TCP segments based on a few 

randomly selected trace files from the Internet backbone captured in June 2008. Recall 

that, at maximum, 4 SACK blocks can be included in a TCP segment. For segments 
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with 1, 2, or 3 SACK block(s), the TCP header length is checked to determine if 

another SACK option could have been appended to a TCP header. TCP segments with 

4 SACK blocks already have a full TCP header. Less than 0.5% of the TCP segments 

that include SACK options do not have enough space for another SACK option. 

Assuming all TCP traces follow a similar pattern, the state of the receive buffer can be 

constructed accurately most of the time. 

Even though the state of receive buffer may be inaccurate, having a partial 

state of the out-of-order data in the receive buffer can be still enough to detect 

reneging instances. The reasoning is that we expect that a reneging data receiver will 

purge all of the out-of-order data, as it occurs in FreeBSD [FreebsdImpl] and Linux 

[Linux]. Since the intermediate router has state information about out-of-order data, 

reneging will be detected as soon as any ack with no SACK option is observed.  

Table 3.1: Number of SACK blocks in TCP segments 

TCP segments with 
n SACK blocks 

Enough space for 
another SACK block 

Not enough space for 
another SACK block 

1 ~88% 0% 
2 ~11% 0% 
3 0.7% 0.20% 
4 n/a 0.15% 

Total number of TCP segments 780,798 (100%) 
 

Our software to detect reneging instances, RenegDetect v1, constructs the state 

of the receive buffer for TCP flows (connections) that contain SACKs. An inferred 

state of the receive buffer is compared with new acks to check for consistency. When 

the comparison is consistent, the state is updated. Otherwise, a data reneging instance 

is detected and reported. 
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We now describe our model for constructing the state of the receive buffer at 

an intermediate router. The state consists of a cumulative ACK (stateACK) value and 

an ordered list of out-of-order data blocks (stateSACK blocks) known to be in the 

receive buffer. In Figure 3.3, a view of the receive buffer state is shown, which 

consists of n disjoint stateSACK blocks. The stateSACKs are ordered according to the 

sequence number of their left edges. 

 

Figure 3.3: Receive buffer state 

The stateACK value holds the highest ACK value observed for the TCP flow 

and is updated when a higher ACK value is observed. When the stateACK value is 

updated, any stateSACKs below the stateACK value are deleted from the state.  

RenegDetect v1 currently does not deal with wrap around in the sequence 

space simply to avoid programming complexity for such a rare event. If the stateACK 

value is higher than any of the stateSACKs due to a wrap around a warning is thrown 

and the given TCP flow is simply discarded.  

Figure 3.4 presents our model for constructing and updating the stateSACKs in 

the state of the receive buffer. The state is initialized with the first TCP ack observed 
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in a flow. If the ack has no SACK block(s), only the stateACK is initialized. If the ack 

includes SACK blocks(s), each one is added as a stateSACK to the state. 

When the next TCP ack is observed, each reported SACK block 

(corresponding to a New SACK Block (N) in Figure 3.4) is compared with the 

stateSACKs in the receive buffer state. Each stateSACK block in the receive buffer 

state is represented with Current SACK Block (C) in Figure 3.4. 

The comparison of a new SACK block (N) and a current SACK block (C) is 

done both on the left (L) and right (R) edges. If each SACK block is thought of as a 

set, a comparison of two sets must result in exactly one of four cases: 

1. ܰ is a superset of ܥ  (ܰ ⊇  (ܥ

2. ܰ is a proper subset of ܥ (ܰ ⊂  (ܥ

3. ܰ intersects with ܥ, and ܰ and ܥ each have at least 1 byte of data not in ܥ and ܰ, respectively ((ܰ ∩ ܥ ≠ 	∅) 	∧ ! (ܰ ⊇ ∧	(ܥ ! (ܰ ⊃  ((ܥ
4. ܰ does not intersect with ܥ (ܰ	 ∩ ܥ	 = 	∅) 

Note that the above cases are all mutually exclusive. Each case is described in 

turn. For the given examples, assume an initial receive buffer state as follows: the 

stateACK is 8 and there is one stateSACK 12-15 with left and right edges 12 and 15, 

respectively. 

Case 1: When a new SACK block (e.g., SACK 12-17) is a superset of a current 

SACK block (e.g., stateSACK 12-15), it means more out-of-order data had been 

received at the data receiver. The current SACK block (stateSACK) is updated to 

reflect the new SACK block (information). The update may be in terms of a left edge 

extension, a right edge extension, or both. After the update, the updated stateSACK is 

compared with the rest of the stateSACKs in the state. The reasoning is that the 

updated stateSACK may be the superset of a number of stateSACKs in the receive 
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Figure 3.4: Reneging detection model 
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buffer state due to possible ack reordering, and may fill a gap between two 

stateSACKs. Now assume that a new ack, ACK 8 SACK 12-17, arrives. When C and 

N are compared, case 1 holds. C is updated via a right edge extension to reflect the 

new information learnt from N; stateSACK becomes 12-17. 

Case 2: When a new SACK block (e.g., SACK 12-13) is a proper subset of a 

current SACK block (e.g., stateSACK 12-17), the comparison implies reneging (out-

of-order data 14-17 had been deleted from the receive buffer). An instance of reneging 

is logged for future deeper analysis.  

Case 3: Reneging is similarly detected when a new SACK block (e.g., SACK 

15-20) intersects with a current SACK block (stateSACK 12-17), and the new SACK 

block and current SACK block each have at least 1 byte not in the current SACK 

block and new SACK block, respectively. Such a case would result when a data 

receiver purges some, but not all, of the out-of-order data and later receives more out-

of-order data. The new ack informs the arrival of new out-of-order data, 18-20, as well 

as the removal of previously SACKed data, 12-14. An instance of reneging is logged 

for future deeper analysis. The state is not updated (to catch more inconsistencies) 

until the cumulative ACK is advanced beyond the SACK blocks that trigger reneging 

instances. 

Case 4: If a new SACK block (e.g., SACK 22-25) and a current SACK block 

(e.g., stateSACK 12-17) do not intersect, the new SACK block is compared with the 

next stateSACK block in the state. If the new SACK block is disjoint with all of the 

stateSACKs in the state, the new SACK block is added as a stateSACK to the receive 

buffer state. The updated receive buffer state becomes: stateACK 8, stateSACK1 12-

17, stateSACK2 22-25. If a new ack reports only one SACK block, say ACK 8 SACK 
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22-25, and there is no space in the TCP header to append another SACK block, case 4 

holds. If the new ack has enough space to carry two SACKs (22-25, 12-17) but carries 

only one (22-25), RenegDetect detects an inconsistency in the state: previously 

SACKed data 12-17 is missing. An instance of reneging for out-of-order data 12-17 is 

logged for future deeper analysis. 

The model, shown in Figure 3.4, detects reneging instances only when some 

SACK blocks are included in the acks. If the data receiver purges all the out-of-order 

data in the receive buffer, no SACK blocks are reported within acks. In such a case, 

the receive buffer state would have a number of stateSACKs, and the new ack would 

report no SACK blocks (even though the TCP options field has enough space to report 

at least one SACK block). RenegDetect v1 also infers such reneging instances. Let us 

continue with the example scenario. The receive buffer state is as follows: stateACK 

8, stateSACK1 12-17, and stateSACK2 22-25. A new TCP ack arrives with no SACK 

blocks (ACK 8). Reneging is detected if there is enough space in TCP header to report 

at least one SACK block. 

Reneging may be inferred spuriously if acks are reordered before arriving at 

the intermediate router. To cope with ack reordering, a check is performed on the 

protocol fields: IP ID and TCP ACK. When one or both of the fields of an ack is 

smaller than the previous ack’s values, reordering is detected. Reordered acks are not 

used to update the receive buffer state; they are discarded. 

We also considered looking at TCP timestamps [RFC1323] to cope with ack 

reordering. Unfortunately, Internet TCP traces show that acks from the same window 

may have the same TCP timestamp value. On the other hand, IP ID field is always 
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incremental. As such, we chose to use IP ID field along with the TCP ACK field to 

identify reordering. 

We needed to test if RenegDetect v1 can detect reneging instances correctly 

before analyzing real TCP traces. A tool to validate RenegDetect v1 is explained in the 

following section. 

3.2.2 Validating RenegDetect v1 

A validation tool was needed to check whether or not RenegDetect v1 could 

identify reneging instances correctly. For that purpose, another student from our lab, 

Abuthahir Habeeb Rahman, independently created a number of synthetic TCP flows 

carrying ack traffic to simulate some reneging and non-reneging flows. He used 

text2pcap, an application that comes with the Wireshark protocol analyzer [Wireshark] 

which can generate a capture file from an ASCII hex dump of packets. 

Reneging flows mimicked behaviors such as: (1) a SACK block was shrinking 

from left edge, right edge, or both, (2) only one SACK was reported when two SACK 

blocks were expected, (3) a SACK block was shrinking from one edge while 

extending from the other, and (4) an ACK was increasing into the middle of a SACK 

block. 

Non-reneging flows mimicked behaviors such as: (1) a SACK block was 

extending from left edge, right edge, or both, (2) a new SACK block was covering 

previous two SACKs, and (3) an ACK was increasing to the right edge of a SACK 

block or beyond. 

RenegDetect v1 was tested with these synthetic flows. All of the reneging 

instances were correctly identified.  
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RenegDetect v1 was also verified by analyzing 100s of TCP flows from 

Internet traces provided by Cooperative Association of Internet Data Analysis 

(CAIDA). Initially, it seemed that reneging was happening frequently. On closer 

inspection, however, it turned out that the generation of SACKs in many TCP 

implementations was incorrect according to [RFC2018]. Some TCP implementations 

were generating SACKs incompletely under some circumstances. Sometimes the 

SACK information that should have been sent was not. Sometimes wrong SACK 

information was sent. These misbehaviors wrongly gave RenegDetect v1 the 

impression that reneging was occurring. 

Our discovery led us to a side investigation to confirm whether or not the 

misbehaviors observed in the CAIDA traces were actual reneging instances or 

misbehaving TCP stacks. We tested [RFC 2018] conformant SACK generation on a 

wide range of operating systems. In our testing, we simply mimicked the traffic 

behavior observed in the CAIDA traces prior to observed misbehaviors. For the five 

misbehaviors observed in the CAIDA traces, we found at least one misbehaving TCP 

stack (see Section 2.4 for more detail). This discovery led us to change the way 

RenegDetect v1 detected reneging instances. We explain our updated model and tool 

in the next section. 

3.2.3 RenegDetect v2 (with Misbehaviors Detection and Use of Bidirectional 
Traffic) 

Based on the verification described in Section 3.2.2, we needed to update our 

model to detect reneging. The problem was how to differentiate between an actual 

reneging instance vs. a SACK generation misbehavior. 
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We decided to distinguish misbehavior and reneging instances based on the 

monitored data retransmissions. In misbehaviors, out-of-order data are not discarded 

from the receive buffer. Only related SACK information is missing or reported 

partially. Eventually, when the data between ACK and the out-of-order data are 

received, ACK is increased beyond the out-of-order data that seemed to have been 

reneged. If no or partial retransmissions are monitored for the out-of-order data that 

seemed to have been reneged and ACK is increased beyond, we conclude that a 

misbehavior is observed (no reneging).  

On the other hand, out-of-order data are discarded with reneging. Therefore, 

when the data between the ACK and reneged out-of-order data are received, the ACK 

would increase to the left edge of the reneged data. Eventually, data sender will 

timeout and retransmit the reneged data. Then, the ACK would increase steadily after 

each retransmission. The updated RenegDetect, v2, keeps track of retransmissions for 

the out-of-order data that seems to have been reneged. Let us show how to detect 

reneging by analyzing retransmissions with an example shown in Figure 3.5. The 

example is similar to example shown in Figure 3.1 except that transmission sequence 

of packets 7 and 2 is exchanged and data retransmissions for packets 3-6 are present. 

Before packet 7 is received, the data receiver reneges and deletes out-of-order data 3-

6. When packet 7 is received, an ack (ACK 1 SACK 7-7) is sent. When ACK 1 SACK 

7-7 is compared to the state (stateACK 1 stateSACK 3-6), an inconsistency exists. 

Previously SACKed data 3-6 are not SACKed anymore due to possible reneging or a 

misbehaving TCP stack. RenegDetect v2 marks data 3-6 as MISSING. The ack, ACK 

2, for packet 2’s fast retransmission gives the impression that reneging happened since 

ACK is not increased to 7. If ACK was increased to 7 on receipt of packet 2, this 
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behavior would conclude a SACK generation misbehavior (no retransmissions). After 

an RTO, the data sender retransmits packets 3-6. Since ACK increases steadily after 

each retransmission, reneging is concluded. 

 

Figure 3.5: Detecting reneging by analyzing retransmissions 

Does observing retransmissions for data that seems to have been reneged 

assure a reneging instance? No. When retransmissions are observed for the out-of-

order data that seems to have been reneged (referred to as “a candidate reneging 

instance”) three cases are possible: (I) a not reneging instance (a misbehavior), (II) an 
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ambiguous instance (either a reneging or a misbehavior instance), or (III) a reneging 

instance. RenegDetect v2 reports candidate reneging instances. We then analyzed each 

candidate reneging instance by hand with wireshark [Wireshark]. Wireshark can graph 

a TCP flow displaying both data and ack segments. Initially, wireshark did not have 

support the viewing of SACK blocks. A student from our lab, Fan Yang, extended 

wireshark to display SACK blocks in a flow graph. The patch to view SACKs in 

wireshark flow graphs can be downloaded at: 

http://www.cis.udel.edu/~amer/PEL/Wireshark_TCP_flowgraph_patch.tar. An 

example output is shown in Figure 3.6 where the underlined data are shown in a 

SACK block indicated by an arrow. With this update to wireshark, it easy to analyze a 

TCP flow and decide which case holds for a candidate reneging instance.      

 

Figure 3.6: Wireshark flow graph output of a TCP flow with SACKs 
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Now we explain in detail each possible case for three candidate reneging 

instances that look like Misbehavior B instances. Misbehavior B is observed in TCP 

flows having at least two SACK blocks. Once the data between the ACK and the first 

SACK are received, a data receiver increases the ACK, but misbehaves and does not 

acknowledge other SACK blocks. The ack with no SACK blocks implies an instance 

of reneging.  

 (I) Figure 3.7 shows a candidate reneging instance where the retransmissions 

for the data seems to have been reneged are transmitted using multiple data packets. 

The initial state of the receive buffer is known as: stateACK 92655 stateSACK 93191-

93727. The first ack (#2, ACK 92655 SACK 94263-94799 93191-[|tcp]) informs that 

data (#1) are received out-of-order. The “[|tcp]” indicates that the second SACK block 

is truncated in the trace file and only the left edge is available to display. A new 

stateSACK 94263-94799 is added to the state. The next ack (#5, ACK 93068 SACK 

93191-94092 94263-[|tcp]) acknowledges the receipt of data packets (#3) and (#4). 

The stateSACK 93191-93727 is updated to 93191-94092. Data packet (#6, 93068-

93604) fills the gap between the ACK and the first SACK block 93191-94092. 

Consequently, ACK is increased to 94092 (#7) but a SACK for out-of-order data 

94263-94799 is not present in the ack (#7) (Misbehavior B). Out-of-order data 94263-

94799 are marked as MISSING by RenegDetect v2. Next, two retransmissions are 

monitored covering the MISSING out-of-order data, (#8, 94092-94628) and (#9, 

94628-95164). When the first partial retransmission for the MISSING out-of-order 

data are received (#8), ACK is increased to 94799 (the right edge of MISSING out-of-

order data) instead of 94628 indicating that the MISSING out-of-order data are still in 
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the receive buffer. As a result, we conclude that the candidate reneging instance is a 

Misbehavior B instance, and not an instance of reneging. 

 

Figure 3.7: Candidate reneging instance I (not reneging) 

(II) Figure 3.8 shows a candidate reneging instance where we cannot conclude 

if the instance is or not reneging. When the data (#9) are received, the ACK is 

increased to 16850 (#10) but previously SACKed data 18230-19610 are not reported 

with a SACK block (Misbehavior B). RenegDetect v2 marks bytes 18230-19610 as 

MISSING. The retransmission for the MISSING bytes is monitored with the next data 

packet (#11). The reply ack now has a SACK block (18230-19610). Is the new SACK 

block for the previously received out-of-order data (MISSING) or the retransmission? 
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We cannot conclude if the observed behavior is an instance of reneging or 

Misbehavior B due to ambiguity. We report this type of instance as ambiguous.  

 

Figure 3.8: Candidate reneging instance II (ambiguous) 

(III) Figure 3.9 shows a candidate reneging instance where the retransmissions 

for the MISSING out-of-order data are observed and ACK is increased steadily after 

each retransmission. When data (#8) is received, ACK is increased to 70336 (#9) but 

no SACKs are reported. RenegDetect v2 marks bytes 70336-74476 as MISSING. 

Next, the retransmissions for the MISSING out-of-order data are monitored: (#10), 

(#12), and (#13), respectively. ACK is increased steadily after each retransmission. 

This behavior clearly indicates a reneging instance.   
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Figure 3.9: Candidate reneging instance III (reneging) 

Each candidate reneging case presented above was analyzed by hand using 

wireshark. Can we program RenegDetect to identify each case automated? Yes. If we 

were able to match each data packet to a corresponding ack, RenegDetect could be 

programmed to identify each case automated. Unfortunately, traces are collected at an 

intermediate router where data packets can get lost after being monitored and acks can 

get lost before reaching the router. Such packet losses can cause ambiguity in data-to-

ack matching. If traces were collected at the data receiver such an issue would not 

exist. Each data could be matched to a corresponding ack. Past research, [Jaiswal 

2004], identified the same problem where the authors proposed a passive measurement 

methodology to infer congestion window (cwnd) in traces captured at an intermediate 

router. We decided to simply analyze each candidate reneging instance using 



 66

wireshark by hand to avoid programming complexity to implement data-to-ack 

matching within RenegDetect v2.      

The updated RenegDetect, v2, identifies misbehaviors where no or partial data 

retransmissions are observed. Whenever a misbehavior is observed, the out-of-order 

data that seem to have been reneged are marked as MISSING and RenegDetect v2 

keeps tracks of retransmissions for the MISSING data. If retransmissions are observed 

for the MISSING data, RenegDetect v2 reports a candidate reneging instance. For 

each candidate reneging instance, a hand analysis is done using wireshark to determine 

if the instance is a misbehavior, a reneging, or an ambiguous instance.  

Our model cannot detect reneging instances with 100% certainty if particular 

acks and data PDUs are not observed in a trace. Our model relies on acks to detect 

inconsistencies between the state of receiver buffer and new SACK information. In 

addition, our model relies on data retransmissions to distinguish between a reneging 

and a misbehavior instance. For a reneged flow, if acks that cause inconsistencies were 

not observed by the intermediate router or lost during the trace capture, reneging 

would go undetected (the state is still consistent). Similarly, if data retransmissions are 

not included in the trace capture, reneging again would go undetected. Therefore, the 

frequency of reneging, p%, that we report in our analysis is a lower limit and should 

be interpreted as “reneging happens in at least p% of the TCP flows analyzed”.     

To report the frequency of reneging, TCP flows monitored at an intermediate 

router should be analyzed. But, we first needed to determine the minimum number of 

TCP flows to analyze based on our initial hypothesis that reneging rarely if ever 

occurs in practice. The following section answers at least how many flows we needed 

to analyze. 
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3.2.4 Hypothesis 

To generalize reneging behavior, we needed to analyze TCP flows to 

determine if reneging is happening or not in today’s Internet. But how many TCP 

flows do we need to analyze to be statistically confident of our conclusions?  

Given a set of TCP flows, we assumed that whether or not a TCP flow reneges 

is a binary event with probability P(reneging) = p, and the TCP flows are independent 

and identically distributed (i.i.d.) with respect to reneging (we discuss if TCP flows 

form the same host are i.i.d. or not at the end of this section.) We defined event A as 

reneging happens in a TCP flow. Assuming reneging is a rare event, our initial 

hypothesis (H0) was: ܪ:	(ܣ) ≥ 	10ିହ 

We wanted to design an experiment which rejects H0 with 95% confidence 

(confidence coefficient α=0.05) thus allowing us to conclude that:  (ܣ) < 10ିହ 

Our experiment would analyze n TCP flows hoping to not find a single 

instance of reneging. We wanted to know the value of n such that the probability that 

H0 is true even though no TCP flow reneges is less than 0.05 (confidence coefficient.) P(	k = (	ܪ	|	0 < .05 

The probability of reneging occurring k times in n i.i.d. TCP flows is: (݇) = 	ܲ	ሼ݃݊݅݃݁݊݁ݎ	ݏݎݑܿܿ	݇	ݏ݁݉݅ݐ	݊݅	݊	ݏݓ݈݂	݊݅	ݕ݊ܽ	ݎ݁݀ݎሽ = 	 ቀ݊݇ቁ  ିݍ

The probability that reneging does not occur (k=0) in n trials assuming H0 is: (0) = 	 ቀ0݊ቁ (0) ିݍ = 	 (1 − 10ିହ) 
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To find the minimum number of TCP flows (n) to analyze, hoping with 95% 

confidence to reject H0, we needed: (0) < 1) ߙ	 − 10ିହ) < 	0.05 

The minimum n satisfying the equation is 299,572 (derived from MAPLE.) 

Now, let us discuss if TCP flows are i.i.d.? To renege, a TCP flow should have 

out-of-order data in its receive buffer. The out-of-order data exist due to either 

congestion or packet reordering in the network. Other simultaneous TCP flows from 

the same host would experience the same congestion or packet reordering if they share 

the same bottleneck router. Therefore, if one TCP flow reneges, it is expected that 

other TCP flows from the same TCP host might also renege. For example, FreeBSD 

employs global reneging (see Section 4.4) where all TCP flows renege simultaneously. 

On the other hand, Linux and Solaris employ local reneging (see Sections 4.3 and 4.6) 

where each TCP flow reneges independently. Therefore, some simultaneous TCP 

flows from same host are i.i.d. and others are not depending on the host’s operating 

system. Initially, we assumed that each TCP flow was independent. 

To generalize reneging behavior, our goal was to analyze at least 300K TCP 

flows with SACKs using RenegDetect v2. If we could document no reneging 

instances, we could claim that reneging is a rare event, i.e., P(reneging) < 10-5. For 

that, TCP traces from three domains (Internet, wireless, enterprise) were analyzed 

using RenegDetect v2. The results of the trace analysis are presented in the next 

section.   
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3.2.5 Results of Internet Trace Analysis 

In this section, we report the frequency of reneging in TCP traces from three 

domains: Internet backbone (CAIDA traces), a wireless network (SIGCOMM 2008 

traces), and an enterprise network (LBNL traces). Our goal was to analyze 300K TCP 

flows using SACKs and find no instances of reneging. Unfortunately, we found 

instances of reneging. Therefore, we could not reject our hypothesis H0 specified in 

Section 3.2.4 to conclude P(reneging) < 10-5.  

Since reneging instances were found, analyzing 300K TCP flows were no 

longer necessary. As a result, we ended up analyzing 202,877 TCP flows using 

SACKs from the three domains where a total of 104 instances of reneging were found. 

The sample proportion of reneging,	̂, is  ̂ = X݊ = 104202877 = 0.000512	 
From [Moore 1993], the standard error of sample proportion ̂ is ܵܧො = ඨ1)̂ − ݊(̂ = 	ඨ0.000512(0.999488)202877 = 0.00005 

An approximate level C confidence interval for an unknown population 

proportion  is estimated using ̂ 	±  ොܧܵ∗ݖ
A 95% confidence interval of event reneging being true for a TCP flow is 

calculated using ݖ∗ being 1.960			̂ 	± ොܧܵ∗ݖ = 0.000512	 ± (1.960)(0.00005) = 0.000512	 ± 	0.0000984= 0.05%	 ± 0.009% 

With 95% confidence, the margin of error is 0.009% assuming that the 

analyzed TCP flows are independent and identically distributed (i.i.d.). That is, we 
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estimate with 95% confidence that the true average rate of reneging is in the interval 

[0.041%, 0.059%], roughly 1 flow in 2,000. 

For each reneging instance, we tried to fingerprint the operating system of the 

reneging data receiver, and generalize reneging behavior per operating system.   

Trace files provided by the three domains contain thousands of TCP flows per 

trace. In our analysis, trace files are processed beforehand to have a single trace file 

for each bidirectional TCP flow using SACKs. This approach served two purposes: (1) 

to provide reneging traces to the research community, and (2) to be able to view a flow 

graph per TCP flow in wireshark for hand analysis.  

(1) By documenting reneging instances during the trace analysis, we provide 

the first set of reneging traces to interested researchers and TCP stack implementors 

for further analysis. (2) When multiple TCP flows exist in a trace, wireshark views all 

of them in the same flow graph which makes it hard to read the graph for hand 

analysis. In addition, if a trace file with multiple flows is large (some of the traces 

provided by CAIDA are 1-4 GB per trace), wireshark displays an out of memory error 

and terminates. Therefore, we processed trace files provided by CAIDA, SIGCOMM, 

and LBNL into separate trace files for each TCP flow using SACKs. Figure 3.10 

summarizes the processing of TCP traces.  

     For the reneging analysis, only TCP flows that contain at least one SACK 

block during a data transfer are of interest (other flows cannot renege by definition). 

For each trace file, we first identify TCP flows using SACKs. Flows not using SACKs 

were discarded. Second, we filter each trace to include only TCP PDUs using tshark 

tool, that is, UDP and ICMP PDUs are discarded. Third, we split the resulting trace 

into individual TCP PDUs using editcap tool. Each individual TCP PDU is named by 
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4-tuple (source IP, source port, destination IP, destination port) plus a sequence 

number. Finally, individual PDUs are merged into a single TCP trace using mergecap 

tool for each flow. Tshark, editcap and mergecap are command line utilities provided 

by wireshark. The process described here corresponds to TCP flow filter box in Figure 

3.10. 

 

Figure 3.10: Filtering traces 

RenegDetect v2 accepts a TCP trace file as an input and analyzes a TCP flow 

using the model detailed in Sections 3.2.1 and 3.2.3. RenegDetect v2 logs candidate 

reneging flows (and each individual instance per flow) during the trace analysis. 

Candidate reneging instances are later inspected by hand using wireshark to conclude 

reneging or not. 

RenegDetect v2 relies on data retransmissions to report candidate reneging 

instances. For each TCP flow, RenegDetect v2 also keeps track of the percentage of 

data transmitted by the data sender (data seen between the lowest and the highest 

ACK) monitored at the intermediate router to check if all data are observed. The initial 

5% of the flow is skipped since data sent in prior window may not be available in a 

TCP trace if the first PDUs in the trace are acks instead of data PDUs. For a data 
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transfer of 100 bytes, for example, if a data collection point observes the last 95 bytes 

on the data path, we classify that flow as 100% of the data is observed. If all the data is 

observed at the router, we can argue that retransmissions follow the same data path, 

which gives us a strong argument to rely on retransmissions to infer reneging. If the 

routing path changes during a data transfer or large number of packets are dropped 

during a trace capture, then a gap in the data will be observed (so the data percentage 

would be less than 100%). If RenegDetect v2 observes, for instance, only 40% of the 

data, then we can argue that relying on the retransmissions to detect reneging instances 

is unreliable since some of the data and retransmissions (the other 60% of the data) 

followed a different path or got lost during trace capture. If we analyze incomplete 

flows having gaps in the data, less reneging instances would be detected. For such 

flows, reneging instances could be identified falsely as non-reneging since data 

retransmissions might be missing. To avoid a bias to identify less reneging instances, 

we only analyze TCP flows where at least 95% of the data is available and ignore the 

rest. 

In all traces provided (CAIDA, SIGCOMM, and LBNL), the real IP addresses 

of data senders/receivers were remapped to other IP addresses for privacy and security 

purposes. This process is called IP anonymization.  

The outline of the rest of this section is as follows. The frequency of reneging 

for Internet (CAIDA), wireless (SIGCOMM), enterprise (LBNL) domains are 

presented in Sections 3.2.5.1, 3.2.5.2, and 3.2.5.3, respectively.       

3.2.5.1 Cooperative Association of Internet Data Analysis (CAIDA) Traces 

In this section, we present the reneging frequency of Internet backbone traces 

captured between April 2008 and October 2010. A brief description of the traces is 
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presented in Section 3.2.5.1.1. The frequency of reneging in CAIDA traces is reported 

in Section 3.2.5.1.2. During the trace analysis, 104 reneging instances were detected. 

Each reneging instance was analyzed in detail and categorized based on the operating 

system guess of the data receiver. We detail reneging instances for Linux, FreeBSD, 

and Windows operating systems in Sections 3.2.5.1.3, 3.2.5.1.4, and 3.2.5.1.5, 

respectively.   

3.2.5.1.1 Description of Traces 

The trace files from CAIDA [Caida] are representative of a wide area Internet 

traffic and were collected via data collection monitors set in Equinix data centers 

(http://www.equinix.com) in Chicago and San Jose, CA. The monitors are set on OC-

192 Internet bi-directional backbone links (9953 Mbps) between (Seattle and Chicago) 

and (San Jose and Los Angeles). The trace data were collected separately for each 

direction of the bi-directional links: direction A (Seattle to Chicago, San Jose to Los 

Angeles) and direction B (Chicago to Seattle, Los Angeles to San Jose) and the traces 

for each direction are provided in separate files.  

The actual amount of data captured from each frame (snaplen) by the monitors 

was 48 bytes as opposed to 68 bytes which is default by tcpdump [Tcpdump]. This 48 

byte limit causes some SACK blocks to be truncated whenever a TCP timestamp 

option is present or there are multiple SACK blocks. If all SACKs of a TCP flow are 

truncated, the flow is discarded. 

CAIDA provides 60 minute long traces for each Equinix monitor (Chicago, 

San Jose) per month. In our lab, we did not have enough processing capacity to filter 

all CAIDA traces as described in Section 3.2.5. Instead, we processed 2 minute long 

traces for each month whenever trace data was available for both directions. When we 
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processed all the 2 minute traces from April, 2008 to October, 2010 for both monitors, 

we processed another set of 2 minute traces for Chicago monitor from April, 2008 to 

January, 2009. For some dates, traces were only available for one direction (especially 

for San Jose monitor). In such case, either data or ack traffic was available but not 

both. We ignored those traces in our analysis. When we detected reneging instances, 

we also filtered 10 minute long traces (covering the 2 minute trace) for the reneged 

data receivers to analyze reneging behavior for longer durations and more detail.  

Tables 3.2 and 3.3 show the statistics for the percentage of data of the TCP 

flows using SACKs in CAIDA traces captured at Chicago monitor for directions A 

and B, respectively. Tables 3.4 and 3.5 show the same statistics for the San Jose 

monitor. The first six columns of the table show the date (yyyymmdd), the minute 

interval analyzed, and percentage of TCP flows where 100, [95, 100), (0, 95), and 0 

percent of the data is observed at the intermediate router. The seventh column shows 

the percentage of TCP flows where there were multiple TCP flows for the same 4-

tuple in the trace. We identified multiple TCP flows using tcptrace, a TCP connection 

analysis tool. RenegDetect v2 is designed to analyze a single bidirectional TCP flow 

and does not have the ability to distinguish which data/acks belong to which flow 

when multiple TCP flows exist in a trace file. Such ability was not implemented not to 

increase the programming complexity of RenegDetect v2. That is, RenegDetect v2 

cannot operate when multiple TCP flows exist in the same trace. Thus, trace files with 

multiple TCP flows were ignored (column 7) along with those flows where less than 

95% of the data was available (columns 5 and 6).  

In Table 3.2, on dates 20080619 and 20080717 (the rows highlighted with grey 

color), the percentages of data that falls between (0, 95) interval are 41.63% and 
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66.10%, respectively for the Chicago monitor (direction A). This behavior implies that 

gaps in the data were observed due to a route change or high packet losses during trace 

capture. We ignored these TCP traces since missing data/retransmissions would bias 

the results in favor of not reneging instances.  

Table 3.2: Percentage of data monitored in CAIDA traces (Chicago, direction A) 

Date Minutes 100% [95, 100)% (0, 95)% 0% Multiple Flows

20080430 20-22 96.31 2.33 0.64 0.64 0.09

20080430 31-33 96.00 2.22 0.66 0.63 0.50

20080430 20-31 75.02 2.53 0.00 7.51 14.93

20080515 57-59 84.02 14.73 0.55 0.60 0.10

20080515 37-39 83.07 15.39 0.65 0.81 0.08

20080515 50-60 64.00 28.00 0.00 7.64 0.36

20080619 00-21 48.00 6.61 41.63 1.77 1.99

20080717 11-13 26.28 3.81 66.10 3.55 0.26

20080821 18-20 95.27 1.65 1.13 1.75 0.21

20080821 37-39 94.75 2.25 1.12 1.69 0.19

20080918 03-05 96.28 1.28 0.81 1.51 0.12

20080918 02-04 95.72 1.71 0.73 1.83 0.00

20081016 11-13 94.01 1.66 1.91 2.41 0.00

20081016 23-25 93.25 2.08 1.21 3.29 0.17

20081120 52-54 95.06 1.49 1.49 1.72 0.23

20081120 25-27 95.77 1.18 0.59 2.12 0.35

20081218 45-47 91.65 2.82 2.82 2.09 0.63

20081218 09-11 95.88 2.11 1.11 0.91 0.00

20090115 18-20 90.53 6.63 0.90 1.44 0.50

20090115 53-55 89.46 5.79 1.41 2.92 0.41

20090219 48-50 94.83 0.25 2.22 1.97 0.74

20090331 23-25 96.84 1.16 0.95 0.53 0.53

20090416 28-30 95.74 1.84 1.27 1.15 0.00

20090521 10-12 91.01 4.03 2.33 2.17 0.47

20090618 34-36 92.21 2.79 2.35 2.50 0.15

20090716 22-24 90.75 6.33 0.97 1.95 0.00

20090820 32-34 97.81 0.73 0.73 0.73 0.00
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Table 3.2 continued 

20090917 41-43 95.86 1.48 1.18 0.59 0.89

20091015 17-19 92.48 1.57 2.51 1.57 1.88

20091119 13-15 80.51 5.32 2.03 8.61 3.54

20091217 06-08 87.32 6.83 4.88 0.00 0.98

20100121 48-50 93.98 2.52 2.63 0.55 0.33

20100225 45-47 97.04 0.59 1.18 0.99 0.20

20100325 23-25 96.25 2.50 0.00 1.25 0.00

20100414 10-12 84.85 9.09 0.00 6.06 0.00

20100819 44-46 94.13 1.28 1.28 3.06 0.26

20100916 15-17 90.28 4.17 1.39 3.47 0.69

20101029 42-44 86.49 6.49 2.16 4.86 0.00
 

Table 3.3: Percentage of data monitored in CAIDA traces (Chicago, direction B) 

Date Minutes 100% [95, 100)% (0, 95)% 0% Multiple Flows
20080430 20-22 94.52 0.07 0.85 4.57 0.00

20080430 31-33 96.57 0.50 0.50 2.37 0.06

20080515 57-59 97.24 0.09 0.31 2.28 0.09

20080515 37-39 97.44 0.20 0.20 2.16 0.00

20080619 00-21 93.63 0.07 0.11 2.45 3.75

20080717 11-13 92.01 0.31 0.61 6.62 0.46

20080821 18-20 98.37 0.57 0.49 0.46 0.11

20080821 37-39 97.94 0.38 0.70 0.91 0.07

20080918 03-05 97.41 0.65 0.88 0.97 0.09

20080918 02-04 97.11 0.66 0.95 1.18 0.09

20081016 11-13 96.97 0.57 1.39 0.88 0.19

20081016 23-25 97.72 0.40 0.89 0.92 0.06

20081120 52-54 96.99 0.94 0.47 1.42 0.18

20081120 25-27 96.40 0.35 0.83 1.94 0.48

20081218 45-47 96.10 0.53 0.53 2.60 0.24

20081218 09-11 96.60 0.63 1.42 1.34 0.00

20090115 18-20 95.90 0.88 0.67 2.13 0.41

20090115 53-55 95.24 1.40 0.75 2.00 0.60

20090115 14-24 99.22 0.00 0.00 0.00 0.78
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Table 3.3 continued 

20090219 48-50 93.24 1.29 1.13 3.54 0.81

20090331 23-25 97.82 0.38 0.64 1.02 0.13

20090416 28-30 97.47 0.78 0.54 1.14 0.06

20090521 10-12 98.57 0.07 0.14 1.22 0.00

20090618 34-36 94.50 0.59 0.39 4.38 0.13

20090716 22-24 87.90 0.36 0.72 11.02 0.00

20090820 32-34 97.85 0.86 0.43 0.86 0.00

20090917 41-43 95.12 0.70 1.39 2.44 0.35

20091015 17-19 96.19 0.21 0.64 2.97 0.00

20091119 13-15 95.04 0.00 0.76 4.20 0.00

20091217 06-08 96.33 0.00 0.00 3.67 0.00

20100121 48-50 88.82 1.64 0.00 9.21 0.33

20100225 45-47 95.45 0.00 1.01 3.54 0.00

20100325 23-25 90.30 0.75 8.21 0.00 0.75

20100414 10-12 91.67 2.08 6.25 0.00 0.00

20100819 44-46 93.29 0.67 0.00 5.37 0.67

20100916 15-17 92.97 0.00 0.00 5.41 1.62

20101029 42-44 95.02 0.90 0.45 3.62 0.00

 

Table 3.4: Percentage of data monitored in CAIDA traces (San Jose, direction A) 

Date Minutes 100% [95, 100)% (0, 95)% 0% Multiple Flows
20080717 06-08 97.30 0.58 0.97 1.09 0.06

20080821 24-26 95.92 0.39 1.12 2.35 0.22

20081016 03-05 98.10 0.40 0.70 0.62 0.17

20081120 34-36 95.72 0.82 1.76 1.59 0.11

20090331 28-30 96.85 0.79 1.33 0.75 0.27

20090416 14-16 92.44 5.89 0.92 0.63 0.13

20090521 25-27 94.61 1.41 2.28 1.07 0.63

20090618 03-05 95.56 1.19 1.86 1.23 0.16

20090716 40-42 95.31 1.72 2.15 0.77 0.05

20090820 11-13 97.85 0.40 1.07 0.54 0.13

20090820 07-17 87.67 0.00 0.00 12.33 0.00

20090917 20-22 95.72 1.06 2.24 0.86 0.12
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Table 3.4 continued 

20091015 21-23 95.13 1.12 2.00 1.33 0.41

20091119 12-14 96.92 0.86 1.27 0.82 0.14

20091217 04-06 97.03 0.27 1.35 0.81 0.54

20100121 55-57 95.69 0.77 1.00 2.54 0.00

20100225 53-55 96.91 0.39 0.19 2.32 0.19

20100414 58-60 93.04 3.78 0.85 2.19 0.14

 

Table 3.5: Percentage of data monitored in CAIDA traces (San Jose, direction B) 

Date Minutes 100% [95, 100)% (0, 95)% 0% Multiple Flows
20080717 06-08 95.45 0.91 2.07 1.49 0.08

20080821 24-26 96.29 0.40 1.72 1.59 0.00

20081016 03-05 95.22 0.57 1.24 2.77 0.19

20081120 34-36 94.80 1.44 1.52 2.09 0.14

20090331 28-30 93.80 0.76 0.90 4.20 0.34

20090331 24-34 0.00 100.00 0.00 0.00 0.00

20090416 14-16 96.28 0.83 0.83 1.83 0.24

20090521 25-27 94.18 0.52 0.26 4.58 0.46

20090618 03-05 93.08 0.65 1.38 4.72 0.16

20090716 40-42 94.30 0.31 0.78 4.14 0.47

20090820 11-13 98.33 0.33 0.33 0.83 0.17

20090917 20-22 96.30 0.21 0.58 2.80 0.11

20091015 21-23 93.37 0.73 0.70 4.75 0.45

20091119 12-14 94.79 0.74 0.65 3.35 0.47

20091217 04-06 94.34 0.00 1.74 3.27 0.65

20100121 55-57 96.09 0.95 0.59 2.37 0.00

20100225 53-55 97.53 0.82 0.59 1.06 0.00

20100414 58-60 98.24 0.19 0.33 1.19 0.05

 

3.2.5.1.2 Results 

In this section, we document the frequency of reneging in the CAIDA traces. 

Table 3.6 presents the number of TCP flows using SACKs and the frequency of 
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reneging. The columns of the table show the date (in yyyymmdd format), the number 

of TCP flows using SACK blocks analyzed, the number of candidate reneging flows, 

and the number of reneged flows, respectively. The candidate reneging flows are those 

that satisfy the following two conditions:  (a) some SACK block(s) were MISSING 

and (b) data retransmissions for the MISSING SACK block(s) were observed. Each 

candidate reneging flow was analyzed by hand using the wireshark tool [Wireshark] to 

determine if reneging happened or if the candidate reneging instance was an instance 

of misbehavior. For each date, we report an aggregate amount of TCP flows using 

SACKs from two the monitors: Chicago and San Jose. We report that out of 1273 

candidate reneging flows (0.78% of all flows) analyzed, 104 flows (0.05%) reneged. 

We analyzed each reneging flow in detail and categorized reneging instances 

based on the operating system of the data receiver. We detail reneging instances and 

behavior for Linux, FreeBSD, and Windows operating systems in Sections 3.2.5.1.3, 

3.2.5.1.4, and 3.2.5.1.5, respectively. 

Table 3.6: Reneging frequency of CAIDA traces 

Date Flows using SACKs Candidate Reneging Flows Reneged Flows 
20080430 10434 97 8
20080515 12233 111 40
20080619 22377 85 1
20080717 4507 40 0
20080821 10797 64 0
20080918 5835 32 0
20081016 13493 66 1
20081120 7829 73 0
20081218 4755 42 1
20090115 7998 130 11
20090219 977 15 0
20090331 6699 50 1
20090416 6484 53 0
20090521 5440 34 0
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Table 3.6 continued 

20090618 5700 60 1
20090716 4379 67 0
20090820 1755 46 40
20090917 4901 42 0
20091015 7901 68 0
20091119 3773 27 0
20091217 1690 17 0
20100121 2848 23 0
20100225 2022 9 0
20100325 201 2 0
20100414 4896 12 0
20100819 514 5 0
20100916 446 1 0
20101029 556 2 0
TOTAL 161440 1273 104

 

3.2.5.1.3 Linux Reneging Instances 

In this section, we characterize Linux reneging instances detected in the 

CAIDA trace analysis. First, Linux data receivers are inferred by examining TCP 

fingerprints of the reneging flows. Second, detailed statistics regarding the frequency 

of reneging are listed. Next, for the reneging data receivers, we analyze the 

characteristics of the reneging and non-reneging connections and the type of reneging 

employed (global vs. local). Then, a typical Linux reneging instance is presented. 

Finally, circumstances of Linux reneging are presented.  

We strongly believe that reneging data receivers listed in Table 3.7 were 

running Linux. Table 3.7 details the TCP fingerprints (characteristics) of the reneging 

data receivers. The columns of the table show the date (in yyyymmdd format), the 

anonymized IP address of the reneging data receiver, maximum segment size (MSS), 

window scale value, initial receiver window (rwnd), maximum rwnd value observed 

during the connection, if timestamps (TS) [RFC1323] were used, and if DSACKs 
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[RFC2883] were used, respectively. We believe these data receivers were running 

Linux since they all exhibited the following behaviors. (1) Linux implements dynamic 

right-sizing (DRS) where the rwnd dynamically changes based on the receiver’s 

estimate of the sender’s congestion window [Fisk 2001]. With DRS, the initial 

advertised rwnd of a Linux TCP is 5840 bytes (column 5) and changes dynamically 

(column 6) over the course of the connection. (2) Linux TCP supports DSACKs by 

default (sysctl net.ipv4.tcp_dsack = 1) and DSACKs [RFC2883] were observed for all 

the data receivers (column 7). 

Table 3.7: Host characteristics for Linux data receivers 

Date Anonymized 
IP 

MSS 
(SYN)

Win 
Scale 

Rwnd 
(SYN) 

Rwnd 
(Max) 

TS DSACK 

20080430 226.186.117.234 1460 n/a 5840 auto no yes 

20080430 226.186.117.238 1460 n/a 5840 auto no yes 

20080515 226.186.116.218 1460 n/a 5840 auto no yes 

20080515 226.186.116.219 1460 n/a 5840 auto no yes 

20080515 226.186.116.221 1460 n/a 5840 auto no yes 

 

Table 3.8: Linux reneging instances 

Date Anonymized 
IP 

Reneged
Flows 

Total 
Reneging
Instances

Total 
Reneged 

Bytes 

Avg. 
Reneged 

Bytes 
20080430 226.186.117.234 4 9 24820 2758

20080430 226.186.117.238 2 3 24820 8273

20080515 226.186.116.218 28 74 146000 1973

20080515 226.186.116.219 4 25 102200 4088

20080515 226.186.116.221 2 3 11680 3893

TOTAL 40 114 309520 2715
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Table 3.8 reports the reneging instances detected at the Linux data receivers. 

The columns of the table show the date, the anonymized IP address of the reneged 

data receiver, the number of TCP flows (connections) reneged, the total number of 

reneging instances observed in the reneged flows, total amount of reneged bytes, and 

the average amount of bytes reneged per reneging instance, respectively. A total of 

114 reneging instances were observed in 40 flows from 5 different Linux data 

receivers. The observation suggests that multiple TCP flows renege per each data 

receiver. The average number of reneging instances per flow was 2.85 (114/40) which 

indicates that reneging occurs multiple times per TCP flow. The average amount of 

bytes reneged per reneging instance was 2715 bytes (~2 MSS PDUs.) We report the 

average amount of bytes reneged per reneging instance to check if reneging occurs 

when a significant portion of the receive buffer is filled with out-of-order data. 

To identify if reneging Linux data receivers were busy servers or clients 

having large number of TCP flows, we counted the number of TCP connections 

analyzed for each reneging data receiver. Table 3.9 reports the number of flows using 

SACKs for the reneging Linux data receivers for the three traces analyzed. 2 minute 

traces only contain flows using SACKs. In addition to flows using SACKs, the 10 

minute trace was filtered to contain TCP flows not using SACKs to infer connection 

characteristics of a reneging data receiver. In Table 3.9, the number of connections 

indicates that reneging happens at Linux data receivers having hundreds of TCP flows. 

We initially expected reneging to happen at busy servers (e.g., web, mail servers) with 

large number of TCP connections established. In our analysis, all the reneging Linux 

data receivers were busy clients transferring data from web servers instead. 
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Table 3.9:  Connection numbers for reneging Linux data receivers 

Date Anonymized IP Flows using SACKs Flows not using SACKs 
2 

minute
2 

minute
10 

minute
10 

minute 
20080430 226.186.117.234 105 120 452 5846

20080430 226.186.117.238 147 134 618 3356

20080515 226.186.116.218 107 63

20080515 226.186.116.219 76 106

20080515 226.186.116.221 74 107
 

Linux employs local reneging where simultaneous TCP connections renege 

independently (see Section 4.3.1). To confirm local reneging, we analyzed reneging 

times for each data receiver and verified that reneging instances from different flows 

occurred at different times independently.  

Now let us detail a Linux reneging instance, shown in Figure 3.11, observed at 

2008/04/30 on a data receiver identified with anonymized IP 226.186.117.234. The 

initial state of the receive buffer is as follows: stateACK=68906 with no stateSACKs. 

First, data packet (#1, 68906-70336), is monitored at the intermediate router. Next, 

data packets (#2, 70336-71826), (#3, 71826-73286), and (#4, 73286-74476) are 

observed. The data receiver acknowledges the receipt of out-of-order data packet (#2) 

with an ack (#5, ACK 68906 SACK 70336-71826). Similarly, when data packets (#3) 

and (#4) are received out of order, reply acks (#6, ACK 68906 SACK 70336-73286) 

and (#7, ACK 68906 SACK 70336-74476) are sent to the data sender. Those acks give 

the impression that data packet (#1) is lost in the network. The state is updated when 

acks (#5), (#6), and (#7) are each monitored at the router. The state becomes: 

stateACK 68906 and stateSACK: 70336-74476. Next, a fast-retransmission (#8, 

68906-70336) for the data packet (#1) is observed. The data receiver replies with an 

ack (#9, ACK 70336). When ack (#9) is compared with the state, an inconsistency 



 84

exists. Previously SACKed data 70336-74476 is missing in the ack (#9). At that point, 

RenegDetect v2 marks those bytes as MISSING and checks if those bytes are 

retransmitted. Next, a retransmission (#10, 70336-71826) is monitored for the data 

packet (#2). The reply ack (#11, ACK 71826) indicates that retransmission (#10) is 

received in order. Similarly, retransmissions (#12, 71826-73286), (#13, 73286-74476) 

are observed for reneged data packets (#3) and (#4). After each retransmission, ACK 

is increased steadily. Therefore, we conclude that reneging occurred.   

 

Figure 3.11: A Linux reneging instance 

In [Seth 2008], the authors state that reneging in Linux is expected to happen 

when (a) an application is unable to read data queued up at the receive buffer, and (b) 

a large number of out-of-order segments are received. In Figure 3.11, the ack (#0, 
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ACK 54306 rwnd: 20440) specifies the rwnd to be (54306-74746). The ack (#7, ACK 

68906 SACK 70336-74476 rwnd: 4380) indicates that 14600 bytes (the difference 

between the ACK values) are received in order since the receipt of ack (#0). In ack 

(#7), the rwnd still has the same right edge (74746), meaning that 14600 bytes in-order 

data are not yet read by the receiving application and still reside in the receive buffer 

satisfying (a). For all reneging Linux TCP flows, this same behavior was exhibited; 

the advertised rwnd fluctuated and usually became 0 since in-order data were not 

immediately read by the receiving application. When we investigated non-reneging 

TCP flows, in general, the rwnd did not fluctuate, meaning that the receiving 

applications were reading the in-order data immediately. As a result, we confirm that 

Linux reneges when a receiving application is unable to read in-order data. 

According to [Seth 2008], reneging in Linux is expected to happen when a 

large number of out-of-order segments sit in the receive buffer. Unfortunately, our 

analysis showed that the average amount of bytes reneged per reneging instance was 

2715 bytes (~2 MSS PDUs.) This average amount of reneged out-of-order data does 

not seem large when compared to Linux’s 87380 byte default receive buffer size 

(sysctl net.ipv4.tcp_rmem = 4096 (min) 87380 (default) 2605056(max)). On average, 

~3% of the receive buffer was allocated to the reneged out-of-order data. This 

behavior suggests that Linux reneges irrespective of out-of-order data size.    

3.2.5.1.4 FreeBSD Reneging Instances 

This section reports FreeBSD reneging instances observed in the CAIDA 

traces. First, we explain how we inferred that data receivers were running FreeBSD by 

examining TCP fingerprints of the reneging flows. Second, detailed statistics 

regarding the frequency of reneging are listed. Next, for the reneging data receivers, 
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we analyze the characteristics of the reneging and non-reneging connections and type 

of reneging employed (global vs. local). We conclude by presenting a detailed 

FreeBSD reneging instance.  

We believe that the reneging data receivers listed in Table 3.10 were running 

FreeBSD. Table 3.10 presents the TCP fingerprints of the reneging hosts. Both 

reneging hosts had an initial rwnd of 65535 and used timestamps [RFC1323]. Table 

3.11 lists the initial rwnd reported in SYN segments of various operating systems 

observed during our TBIT testing in Chapter 2. As the reneging data receivers did, 

FreeBSD, Mac OS X and Windows 2000 all initially advertised an rwnd of 65535 

bytes. The reneging data receivers could not be running Windows 2000 because 

sometimes 3 or 4 SACK blocks were reported in TCP PDUs of the reneging flows. 

Windows 2000 reports at most 2 SACK blocks (Misbehavior A2, see Section 2.4) in a 

TCP PDU. FreeBSD and Mac OS differ in the way they implement the window scale 

option [RFC1323]. Mac OS advertises a scaled rwnd in the SYN segment. For 

example, if window scale option=1 for the connection, the rwnd reported in the SYN 

segment would be 32768 for a 65535 size rwnd. FreeBSD, on the other hand, initially 

advertises an rwnd of 65535 irrespective of window scale option. If the window scale 

option is used, say window scale=1, consecutive TCP segments would have rwnd 

value of 32768. During the analysis, the reneging data receivers initially advertised an 

rwnd of 65535 in the SYN packet and advertised rwnds ~32K in the rest of the PDUs. 

Therefore, we believe the reneging data receivers were running FreeBSD.  

Table 3.12 reports the frequency of reneging for the FreeBSD data receivers. A 

total of 11 reneging instances were observed in 11 flows from 2 different hosts. For 

each flow reneged, a single reneging instance was observed. The average bytes 
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reneged per reneging instance was 3717 bytes (~2.5 MSS PDUs.)  This average 

amount of reneged out-of-order data does not seem significant when compared to 

FreeBSD’s 65535 byte default receive buffer size (sysctl net.inet.tcp.recvspace: 

65536). On average, ~5.6% of the receiver buffer was allocated to reneged out-of-

order data. This behavior indicates that FreeBSD reneges irrespective of out-of-order 

data size. 

Table 3.10: Host characteristics for FreeBSD data receivers 

Date Anonymized 
IP 

MSS 
(SYN)

Win 
Scale 

Rwnd 
(SYN) 

Rwnd 
(Max) 

TS DSACK

20081218 238.47.123.36 1460 1 65535 65535 yes no 

20090115 47.179.43.28 1460 1 65535 65535 yes no 

Table 3.11: Initial advertised rwnd (SYN segments) of various operating systems  

Operating System Default Receive Buffer (bytes) 
FreeBSD 5.3-8.0 65535
Linux 2.4.18-2.6.31 5840
Mac OS X 10.6.0 65535
OpenBSD 4.2-4.7 16384
OpenSolaris 2008-2009 49640
Solaris 10 49640
Windows 2000 65535
Windows XP, Vista, 7 64240

Table 3.12: FreeBSD reneging instances 

Date Anonymized 
IP 

Reneged
Flows 

Total 
Reneging
Instances

Total 
Reneged 

Bytes 

Avg. 
Reneged 

Bytes 
20081218 238.47.123.36 1 1 4380 4380

20090115 47.179.43.28 10 10 36500 3650

TOTAL 11 11 40880 3716
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Table 3.13:  Connection numbers for FreeBSD data receivers 

Date Anonymized 
IP 

Flows using SACKs Flows not using SACKs 
2  

minute
2 

minute 
10 

minute
10 

minute 
20081218 238.47.123.36 1 9

20090115 47.179.43.28 58 5 127 14
 

To check if reneging FreeBSD data receivers were busy servers or clients, we 

counted the number of TCP connections analyzed for each reneging data receiver. 

Table 3.13 presents the results. For FreeBSD, the reneging data receivers did not seem 

busy. We admit that other TCP flows could be established to the reneging data 

receivers which were not available in our traces. As with the Linux reneging data 

receivers did, all of the reneging FreeBSD data receivers (clients) were transferring 

data from web servers. 

FreeBSD employs global reneging where all TCP connections having out-of-

order data are reneged simultaneously (see Section 4.4). To confirm this behavior, we 

analyzed reneging times for the data receiver identified with IP 47.179.43.28 on 

2009/01/15. Table 3.14 reports the timestamp values for two acks observed at the 

intermediate router. The first timestamp (column 4) is for the last ack monitored where 

the comparison with the receive buffer state was still consistent. The next timestamp 

(column 5) is for the ack that caused detecting of the reneging instance. Reneging is 

presumed to have occurred sometime between those two timestamps. The timestamps 

are clustered around two values: 09:19:02.0xx (flows with port numbers: 50490, 

55470, and 61942) and 09:19:31.5yy (flows with port numbers: 50265, 54867, 56888, 

and 62318). These clustered timestamps indicate that global reneging is employed.  
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Table 3.14: Timestamp values of a reneging FreeBSD data receiver 

Date Anonymized 
IP 

Port Timestamp of ack 
Before Reneging 

Timestamp of 
ack Detecting Reneging 

20090115 47.179.43.28 50265 09:19:31.589 09:19:31.735 

20090115 47.179.43.28 50490 09:19:02.085 09:19:02.131 

20090115 47.179.43.28 54867 09:19:31.584 09:19:31.631 

20090115 47.179.43.28 55470 09:19:02.106 09:19:02.153 

20090115 47.179.43.28 56888 09:19:31.567 09:19:31.713 

20090115 47.179.43.28 59319 09:15:54.138 09:15:54.285 

20090115 47.179.43.28 61942 09:19:02.060 09:19:02.405 

20090115 47.179.43.28 62318 09:19:31.571 09:19:31.617 

20090115 47.179.43.28 63763 09:19:12.112 09:19:12.449 

20090115 47.179.43.28 64543 09:19:31.600 09:19:31.647 
 

 

Figure 3.12: A FreeBSD reneging instance 
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Figure 3.12 shows a FreeBSD reneging instance on 2009/01/15. Reneging is 

detected with the receipt of ack (#17, ACK 44401) which informs that previously 

SACKed data 44401-48781 are MISSING. Later, retransmissions for the MISSING 

data are monitored (data packets (#18, #20, and #21) and ACK is increased steadily 

after each retransmission. Therefore, we conclude that reneging occurred. 

3.2.5.1.5 Windows Reneging Instances 

This section characterizes Windows reneging instances observed in the 

CAIDA traces. First, we explain how we inferred that data receivers were running 

Windows by examining reneged flows TCP fingerprints. Second, detailed statistics 

regarding the frequency of reneging are reported. Next, for the reneging data receivers, 

we analyze the characteristics of the reneging and non-reneging connections and type 

of reneging employed (global vs. local). Finally, a representative Windows reneging 

instance is detailed. 

We believe that reneging data receivers listed in Table 3.15 are Windows 

hosts. Table 3.15 details the fingerprints (characteristics) of the reneging hosts. The 

reneging data receivers did not use the window scale, timestamp, and DSACK options. 

In addition, all of the reneging data receivers reported at most 2 SACK blocks and the 

data receivers identified with IPs: 45.36.231.185 and 247.9.212.28 reported at most 2 

SACKs when it was known that at least 3 SACK blocks existed at the receiver 

(Misbehavior A2). Misbehavior A2 is observed only in Windows 2000, XP and Server 

2003 (see Section 2.4). These TCP fingerprints suggest that the reneging data 

receivers were running Windows 2000, XP or Server 2003. The TCP/IP 

implementation for those operating systems is detailed in [MacDonald 2000] and 

[Windows 2003]. First, all three operating systems support the window scale and 
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timestamp option [RFC1323]. By default, a Windows host does not advertise these 

options but enables their use if the TCP peer that is initiating communication includes 

them in the SYN segment. Second, for the three Windows systems, the advertised 

rwnd is determined based on the media speed. [Windows 2003] specifies that if the 

media speed is [1Mbps-100Mbps), rwnd is set to twelve MSS segments. If the media 

speed is [100Mbps-above), rwnd is set to 64KB. The data receivers specified with IPs: 

7.30.83.155 and 126.14.171.216 did not match this specification. But their maximum 

rwnd was set to 25*MSS and 45*MSS during the course of connection, respectively. 

Both [MacDonald 2000] and [Windows 2003] specify that Windows TCP adjusts 

rwnd to even increments of the maximum segment size (MSS) negotiated during 

connection setup. This specification makes us believe those data receivers were 

running Windows.  

Table 3.15: Host characteristics for Windows data receivers 

Date Anonymized 
IP 

MSS 
(SYN)

Win 
Scale 

Rwnd 
(SYN) 

Rwnd 
(Max) 

TS DSACK

20080430 59.190.212.36 1452 n/a 16384 17424 no no 

20080430 247.9.212.28 n/a n/a n/a 61320 no no 

20080515 7.30.83.155 1360 n/a 32767 34000 no no 

20080619 238.20.116.194 1460 n/a 65535 65535 no no 

20081016 54.147.61.79 1460 n/a 65535 65535 no no 

20090115 126.14.171.216 1452 n/a 64240 65340 no no 

20090331 215.35.134.36 n/a n/a n/a 65535 no no 

20090618 58.104.167.176 1460 n/a 65535 65535 no no 

20090820 45.36.231.185 1414 n/a 65535 65535 no no 

 

Table 3.16 reports the Windows reneging instances detected. 75 reneging 

instances were observed in 53 flows from 9 different hosts. This behavior indicates 
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that multiple TCP flows renege per Windows data receiver. The average number of 

reneging instances per flow was 1.41 (75/53) which suggests that Windows reneging 

occurs multiple times per flow. The average bytes reneged per reneging instance was 

1371 bytes (~ 1 MSS PDU).  

Table 3.16: Windows reneging instances 

Date Anonymized 
IP 

Reneged 
Flows 

Total 
Reneging 
Instances 

Total 
Reneged 

Bytes 

Avg. 
Reneged 

Bytes 
20080430 59.190.212.36 1 1 98 98

20080430 247.9.212.28 1 3 8760 2920

20080515 7.30.83.155 6 20 15085 754

20080619 238.20.116.194 1 1 4096 4096

20081016 54.147.61.79 1 1 1460 1460

20090115 126.14.171.216 1 1 287 287

20090331 215.35.134.36 1 2 3929 1965

20090618 58.104.167.176 1 2 7100 3550

20090820 45.36.231.185 40 44 61975 1409

TOTAL 53 75 102790 1371
 

To check if reneging Windows data receivers were busy servers or clients, we 

listed the number of TCP connections analyzed for each reneging data receiver in 

Table 3.17. For Windows, the reneging data receivers did not seem busy except for the 

data receiver identified with IP 59.190.212.36. We admit that other TCP flows could 

be established to the reneging data receivers which were not observed in our traces. 

Majority of the data receivers (clients) were transferring data from web servers. Two 

of the data receivers (clients) were transferring data using ephemeral port numbers and 

one data receiver was a Simple Mail Transfer (SMTP) server. 
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Table 3.17: Connection numbers for reneging Windows data receivers 

Date Anonymized 
IP 

Flows using SACKs Flows not using SACKs 
2 

minute
2 

minute
10 

minute
10 

minute 
20080430 59.190.212.36 6 0 40 882

20080430 247.9.212.28 1 1

20080515 7.30.83.155 1 0 10 13

20080619 238.20.116.194 1

20081016 54.147.61.79 0 1

20090115 126.14.171.216 1 0 1 16

20090331 215.35.134.36 1 1 2

20090618 58.104.167.176 2

20090820 45.36.231.185 9 73 56
 

Since Windows TCP/IP stack is not open-source, it is unknown if Windows 

employs local or global reneging. The Windows reneging instances from different 

flows all happened at different times suggesting that Windows employs local 

reneging. 

For the Windows reneging instances, two types of reneging behaviors were 

observed. The first type is more common and observed in 49 reneging flows. In the 

first type of reneging, only a single out-of-order segment was reneged and the 

consecutive out-of-order data were not SACKed even though these data are known to 

be in the receive buffer. This type of reneging is detailed with an example reneging 

instance shown in Figure 3.13. The second type of reneging is observed in 4 flows. 

This type of reneging behavior is similar to FreeBSD reneging behavior shown in 

Figure 3.12.  

Figure 3.13 shows a Windows reneging instance that occurred on 2008/05/15 

which is an example of the first type of Windows reneging behavior. The initial state 

of the data receiver’s receive buffer is known as stateACK 74511. First, data packets 



 94

(#1, 74511-75871) through (#7, 81321-81708) are monitored at the intermediate 

router. The ack (#9, ACK 75871 SACK 77231-78591) informs the data sender that 

data packet (#1) is received in order and data packet (#3, 77231-78591) is received 

out-of-order. The state is updated to stateACK 75871, stateSACK 77231-78591. The 

next ack (#10, ACK 77231) in acknowledges the receipt of data packet (#2, 75871-

77231) in order. Unfortunately, ACK is increased to the left edge of previously 

SACKed out-of-order data (stateSACK 77231-78591) giving the impression that data 

are reneged. RenegDetect v2 marks 77231-78591 as MISSING. Next, 4 duplicate acks 

are observed (#11, #12, #13, and #14 ACK 77231). We believe these duplicate acks 

are sent when data packets (#4, #5, #6, and #7) are each received out-of-order at the 

data receiver. When the data sender retransmits the MISSING data, data packet (#15, 

77231-78591), ACK is increased beyond the MISSING data. Therefore, we conclude 

that reneging occurred. Interestingly, ACK is increased to 81708 after the 

retransmission which confirms that data packets (#4, #5, #6, and #7) are received out-

of-order. Even though data packets (#4, #5, #6, and #7) were received out-of-order, 

the data receiver misbehaved and did not report out-of-order received data with 

SACKs.  

3.2.5.2 SIGCOMM 2008 Traces 

In this section, we analyze the reneging in SIGCOMM 2008 conference traces 

collected at August, 2008. First, we describe the topology and how the traces are 

collected in Section 3.2.5.2.1. Later, in Section 3.2.5.2.2, we present our findings.     
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Figure 3.13: A Windows reneging instance 

3.2.5.2.1 Description of Traces 

The SIGCOMM 2008 traces consist of three types of traces: (a) wireless 

(802.11a): collected from eight 802.11a monitors placed at the four corners of the 

main conference hall, (b) Ethernet: the packets captured between the Network Address 

Translator (NAT) and the Access Point (AP), and (c) Syslog from Access Point. For 

our reneging investigation, we were interested in (a) wireless traces, and (b) Ethernet 

traces, because only these traces contained TCP traffic using SACKs. In traces, all IP 

addresses of were anonymized using the tcpmkpub tool; and DHCP assigned IPs for 

local hosts in the 26.12.0.0/16 and 26.2.0.0/16 subnets after the anonymization 

process. For more information on the traces, see [Sigcomm 2008]. 
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Wireless traces were collected for four days starting from 08/18/2008 to 

08/21/2008 on eight 802.11a monitors where some TCP flows were captured on 

multiple 802.11a monitors. Ethernet traces are more complete, and were collected for 

five days between 08/17/2008 and 08/21/2008. 

Table 3.18 and 3.19 present the statistics for the percentage of data for the TCP 

flows using SACKs in wireless and Ethernet traces, respectively. Table 3.18 indicates 

that the percentages of data that falls between (0, 95) interval (columns 4 and 5) 

ranges from 28.19% to 48.24% in the wireless traces. This behavior implies that gaps 

in the data were observed due to packet losses during trace capture. We ignored these 

wireless traces since missing data/retransmissions would bias the results in favor of 

not reneging instances. 

Table 3.18: Percentage of data monitored in wireless traces 

Date 100% [95, 100)% (0, 95)% 0% Multiple flows 
20080818 36.44 15.31 43.23 2.41 1.97 
20080819 52.06 4.88 29.84 5.55 7.03 
20080820 60.13 4.16 22.21 5.98 5.85 
20080821 37.90 2.35 36.49 11.75 7.05 

Table 3.19: Percentage of data monitored in Ethernet traces 

Date 100% [95, 100)% (0, 95)% 0% Multiple flows 
20080817 88.24 0.00 0.00 0.00 11.76 
20080818 93.38 1.07 0.32 0.64 4.59 
20080819 92.82 0.13 0.06 0.31 6.68 
20080820 93.08 0.19 0.02 0.16 6.55 
20080821 94.01 0.09 0.00 0.14 5.76 

 

In the Ethernet traces shown in Table 3.19, the data that falls between (0, 95) 

interval (columns 4 and 5) ranges from 0.00% to 0.96%. Recall that the Ethernet data 
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collection monitor was placed between the AP and the NAT, and therefore included 

all the TCP flows from the wireless traces. Since the wireless traces contain gaps in 

the data, we only analyzed Ethernet traces for reneging analysis. 

3.2.5.2.2 Results 

In this section, we document the frequency of reneging in the SIGCOMM 2008 

Ethernet traces. Table 3.20 presents the number of TCP flows using SACKs and the 

frequency of reneging in the Ethernet traces. The columns of the table show the date 

(in yyyymmdd format), the number of TCP flows using SACK blocks analyzed, the 

number of candidate reneging flows, and the number of reneged flows, respectively. 

The candidate reneging flows are those that satisfy the following two conditions:  (a) 

some SACK block(s) were MISSING and (b) data retransmissions for the MISSING 

SACK block(s) were observed. Each candidate reneging flow was analyzed by hand in 

detail using wireshark [Wireshark] to determine if reneging happened or if the 

candidate reneging instance was an instance of a misbehavior. Upon analysis, we 

found that all of the candidate reneging instances were misbehavior instances. Out of 

42 candidate reneging flows (0.27% of all flows) analyzed, no flows reneged.  

Table 3.20: Reneging frequency of SIGCOMM 2008 traces 

Date Flows using SACKs Candidate Reneging Flows Reneged Flows 
20080817 45 0 0
20080818 1791 34 0
20080819 2974 2 0
20080820 8858 4 0
20080821 2015 2 0
TOTAL 15683 42 (0.27%) 0 (0.00%)
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In our analysis on SIGCOMM 2008 traces, we found the frequency of reneging 

to be 0%. This result suggests that reneging is a rare event. 

3.2.5.3 Lawrence Berkeley National Laboratory (LBNL) Traces 

In this section, we present the reneging frequency of LBNL enterprise traces 

captured between October, 2004 and January, 2005. First, we describe the traces in 

Section 3.2.5.3.1. Later, in Section 3.2.5.3.2, we present the results.     

3.2.5.3.1 Description of Traces 

LBNL traces characterize internal enterprise traffic recorded at a medium-sized 

site. The traces (11GB) span more than 100 hours of activity from a total of several 

thousand internal hosts where the IP addresses of the internal hosts were anonymized 

using tcpmkpub tool. For more information on the traces, see [LBNL 2004]. 

The enterprise traces were collected for 5 days from October, 2004 to January, 

2005. Table 3.21 presents the statistics for the percentage of data for the TCP flows 

using SACKs in the enterprise traces. The data that falls between (0, 95) interval 

(columns 4 and 5) ranged from 0.08% to 2.09%. Those flows were ignored along with 

the traces containing multiple TCP flows (column 6) for reneging analysis.  

Table 3.21: Percentage of data monitored in LBNL traces 

Date 100% [95, 100)% (0, 95)% 0% Multiple flows 
20041004 96.03 0.90 0.18 1.91 0.98 

20041215 97.26 0.00 0.01 0.16 2.57 

20041216 95.95 0.05 0.02 0.07 3.92 

20050106 97.05 0.20 0.00 0.08 2.67 

20050107 96.36 0.09 0.02 0.13 3.39 
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3.2.5.3.2 Results 

In this section, we present the results of reneging analysis of the enterprise 

traces provided by LBNL. Table 3.22 presents the frequency of reneging in the LBNL 

traces. Out of 16 candidate reneging flows (0.06% of all flows), no flows reneged. We 

report that all the candidate reneging flows were instances of SACK generation 

misbehaviors.  

Table 3.22: Reneging frequency of LBNL traces 

Date Flows using 
SACKs 

Candidate Reneging 
Flows 

Reneged Flows 

20041004 2684 1 0 
20041215 8134 1 0 
20041216 5757 2 0 
20050106 4822 6 0 
20050107 4357 6 0 
TOTAL 25754 16 (0.06%) 0 (0.00%) 

 

In [Blanton 2008], the author also analyzed LBNL traces to report the 

frequency of reneging. Reneging instances were detected when an ACK increased in 

the middle of a previously reported SACK. Out of 26,589 TCP flows analyzed, the 

author reported no instances of reneging. The results of both analyses (our and 

[Blanton 2008]) are the same: the frequency of reneging reported in LBNL traces is 

0.00%. For the same traces, we analyzed less number of TCP flows (25754) since the 

traces having gaps in the data or containing multiple flows were discarded.  

In [Blanton 2008], the author defined a flow as “bogus” if a SACK information 

was significantly outside of the analyzed sequence space. The author reported 3 

“bogus” reneging flows in the LBNL traces. Figure 3.14 shows an example tcpdump 

output for such a “bogus” reneging flow. The ack (lines 3, 4) notifies the data sender 
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that the data segment (lines 1, 2) was received in order. Unfortunately, the left edge of 

the reported SACK block 84025636-271085380 is same as the ACK. This behavior 

was detected as a reneging instance in [Blanton 2008]. Note that the SACK block in 

Figure 3.14 claimed that 187,059,744 (!) bytes were in the receive buffer. We believe 

that this behavior is another instance of a misbehaving TCP stack. RenegDetect v2 

also detected those “bogus” reneging flows in the LBNL traces. Unlike [Blanton 

2008], RenegDetect v2 identified 4 flows as “bogus” and did not report these “bogus” 

flows as candidate reneging flows since no data retransmissions were observed for the 

MISSING data.   

  

Figure 3.14: An example “bogus” reneging instance 

In our analysis on LBNL traces, we found the frequency of reneging to be 0%. 

This result suggests that reneging is a rare event. 

3.3 Conclusion 

To document the frequency of TCP reneging in trace data, we proposed a 

mechanism to detect reneging instances. The proposed mechanism is based on how an 

SCTP data sender infers reneging. A state of the receive buffer is constructed at an 

intermediate router and updated through new acks. When an inconsistency occurs 

between the state of the receive buffer and a new ack, reneging is detected. We 

implemented the proposed mechanism as a tool called RenegDetect.  
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While verifying RenegDetect with real TCP flows, we discovered that some 

TCP implementations were generating SACKs incompletely under some 

circumstances giving a false impression that reneging was happening. To identify 

reneging instances more accurately, we updated RenegDetect to better analyze the 

flow of data, in particular, to analyze data retransmissions which are a more definitive 

indication that reneging happened.   

Our initial hypothesis was that reneging rarely if ever occurs in practice. For 

that purpose, TCP traces from three domains (Internet backbone (CAIDA), wireless 

(SIGCOMM), enterprise (LBNL)) were analyzed using RenegDetect.  

Contrary to our initial expectation that reneging is extremely rare event, trace 

analysis demonstrated that reneging does happen. Therefore, we could not reject our 

initial hypothesis H0 that P(reneging) < 10-5. Since reneging instances were found, 

analyzing 300K TCP flows were no longer necessary. As a result, we ended up 

analyzing 202,877 TCP flows using SACKs from the three domains.  Table 3.23 

reports the frequency of TCP reneging in the three domains. In the TCP flows using 

SACKs, we detected 104 reneging flows. Based on these observations, we estimated 

with 95% confidence that the true average rate of reneging is in the interval [0.041%, 

0.059%], roughly 1 flow in 2,000 (0.05%). 

Table 3.23: Frequency of reneging  

Trace Flows using 
SACKs 

Linux 
Reneging 

FreeBSD 
Reneging 

Windows 
Reneging 

Total 
Reneging 

CAIDA 161440 40 11 53 104
SIGCOMM 15683 0 0 0 0

LBNL 25754 0 0 0 0
TOTAL 202877 40 

(0.02%)
11 

(0.00%)
53 

(0.03%) 
104 

(0.05%)
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The frequency of TCP reneging we found, 0.05%, is greater than the results in 

[Blanton 2008] where the frequency of reneging is reported as 0.017%. Together the 

results of these two studies allow us to conclude that reneging is a rare event.   

In the 104 reneging flows, a total of 200 reneging instances were detected. This 

behavior suggests that multiple reneging instances occur per reneging flow. For each 

reneging flow, we tried to fingerprint the operating system of the reneging data 

receiver, and generalize reneging behavior of Linux, FreeBSD, and Windows data 

receivers.    

In this study, we investigated the frequency of TCP reneging to conclude if 

TCP’s design to tolerate reneging is correct. If we could document that reneging never 

occurs, TCP had no need to tolerate reneging. However, reneging occurs rarely (less 

than 1 flow per 1000), we believe the current handling of reneging in TCP can be 

improved.  

TCP is designed to tolerate reneging by defining a retransmission policy for a 

data sender [RFC2018] and keeping the SACKed data in the data sender’s send buffer 

until cumulatively ACKed. With this design, if reneging does not happen or happens 

rarely, SACKed data are unnecessarily stored in the send buffer wasting operating 

system resources.   

To understand the potential gains for a protocol that does not tolerate reneging, 

SCTP’s NR-SACKs (Non-Renegable SACKs) are detailed in Section 1.2.2. With NR-

SACKs, an SCTP data receiver takes the responsibility for non-renegable data (NR-

SACKed), and, an SCTP data sender needs not to retain copies of NR-SACKed data in 

its send buffer until cumulatively ACKed. Therefore, memory allocated for the send 

buffer is better utilized with NR-SACKs. NR-SACKs also improve end-to-end 
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application throughput. When the send buffer is full, no new data can be transmitted 

even when congestion and flow control mechanisms allow. When NR-SACKed data 

are removed from the send buffer, new application data can be read and potentially 

transmitted.  

If current TCP was designed not to tolerate reneging, the send buffer utilization 

would be always optimal, and the application throughput might be improved for data 

transfers with constrained send buffers (assuming asymmetric buffer sizes (send buffer 

< receive buffer) and no auto-tuning). Unfortunately, TCP is designed to tolerate 

reneging.  

Let us compare TCP’s current design to tolerate reneging with a TCP that does 

not support reneging using the results from our reneging analysis. With current design, 

TCP tolerates reneging to achieve the reliable data transfer of 104 reneging flows. The 

202,773 non-reneging flows waste main memory allocated to send buffer and 

potentially achieve lower throughput.  

I argue that the current design to tolerate reneging is wrong since reneging is a 

rare event. Instead, I suggest that the current semantics of SACKs should be changed 

from advisory to permanent prohibiting a data receiver to renege. If a data receiver 

does have to take back memory that has been allocated to received out-of-order data, I 

propose that the data receiver must RESET the transport connection. With this change, 

104 reneging flows would be penalized by termination. On the other hand, 202,773 

non-reneging flows benefit from better send buffer utilization and possible increased 

throughput. The increased throughput is only possible for data transfers with 

constrained send buffers (assuming asymmetric buffer sizes (send buffer < receive 
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buffer) and no auto-tuning) and needs modifications in TCP’s send buffer 

management. 

Initially, reneging was thought as a utility mechanism to help an operating 

system to reclaim main memory back under low-memory situations. In our 

investigation, we found that the average main memory returned to the reneging 

operating system per reneging instance is on the order of 2 TCP segments (2715, 

3717, and 1371 bytes for Linux, FreeBSD, and Windows operating systems, 

respectively.) This average amount of main memory reclaimed back to operating 

system seems relatively insignificant. For example, to reclaim 3MB of main memory 

back to FreeBSD, 846 simultaneous TCP flows each having 3717 bytes of out-of-

order data would need to be reneged. On the other hand, our experimentation with 

FreeBSD showed that terminating a single TCP flow established to Apache web server 

releases ~3MB of main memory in FreeBSD. Therefore, I believe that RESETing a 

TCP flow is a better strategy to help an operating system rather than the current 

handling of reneging.  

I also had a chance to discuss why reneging is tolerated in TCP with Matt 

Mathis, the main editor of [RFC2018]. He told me that the semantics of SACKs are 

advisory since a reliable data transfer would fail if SACKs were permanent and some 

TCP stacks implement SACKs incorrectly. By specifying SACKs advisory, TCP is 

more robust to SACK implementations having bugs. I argue that this design choice is 

wrong. Similarly, a TCP stack implementing a wrong ACK mechanism would cause a 

data transfer to fail. I believe it is the protocol implementor’s responsibility to provide 

a conformant implementation. In my opinion, the protocols should be specified to 

achieve the best performance and not be designed to tolerate incorrect 
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implementations. I argue that TCP’s current mechanism to tolerate reneging achieves 

a lower memory utilization when compared to a TCP with no reneging support and 

should be changed. 
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Chapter 4 

RENEGING SUPPORT IN OPERATING SYSTEMS 

This chapter presents reneging support within the following operating systems: 

FreeBSD, Linux (Android), Mac OS X, OpenBSD, Solaris and Windows.  Reneging 

has been studied only once in the research community to report its frequency [Blanton 

2008], but the causes of reneging are unknown. The general assumption is that 

reneging happens when an operating system goes low on memory to help the 

operating system recover and resume normal operation. But no one knows if this 

assumption is true. Our objective is to document the circumstances of reneging in 

detail for operating systems with reneging support. For that, various TCP stacks are 

inspected and the interactions between the TCP stack and operating system during 

reneging are reported. Once the circumstances of reneging are better understood, a 

tool to cause a remote host to renege can be implemented. In Chapter 5, such a tool is 

presented, and three operating systems are purposefully reneged to inspect the 

consequences on the operating system and its transport layer connections. In this 

chapter, we first investigate what causes reneging.   

To determine which operating systems to study for reneging, we decided to 

inspect those operating systems which are both popular and support SACKs 

[RFC2018]. Table 4.1 presents the operating systems with at least 0.01% market share 

on 10/21/2009 reported by www.netmarketshare.com [Market]. Microsoft’s Windows 

occupies the major portion of the market share (greater than 91%). Unfortunately, 

Microsoft’s operating systems are not open source, so their TCP stack cannot be 
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inspected for reneging. To learn more about reneging support in Windows, I contacted 

implementors of Microsoft’s TCP stack and asked if the stack has any support for 

reneging. Their responses are discussed in Section 4.1.  

Table 4.1: Market share of popular operating systems in 2009 [Market] 

Operating System Market Share RFC 2018 Support Reneging 

Windows XP 71.51% yes  
Windows Vista 18.62% yes yes 
Mac OS X 10.5 3.03% yes yes 
Mac OS X 10.4 0.96% yes yes 
Windows 2000 0.85% yes  
Linux 0.95% yes yes 
iPhone 0.35%   
Mac OS X Mach-O 0.08% yes yes 
Windows 98 0.11% yes  
Windows ME 0.06% yes  
iPod 0.07%   
Windows NT 0.10% no  
Java ME 0.30%   
Android 1.5 0.02% yes yes 
Symbian 0.15%   
Windows CE 0.04%   
PLAYSTATION 3 0.02%   
PSP 0.01%   
BlackBerry 0.02%   
FreeBSD 0.01% yes yes 
Total 97.26%   

 

The second most popular operating system after Microsoft’s Windows is 

Apple’s Mac OS X. Reneging support in Mac OS X is detailed in Section 4.2. 

Linux is the third most popular operating system. Reneging support for Linux 

and Linux-based Android is presented in Section 4.3.  

Reneging is expected to happen on hosts which go low on main memory. 

Therefore, a web server with thousands of active TCP connections is a stronger 
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candidate to renege rather than a web client averaging a few active TCP connections at 

the time. So in addition to operating systems with a significant market share, we 

decided to inspect operating systems that are used by busy web servers. 

One can argue that most web servers are data senders, and reneging is expected 

to take place at a data receiver. So why should we inspect TCP stacks of the operating 

systems hosting web servers? Web pages such as www.rapidshare.com, 

www.flickr.com, photobucket.com, imageshack.us, www.dailymotion.com and 

megaupload.com provide online data storage services to their users. These web pages 

play the role of both a data sender and a data receiver. Hence, reneging support should 

be investigated for those operating systems. 

To find out which operating systems are used by popular web servers, I ran the 

Network Mapper (nmap) tool [Nmap] on [Alexa]’s most visited 100 web pages in 

2009. Nmap can detect the operating system and services of a remote host. Table 4.2 

presents the results for operating systems and services detected by nmap for the most 

visited 100 web pages in 2009. For the Microsoft web pages, www.msn.com and 

www.microsoft.com, nmap could not detect the operating system running. We can 

infer that those web pages are hosted on a Windows operating system by simply 

inspecting the services used (Microsoft IIS Webserver.) 

Several top 100 web pages are hosted on FreeBSD, Linux, OpenBSD, and 

Windows. Reneging support for FreeBSD and OpenBSD is detailed in Sections 4.4 

and 4.5, respectively.  

Solaris is an operating system with SACK support [RFC2018] that we tested in 

Chapter 2 for proper TCP SACK generation. While analyzing the TCP stack of 
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Solaris, a cause for reneging was found accidentally. Section 4.6 details reneging in 

Solaris.   

Table 4.2: Nmap detected operating systems of some of the Alexa's Top Sites 

Rank Domain Operating System Services 

1 google.com OpenBSD 4.0 Google Httpd 2.0 (GFE) 
3 yahoo.com FreeBSD 6.3  
5 live.com Linux 2.6.5-2.6.12 Akamai SSH Server-VII 
6 wikipedia.com Linux 2.6.9-2.6.27 Apache httpd 
8 msn.com UNKNOWN Microsoft IIS webserver 6.0 

16 microsoft.com UNKNOWN Microsoft IIS webserver 7.5 
21 rapidshare.com Linux 2.6.15 - 2.6.26 http? 
25 amazon.com OpenBSD 4.0 http? 
32 flickr.com Linux 2.4.32 Apache httpd 
34 craigslist.org FreeBSD 6.2 http? 
42 photobucket.com Linux 2.4.31 - 2.4.34 Apache httpd 
62 imageshack.us Linux 2.6.9 - 2.6.24 lighttpd 1.5.0 
83 dailymotion.com Linux 2.6.9 http? 
85 megaupload.com Linux 2.6.15 - 2.6.26 Apache httpd 

 

In the following sections, variables, functions, structures and file names related 

to the TCP implementations are shown in italics. 

4.1 Reneging in Microsoft’s Windows 

Microsoft’s operating system code is not publicly available. To gain insight 

into reneging behavior in Windows systems, I contacted Dave MacDonald, the author 

of Microsoft Windows 2000 TCP/IP Implementation Details [MacDonald 2000]. Dave 

confirmed that reneging is not possible in Windows 2000, XP and Server 2003.  

Vista and its successors (Windows Server 2008 and 7) have a brand new TCP 

stack. Dave stated that “in Vista+ (Vista and its successors), the only time we renege 

on reassembly data is if we think the memory consumption of total reassembly data in 
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relation to the global memory limits is significant.” From the emails exchanged, I 

believe Vista’s reneging mechanism makes sure a connection maintains a minimum 

amount of forward progress in its end-to-end data transfer. If forward progress 

happens, reneging does not occur. If no forward progress happens for a maximum 

time, reneging is invoked and out-of-order data are consequently discarded. Recall that 

the Microsoft’s TCP stack code is not publicly available, so our conclusion for 

reneging behavior in Windows is only a conjecture.  

Dave stated that the purpose of the reneging mechanism in Windows is to 

protect the operating system against denial of service (DoS) attacks where attackers 

force Windows to create state and exhaust resources. Initially, reneging is thought of 

as a mechanism that helps an operating system which goes low on system resources. 

Using reneging, an operating system would reclaim some resources back to resume its 

normal operation. In Windows, on the other hand, reneging seems to have a different 

purpose: to protect the operating system from DoS attacks similar to SYN flood. In a 

SYN flood attack, attackers send SYN requests to a victim to open fake connections 

and consume the victim’s resources, and in the extreme make the victim’s services 

unavailable. To consume even more resources, an attacker could fill open TCP 

connections with out-of-order data thus using up memory for receive buffers. To 

protect from such attacks, Windows uses reneging as an attack protection mechanism.  

In Section 5.4, Windows Vista and 7 hosts are reneged and the consequences 

of reneging are presented.   

4.2 Reneging in Mac OS X 

This section details reneging support in Mac OS operating system. The Mac 

OS X kernel is called X is Not Unix (XNU) [Singh 2003]. The TCP/IP stack of XNU 
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is based on XNU's Berkeley Software Distribution (BSD) component whose primary 

reference codebase is FreeBSD (5.x). XNU has the same mechanism for turning on/off 

data reneging as does FreeBSD which is detailed in Section 4.4. A major difference 

between Mac OS and FreeBSD is that currently reneging is off by default in Mac OS 

X (xnu 1699.24.8) [MacOS] while on by default in FreeBSD. The code segment in 

Figure 4.1 sets the default behavior for reneging in Mac OS X to off (lines 2, 3), 

defined in bsd/netinet/tcp_subr.c. 

 

Figure 4.1: Setting up the default reneging behavior in Mac OS X 

 

Figure 4.2: Call graph for reneging in Mac OS X 
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The call graph in Figure 4.2 summarizes the function calls causing a TCP data 

receiver to renege in Mac OS X. 

 

Figure 4.3: mbuf_slab_alloc() function in Mac OS X 

In Mac OS X, caches of mbufs and mbuf clusters exist per CPU. Mbufs/mbuf 

clusters are structures which store network packets such as Ethernet, IP, and TCP 

PDUs. Both mbufs and mbuf clusters are defined by rudimentary object type in Mac 

OS X. Allocation requests for a rudimentary object are first satisfied from the CPU 

cache using mcache_alloc() or mcache_alloc_ext() functions. When not enough mbufs 

or mbuf clusters exist in the CPU cache, mbuf_slab_alloc(), defined in 
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bsd/kern/uipc_mbuf.c, is used to allocate rudimentary objects from a global freelist of 

the slab layer. Figure 4.3 shows a code segment from the mbuf_slab_alloc() function. 

If the global freelist is empty, mbuf_slab_alloc() attempts to populate it (line 1) first. If 

the attempt to populate the freelist fails, the mbuf_sleep() function is called for the 

blocking allocation calls (line 31). 

mbuf_sleep(), defined in bsd/kern/uipc_mbuf.c and shown in Figure 4.4, is 

called during a blocking allocation. mbuf_sleep() tries to serve the request from the 

CPU cache layer first (line 14). If the request cannot be allocated from the cache layer, 

m_reclaim() is invoked (line 20). 

 

Figure 4.4: mbuf_sleep() function in Mac OS X 

m_reclaim(), defined in bsd/kern/uipc_mbuf.c, sets a global variable called 

do_reclaim to 1 (on) which is used by the pfslowtimo() function. pfslowtimo(), shown 

in Figure 4.5 and defined in bsd/kern/uipc_domain.c, causes reneging in Mac OS X. 
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The pfslowtimo() is similar to FreeBSD’s mb_reclaim() function shown in Figure 

4.15. The pr_drain function of each protocol is invoked (line 21) when do_reclaim is 

set to 1 (on). In Mac OS X, pr_drain for TCP is initialized in bsd/netinet/in_proto.c 

with the value tcp_drain. 

 

Figure 4.5: pfslowtimo() function in Mac OS X 

Reneging in Mac OS X happens when the tcp_drain() function is called, 

defined in bsd/netinet/tcp_subr.c, by the pfslowtimo() function. The 

net.inet.tcp.do_tcpdrain sysctl should be set to on (1) beforehand by a system 

administrator for data reneging to happen. Remember that reneging is turned off by 

default in Mac OS X. tcp_drain() uses the m_freem() function in Figure 4.6 (line 27) 

to delete the reassembly queue which is formed as an mbuf/mbuf cluster chain. Again 
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the tcp_drain() function is similar to its corresponding sibling in FreeBSD shown in 

Figure 4.18.  

  

Figure 4.6: tcp_drain() function in Mac OS X 

In Mac OS X, reneging is supported by the operating system, and the function 

calls that can cause a machine to renege are explained above. By default, reneging is 

turned off. In conclusion, reneging does not happen in Mac OS X unless enabled by a 

system administrator beforehand. 
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4.3 Reneging in Linux 

This section explains the reneging support in the Linux and Android operating 

systems. Android is a Linux-based operating system for mobile devices such as cell 

phones. The Android kernel is based on Linux kernel 2.6.xx and complies with Linux’ 

reneging behavior explained in this section. The call graph in Figure 4.7 summarizes 

the function calls which cause reneging. 

 

Figure 4.7: Call graph for reneging in Linux 

In Linux, out-of-order data are stored in out_of_order_queue defined in 

include/linux/tcp.h [Linux]. The tcp_prune_ofo_queue() function, shown in Figure 4.8, 

clears the out_of_order_queue of a TCP connection, causing a Linux data receiver to 

renege (line 12) with the __skb_queue_purge() call for the out_of_order_queue. 
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Related SACK information for out-of-order data are deleted using the function 

tcp_sack_reset() (line 20). As a result, reneging in Linux is possible and happens when 

tcp_prune_ofo_queue() is invoked. 

 

Figure 4.8: tcp_prune_ofo_queue() function in Linux 

Linux’s TCP stack (specifically kernel version: 2.6) [Linux] includes a 

function, tcp_prune_queue(), that reduces a socket’s allocated memory if the socket 

exceeds its available memory limit. When a socket’s allocated memory exceeds the 

limit, the tcp_prune_queue() function can delete out-of-order data from the receive 

buffer by calling the tcp_prune_ofo_queue () function as shown in Figure 4.9 (line 

30).  
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Figure 4.9: tcp_prune_queue() function in Linux 

Both the tcp_prune_queue() and the tcp_prune_ofo_queue() functions can be 

invoked from the tcp_try_rmem_schedule() function shown in Figure 4.10. If the 

tcp_prune_queue() call (line 6) returns a negative value (meaning that 

tcp_prune_ofo_queue() is already called by the tcp_prune_queue()), 

tcp_try_rmem_schedule() returns. Otherwise, the tcp_prune_ofo_queue() can be 

invoked (line 10). Note that tcp_try_rmem_schedule() invokes the tcp_prune_queue() 

and tcp_prune_ofo_queue() functions when the memory allocated for receive buffer 

exceeds the socket’s limit for receive buffer (line 3). 
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Figure 4.10: tcp_try_rmem_schedule()  function in Linux 

In [Seth 2008], the authors state that calling tcp_try_rmem_schedule() 

eventually may lead to reneging when the socket’s memory pool is exhausted and 

allocation needs to be done from the global TCP memory pool. According to [Seth 

2008], this situation happens when a) an application is unable to read data queued up 

at the receive buffer, and b) a large number of out-of-order segments are received. 

4.3.1 Local vs. Global Reneging   

In Linux, reneging happens only for the connection(s) exceeding their receive 

buffer limits. So it is possible to have reneging and non-reneging TCP connections 

simultaneously. We define this behavior as local reneging. On the other hand, 

reneging in Mac OS X and FreeBSD happens for all the active connections with out-

of-order data. We define this behavior as global reneging. In Chapter 5, we cause 

operating systems to renege, inspect the consequences of reneging, and in Section 5.5 

compare the pros and cons of local vs. global reneging.  
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In conclusion, reneging happens in Linux and Android when the memory 

allocated for receive buffer exceeds the memory limit available to the receive buffer.  

4.4 Reneging in FreeBSD 

This section details reneging support and its implementation in the FreeBSD 

operating system. FreeBSD comes with built-in reneging support [Freebsd], as does 

Mac OS X. In FreeBSD, a sysctl mechanism enables processes to get and set the 

kernel state. To turn on/off reneging, the net.inet.tcp.do_tcpdrain sysctl is used. 

Reneging can happen when the system runs out of main memory and 

net.inet.tcp.do_tcpdrain is on (1). The code segment shown in Figure 4.11, defined in 

/usr/src/sys/netinet/tcp_subr.c, sets the default TCP behavior for reneging to on (1), 

(lines 2, 3), for FreeBSD. 

 

Figure 4.11: Setting up the default reneging behavior in FreeBSD 

When net.inet.tcp.do_tcpdrain is set to 0 (off), reneging is disabled. In this 

case, all out-of-order data effectively becomes non-renegable (out-of-order data are 

never purged from the receive buffer). 

The call graph in Figure 4.12 summarizes the function calls/events causing a 

TCP data receiver to renege in FreeBSD. Now we detail the functions, structures, and 

event handlers used for reneging.  
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Two functions in FreeBSD kernel invoke the vm_lowmem event when the 

available main memory goes below a certain threshold. The first function is the 

kmem_malloc() function, defined in /usr/src/sys/vm/vm_kern.c, and the second 

function is vm_pageout_scan(), defined in /usr/src/sys/vm/vm_pageout.c. A code 

segment from vm_pageout_scan() is shown in Figure 4.13. When the available main 

memory goes low, vm_pageout daemon (daemon responsible for page replacement) 

invokes the function vm_pageout_scan() to scan main memory to free some pages. If 

the memory shortage is severe enough, the largest process is killed. The vm_pageout 

daemon uses values that, for the most part, are hard-coded or tunable in order to 

determine paging thresholds [Bruning 2005]. In such a low memory situation, the 

vm_lowmem event is set (line 19) in Figure 4.13. 

 

Figure 4.12: Call graph for reneging in FreeBSD 
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Figure 4.13: vm_pageout_scan() function in FreeBSD 

The event handler for vm_lowmem is defined and initialized in 

/usr/src/sys/kern/kern_mbuf.c. In a low memory situation, first the vm_lowmem event 

is set, and later the mb_reclaim() is invoked as a consequence. The registration of the 

vm_lowmem event to the mb_reclaim() function is shown (line 6) in Figure 4.14. 

 

Figure 4.14: Event handler for low-memory situation in FreeBSD 
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The mb_reclaim() function, defined in /usr/src/sys/kern/kern_mbuf.c, is shown 

in Figure 4.15. The mb_reclaim() calls the initialized pr_drain function for each 

protocol (line 20) in each domain. 

 

Figure 4.15: mb_reclaim() function in FreeBSD 

/usr/src/sys/sys/protosw.h defines the generic protocol switch table structure 

that is used for protocol-to-protocol and system-to-protocol communication. This 

protocol switch table structure, shown in Figure 4.16, is initialized for different 

protocols supported by FreeBSD such as IP, TCP, UDP and SCTP. The pr_drain 

function pointer for drain routines is defined (line 16). 

The protocol switch table structure for TCP is initialized, as shown in Figure 

4.17, in /usr/src/sys/netinet/in_proto.c. Note that the pr_drain function pointer is 

initialized (line 14) with tcp_drain. Similarly, the pr_drain functions for other 

protocols such as IP and SCTP are defined with the ip_drain and sctp_drain functions.  
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Figure 4.16: Protocol switch table structure in FreeBSD 

 

Figure 4.17: Protocol switch table initialization for TCP in FreeBSD 

The tcp_drain() function causes reneging by deleting all of the reassembly 

queues of all active TCP connections (global reneging) by calling the 

tcp_reass_flush() function for each queue. The tcp_drain(), defined in 

/usr/src/sys/netinet/tcp_subr.c and shown in Figure 4.18, goes through all existing 

TCP connections, and calls tcp_reass_flush() for each connection (line 29). Since the 
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reassembly queue of each TCP connection is cleared, the related SACK information 

(scoreboard) is pruned with a tcp_clean_sackreport() call (line 30). 

 

Figure 4.18: tcp_drain() function in FreeBSD 

Shown in Figure 4.19, tcp_reass_flush() is defined in 

/usr/src/sys/netinet/tcp_reass.c. The function tcp_reass_flush() uses m_freem() (line 

10) to free an entire mbuf chain, including any external storage (mbuf clusters) 

[FreebsdImpl]. Mbufs and mbuf clusters are structures which store network packets 
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such as Ethernet, IP, and TCP PDUs in FreeBSD. The reassembly queue of a TCP 

connection is implemented as an mbuf chain of TCP PDUs. A detailed explanation of 

FreeBSD’s network buffers and structures can be found in Section 5.2.1.  

 

Figure 4.19: tcp_reass_flush() function in FreeBSD 

In conclusion, FreeBSD is an operating system with built-in support for 

reneging which can be turned on/off by a system administrator. Reneging would 

happen when a FreeBSD host goes low on main memory. In Section 5.2, a FreeBSD 

8.1 host is reneged and the consequences of reneging are presented. 

4.5 Reneging in OpenBSD 

OpenBSD is a free, 4.4BSD-based Unix-like operating system with the latest 

release OpenBSD 5.0 [Openbsd].  

As in FreeBSD, /usr/src/sys/sys/protosw.h defines the generic protocol switch 

table structure used for protocol-to-protocol and system-to-protocol communication 

for OpenBSD. The protocol switch table structure for OpenBSD shown in Figure 4.20 
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is similar to FreeBSD’s protocol switch table shown in Figure 4.16 (only minor 

differences exist between the two protocol switch tables.) 

 

Figure 4.20: Protocol switch table structure in OpenBSD 

The protocol switch table structure is initialized, as shown in Figure 4.21, in 

/usr/src/sys/netinet/in_proto.c. Contrary to FreeBSD, the pr_drain function pointer for 

TCP in OpenBSD is initialized to 0 (NULL) (line 13) instead of a tcp_drain() 

function. This difference reveals that OpenBSD does not have operating system 

support for reneging (so out-of-order data are non-renegable). 

In conclusion, reneging is not possible in OpenBSD.  
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Figure 4.21: Protocol switch table initialization for TCP in OpenBSD 

4.6 Reneging in Solaris 

In Solaris, no built-in support exists for reneging as in FreeBSD or Mac OS X. 

However, reneging can happen under specific circumstances which are detailed below.  

In Solaris, the TCP reassembly queue (queue to store out-of-order data) is 

referenced by two pointers named tcp_reass_head and tcp_reass_tail, defined in 

common/inet/tcp.h and shown in Figure 4.22.    

 

Figure 4.22: Reassembly queue in Solaris 

When an IP packet is received, the data part of the IP PDU is passed to TCP 

via the tcp_input_data() function. The tcp_input_data() function passes the new data 

to the tcp_reass() function to either store data in the reassembly queue if the data are 

out-of-order, or to get all the in-order data when the new data fills the first gap in the 
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reassembly queue. When the in-order data are returned from tcp_reass(), they are 

delivered to the receiving application.  

Figure 4.25 shows part of the tcp_input_data() function. tcp_reass() is called 

first (line 5). If some out-of-order data still exist in the reassembly queue when 

tcp_reass() returns, a timer called tcp_reass_timer (TCP reassembly timer) is restarted 

with tcps->tcps_reass_timeout (timeout value for reassembly timer) value (line 33). 

The variable tcps_reass_timeout is defined in common/inet/tcp_impl.h as shown in 

Figure 4.23. Its default value of 100*SECONDS is defined in 

common/inet/tcp/tcp_tunables.c as shown in Figure 4.24.  

 

Figure 4.23: Definition of tcps_reass_timeout in Solaris 

 

Figure 4.24: tcp_propinfo_tbl[59] value in Solaris 

When the tcp_reass_timer expires after 100 seconds, the tcp_reass_timer() 

function, shown in Figure 4.26 and defined in common/inet/tcp/tcp_timers.c, is 

invoked. All out-of-order data in the reassembly queue are deleted (i.e., reneged) with 

the tcp_close_mpp() call (line 15). Before the out-of-order data are pruned, all related 

SACK information is cleared with the tcp_sack_remove() function (line 12). Since the 

reassembly queue is emptied, the pointer tcp_reass_tail is set to NULL (line 16). In 

Solaris, reneging happens when the tcp_reass_timer timer expires. 
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Figure 4.25: tcp_input_data() function in Solaris 

  

Figure 4.26: tcp_reass_timer() function in Solaris 



 131

In Solaris, the default value for tcp_reass_timeout can be read and modified 

with the ndd (the command to get/set driver configuration parameters). Figure 4.27 

shows how to read the default tcp_reass_timeout value and change it to 10*SECONDs 

(10000).  

 

Figure 4.27: ndd command to change TCP parameters in Solaris  

To our best knowledge, a timer for the TCP reassembly queue is not defined in 

any TCP specification. The best known and most widely used TCP timers are the 

retransmission timer, the TIME-WAIT timer, the delayed ACK timer, the persist 

timer, the keep-alive timer, the FIN-WAIT-2 timer, and the SYN-ACK timer. Those 

timers are enough for TCP to achieve reliable data transfer. None of the open-source 

operating systems, inspected for reneging in this chapter except Solaris, have a TCP 

reassembly timer. I inquired what the purpose of this timer was in the Oracle’s 

Developer and Networking forums but nobody replied. I believe the TCP reassembly 

queue timer in Solaris serves a similar purpose, as does Windows’ reneging 

mechanism: to protect the operating system from a SYN flood-like attack. The 

reassembly queue is emptied if no data are delivered to receiving application within 

100 seconds of receiving any out-of-order data. The allocated resources for the out-of-

order data are returned back to the operating system.   

To summarize, reneging occurs in Solaris when a data receiver receives some 

out-of-order data and that data remains in TCP’s reassembly queue for at least 100 
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seconds (the default timeout value). Then, tcp_reass_timer timer expires and calls the 

tcp_reass_timer() function which prunes all the data in the reassembly queue. As in 

Linux, reneging in Solaris is an example of local reneging since only the individual 

TCP connection(s) are reneged. In Section 5.3, we confirm that reneging happens on a 

Solaris 11 host when the conditions described above hold.  

4.7 Conclusion 

In this investigation, several TCP stacks from popular operating systems are 

inspected to find out the circumstances of reneging. The primary contribution of our 

investigation is that we found out that operating systems use reneging for different 

purposes.   

Initially, reneging was expected to happen on operating systems that go low on 

main memory to help the operating system to resume normal operation. FreeBSD 

supports that type of reneging. In low memory situations, all TCP connections with 

out-of-order data renege (global reneging) and memory used for the out-of-order data 

is given back to the operating system. 

For Microsoft Windows, reneging is not supported by 2000, XP and Server 

2003. Vista+ (Vista, Server 2008, 7) comes with a new TCP stack in which reneging is 

possible. Reneging in Windows Vista+ is of different type and was introduced to 

protect a host against DoS attacks. An attacker can open multiple TCP connections 

and fill each one’s receive buffers with out-of-order data to exhaust system resources 

to make services unavailable. Reneging happens when the memory consumption of 

total reassembly data in relation to the global memory limits is significant.    
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In Mac OS X, reneging is supported by the operating system. Reneging does 

not happen in Mac OS X unless enabled by a system administrator. As in FreeBSD, 

Mac OS X employs a global reneging mechanism. 

In Linux (Android), reneging happens when the memory allocated for a 

receive buffer exceeds the memory limit available to the receive buffer. Allocated 

buffer space for the out-of-order data is freed and returned back to the global TCP 

memory pool to be used by other TCP connections. Note that only individual 

connections exceeding the receive buffer limit renege (local reneging).  

Reneging is not supported in Solaris but happens to the connections where 

TCP reassembly queue timer expires (local reneging). To our best knowledge, a timer 

for the reassembly queue is not defined in the TCP specification. We believe reneging 

(having a reassembly queue timer) in Solaris has the same purpose as Windows 

reneging: to protect the operating system against a DoS attack.  

Initially, we expected reneging not to be supported by any operating systems. 

Interestingly, our investigation revealed that five out of six inspected operating 

systems can renege (FreeBSD, Linux (Android), Apple’s Mac OS X, Oracle’s Solaris 

and Microsoft’s Windows Vista+.) The only operating system that does not support 

reneging in our investigation is OpenBSD. We also initially expected that reneging 

would occur to help operating system to resume normal operation by providing extra 

memory (FreeBSD). Surprisingly, we discovered that reneging is also used as a 

protection mechanism against DoS attacks (Solaris, Vista+.) We conclude that 

reneging is a common mechanism implemented in many of today’s popular operating 

systems.   
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Chapter 5 

CAUSING RENEGING ON A REMOTE HOST 

The consequences of reneging on operating systems and active transport 

connections are unknown. Does reneging help an operating system to resume its 

operation? Can a reneged TCP connection complete a data transfer? To answer these 

questions, operating systems and TCP connections should be inspected after reneging. 

But how can we cause a machine(s) to renege? In the previous chapter, we learn that 

reneging happens (a) when system resources such as main memory/network buffers 

become scarce, or (b) when out-of-order data sit in a receive buffer for long time 

without being delivered to a receiving application. To cause reneging, a tool can 

exhaust system resources by filling TCP receive buffers of a remote host with out-of-

order data and not transmitting in-order data, satisfying (a) and (b), respectively. This 

chapter presents a tool which causes a remote host to renege, and the tool’s application 

on FreeBSD, Solaris, and Windows operating systems. For those operating systems, 

the consequences of reneging are detailed by answering the following two questions.  

(1) Does reneging help an operating system avoid crashing, thereby resuming 

normal operation? If yes, we can conclude that reneging is a useful and essential 

mechanism. On the other hand, after reneging if a machine still cannot resume normal 

operation (i.e., it crashes), then why bother even implementing reneging?  

(2) Can an active TCP connection complete a data transfer successfully when 

some of the out-of-order data are reneged? When reneging happens, a TCP data 

receiver deletes all out-of-order data from its receive buffer. In general, a TCP data 
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sender does not have a mechanism to infer reneging. To tolerate reneging, a sender is 

expected to discard its SACK scoreboard upon a retransmission timeout, and 

retransmit bytes at the left edge of the window [RFC2018]. If the TCP sender does not 

implement tolerating reneging properly, reneging may cause a data transfer to fail.   

To answer (1) and (2), operating systems that renege should be analyzed. To 

analyze a reneging host and its connections, exact timing of reneging needs to be 

known beforehand. Reneging, in general, is expected to happen under rare 

circumstances (conditions) when the available main memory/network buffers of a host 

become scarce. We cannot just sit and wait for reneging to happen. Instead of waiting 

for a rare event such as reneging to eventually happen, a tool to cause reneging on a 

remote host can be developed to investigate consequences of reneging in a lab 

controlled environment. Using such a tool, remote hosts with different operating 

systems can be analyzed in detail to characterize the consequences of reneging.  

Our tool to cause a remote host to renege is called CauseReneg and is detailed 

in Section 5.1. CauseReneg exhausts a remote host’s resources using TCP until the 

point that reneging is triggered. Figure 5.1 depicts a simple architecture. An attacker 

runs CauseReneg to attack a remote host (victim). During the attack, the TCP traffic 

between the attacker and the victim is recorded for later analysis.  

The remote host is called a victim since CauseReneg exhausts the victim’s 

operating system resources such as main memory, network buffers, and CPU cycles. 

CauseReneg is hostile to the victim’s operating system and falls into the category of a 

denial-of-service (DoS) attack tool. 

Using CauseReneg, FreeBSD, Solaris and Windows victims are reneged. The 

consequences of reneging on those operating systems and their TCP connections are 
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presented in Section 5.2, 5.3 and 5.4, respectively. Section 5.5 summarizes our effort 

to cause reneging on remote hosts.           

  

Figure 5.1: Causing a remote host to renege   

5.1 A Tool to Cause a Remote Host to Renege: CauseReneg 

CauseReneg tries to exhaust a victim’s resources such as main memory and 

network buffers. Once a victim has reneged, the consequences of reneging to the 

victim’s operating system and its active transport connections can be documented.  

Reneging occurs when a TCP data receiver receives, SACKs, and discards out-

of-order data from its receive buffer. To cause a victim to renege, CauseReneg needs 

to make sure that out-of-order data are present in the receive buffers of the victim. For 

that, CauseReneg exhausts a victim’s resources by filling a TCP receiver’s receive 

buffer almost fully with out-of-order data. A victim’s TCP allocates main memory and 

network buffers to store that out-of-order data in a receive buffer (or a reassembly 

queue). Since out-of-order data cannot be delivered to the receiving application, 

resources are held for the time out-of-order data sit in the receive buffer. To exhaust 

more main memory or network buffers, CauseReneg establishes n parallel TCP 
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connections to the victim. As n increases, the victim is expected to go low on main 

memory and network buffers. Eventually, with enough connections, reneging occurs 

and main memory used for the out-of-order data is reclaimed back to the victim’s 

operating system.       

We consider two possible options for CauseReneg to fill a victim’s receive 

buffers with out-of-order data. The options involve either using Dummynet or TCP 

Behavior Inference Tool (TBIT).  

The first option is to use the Dummynet traffic shaper [Dummynet] along the 

kernel TCP. To create out-of-order data, Dummynet specifies TCP PDUs at the left 

edge of the window to be dropped for each TCP connection established by 

CauseReneg to a victim. Since kernel TCP is used, a problem exists with the 

Dummynet option.  

The loss recovery mechanism limits the duration of an attack. TCP’s loss 

recovery mechanism retransmits a dropped TCP PDU r times (for example, 

TcpMaxDataRetransmissions in Windows Server 2003 defines r=5 by default.) After r 

retransmissions, kernel TCP would terminate a TCP connection.  This problem limits 

the duration of each TCP connection to 1-2 minutes (assuming back to back timeouts, 

an initial retransmission timeout value (RTO) of 1 second, and r=5). When a TCP 

connection is terminated, the resources allocated to the connection are reclaimed by 

the victim’s operating system. Reneging is expected to happen when the victim’s 

resources are scarce. On the other hand, terminating a connection increases available 

resources of the victim, and decreases the possibility of reneging. To increase the 

possibility of reneging, active TCP connections should remain alive to retain resources 

for longer times.  
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The second option to implement CauseReneg is to use TBIT [Padhye 2001]. 

TBIT is a user level traffic generator that produces synthetic TCP PDUs, and does not 

conform to congestion and loss recovery mechanisms of a standard TCP data sender. 

TCP PDUs can be sent in any arbitrary order to a TCP receiver. Using TBIT, 

CauseReneg can avoid sending some bytes at the left edge of the window (say the first 

1455 bytes), and fill the rest of the receive buffer with out-of-order data as intended.  

The TBIT option does not have the problem of the Dummynet option. As 

stated above, TBIT does not have to conform to TCP’s loss recovery mechanism. So, 

no retransmissions are needed for the missing TCP PDUs. A victim’s TCP receiver 

has no mechanisms to validate/correct a TCP sender’s (TBIT) congestion control or 

loss recovery mechanisms. A victim’s TCP can only dictate flow control which is 

limited to the advertised receiver window (rwnd). Hence, a victim’s TCP would accept 

any sequence of bytes from CauseReneg when TCP data falls within the rwnd. Once 

the out-of-order data are received by a victim, a TCP connection is active for at least 

the keep-alive timer duration. The keep-alive timer is specified to be no less than 2 

hours in [RFC1122]. I believe that 2 hours is enough time to cause a victim to renege 

as compared to Dummynet option’s 1-2 minute long TCP connection time. 

We consider the TBIT option to be more appropriate for CauseReneg. Thus 

TBIT is extended with a new test called CauseReneging. CauseReneging fills a 

victim’s TCP receive buffer with out-of-order data. CauseReneg runs n 

CauseReneging TBIT tests to establish n TCP connections in parallel with a victim. 

The number of parallel TCP connections (n) used by CauseReneg tool is dynamic and 

depends on a victim’s main memory, available network buffers, and operating system. 
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In CauseReneg, each CauseReneging test maps to a single TCP connection. The 

CauseReneging TBIT test is shown in Figure 5.2 and operates as follows:  
 

CauseReneging 

1. TBIT establishes a connection to a victim with SACK-Permitted option and Initial 
Sequence Number (ISN) 10000 

2. Victim replies with SACK-Permitted option 

3. TBIT sends segment (10001-10006) in order  

4. Victim acks the in order data with ACK (10006) 

5. TBIT skips sending 1455 bytes (10006-11461) and starts sending m consecutive 
out-of-order segments each 1460 bytes to exhaust main memory 

6. Victim acks the out-of-order data with SACKs 

7. TBIT sends a 10 byte out-of-order segment after x seconds 

8. Victim acks the out-of-order data with SACK 

9. TBIT sends m+1 data segments in-order to complete the data transfer 

10. Victim acks the in-order data with ACKs/SACKs 

11. TBIT sends three RSTs to abort the connection 
 

Now we explain the CauseReneging TBIT test in detail. First, a TCP 

connection is established to a victim with 3-way handshake (step #1, #2, and #3) with 

SACK-Permitted option. A 5 byte in-order data is sent to the victim along the ACK 

(step #3). Next, the victim’s receive buffer is filled with m out-of-order segments (step 

#5) based on the advertised window (step #2). As more TCP connections are 

established to the victim, we expect reneging to happen. Let us assume that reneging 

happens after y seconds. In (step #7), a 10 byte out-of-order data is sent after x 

seconds. The x second value (step #7) is set to a value greater than y to detect reneging  
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Figure 5.2: The CauseReneging TBIT Test with m=40 (step #5, #9) 

using the response SACK (step #8). If that response SACKs only 10 bytes of out-of-

order data as shown in Figure 5.2, one can conclude reneging occurred. To mimic a 

[RFC2018] conformant SACK implementation, m+1 in-order segments are 

retransmitted (step #9), assuming a retransmission timeout value of x seconds. Recall 

that a TCP data sender is expected to discard SACK scoreboard at a retransmission 

timeout and retransmit bytes at the left edge of the window as specified in [RFC2018]. 
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If reneging happens, ACKs (step #10) increase steadily after each in-order 

retransmission (step #9) as shown in Figure 5.2. Otherwise, the first ACK (step #10) 

acknowledges all the out-of-order data. 

CauseReneg is a generic tool that can cause reneging on various victims 

(operating systems.) Only minimal changes are needed to run CauseReneg on different 

victims. The changes needed are setting the m value (step #5, #9) and x value (step #7) 

in the CauseReneging  test, and the number of parallel TCP connections n that change 

dynamically from victim to victim. The values are determined by the victim’s 

operating system, available main memory, and network buffers.      

CauseReneg needs the ability to establish TCP connections to a victim. To 

establish a TCP connection, a port that is accessible (a server socket should be 

listening on the port and accept incoming TCP connections) is needed. Today, the 

majority of a machine’s ports are blocked by firewalls for security purposes. Web 

servers on contrary are purposefully accessible. For that, CauseReneg is designed to 

attack a victim which deploys a web server (step #3 in Figure 5.2 sends the first 5 

bytes of a HTTP GET request in-order). In our attempts to cause reneging, we 

installed Apache 2.2 in all potential victims. By default, Apache supports at most 256 

TCP simultaneous connections. Recall that a busy web server with thousands TCP 

connections is a stronger candidate to renege. To simulate a busy web server, we 

increased the limit for simultaneous connections to 2000 which is enough to cause all 

victims to renege.  

CauseReneg can attack victims regardless of their operating systems when a 

web server is running. Figure 5.3 presents an updated architecture for causing a remote 

host (victim) to renege. CauseReneg is used to attack various victims in a controlled 
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network environment. A packet capture utility, tcpdump [Tcpdump], records TCP 

traffic between CauseReneg and a victim for later analysis. By analyzing the recorded 

TCP traffic, reneging instances can be detected via the RenegDetect tool detailed in 

Section 3.2. 

Next we need to decide what victims to cause reneging. In Chapter 4, operating 

support for reneging is detailed for FreeBSD, Linux, Mac OS X, OpenBSD, Solaris 

and Windows. In Max OS X and OpenBSD, reneging is not possible by default. 

Therefore, we attempted to cause reneging on the following operating systems in 

which reneging is possible: FreeBSD 8.1, Linux 2.6.31, Solaris 11, Windows Vista 

and Windows 7. These systems are representative of popular operating systems with 

reneging support. 

Four out of five operating systems (victims) are successfully reneged using 

CauseReneg tool. Unfortunately, we failed to cause a Linux 2.6.31 victim to renege. 

Linux implements dynamic right-sizing (DRS) where the rwnd dynamically changes 

based on the receiver’s estimate of the sender’s congestion window [Fisk 2001]. A 

data receiver increases rwnd when in-order data are received meaning the cwnd is 

increased. The initial advertised rwnd in Linux is 5840 bytes. CauseReneging sends 

only 5 bytes in-order data (step #3). Therefore, rwnd is not increased and limits 

CauseReneg to send 4380 (5840 – 1460) bytes of out-of-order data to the victim. In 

Linux, the receive buffer size is specified with net.ipv4.tcp_rmem sysctl with a default 

value of 87380 bytes. Recall from Section 4.3 that reneging in Linux is expected to 

happen when the memory allocated for receive buffer exceeds the memory limit 

available to the receive buffer. The minimum size of the receive buffer is specified 

with net.ipv4.tcp_rmem sysctl and is initialized to 4096 bytes. Apparently, sending 
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4380 bytes of out-of-order data was not enough to exceed the memory limit available 

to the receive buffer. Thus, DRS prohibited CauseReneg from sending more out-of-

order data to trigger reneging. As a result, CauseReneg was unable to cause reneging 

in Linux. 

The following sections, 5.2, 5.3 and 5.4, present consequences of reneging on 

FreeBSD, Solaris, and Windows victims, respectively. Section 5.5 concludes our 

efforts. 

 

Figure 5.3: Causing a remote host to renege using CauseReneg 
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5.2 Causing a FreeBSD Host to Renege 

In this section, a FreeBSD 8.1 victim is reneged using CauseReneg. In Section 

5.2.1, we first explain network buffers which are FreeBSD’s structures to store TCP 

PDUs. In Section 5.2.2, two types of attacks are performed to cause a FreeBSD victim 

to renege. While one of the attacks crashes the operating system, the other one causes 

reneging. The circumstances of reneging are presented in Section 5.2.3.  

5.2.1 Network Buffers  

This section describes the network buffers used by FreeBSD to store network 

packets and FreeBSD’s limits (sysctls) for TCP reassembly queues. In FreeBSD, all 

network packets are stored in structures known as mbuf(s) and mbuf clusters. An mbuf 

consists of a small internal buffer for data and a variable-sized header. While a 

network packet moves between different layers in the kernel, variable-size header 

changes as Ethernet, IP, and TCP headers are appended or removed from the mbuf 

header. The size of an mbuf is 256 bytes (specified in /usr/src/sys/sys/param.h). If a 

TCP segment is small enough (less than 256 bytes), the segment’s data are stored in 

the internal data buffer of an mbuf. If the segment is larger, either another mbuf is 

added to form an mbuf chain (implemented as linked list of mbufs) or external storage 

is associated with the mbuf [FreebsdImpl].  

FreeBSD supplies a default type of external storage buffer called an mbuf 

cluster. The size of an mbuf cluster is machine dependent. Our victim is a FreeBSD 

8.1 host where an mbuf cluster is 2048 bytes (defined in /usr/src/sys/sys/param.h). 

The number of available external mbuf clusters can be read and modified via the 

kern.ipc.nmbclusters sysctl. Recall from Section 4.4 that a sysctl mechanism enables 
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processes to get and set the kernel state in FreeBSD. Our victim has 16960 mbuf 

clusters by default shown in Figure 5.4 (line 3). 

The netstat -m command reports the statistics recorded by the memory 

management routines for the available mbufs/mbuf clusters. Figure 5.4 shows an 

example output for the victim. 

 

Figure 5.4: Network status output of a FreeBSD host 

To gain insight on how network packets are stored in network buffers, variable 

number of consecutive out-of-order TCP segments of three different sizes (10, 100, or 

1460 bytes) are sent to the victim. Table 5.1 presents numbers for the mbufs and mbuf 

clusters used to store the received out-of-order data. We conclude that irrespective of 

the segment size, an mbuf cluster (2048 bytes) is assigned to store an out-of-order  

TCP segment. 
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Table 5.1: Mbuf statistics for variable size out-of-order data for a single TCP 
connection 

Segment size Segments Mbufs used Mbuf clusters used 
10 byte 1 1 1 
10 byte 2 2 2 
10 byte 4 4 4 
100 byte 1 1 1 
100 byte 2 2 2 
100 byte 4 4 4 
1460 byte 1 1 1 
1460 byte 2 2 2 
1460 byte 4 4 4 

 

In FreeBSD, a TCP reassembly queue (or receive buffer) is implemented as an 

mbuf chain where data is stored in an external mbuf cluster. A reassembly queue is 

limited to store at most net.inet.tcp.reass.maxqlen (“Maximum number of TCP 

segments per individual Reassembly queue”) out-of-order segments. The default value 

for net.inet.tcp.reass.maxqlen is 48 segments (48 * 1460 bytes = 70080 bytes). Using 

CauseReneg, a reassembly queue can be filled almost fully with out-of-order data 

since the victim’s advertised TCP receive window of 65535 bytes is less than the 

reassembly queue limit.  

Another sysctl, net.inet.tcp.reass.maxsegments (“Global maximum number of 

TCP segments in Reassembly queue”), defines the global limit for all segments in the 

all reassembly queues. FreeBSD assigns 1/16th of total mbuf clusters (16960) to 

net.inet.tcp.reass.maxsegments (1060). Once that limit is reached, arrived out-of-order 

segments are dropped. The net.inet.tcp.reass.overflows (“Global number of TCP 

Segment Reassembly Queue Overflows”) sysctl reports the total number of dropped 

out-of-order segments. The net.inet.tcp.reass.cursegments (“Global number of TCP 
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Segments currently in Reassembly Queue”) sysctl reports the total number of 

segments in all reassembly queues. 

Now let us run a simple attack to the victim, using CauseReneg with n=32 

parallel connections, to investigate the limits for the reassembly queues. The values 

for m and x are set to 40 and 200 seconds in the CauseReneging test (Figure 5.2), 

respectively. Figure 5.5 shows the statistics for mbuf/mbuf clusters along the TCP 

reassembly queue usage. CauseReneg sends a total of 1280 (n=32 * m=40) out-of-

order segments to the victim where 1059 (line 18) of those segments are stored in the 

reassembly queues and 221 segments are dropped (line 16). When the maximum 

amount of out-of-order data are stored in the reassembly queues, the amount of 

memory allocated to network is 3222K. If reneging happened, FreeBSD would 

reclaim ~3M of main memory consumed by network buffers.  

 

Figure 5.5: Statistics for mbuf and TCP reassembly queue size usage for 32 parallel 
TCP connections 
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5.2.2 Causing Reneging in FreeBSD 

In this section, we explain two attacks to a FreeBSD victim using CauseReneg. 

The first attack crashes the victim accidentally while the second attack results in 

reneging.  

As explained in Section 4.4, reneging in FreeBSD happens if the page 

replacement daemon (vm_pageout) invokes the vm_pageout_scan() function. When 

the available main memory goes low, and hard-coded or tunable paging thresholds are 

exceeded, vm_pageout_scan() is invoked to scan main memory to free some pages. If 

the memory shortage is severe enough, the largest process is also killed [Bruning 

2005]. 

(A) To cause reneging, a variable number of parallel TCP connections are 

established to the victim using CauseReneg. The goal is to exhaust the main memory 

as much as possible to trigger reneging. Table 5.2 presents the initial memory statistics 

when n parallel TCP connections are established to the victim. Each TCP connection 

exhausts ~2.8MB of main memory. When more than ~250 active TCP connections are 

established, active virtual pages (the term used in FreeBSD for virtual pages of the 

running processes) stop increasing and the total memory allocated for the TCP 

connections is ~700MB. This amount of memory consumption is not enough to trigger 

reneging. The problem is due to Apache’s initial MaxClients value (Maximum number 

of connections that will be processed simultaneously) that is set to 256 by default. As 

stated before, we expect reneging to happen at busy web servers serving thousands of 

TCP connections simultaneously. For this purpose, Apache is configured to support 

2000 simultaneous connections.  
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Table 5.2: Memory usage statistics for n parallel TCP connections 

n parallel TCP connections Active virtual pages usage 
1 3MB 
2 6MB 
4 11MB 
8 22MB 
16 45MB 
32 90MB 
200 558MB 
300 701MB 
400 701MB 

 

Table 5.3 presents the updated memory statistics when n parallel TCP 

connections are established to the victim and Apache can serve up to 2000 connections 

simultaneously. With the ability to serve more TCP connections, the active virtual 

pages usage is increased beyond 700MB. While we expect reneging to happen with 

increased memory usage, the victim crashes instead of reneging! When the number of 

parallel connections exceeds 1241, the victim crashes with the following panic 

messages: (a) “Approaching the limit on PV entries, consider increasing either the 

vm.pmap.shpgperproc (“Page share factor per proc”) or the vm.pmap.pv_entry_max 

(“Max number of PV entries”) tunable” and (b) “panic: get_pv_entry: increase 

vm.pmap.shpgperproc”. The panic messages are related to mapping of physical/virtual 

addresses of pages. To track the number of connections causing the victim crash 

easily, CauseReneg attacks the victim with the following configuration: n=1300, m=1, 

x=240 seconds. With this configuration, each TCP connection sends only 1 out-of-

order segment to the victim. Figure 5.6 shows the statistics for TCP reassembly queue 

size and memory usage when 1241 parallel TCP connections 

(net.inet.tcp.reass.cursegments: 1059 (line 4) + net.inet.tcp.reass.overflows: 182 (line 

2) = 1241) are established to the victim just before crashing.  
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Figure 5.6: Statistics for TCP reassembly queue size and memory usage for 1200+ 
parallel TCP connections 

Table 5.3: Memory usage statistics for n parallel TCP connections (updated) 

n parallel TCP connections Active virtual pages usage 
300 834MB 
400 1127MB 
500 1391MB 
600 1687MB 
700 1947MB 
800 2267MB 
900 2541MB 
1000 2807MB 
1100 3072MB 
1200 3338MB 
1241 3418MB 

 

(B) In the second attack, to cause the page replacement daemon to call the 

vm_pageout_scan() function, a user process, shown in Figure 5.7, that consumes 

specified amount of main memory, is executed along with CauseReneg. If the memory 

shortage is severe enough due to the user process’ excessive memory allocation and 

the victim goes low on main memory, the pageout replacement daemon is expected to 

kill the process using the largest memory (in that case the user process) and cause 

reneging. 

For the second attack, CauseReneg attacks the victim with the following 

configuration: n=20, m=40, x=180 seconds. The attack is performed for two cases: 
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(B1) reneging is on (net.inet.tcp.do_tcpdrain=1), and (B2) reneging is off 

(net.inet.tcp.do_tcpdrain=0) at the victim.  

 

Figure 5.7: Main memory consumer program 

If reneging happens, all the out-of-order data sent (step #5, Figure 5.2) are 

deleted from the receive buffers since FreeBSD employs global reneging. The SACK 

reply (step #8) for the 10 byte out-of-order data should be as 69861-69871 (10 bytes) 

as shown in Figure 5.2 for all TCP connections. ACKs (step #10) are expected to 
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increase steadily after each in-order retransmission (step #9) along a SACK for the 10-

byte out-of-order data. 

If reneging does not happen, the out-of-order data should remain in the receive 

buffers. The SACK reply (step #10) for the 10 byte out-of-order data should be as 

11461-69871 (58410 bytes). When the first in-order segment (10006-11466) is 

received (step #9) at the victim, the missing data between ACK and out-of-order data 

is received; hence an ACK with value 69871 should be returned (step #10.) 

For the attacks, the architecture shown in Figure 5.3 is used. The victim (IP 

address:  128.4.30.23) has ~500MB physical memory, runs FreeBSD 8.1, and deploys 

Apache 2.2. During all attacks, the statistics for mbuf /mbuf clusters and TCP 

reassembly queue sizes are recorded. The TCP traffic between CauseReneg and the 

victim is also recorded for reneging analysis. The results are explained in the next 

Section 5.2.3. 

5.2.3 Results 

This section details the results of the attacks (A), (B1), (B2) described in the 

previous section. When the FreeBSD victim reneges, the following questions are 

answered to infer the consequences of reneging: (1) Does reneging help an operating 

system to resume its operation? (2) Can a reneged TCP connection complete a data 

transfer? 

(A) Reneging does not happen, although memory consumption is high 

(3533MB), as shown in Figure 5.6. The reason is that the paging thresholds are not 

exceeded. If reneging happened, the operating system would reclaim ~3MB of main 

memory (recall from Figure 5.5 where all available space for out-of-order data is 

allocated). Since each TCP connection established consumes ~2.8MB, reclaimed 
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memory would be consumed for the next TCP connection. Eventually, machine would 

crash anyways. I conclude that reneging does not benefit FreeBSD for such an attack.  

For attacks (B1) and (B2), CauseReneg attacks the victim with the following 

configuration: n=20, m=40, x=180 seconds. Both attacks, (B1) (reneging is on) and 

(B2) (reneging is off), are performed in the following 7 step: 
 

i. Start capturing the TCP traffic between the attacker and the victim on the 
attacker 

ii. Record netstat –m output (mbuf statistics) and sysctl –a | grep tcp.reass output 
(reassembly queue size statistics) on the victim 

iii. Attack the victim using CauseReneg  

iv. Record netstat –m output (mbuf statistics) and sysctl –a | grep tcp.reass output 
(reassembly queue size statistics) on the victim 

v. Run the user process (Figure 5.7) to allocate 2GB of main memory ( ./a.out 
2147483648) on the victim 

vi. Record netstat –m output (mbuf statistics) and sysctl –a | grep tcp.reass output 
(reassembly queue size statistics) on the victim 

vii. Terminate capturing the TCP traffic between the attacker and the victim on the 
attacker after 5 minutes 

 

Figure 5.8 shows the initial values of mbufs: 324 (line 2), mbuf clusters: 320 

(line 3), and net.inet.tcp.reass.cursegments: 0 (line 18) for the attack (B1) before 

parallel TCP connections are established (step iii). 

When the parallel connections are established, Figure 5.9 shows the updated 

statistics (step iv). The values for mbufs: 324 (initial) + 800 (out-of-order data) = 1124 

(line 2), mbuf clusters: 320 (initial) + 800 (out-of-order data) = 1120 (line 3), and 

net.inet.tcp.reass.cursegments: 800 (line 18) are all consistent. 
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Figure 5.8: Step ii of causing reneging (reneging is on) 

 

Figure 5.9: Step iv of causing reneging (reneging is on) 

Figure 5.10 shows the execution of the user process (step v). FreeBSD 

allocates ~1.5GB of main memory to the user process before the user process is killed 

(line 18) by the page replacement daemon. At this point, reneging is expected to 
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happen and the values for mbuf, mbuf clusters and net.inet.tcp.reass.cursegments 

should be the same as their initial values in Figure 5.8. 

 

Figure 5.10: Step v of causing reneging (reneging is on) 

 

Figure 5.11: Step vi of causing reneging (reneging is on) 
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The output of (step vi) is shown in Figure 5.11. The number of mbufs: 324 

(line 2) and mbuf clusters: 320 (line 3) are the same as their initial values. More 

importantly, net.inet.tcp.reass.cursegments is 0 (line 18) which concludes that 

reneging happens. 

In Figure 5.11, network status output (netstat -m) reports the number of calls to 

the protocol drain routines (line 15) to be 0 even though reneging happens. We believe 

the functionality of netstat to report calls to protocol drain routines is not working 

properly and needs to be fixed. 

Next, the attack (B2) is performed in 7 steps. When reneging is off, no out-of-

order data are expected to be purged from the reassembly queues even though page 

replacement daemon invokes the vm_pageout_scan() function.  

For the attack (B2), the outputs of step ii (Figure 5.8), iii, iv (Figure 5.9) and v 

(Figure 5.10) are all the same as of (B1). 

 

Figure 5.12: Step vi of causing reneging (reneging is off) 
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Figure 5.12 shows the memory statistics for the attack (B2) (step vi) after the 

user process is terminated by the page replacement daemon. The values for mbufs: 

1124 (line 2), mbuf clusters: 1120 (line 3), and net.inet.tcp.reass.cursegments: 800 

(line 18) are the same as of Figure 5.9 (step iv). Even though the vm_pageout_scan() 

is invoked and the user process is killed, the tcp_drain() is not called since reneging is 

disabled (off). 

Both attacks (B1) and (B2) are analyzed using the RenegDetect tool detailed in 

Section 3.2. For (B1), RenegDetect successfully detects that all of the connections 

experience reneging. Figure 5.13 shows the tcpdump output of the last TCP 

connection (20th). The 40th out-of-order segment (68401-69861) is sent (lines 1, 2). In 

response, the victim sends an ACK (lines 3, 4) with SACK 11461-69861. After x=180 

seconds, TBIT sends the 10 byte data (69861-69871) (lines 5, 6). The ACK for the 10 

byte out-of-order data (lines 7, 8) has the SACK option 69861-69871; only for the 10 

bytes sent giving the impression that reneging happens. When the first in-order data 

(10006-11466) are received (lines 9, 10), the victim returns an ACK 11466. This ACK 

strongly gives the impression that reneging happens. The next in-order data causes the 

victim to ACK 12926 (line 15). Consequently, ACKs are increased steadily after each 

in-order retransmission. This behavior concludes that reneging happens.  

(B2) RenegDetect successfully detects that none of the connections experience 

reneging. Figure 5.14 shows the tcpdump output of the last TCP connection (20th). 

When the 40th out-of-order data (68401-69861) are received (lines 1, 2), an ACK with 

the SACK 11461-69861 is sent back (lines 3, 4). When the 10 byte out-of-order data 

are received, reply SACK is 11461-69871 as expected (lines 7, 8). Finally, when the 

first in-order data are received (lines 9, 10) at the victim, the gap in the reassembly 
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queue is filled. As a result, ACK 69871 is sent back (lines 11, 12). This behavior 

concludes that reneging does not happen when reneging is turned off. 

 

Figure 5.13: Tcpdump output of a TCP connection from causing reneging (reneging is 
on)  

 

Figure 5.14: Tcpdump output of a TCP connection from causing reneging (reneging is 
off)  

A FreeBSD victim is reneged with the attack (B1). Now, we answer the 

following questions to gain insight to the consequences of reneging: (1) Does reneging 

help an operating system to resume its operation? (2) Can a reneged TCP connection 

complete a data transfer? 
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(1) After the attack (B1), the FreeBSD victim continues to resume normal 

operation. As stated before, only ~3MB of main memory (the maximum amount 

possible for the victim) used for the network buffers is reclaimed back to the operating 

system. Since the memory shortage, caused by the attack, is severe, the largest process 

(~1.5GB) is killed. I believe the amount of main memory used for network buffers is 

negligible compared to the process using the most memory. Reneging alone does not 

seem to help an operating system resume normal operation, and the reassembly 

queues’ memory was wastefully purged. The attack (B2), where reneging was disabled 

for the second attack, demonstrated that FreeBSD could resume normal operation 

without reneging. Therefore, I argue that the current handling of reneging is wrong 

and reneging should be turned off by default in FreeBSD as in Mac OS X.  

To answer (2), we need to test if the TCP data senders do implement tolerating 

reneging properly as specified in [RFC2018]. Recall that a TCP sender needs to 

discard its SACK scoreboard at a retransmission timeout and start sending bytes at the 

left edge of the window. Otherwise, reneging may cause a data transfer to stall (fail). 

FreeBSD employs a global reneging strategy that all TCP connections with 

out-of-order data are reneged. If TCP connections with out-of-order data from various 

TCP data senders are established to the FreeBSD victim before the (B1) attack, those 

TCP connections would renege too. To test if [RFC2018] conformant tolerating 

reneging is implemented, a 5MB file is transferred using secure shell (ssh) to the 

FreeBSD victim from various operating systems listed in Table 5.4. To create out-of-

order data for those transfers, Dummynet is configured on the FreeBSD victim to drop 

15-20% of the TCP PDUs. The traffic between a TCP data sender and the FreeBSD 

victim is recorded for reneging analysis. Once a data transfer starts, the FreeBSD 
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victim is reneged using the attack (B1) and we observe if the file transfer experiencing 

reneging can be completed. In all data transfers, reneging is detected by analyzing the 

recorded traffic using the RenegDetect tool. We confirm that all of the TCP data 

senders in Table 5.4 complete the data transfer successfully. In conclusion, [RFC2018] 

conformant tolerating reneging is implemented in all TCP stacks tested.  

Table 5.4: Testing [RFC2018] conformant TCP data senders 

Operating System Transfer Completed Reneging 
FreeBSD 8.0 yes yes 
Linux 2.6.24 yes yes 
Mac OS X 10.8.0 yes yes 
NetBSD 5.0.2 yes yes 
OpenBSD 4.8 yes yes 
OpenSolaris 2009.06 yes yes 
Solaris 11 yes yes 
Windows XP yes yes 
Windows Vista yes yes 
Windows 7 yes yes 

         

5.3 Causing a Solaris Host to Renege 

In this section, a Solaris 11 victim is reneged and the consequences of reneging 

are detailed. First, Section 5.3.1 details the attack to cause reneging. Next, in Section 

5.3.2, the consequences of reneging in Solaris are presented.  

5.3.1 Causing Reneging in Solaris  

The circumstances to cause a Solaris host to renege are detailed in Section 4.6. 

If out-of-order data sits in the TCP reassembly queue for at least 100 seconds (the 

default reassembly timer timeout value), a Solaris receiver would renege and purge the 
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entire reassembly queue. Reneging, in such case, protects the operating system against 

DoS attacks.    

In the CauseReneging test (see Figure 5.2), m out-of-order segments are sent 

(step #5) to the victim. Later, 10 byte out-of-order data are sent (step #7) after x 

seconds to check if reneging happened. Reneging in Solaris is expected to happen 100 

seconds after the arrival of out-of-order data (step #5). To force the reassembly queue 

timer to expire, x should be set to a value > 100 seconds. The number of parallel 

connections (n) and out-of-order segments (m) can be set arbitrarily since reneging in 

Solaris only depends on x. CauseReneg attacks the victim with the following 

configuration: n=20, m=40, x=180 seconds. The value for m is set to 40 purposefully 

to explain reneging using Figure 5.2. With this configuration, reneging is expected to 

happen before 10 byte out-of-order data are sent (step #7).   

If reneging happens, the out-of-order data sent (11461-69861) (step #5) are 

removed from the reassembly queues of all the 20 parallel TCP connections before 

(step #7.) The reply SACK for 10 byte out-of-order data should be 69861-69871 (step 

#8). Consequently, ACKs (step #10) should be increased steadily after each in-order 

data retransmission (step #9.)  

If reneging does not happen, the reply SACK (step #8) for the 10 byte out-of-

order data should be 11461-69871 (58410 bytes). In (step #9), the first in-order data 

should fill the gap between the ACK and out-of-order data, and increase ACK to 

69871 (step #10.) 

For the attack, the architecture shown in Figure 5.3 is used. Solaris 11 is 

installed on an Ubuntu 9.10 host (Linux 2.6.24) using Oracle’s VirtualBox virtualization 

software [Virtualbox]. The victim has 1024MB physical memory, runs Solaris 11, and 
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deploys Apache 2.2. The TCP traffic between CauseReneg and the victim is recorded 

for latter analysis. The result of the attack is explained in the next Section 5.3.2. 

5.3.2 Results 

Data reneging happens when the TCP reassembly queue timer expires after 

100 seconds (the default value of reassembly queue timer) for the out-of-order data 

sent (step #5) in CauseReneging test, shown in Figure 5.2. A tcpdump output of the 6th 

parallel connection is shown in Figure 5.15. Please refer to Figure 5.2 for references 

using (step #p) and Figure 5.15 for references using (lines p). The 40th out-of-order 

data (68401-69861) (step #5) from CauseReneging is shown (lines 1, 2). The reply 

SACK (step #6) acknowledges all the out-of-order data received (11461-69861) (lines 

3, 4). After x=180 seconds, 10 byte out-of-order data (69861-69871) are sent (step #7) 

(lines 5, 6). The reply SACK (step #8) demonstrates evidence of reneging since only 

10 out-of-order bytes are selectively acknowledged (69861-69871) (lines 7, 8). After 

the in-order received data (step #9), the victim’s ACKs (step #10) are steadily 

increased as expected. 

 

Figure 5.15: Tcpdump output of a TCP connection from causing reneging attack on 
Solaris 11 
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The traffic recorded during the attack is analyzed using RenegDetect tool 

explained in Section 3.2.The RenegDetect detects that all the connections (20) used in 

the attack experienced reneging.  

We believe reneging in Solaris is used as a mechanism to protect against DoS 

attacks. A TCP sender is expected to retransmit lost segments r times (for example, 

TcpMaxDataRetransmissions in Windows Server 2003 defines r=5 by default.) After r 

retransmissions, a TCP sender would terminate a TCP connection. The loss recovery 

period takes at most 1-2 minutes (assuming back to back timeouts, an initial 

retransmission timeout value (RTO) of 1 second, and r=5.) When out-of-order data sit 

in the reassembly queue for at least 100 seconds (the default reassembly queue timer 

value) at the Solaris receiver, one can infer that either the TCP sender terminated the 

connection or the host is under a DoS attack where the out-of-order data intentionally 

exhaust host’s resources. Therefore, cleaning the reassembly queue seems a useful 

mechanism in both cases. Instead of just releasing the out-of-order data, a better option 

would be to RESET the connection when reneging is caused by either a terminated 

TCP connection (due to loss recovery) or a DoS attack. With that change, all the 

resources used for the TCP connection are released, therefore better utilized. 

5.4 Causing Windows Hosts to Renege 

In this section, Windows Vista and 7 victims are reneged, and the 

consequences of reneging in Windows systems are detailed. Section 5.4.1 details the 

attacks to cause reneging and Section 5.4.2 presents the consequences of reneging in 

Windows. 
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5.4.1 Causing Reneging in Windows 

Reneging support for Microsoft’s Windows is detailed in Section 4.1. Dave 

MacDonald, the author of Microsoft Windows 2000 TCP/IP Implementation Details 

[MacDonald 2000], stated that Vista and its successors implement reneging as a 

protection mechanism against DoS attacks. Reneging happens when the memory 

consumption of total TCP reassembly data in relation to the global memory limits is 

significant. To investigate the consequences of reneging, CauseReneg attacks a 

Windows victim (either Vista or 7) by increasing the number of parallel connections to 

make the memory consumption of the total reassembly data so significant that 

reneging is triggered.  

The initial advertised window (rwnd) in both Window’s Vista and 7 is 64240 

bytes corresponding to 44 * 1460 byte TCP PDUs. Based on the initial rwnd, the m 

value, the number of out-of-order segments, in the CauseReneging test (step #5) is set 

to 43 to fill each reassembly queue almost fully with out-of-order data. In the attacks, 

the number of parallel connections established to the victim (n) and the x seconds 

(step #7) values in the CauseReneging test are variable.  

For the attacks, the architecture shown in Figure 5.3 is used. Windows Vista 

and 7 operating systems are installed on an Ubuntu 9.10 host (Linux 2.6.24) using 

Oracle’s VirtualBox virtualization software [Virtualbox]. The Vista victim has 2GB 

physical memory whereas the Windows 7 victim has 1GB memory. Both victims 

deploy Apache 2.2 which can serve 2000 simultaneous TCP connections. The TCP 

traffic between CauseReneg and the victims is recorded for latter analysis. The results 

of the attacks are explained in the next Section 5.4.2. 
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5.4.2 Results  

First, the Vista victim is attacked by CauseReneg using the following 

configuration: n=variable, m=43, x=200 seconds. Table 5.5 presents the results of the 

attacks. When the parallel connections established are 100 or 200, reneging does not 

happen. When 300 parallel connections are established, only the last 33 connections 

renege. When the parallel connections established are 400, a similar behavior happens. 

The first 267 connections do not renege but the last 133 connections do renege. This 

behavior implies that the memory consumption of total reassembly data in relation to 

the global memory limit is considered significant in Vista when the out-of-order data 

in the reassembly queue is at least ~16MB ( 267 (parallel connections) * 43 (out-of-

order segments) * 1460 bytes). To verify that the global memory limit for reneging is 

~16MB, another attack is performed with the configuration: n=600, m=20, x=200 

seconds. With this configuration, only ~half of the rwnd is filled with out-of-order 

data. The observed behavior is consistent: only the last 25 of 600 connections renege, 

and the memory allocated to out-of-order data before reneging happens is again 

~16MB (575 (parallel connections) * 20 (out-of-order segments) * 1460 bytes).    

Table 5.5: CauseReneg attack to a Vista victim with variable number of parallel 
connections  

n parallel TCP connections Reneging 
100 No 
200 No 
300 Yes (33 connections renege) 
400 Yes (133 connections renege) 

 
 

Next, we test if Windows implements a reassembly queue timer similar to 

Solaris 11. For that purpose, CauseReneg attacks the Vista victim using the following 
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configuration: n=300, m=43, x=variable seconds. The attacks are performed for x = 

{30, 40, 50, 100, 200 seconds}. The same behavior is observed in the all attacks: only 

the last 33 of 300 connections renege.  

Last, the Windows 7 victim is attacked by CauseReneg using the following 

configuration: n=variable, m=43, x=200 seconds. Table 5.6 presents the results of the 

attacks. When the parallel connections established are 100, reneging does not happen. 

When 200 parallel connections are established, the first 133 connections do not renege 

but the last 67 connections renege. When the parallel connections established are 300, 

the first 133 connections do not renege but the last 167 connections renege. This 

behavior implies that the memory limit for the reassembly queue for the Windows 7 

victim is ~8MB (133 (parallel connections) * 43 (out-of-order segments) * 1460 

bytes). Recall that the Vista victim has a physical memory of 2GB whereas the 

Windows 7 victim’s memory is 1GB. The memory limit used for the reassembly data 

to trigger reneging in both systems is ~0.78% of the physical memory and seems to 

scale with the physical memory.  

Table 5.6: CauseReneg attack to a Windows 7 victim with variable number of 
parallel connections  

n parallel TCP connections Reneging 
100 No 
200 Yes (67 connections renege) 
300 Yes (167 connections renege) 

 

In conclusion, Windows Vista+ supports reneging as a protection mechanism 

against DoS attacks, reneges when the memory threshold for reassembly data is 

reached, and resumes normal operation after reneging.     
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5.5 Conclusion 

We detailed a tool, CauseReneg, to cause a victim to renege in Section 5.1. 

CauseReneg achieves its goal by exhausting a victim’s resources by sending out-of-

order data using multiple TCP connections. To document the consequences of 

reneging, CauseReneg attacks various victims deploying popular operating systems 

with reneging support such as FreeBSD, Linux, Solaris, and Windows.  

For FreeBSD, two attacks are performed to a victim. The first one caused the 

victim to crash and the second one to renege. In both attacks, the available main 

memory is largely consumed by out-of-order data to trigger reneging. In the first 

attack, the page replacement daemon does not invoke the reneging routines, probably 

due to low paging activity, even though the total memory used for 1240+ parallel TCP 

connections is ~3.3GB (victim has 500MB of physical memory.) In this attack, the 

victim crashes and reneging does not help the operating system to resume normal 

operation. In the second attack, a user process allocating 2GB of main memory is used 

along CauseReneg to cause high paging activity and reneging. This time, the page 

replacement daemon invokes drain routines, and TCP reneges. All of the reassembly 

queues of active TCP connections are purged to reclaim main memory to FreeBSD, 

and the process using the largest memory allocation is terminated by the page 

replacement daemon.  

Initially, it was thought that an operating system starving for main memory 

would eventually crash. Our first attack is such an example. In the second attack, when 

the paging activity is high and the available memory is low, reneging happens in 

addition to the largest process getting killed. This time, FreeBSD resumes normal 

operation. The maximum amount of memory that can be allocated to reassembly 

queues by reneging is limited to ~3MB (0.6% of the physical memory) for the victim 
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attacked. That amount of memory seems negligible compared to the process using the 

most memory. Reneging alone does not seem to help FreeBSD resume normal 

operation, and the reassembly queues’ memory was wastefully purged. The attack 

(B2), where reneging was disabled for the second attack, demonstrated that FreeBSD 

could resume normal operation without reneging. Therefore, I argue that reneging 

support should be turned off by default in FreeBSD as in Mac OS X.  

A reneging TCP connection can complete a data transfer only if the TCP 

sender implements tolerating reneging as specified in [RFC2018]. Otherwise, the data 

transfer would fail (stall). To tolerate reneging, a TCP sender is expected to clear its 

SACK scoreboard at a retransmission timeout (RTO) and retransmit bytes from the 

left edge of the window. To validate this behavior, we transferred a 5MB file from 

various operating systems, listed in Table 5.4, to a reneging FreeBSD victim. Our 

experiment confirms that all the operating systems tested complete a data transfer after 

the connection experiences reneging.     

FreeBSD employs global reneging as explained in Section 4.4. When reneging 

happens, all the reassembly queues are cleared. On the other hand, Linux and Solaris 

employ local reneging as explained in Sections 4.3 and 4.6, respectively. In local 

reneging, only the individual connections are reneged.  

Global reneging is easy to implement. A single reneging function is defined, 

and no bookkeeping is needed. The reneging function is invoked for all active TCP 

connections when reneging is needed. The disadvantage with global reneging is that if 

the memory required by the operating system to resume normal operation is less than 

the total memory allocated for the reassembly queues, some TCP connections are 

unnecessarily penalized.  
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Local reneging, on the other hand, is more complex to implement, and requires 

bookkeeping for each TCP connection and global memory pools. As a connection 

progresses, the amount of allocated receive buffer space is recorded as data is 

appended/removed from the receive buffer. In local reneging, only those connections 

exceeding memory limits experience reneging. Therefore, local reneging is fairer 

compared to global reneging. If I were to implement reneging, I would choose local 

reneging. 

A Solaris 11 victim is reneged in Section 5.3. In Section 5.4, Windows Vista 

and 7 victims are reneged. Both operating systems, Solaris and Windows, use reneging 

as a protection mechanism against DoS attacks. The difference between Solaris and 

Windows is that the former uses a uses a reassembly queue timer to renege whereas 

the latter uses a memory threshold for the out-of-order data for the same purpose.  

In Solaris, when out-of-order data sit in the reassembly queue for at least 100 

seconds, reneging happens. It can be inferred that the connection is either terminated 

due to loss recovery or exhausts resources intentionally (a DoS attack.) In both cases, 

instead of reneging, terminating the connection with RESETs seems to be a better 

option. RESETing would release all of the resources held.  

In Windows, reneging happens when the memory allocated for out-of-order 

data exceeds the memory threshold available for the reassembly data. This threshold 

appears to be ~0.78% of the available physical memory. The current reneging 

implementation has a potential problem. The out-of-order data that cause reaching the 

threshold are not reneged. Instead, the out-of-order data received afterwards are 

reneged. Were an attacker to find out the memory threshold (as we did in Section 

5.4.1) and only send that amount of out-of-order data, all future connections 
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experiencing losses and receiving out-of-order data afterwards would renege. A TCP 

data sender would not retransmit SACKed data until a retransmission timeout (RTO) 

[RFC2018]. In such a case, losses would be recovered with RTOs resulting in 

increased transfer times (lower throughput.)  The quality of service, data transfer times 

for legitimate users, would be reduced. That type of an attack can be referred as 

reduction of service (RoS) attack. We believe that a RoS attack would be harder to 

detect compared to a DoS attack since the service provided in not interrupted but 

slowed.  

When we compare reneging in Solaris vs. Windows, Solaris’s approach seems 

to be a better protection mechanism: only the DoS connections are penalized. An 

important disadvantage of Solaris’s implementation is using a timer. Managing a TCP 

timer is an expensive operation. 

In summary, reneging is caused for FreeBSD, Solaris, and Windows victims 

using CauseReneg tool. The consequences of reneging are detailed for those systems. 

When an operating system (e.g. FreeBSD) is starving for memory, reneging alone 

cannot help the system to resume normal operation. Therefore, I argue that reneging 

support should be turned off for systems employing that type of reneging. Reneging in 

Solaris and Windows protects the system against DoS attacks. I argue that type of 

protection is essential to operating systems but I believe that a better approach would 

be to RESET the connection under the attack instead of reneging.  
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Chapter 6 

PRIOR COLLOBORATIVE RESEARCH 

Prior to the research contributions of this dissertation, I have been involved 

with ns-2’ [Ns-2] SCTP module for more than three years. Currently, I maintain the 

SCTP module which was developed in UD’s Protocol Engineering Lab (PEL). I have 

been involved with two completed projects to support past PhD student Preethi 

Natarajan. The activities I have been involved include running ns-2 experiments, 

fixing bugs and adding new extensions to the ns-2’ SCTP module. The next two 

sections present my contributions to Non-Renegable Selective Acknowledgments 

(NR-SACKs) and Concurrent Multipath Transfer (CMT)/Potentially Failed (PF) 

projects.   

6.1 NR-SACKs 

In both TCP and SCTP, selectively acknowledged (SACKed) out-of-order data 

is implicitly renegable; that is, the receiver can later discard SACKed data. The 

possibility of reneging forces the transport sender to maintain copies of SACKed data 

in the send buffer until they are cumulatively ACKed. 

In [Natarajan 2008b], we investigated the situation where all out-of-order data 

are non-renegable, such as when the data has been delivered to the application, or 

when the receiver simply never reneges either by agreement or if the user has 

explicitly turned off reneging using sysctl controls. Using ns-2 simulations, we 

showed that SACKs result in inevitable send buffer wastage, which increases as the 
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frequency of loss events and loss recovery durations increases. We introduced a 

fundamentally new ACK mechanism, Non-Renegable Selective Acknowledgments 

(NR-SACKs), for SCTP. Using NR-SACKs, an SCTP receiver explicitly identifies 

some or all out-of-order data as being non-renegable, allowing the data sender to free 

up send buffer sooner than if the data were only SACKed. We compared and showed 

that NR-SACKs enable efficient utilization of a transport sender’s memory. We 

further investigated the effects of using NR-SACKs in Concurrent Multipath Transfer 

(CMT). Using ns-2 simulations, we showed that NR-SACKs not only reduce transport 

sender’s memory requirements, but also improve throughput in CMT. 

In [Yilmaz 2010], we extended the investigation of the throughput 

improvements that NR-SACKs can provide, particularly when all out-of-order data are 

non-renegable. Using ns-2 simulations, for various loss conditions and bandwidth-

delay combinations, we showed that the throughput observed with NR-SACKs is at 

least equal and often better than the throughput observed with SACKs. We introduced 

“region of gain” which defines for a given bandwidth, delay, and send buffer size 

combination, what interval of loss rates results in significant throughput improvement 

when NR-SACKs are used instead of SACKs. In both SCTP and CMT, NR-SACKs 

provided greater throughput improvement as the send buffer size decreases, and as the 

end-to-end delay decreases. Provided that the bandwidth-delay product (BDP) ≥ send 

buffer size, additional bandwidth does not affect NR-SACKs’ throughput 

improvements for either SCTP or CMT. For BDPs < send buffer size, the throughput 

improvement using NR-SACKs decreases as the BDP decreases. We also presented 

details of our NR-SACK implementation in FreeBSD, and analyzed NR-SACKs vs. 

SACKs over a Dummynet-emulated network [Dummynet] using our FreeBSD SCTP 
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stack. Note: Preethi Natarajan and I added the support for NR-SACKs in the ns-2’ 

SCTP module, and Ertugrul Yilmaz implemented NR-SACKs in the FreeBSD SCTP 

stack. 

I am the co-author of [Natarajan 2008b], [Natarajan 2009 (b)] and [Yilmaz 

2010]. In the NR-SACK project, I ran the experiments to compare NR-SACK vs. 

SACK on various network topologies, path characteristics and loss models. Preethi 

and I added support for NR-SACKs for SCTP, CMT and CMT-PF in the SCTP 

module. I also added the support to track send buffer utilization for both NR-SACKs 

and SACKs. I included new validation tests for both NR-SACK and SACK, and 

submitted a patch (SCTP module 3.8 released with ns-2.35) to the main trunk of ns-2 

which adds support for NR-SACKs. 

Varun Notibala and I also implemented viewing and graphing NR-SACKs data 

transfers in the Wireshark network protocol analyzer tool [Wireshark]. 

6.2 Concurrent Multipath Transfer (CMT)/Potentially Failed (PF) 

Concurrent Multipath Transfer (CMT) uses SCTP’s multihoming feature to 

distribute data across multiple end-to-end paths in a multihomed SCTP association 

[Iyengar 2006]. Since data are sent simultaneously on different paths, data reordering 

is inevitable. The author investigated the negative effects of data reordering and 

introduced new algorithms to deal with data reordering problem. 

[Iyengar 2007] explored the performance of CMT in the presence of a 

constrained receive buffer and investigated the receive buffer blocking problem 

observed in CMT transfers. Different retransmission policies were evaluated under 

various bounded receive buffer sizes. The authors showed that the receive buffer 
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blocking cannot be eliminated but can be reduced with a well-chosen retransmission 

policy. 

Janardhan Iyengar extended ns-2’ SCTP module to support CMT and 

implemented CMT in the FreeBSD SCTP stack. 

[Natarajan 2006] investigated CMT’s throughput degradation caused by 

receive buffer blocking during complete and/or short-term network failures.  To 

improve CMT’s performance during a failure, a new state for each destination called 

the “Potentially-Failed” (PF) state and a retransmission policy that takes into account 

the PF state was introduced. Using ns-2 simulations, CMT-PF was evaluated, and 

throughput improvements were shown over CMT in failure-prone networks. 

[Natarajan 2008a] completed the evaluation of CMT vs. CMT-PF. Using ns-2 

simulations we showed that CMT-PF performs on par or better than CMT during more 

aggressive failure detection thresholds than recommended by [RFC4960]. We also 

examined whether the modified sender behavior in CMT-PF degrades performance 

during non-failure scenarios. Our evaluations considered: (1) realistic loss model with 

symmetric and asymmetric path loss, (2) varying path RTTs. We found that CMT-PF 

performs as well as CMT during non-failure scenarios, and interestingly, outperforms 

CMT when the paths experience asymmetric receive buffer blocking conditions. We 

recommended that CMT be replaced by CMT-PF in future CMT implementations and 

RFCs. 

In [Natarajan 2009], we confirmed our simulations results using FreeBSD 

implementations of CMT and CMT-PF. 

Preethi Natarajan added the support for CMT-PF in the SCTP module of ns-2 

and Joe Szymanski implemented CMT-PF in the FreeBSD SCTP stack. 
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I am the co-author of [Natarajan 2008a] and [Natarajan 2009] and I have been 

involved with the following activities for this research project. I ran the experiments to 

compare CMT vs. CMT-PF on various network topologies, path characteristics and 

loss models. I discovered several bugs in ns-2’ SCTP module for CMT and CMT-PF 

and then fixed them. I wrote new validation tests for both CMT and CMT-PF, and 

submitted a patch (SCTP module 3.7 released with ns-2.32) to the main trunk of ns-2 

which adds support for CMT-PF. I was also involved with debugging the FreeBSD’s 

CMT-PF code. 
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Chapter 7 

CONCLUSIONS & FUTURE WORK 

7.1 Conclusions 

Reneging occurs when a data receiver SACKs data, and later discards these 

data from its receive buffer prior to delivering these data to the receiving application. 

TCP is designed to tolerate reneging. Specifically [RFC2018] states that: “The SACK 

option is advisory, in that, while it notifies the data sender that the data receiver has 

received the indicated segments, the data receiver is permitted to later discard data 

which have been reported in a SACK option”. Reneging may happen when an 

operating system needs to recapture previously allocated receive buffer memory for 

another process, say to avoid deadlock. 

Because TCP is designed to tolerate possible reneging by a data receiver, a 

TCP data sender must keep copies of all transmitted data segments in its send buffer, 

even SACKed data, until cumulatively ACKed. If reneging does happen, a copy of the 

reneged data exists and can be retransmitted to complete the reliable data transfer. 

Inversely if reneging does not happen, SACKed data are unnecessarily stored in the 

send buffer until cumulatively ACKed. 

I argue that this design assumption to tolerate reneging is wrong. To support 

my argument, this dissertation investigated (1) the instances, (2) causes and (3) effects 

of TCP reneging in today’s Internet. 

(1) To document the instances and the frequency of TCP reneging in Internet 

traces, we proposed a mechanism to detect reneging instances. The proposed 
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mechanism is based on how an SCTP data sender infers reneging. A state of the 

receive buffer is constructed at an intermediate router and updated as new acks are 

monitored. When an inconsistency occurs between the state of the receive buffer and a 

new ack, reneging is detected. We implemented the proposed mechanism as a tool 

called RenegDetect v1. 

While verifying RenegDetect v1 with real TCP flows, we discovered that some 

TCP implementations were generating SACKs incompletely under some 

circumstances giving a false impression that reneging was happening. Our discovery 

led us to a side investigation to precisely identify five misbehaving TCP stacks.  

For that, we designed a methodology and verified conformant SACK 

generation on 29 TCP stacks for a wide range of OSes: FreeBSD, Linux, Mac OS X, 

OpenBSD, Solaris and Windows. We eventually identified the characteristics of seven 

misbehaviors, and designed seven TBIT tests to document these misbehaviors. 

For the first five misbehaviors (A-E) which were observed in the CAIDA trace 

files, we found at least one misbehaving TCP stack. We reported various versions of 

OpenBSD and Windows OS to have misbehaving SACK generation implementations. 

In general, the misbehaving SACK implementations can cause a less efficient SACK-

based loss recovery yielding to decreased throughput and longer transfer times. 

During the TBIT testing, we identified two additional misbehaviors (F and G). 

Misbehavior F decreases the throughput by sending less than expected data while 

using SACKs. Most Linux and OpenSolaris systems show this misbehavior. 

Misbehavior G is more serious. SACK information from a prior connection reappears 

in a new connection and can cause a TCP connection to be inconsistent should the 

sequence number space of one connection overlap that of a prior connection. Solaris 
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10 and OpenSolaris systems misbehave in this manner. Based on our [RFC2018] 

SACK generation investigation results, we concluded that while simple in concept, 

SACK handling is complex to implement. 

To identify reneging instances more accurately and identify SACK generation 

misbehaviors, we updated RenegDetect v2 to better analyze the flow of data, in 

particular, to analyze data retransmissions which are a more definitive indication that 

reneging happened. 

Our initial hypothesis was that reneging rarely if ever occurs in practice. For 

that purpose, TCP traces from three domains (Internet backbone (CAIDA), wireless 

(SIGCOMM), enterprise (LBNL)) were analyzed using RenegDetect v2. 

Contrary to our initial expectation that reneging is an extremely rare event, 

trace analysis demonstrated that reneging does happen. Therefore, we could not reject 

our initial hypothesis H0 that P(reneging) < 10-5. Since reneging instances were found, 

analyzing 300K TCP flows were no longer necessary. As a result, we ended up 

analyzing 202,877 TCP flows using SACKs from the three domains.  In the TCP 

flows using SACKs, we detected 104 reneging flows. We estimated with 95% 

confidence that the true average rate of reneging is in the interval [0.041%, 0.059%], 

roughly 1 flow in 2,000 (0.05%). 

In the TCP flows analyzed, we detected 104 reneging flows, or approximately 

0.05% in the analyzed TCP connections using SACKs. The frequency of TCP 

reneging found in [Blanton 2008] was 0.017%. Together the results of these two 

studies allow us to conclude that reneging is a rare event.  

In the 104 reneging flows, a total of 200 reneging instances were detected. This 

behavior suggests that when reneging occur in a TCP flow, it is much more likely to 
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happen again. It is unclear however if reneging is due to something occurring in the 

flow, or correlated to what is going on in a host at the given moment in time. For each 

reneging flow, we tried to fingerprint the operating system of the reneging data 

receiver, and generalize reneging behavior according to operating system. 

Our motivation to investigate the frequency of TCP reneging was primarily to 

conclude if TCP’s design to tolerate reneging is correct. If we could document that 

reneging never occurs, TCP had no need to tolerate reneging. Upon observing 

reneging occurs rarely (less than 1 flow per 1000), we believe the current handling of 

reneging in TCP can be improved. 

TCP is designed to tolerate reneging by defining a retransmission policy for a 

data sender [RFC2018] and keeping the SACKed data in the data sender’s send buffer 

until cumulatively ACKed. With this design, if reneging happens rarely, SACKed data 

are unnecessarily stored in the send buffer wasting operating system resources. 

To understand the potential gains for a protocol that does not tolerate reneging, 

SCTP’s NR-SACKs (Non-Renegable SACKs) are detailed in Section 1.2.2. With NR-

SACKs, an SCTP data receiver takes the responsibility for non-renegable data (NR-

SACKed), and, an SCTP data sender needs not to retain copies of NR-SACKed data in 

its send buffer until cumulatively ACKed. Results demonstrated that memory 

allocated for the send buffer is better utilized with NR-SACKs [Natarajan 2008b]. NR-

SACKs also improve end-to-end application throughput. When the send buffer is full, 

no new data can be transmitted even when congestion and flow control mechanisms 

allow. When NR-SACKed data are removed from the send buffer, new application 

data can be read and potentially transmitted. [Yilmaz 2010] shows that the throughput 

achieved with NR-SACKs is always ≥ throughput observed with SACKs. 
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If current TCP was designed not to tolerate reneging, the send buffer utilization 

would be always optimal, and the application throughput might be improved for data 

transfers with constrained send buffers. Preliminary analysis suggests throughput 

gains assuming asymmetric buffer sizes (send buffer < receive buffer) and no auto-

tuning.  

Let us compare TCP’s current design to tolerate reneging with a TCP that does 

not support reneging using the results from our reneging analysis. With current design, 

TCP tolerates reneging to achieve the reliable data transfers of 104 reneging flows. 

The 202,773 non-reneging flows waste main memory allocated to send buffer and 

potentially achieve lower throughput.  

I argue that the current design to tolerate reneging is wrong since reneging is a 

rare event. Instead, I suggest that the current semantics of SACKs should be changed 

from advisory to permanent prohibiting a data receiver to renege. If a data receiver 

does have to take back memory that has been allocated to received out-of-order data, I 

propose that the data receiver must RESET the transport connection. With this change, 

104 reneging flows would be penalized by termination. On the other hand, 202,773 

non-reneging flows benefit from better send buffer utilization and possible increased 

throughput.  

Initially, reneging was thought as a utility mechanism to help an operating 

system reclaim main memory under low-memory situations perhaps to avoid a 

deadlock situation. In our investigation, we found that the average main memory 

returned to the reneging operating system per reneging instance is on the order of 2 

TCP segments (2715, 3717, and 1371 bytes for Linux, FreeBSD, and Windows 

operating systems, respectively.) This amount of main memory reclaimed seems 
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insignificant. For example, to reclaim 3MB of main memory back to FreeBSD, 846 

simultaneous TCP flows each having 3717 bytes of out-of-order data would need to be 

reneged. On the other hand, our experimentation with FreeBSD showed that 

terminating a single TCP flow established to Apache web server releases ~3MB of 

main memory in FreeBSD. I believe that RESETing one TCP flow is a better strategy 

to help an operating system rather than reneging 800+ connections as would be needed 

in the current handling of reneging. 

I had a chance to discuss why reneging is tolerated in TCP with Matt Mathis, 

the main editor of [RFC2018]. He told me that the semantics of SACKs are advisory 

since a reliable data transfer would fail if SACKs were permanent and some TCP 

stacks implement SACKs incorrectly. By specifying SACKs advisory, TCP is more 

robust to SACK implementations having bugs. I argue that this design choice which 

perhaps is practical to get the choice accepted by the research community is wrong. By 

analogy, a TCP stack implementing a wrong ACK mechanism would cause a data 

transfer to fail but we do not consider ACKs as advisory. I believe it is the protocol 

implementor’s responsibility to provide a correct implementation. Protocols should be 

specified to achieve the best performance, and not be designed to tolerate incorrect 

implementations. I argue that TCP’s current mechanism to tolerate reneging achieves 

a lower memory utilization when compared to a TCP with no reneging support and 

should be improved. 

(2) To investigate the causes reneging, several TCP stacks from popular 

operating systems were inspected to characterize the circumstances of reneging. The 

primary contribution of our investigation is that we found out that operating systems 

use reneging for different purposes.  
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Initially, reneging was expected when an operating system went low on main 

memory to help the operating system resume normal operation. FreeBSD, for 

example, supports that type of reneging. In low memory situations, all TCP 

connections with out-of-order data renege simultaneously (global reneging).  

For Microsoft Windows, I was informed by Dave MacDonald that reneging is 

not supported by 2000, XP and Server 2003. On the contrary, we found 53 reneging 

flows in trace analysis where TCP fingerprints strongly suggested these Microsoft 

systems were reneging. I was also informed by Dave that Vista+ (Vista, Server 2008, 

7) comes with a new TCP stack in which reneging is possible. Reneging in Windows 

Vista+ was introduced to protect a host against DoS attacks. An attacker can open 

multiple TCP connections and fill each one’s receive buffers with out-of-order data to 

exhaust system resources thus making services unavailable. Reneging happens when 

the memory consumption of total reassembly data in relation to the global memory 

limits is significant. 

In Mac OS X, reneging is supported by the operating system. But, by default 

reneging is not enabled. So, TCP can be modified to operate as a non-reneging 

protocol in Mac OS X.   

In Linux (Android), reneging happens when the memory allocated for a 

receive buffer exceeds the memory limit available to the receive buffer. Allocated 

buffer space for the out-of-order data is freed and returned back to the global TCP 

memory pool to be used by other TCP connections. In Linux, only individual 

connections exceeding the receive buffer limit renege (local reneging). 

Reneging is not supported in Solaris but happens to connections where the 

TCP reassembly queue timer expires (local reneging). To our best knowledge, a timer 
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for the reassembly queue is not defined in the TCP specification. We believe (but 

could not confirm) reneging in Solaris has the same purpose as Windows reneging: to 

protect the operating system against a DoS attack. 

Initially, we expected reneging not to be supported by any operating systems. 

To the contrary, our investigation revealed that five out of six inspected operating 

systems can renege (FreeBSD, Linux (Android), Apple’s Mac OS X, Oracle’s Solaris 

and Microsoft’s Windows Vista+.) The only operating system that does not support 

reneging in our investigation is OpenBSD. We also initially expected that reneging 

would occur to help operating system to resume normal operation by providing extra 

memory (FreeBSD). Surprisingly, we discovered that reneging is also used as a 

protection mechanism against DoS attacks (Solaris, Vista+.) We conclude that 

reneging is a common mechanism implemented in most of today’s popular operating 

systems. 

(3) To document the effects of reneging, we designed a tool, CauseReneg, to 

cause a victim to renege. Using this tool, we attacked various victims deploying 

popular operating systems with reneging support such as FreeBSD, Linux, Solaris, and 

Windows using CauseReneg. CauseReneg achieves its goal by exhausting a victim’s 

resources by sending out-of-order data using multiple TCP connections.  

For FreeBSD, two attacks were performed to a victim. The first one caused the 

victim to crash and the second one caused the victim to renege. In both attacks, the 

available main memory was largely consumed by out-of-order data to trigger 

reneging. In the first attack, CauseReneg established 1240+ parallel connections to the 

victim, and the page replacement daemon did not invoke the reneging routines, 

probably due to low paging activity. In this attack, the victim crashed. Reneging did 
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not help the operating system to resume normal operation. In the second attack, a user 

process allocating 2GB of main memory was used along with CauseReneg to cause 

high paging activity and reneging. This time, the page replacement daemon invoked 

drain routines, and reneging happened. All of the reassembly queues of active TCP 

connections were purged to reclaim main memory to FreeBSD, and the process using 

the largest memory allocation was terminated by the page replacement daemon. 

Initially, it expected that an operating system starving for main memory would 

eventually crash. Our first attack to FreeBSD is such an example. In the second attack, 

when the paging activity was high and the available memory was low, reneging 

happened in addition to the largest process getting killed. This time, FreeBSD resumed 

normal operation. The maximum amount of memory that could be allocated to 

reassembly queues by reneging was limited to ~3MB only (0.6% of the physical 

memory) for the victim attacked. That amount of memory is negligible compared to 

the process using the most memory. I believe reneging alone cannot help an operating 

system to resume normal operation. In this case, the memory used for the reassembly 

queues was wastefully purged. The operating system resumed normal operation since 

the page replacement daemon killed the largest process. I argue that reneging support 

should be turned off by default in FreeBSD as in Mac OS X. 

Next, Solaris 11, Windows Vista, and Window 7 victims were attacked using 

CauseReneg. Both Solaris and Windows use reneging as a protection mechanism 

against DoS attacks. Solaris uses a uses a reassembly queue timer to renege whereas 

Windows uses a memory threshold for the out-of-order data for the same purpose. 

In Solaris, when out-of-order data sit in the reassembly queue for at least 100 

seconds, reneging happens. The system infers that the connection is either terminated 
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due to a failed loss recovery or exhausts resources intentionally (a DoS attack.) In both 

cases, instead of reneging, terminating the connection with RESETs seems to be a 

better option. RESETing the connection would release all of the resources held. 

In Windows, reneging happens when the memory allocated for out-of-order 

data exceeds the memory threshold available for the reassembly data. This threshold 

appears to be ~0.78% of the available physical memory. The current reneging 

implementation has a potential problem. The out-of-order data that cause reaching the 

threshold are not reneged. Instead, the out-of-order data received afterwards are 

reneged. Were an attacker to learn the memory threshold and only send that amount of 

out-of-order data, all future connections experiencing losses and receiving out-of-

order data afterwards would renege. A TCP data sender would not retransmit SACKed 

data until a retransmission timeout (RTO) [RFC2018]. In such a case, losses would be 

recovered with RTOs resulting in increased transfer times (lower throughput.)  The 

quality of service, data transfer times for legitimate users, would be reduced. We name 

this type of an attack a “reduction of service” (RoS) attack. We believe that a RoS 

attack would be harder to detect compared to a DoS attack since the service provided 

is not interrupted, but only degraded. 

When we compare reneging in Solaris vs. Windows, Solaris’s approach seems 

to be a better protection mechanism: only the DoS connections are penalized. An 

important disadvantage of Solaris’s implementation is using a timer since managing a 

TCP timer is an expensive operation. 

Next, we compare global vs. local reneging. FreeBSD employs global 

reneging. When reneging happens, all the reassembly queues are cleared. On the other 
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hand, Linux and Solaris employ local reneging where each TCP connection reneges 

independently.  

Global reneging is easier to implement. A single reneging function is defined, 

and no bookkeeping is required. The reneging function is invoked for all active TCP 

connections when reneging is needed. The disadvantage with global reneging is that if 

the memory required by the operating system to resume normal operation is less than 

the total memory allocated for the reassembly queues, some TCP connections are 

unnecessarily penalized. 

Local reneging, on the other hand, is more complex to implement, and requires 

bookkeeping for each TCP connection and global memory pools. As a connection 

progresses, the amount of allocated receive buffer space is recorded as data is 

appended/removed from the receive buffer. In local reneging, only those connections 

exceeding memory limits experience reneging. Therefore, local reneging is fairer 

compared to global reneging.  

In summary, reneging was caused for FreeBSD, Solaris, and Windows victims 

using CauseReneg tool. The consequences of reneging were detailed for those 

systems. When an operating system (e.g. FreeBSD) is starving for memory, reneging 

alone cannot help the system to resume normal operation. Therefore, I argue that 

reneging support should be turned off for systems employing that type of reneging. 

Reneging in Solaris and Windows protects the system against DoS attacks. I argue that 

type of protection is essential to operating systems but I believe that a better approach 

would be to RESET the connection under the attack instead of reneging. 

In this dissertation, we investigated (1) the instances, (2) causes and (3) effects 

of TCP reneging in today’s Internet to argue that TCP’s design to tolerate reneging is 
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wrong. Our investigation showed that reneging is a rare event and in general cannot 

help an operating system alone to resume normal operation. Therefore, I argue that 

TCP should be redesigned not to renege by (1) changing semantics of SACKs from 

being advisory to permanent and (2) RESETing a connection if an operating system 

has to take back the main memory allocated to out-of-order data, or defend against a 

DoS attack.  

7.2 Future Work 

During the reneging analysis on Internet traces, we discovered two additional 

SACK generation misbehaviors after publishing [Ekiz 2011b]. New TBIT tests are 

needed to identify the misbehaving stacks for the two additional misbehaviors.  

To document the consequences of reneging, FreeBSD, Solaris and Windows 

hosts were reneged using CauseReneg. Unfortunately, we could not succeed to renege 

a Linux host yet. In the trace analysis, we detected 40 reneging flows from various 

Linux data receivers. Deeper investigation showed that reneging happens when the 

receiving application is unable to read in-order data from the receive buffer. In our 

attempts to cause reneging on a Linux host, an Apache web server (the receiving 

application) was reading the in-order data (5 bytes) immediately. To document the 

consequences of reneging in Linux, CauseReneg needs to be updated to send larger 

amount of in-order data (10K-20K?) in addition to out-of-order data, and attack an 

application that would not read in-order data immediately. For that, a custom 

application that does not read in-order data for long time needs to be developed.   

   In Section 7.1, we stated that increased throughput for TCP is possible for 

data transfers with constrained send buffers (assuming asymmetric buffer sizes (send 

buffer < receive buffer) and no auto-tuning) if TCP were designed not to renege. 
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When the send buffer is full, no new data can be transmitted even when congestion 

and flow control mechanisms allow. If SACKs were non-renegable, SACKed data 

could be removed from the send buffer immediately, and new application data could 

be read and potentially transmitted if the data receivers receive buffer has space to 

receive more data. For that, TCP’s send buffer management needs to be modified to 

release SACKed data immediately and read more data into the send buffer with a 

receipt of a SACK. To document possible throughput improvements, a TCP stack 

should be modified to operate as a non-renegable TCP and experiments needs to be 

conducted between two TCP end-points having asymmetric buffer sizes (send buffer < 

receive buffer) and no auto-tuning. 
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