Chapter 5

RESULTS OF PERFORMANCE EXPERIMENTS

51 Introduction

This chapter presents the core of this dissertation. While many of the side-
products of this investigation have proved useful and significant, it is this chapter that
directly addresses the problem statement first presented in Section 1.1, and repeated

here for the reader’ s convenience:

To determine through experimentation with real systems the extent to
which PO/PR transport service can provide performance benefits for

real applications.

In this chapter, we present results from performance experiments that address this

guestion.

5.1.1 Goalsand limitations of our investigation

This section describes the limitations of our investigation and clarifies our
goal with respect to the problem statement cited above.

First, consider the term real applications. In this investigation, we
examine only one application for PO/PR service, namely multimedia document
retrieval. Using PO/PR service to support multimedia document retrieval was first
proposed in (Amer et al., 1994), and developed further in (Conrad et a., 1996). Only

one other concrete application has been proposed for PO/PR transport service:
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(RFC1693) proposes using PO/R service to transmit the results of database queries.
Section 7.2 comments further on the applicability of our resultsto this application.

For other hypothetical applications, we can produce only negative results.
For example, we can show arange of network conditions under which the benefits of
partial order in terms of delay or throughput are zero. However, if the benefit is
anything other than zero, we cannot determine the significance of the gain except in
the context of a particular application, because any gain, no matter how arbitrarily
large or small, might be significant, or insignificant in a particular set of
circumstances. An improvement in delay or throughput that is significant in one
context may be meaninglessin another. The fact that we cannot extrapolate the
significance of a performance improvement from one application to another highlights
the advantage—as well as the disadvantage—of examining PO/PR transport servicein
the context of a specific application.

We should also recognize that even within the context of ReMDoR, our
experiments are limited to specific documents. We have tried to use documents for
our experiments that are reasonable examples of multimedia, similar to those seen in
practice. However, we make no claim that our documents are representative in any
scientific sense. One might imagine that someday we might be able to perform
experiments on randomly selected multimedia documents from a huge corpus of
literature, asisthe practice of researchersin natural language processing. However, no
such corpus of PMSL documents exists—not yet, in any case.

Thus, our goa isto find some specific circumstances under which PO/PR
service provides benefits for some specific documents, and then to investigate these

circumstances fully, examining the effect of varying network parameters on thegainin
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performance. By understanding these effects, we can better evaluate the potential of

PO/PR service as a useful addition to the range of services provided by the transport

layer.

5.1.2 Organization of this chapter and overview of performance experiments.
This section describes the organization of this chapter. It also provides an
overview of the performance experiments included in this dissertation, with a brief
description of the role that each playsin our investigation of PO/PR transport
protocols. (The reader may wish to review the introduction in Section 1.7 and the
notation in Table 1.3 before proceeding.)
Section 5.1 provides background information about the performance

experimentsin general. It includes:

. adescription of the overall experimental framework (Section 5.1.3),
and
. specific sections on the lossy router and the packet reflector

(Sections 5.1.4 and 5.1.5), including a discussion of how the correct
operation of these components was verified.

The core of the chapter, Sections 5.2 through 5.7, describes the results of our
experiments. In each case, the ReMDoR system is used to retrieve a document using
two or more transport protocols. We present a comparison of the performance
statistics for each protocol to see if one protocol outperforms the other(s). Depending
on the experiment, we investigate the effect of packet loss rate, bitrate, propagation

delay, and/or window size.

. Section 5.2 describes Experiment N1, comparing ordered/reliable
service with unordered/reliable service using network-conscious images
produced with NETCICATS (Iren,1999b). The improvement of an
unordered/reliable service over an ordered/reliable service represents
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the limiting case for gains from any partially ordered/reliable transport
service.

. Sections 5.3, 5.4 and 5.5 describe Experiments R1, R2 and R3, which
use the ReMDoR application to compare ordered/reliable service to
partially-ordered/reliable service for retrieval of adocument with eight
images presented in parallel. The main difference between these
experiments and Experiment N1 isthat for R1, R2 and R3, images are
compressed using the traditional GIF file format. GIF requires
ordered/reliable delivery for each image, so unordered service cannot
be used. However, partially-ordered service can be used because the
data for each image can be interleaved in eight parallel streams.

. Section 5.6 describes Experiment R4, which compares ordered/reliable
service to partially-ordered/reliable service for retrieval of a document
with three imagesin parallel with asingle audio clip. We consider
performance statistics related both to the display of the images and the
smoothness of the audio presentation.

. Section 5.7 describes Experiment R5, which compares ordered/reliable
service to partially-ordered/reliable service for retrieval of entire
documents. Where R1, R2 and R3 focus on small documents, here, we
look at afull document in its entirety.

Following the experiment results, Section 5.8 surveys common problems that can arise
in measuring system performance and how we dealt with these. Section 5.9 concludes
the chapter, with some overall conclusions, an assessment of the significance of our

results.

5.1.3 Experimental setup

Section 1.7 provided a high-level view of the experimental framework
developed as part of this dissertation. In this section, we provide a more detailed view
of thissetup. Figure 1.2 showed a server and a client with a cloud abstracting the

unreliable network connecting them. Figure 5.1 illustrates the details of that cloud.

179



The network always includes a 100M bps Ethernet at the client side. In addition, it may

include combinations of the following components:

(1) alossy router (described in Section 5.1.4): an IP router that can,
on request, purposely drop certain packets according to one of
several loss models.>0

(2) apacket reflector (described in Section 5.1.5): atraffic shaping
program to simulate packet transmission delays, propagation
delays, and queuing delays for atwo-way UDP packet flow

(3) aPPPlink: aserial connection using the Point-to-Point
Protocol (RFC1661) over an RS-232 null modem cable

(4) A wide-areaInternet path. Although not used in any of the
experiments described in this dissertation, the experimental
framework includes provisions to do experiments between UD
and other locations on the Internet. This capability was used in
(Iren 1999b) to do experiments between UD and the Middle
East Technical University in Ankara, Turkey. Planned future
work involves using this capability for experiments between UD
and Temple University, which although a short distance in
geographical terms, is actualy thirteen hops away in Internet
distance.

50 Theinitial implementation of the lossy router was completed by Golden as part of
(Golden, 1997). The author of this dissertation designed the SLRP control protocol

(described later in this section), and implemented a GUI client. The Bernoulli loss

model was implemented by Golden; the deterministic and Gilbert |oss models were

added by Iren (Iren, 1999b).
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Figure5.1 Detail of experimental environment

5.1.4 Thelossy router

To smulate delay and loss, we use a lossy router, developed at the UD
Protocol Engineering Lab (PEL). While the hosts used in our experiments have only
one Ethernet interface, attached to a single 100Mbps Ethernet hub, each host is
assigned two distinct |P addresses: one for normal traffic, and one for experimental
traffic on the so-called loss network. The loss network (domain name:
| oss. udel . edu) isavirtua network that runsin parallel with the regular network
(ci s. udel . edu) over the same Ethernet hardware. The router for this network isa

machine called al sace. | oss. udel . edu. When a host on the loss network (say,
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buzet . | 0ss)>! has a packet destined for another host on the loss network (say,
medoc. | oss), rather than placing the packet on the Ethernet with the destination
host’ s Ethernet address, the host instead sends the packet to the lossy router

(al sace. | oss). Although al sace. | oss actsasarouter for thel oss network, the
normal IP forwarding mechanismson al sace are disabled. Instead, a user-level
program developed at UD intercepts incoming packets and performs the routing
function, deliberately introducing packet loss according to one of three available

models:

(1) Bernoulli: auniformly distributed pseudo-random number is
generated, and the packet is either forwarded or dropped, based
on the outcome (parameter: packet loss probability p)

(2) Deterministic: every kth packet is dropped (parameter: k)

(3) Gilbert-Elliot: lossis modeled by a Markov chain with 2 states:
bad (packets are dropped) and good (packets are forwarded).
(parameters: p and q, asin Figure 5.2)(Gilbert, 1960; Elliot,
1963; Ebert and Willig, 1999)

To enable automated experimentation, a control protocol was developed called the
Simple Lossy Router control Protocol (SLRP). This protocol is an ASCII protocol
similar in structureto FTP, NNTP or SMTP:

. request PDUs begin with four character command codes, and

. response PDUs begin with three digit response codes indicating the
success or failure of the command, and in some cases returning
statistics.

51 Henceforth, we drop the . udel . edu suffix; for example, buzet . ci s refersto
buzet. ci s. udel . edu, andbuzet . | oss referstobuzet .| oss. udel . edu
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Commands allow experimenters to change the loss model and parameters either
interactively viaatelnet or GUI client, indirectly from a Perl or Tcl/Tk script, or from

aprogram using TCP sockets.

1-p P 1-q

@

Figure5.2 Gilbert-Elliot loss model (two state Markov chain)

The experiments described in this chapter use only the Bernoulli loss
model. Future work includes performing experiments based on the Gilbert-Elliot loss
model to study the effect of burst losses, such as might be caused by queue overflows,

momentary power outage in arouter, or noise bursts on awireless channel.

Validation of thelossy router

We took several steps to ensure that the lossy router operates correctly for
the Bernoulli loss model. First, we tested the lossy router using the standard Unix
pi ng utility at avariety of loss rates ranging from 0% to 100%. Second, we
performed a code review involving several members of the PEL staff, in which we
reviewed the source code line-by-line to increase our confidence in its correctness.
Third, we measured the actual packet |oss obtained in each of our experiments by

analyzing a packet trace. The remainder of this section provides more information
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about how we took this measurement, and some sample data to back up the claim that
the lossy router operates correctly.

Unless otherwise noted, every experiment reported in this dissertation
involves repeating an experiment many times, and taking the average and standard
deviation across many repetitions of the experiment. The lossy router maintains
counters of packets forwarded and dropped that can be reset and inquired against.
Before each repetition of every experiment, we reset these counters, and following
every repetition, we retrieved the values of these counters. Therefore, we know the
actual number of packets forwarded and dropped in each experiment, as reported by
the lossy router. Based on the evidence in these logs, we conclude that the mean and
standard deviation of the actual loss rate for traffic through the lossy router is
reasonably close to the values predicted by the formulas for the mean and standard
deviation of a Bernoulli distribution.

Of course, the conclusion in the previous sentence is predicated on the
assumption that the lossy router is providing accurate reports of its own behavior. To
validate that the counters reported by the lossy router are accurate, we also take a
packet trace of every experiment, and use a Per| script to analyze this output. The
script counts the number of packets sent from client-to-server and server-to-client in
each experiment, and the number of packets dropped by the lossy router, dividing to
get the actual loss rate for each direction. We can then cross check this against the
report by the lossy router. Our analysis of the packet traces for the experiments leads

us to conclude that the lossy router’ s reporting about itself is accurate.
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5.1.5 The packet reflector

To simulate various bandwidths we used the UDP packet reflector
developed at the UD Protocol Engineering Lab. The packet reflector is a user-level
process that forwards UDP packets between a client and a server, smulating the
effects of queuing delays at aslow PPP link, and propagation (speed of light) delays
for long-haul transmission.

The traffic shaping done by the reflector has characteristics of both the
classic leaky bucket and token bucket methods (Tanenbaum, 1996). The goa of both
of the classic schemesisto limit traffic to amaximum bit rate of b. The difference

between the schemes is that:

. In the leaky bucket scheme, the upper bound on the bit rate is enforced
on a packet-by-packet basis. When the queue is non-empty, packets
leave the queue at a steady rate of b bits per second, similar to the flow
of water through a hole in the bottom of a bucket. Bursts of
transmission higher than bitrate b are disallowed.

. In the token bucket scheme, tokens are added to a bucket at a steady
rate, and are used to bound the long-term average bitrate. Bursts of
packets may be sent at a bitrate higher than b to make up for past
underutilization of the allocated bandwidth.

Asthe remainder of this section explains, the model for the PEL reflector isthe leaky
bucket scheme. However, due to context switching, the reflector may occasionally fall
behind in sending out packets according to the transmission times calculated for the
leaky bucket model. In this case, bursts of packets may be sent out to allow the
reflector to catch up; thisis more akin to the token bucket scheme.

The remainder of this section isin two parts: we first provide details of the

modified leaky bucket scheme, and then describe how the reflector was validated.
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Modified leaky bucket scheme used in the packet reflector

Each direction of the link is modeled independently. When each packet
arrives, it is placed in the outgoing packet queue. The current time (noted as now in
the equations below) is measured. Then three timestamps are calculated and

associated with the arriving packet:

. tstart: first bit of the packet begins transmission
. teng: last bit of the packet ends transmission
. tarr: last bit of the packet arrives at the receiver, given the propagation

delay tyrop that is being modeled by the reflector.
These values are calculated as follows. We start by calculating the value

total LengthInBytes, which is the sum of:

. the bytes of UDP data in the arriving packet, including the application
layer data, and all UTL headers,

. 8 bytes for the UDP header,
. 20 bytes for the IP header, and

. 8 bytes for the PPP header.
This calculation is valid only assuming that IP fragmentation does not take place;
which isavalid assumption for the experimentsin this dissertation. We then

calculate the timestamps for the arriving packet as follows:
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if queue.isEmpty()

arrivingPacket.tgtgrt — now
else

arrivingPacket.tgtgrt — queue.tail .teng:

arrivingPacket. teng «  arrivingPacket.tstgrt + (8 * totalLengthinBytes /
b)

arrivingPacket. tarr —  arrivingPacket.tend + arrivingPacket.tprop
The reflector then operates on the assumption that the actual transmission and
propagation delay is negligible on the 100M bps Ethernet to which all the machinesin
the experimental setup are attached, and transmits each packet in the outgoing packet
gueue over the network at time packet. tyy.
To ensure timely delivery, the reflector implements an infinite loop that

blockson asel ect () system call (see Section 3.5.7) with a delay value d calculated

asfollows:

. if both queues are non-empty, distheearlier of tgr valuesfor the
head packets

. if only one queue is non-empty, d isthe tgr value for the head of that
queue

. if both queues are empty, d isNULL indicating that sel ect () should

block waiting for incoming data.

Provided that a context switch does not occur in the middle of the loop,
and provided the sel ect () system call does not return late, this algorithm correctly
implements aleaky bucket model. On the other hand, if thesel ect () system call
returns late, the reflector may find that one or more packets have missed their
deadlines for transmission. In this case all of these packets will be sent out in a burst

asin the token bucket model, to allow the reflector to catch up.

187



Validation of the packet reflector

To verify that the packet reflector correctly models propagation delays and
gueuing delays, we performed tests at various bitrates and propagation delays, and
took t cpdunps of the resulting traffic. We then calculated the correct sending times
by hand, using a spreadsheet, and compared these with those shown on the tcpdump,
to verify that the sending times were calculated and carried out correctly. Based on
these results, we have confidence that the packet reflector correctly models bitrate,

propagation delay, and queuing delay.
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5.2 Experiment N1: showing the upper bound for performance gain
(U/R vs. PO/R vs. O/R Serviceusing NETCICATYS)

This section describes Experiment N1, which compares unordered service
with partially ordered service and ordered service using a document produced with the
aid of the Network-Conscious Image Compression and Transmission System
(NETCICATY) of (Iren, 1999b). This experiment is designed to investigate the

following hypotheses:

Hypothesis5.2.1: At 0% loss, the progressive display of a
document containing eight parallel network-conscious images will not
change significantly, regardless of whether unordered, partially-ordered,
or totally-ordered service is used.

Hypothesis 5.2.2: Astheloss rate increases from 0% to 10% to
20%, there will be increasing benefits to using unordered service over
partially ordered service, and partially-ordered service over totally
ordered service.

Hypothesis5.2.3: At the bitrates, propagation delays and loss rates
tested, variations in processing and packet header overhead among the
UTL mechanisms X 2E, R2E, S2E and T2E will be measurable, but
small in terms of end user impact.

The NETCICATS system allows us to produce image files where every
ADU of the image can be decoded and displayed out of sequence, regardless of the
reception of other ADUs. Therefore, using NETCICATS we can produce a document
that allows usto compare the performance of ordered service vs. unordered service.
The significance of this comparison is that the improvement provided by unordered
service over ordered service represents the upper bound on any improvement that
partially ordered service could ever provide.

This experiment uses the document ncg8par . pnsl , which contains

eight imagesfromthemi i t ary. pnsl document (described in the appendix), all
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sent in parallel. Thissimple document, illustrated in Figure 5.3, has no temporal
aspects; it issimilar to a static web page consisting of multiple images. Each of the
eight images is compressed using the Network-Conscious Graphics Interchange
Format (NCGif) format defined in (Amer et al., 1998).

Organization of Section 5.2

. Section 5.2.1 describes previous and concurrent work related to this
experiment, specifically (Diot and Gagnon, 1999) and (Iren 1999).

. Section 5.2.2 describes the parameters for Exp. N1.

. Section 5.2.3 describes the format of the performance graphs we use to
present our data for this experiment, and those throughout the chapter.

. Section 5.2.4 describes our observations for Exp. N1 while Sections
5.2.5 through 5.2.7 explain the conclusions we draw based on these
observations.

. Section 5.2.8 explains the significance of sample screen dumps of the
ReMDoR performance experiments that we use throughout the chapter
to illustrate the end-user impact of the numerical performance gains we

report.

. Section 5.2.9 interprets a set of sample screen dumps for Exp. N1 at
10% loss.

. Section 5.2.10 summarizes our conclusions for Exp. N1.

521 Unordered vs. ordered service: related work

In addition to looking at partially-ordered service, the experiments in this
section also consider the benefits of unordered service. Our interest in unordered
serviceis chiefly the upper bound on any gain that may be obtainable from partially-
ordered service. However, the comparison of unordered vs. ordered serviceis aso an

interesting question in its own right (Iren, 1999b; Diot and Gagnon, 1999).
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Unordered vs. ordered service (Iren, 1999b)

transport service with network-conscious image compression techniques vs. using an

ordered service with traditional image compression techniques. The central focus of

(Iren 1999b) considers the performance benefits of using an unordered

Iren’swork is the tradeoff between using:

better compression (fewer bits per pixel) at the expense of having to use
an ordered/reliable transport service which may experience increased
delay when there is significant packet loss, vs.

amore flexible transport service (unordered/reliable) which provides
reduced delay and progressive display, at the expense of worse
compression (more bits per pixel.)

Thus, each of Iren’s experiments involves comparing

Thus, in the experiments comparing ordered and unordered servicein Iren’swork, an

unequal number of bytesis transmitted over the two protocols, because the focusis on

the transmission over an ordered/reliable transport service (e.g., S2E) of
asingle image in aformat requiring ordered/reliable delivery (e.g., GIF
or SPIHT), with

the transmission of the same image over unordered/reliable service
(e.0.,X2E) in a network-conscious format (e.g., NCGif, or network-
conscious SPIHT), that is, one that provides slightly worse
compression, but allows ADUSs to be processed and displayed out of
sequence.

the progressive display of an equal number of pixels. Experiment N1 differs from

Iren’ s experiments with network-conscious image compression in that, since our focus

is on studying the transport layer, per se, rather than the tradeoffs involved in various

compression techniques, we desire equal numbers of both bytes and pixelsin our

experiments.
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Unordered vs. ordered service (Diot and Gagnon, 1999)

(Diot and Gagnon, 1999) presents a more abstract comparison of
unordered vs. ordered servicein general. A serious limitation of thiswork isthat it
considers the benefits of unordered delivery only in terms of improvementsin
throughput, buffer utilization, and jitter, with the main emphasis decidedly on
throughput. This viewpoint overlooks a key benefit of out-of-sequence delivery,
namely the progressive display (or in the general case, the progressive processing) of
information.

Nevertheless, (Diot and Gagnon, 1999) does contain severa useful
observations. A major theme of their work isthat a crucia factor in determining the
throughput benefit of out-of-sequence delivery is the relationship among the round-trip
delay, the bitrate, and the application’s ADU processing time. This relationship can be
best understood by considering what happens when there is a packet loss with an
ordered service. A packet lossresultsin agap in the sequence number space of bytes
or packets. Until thisgap isfilled, datadelivery is suspended, and packets that follow
the gap must be buffered. The impact of this gap on throughput depends on the
relationship between application processing time, and round-trip delay. There are
three cases:

Case 1: If the application processing time is small compared to the round-
trip delay, then thereis little benefit to out-of-sequence delivery. Inthis case, if
ordered delivery is used, when aretransmission fills a gap, the resulting burst of
packets will be processed very quickly. Thus, overall throughput does not suffer
significantly.

On other hand, this argument ignores the benefit of progressive display.

Even if the application processing timeis arbitrarily small, out-of-sequence delivery is
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useful if the elapsed time needed to fill agap is sufficiently large to produce noticeable
delays for the end user in accessto information. For many applications, such as web
browsing, it does not matter if the application can decode 60MB of information in a
microsecond; the end user would rather be presented with IMB of information each
second for 60 seconds, than to receive nothing for 59.999999 seconds, and then
receive all 60MB in the final microsecond. Thisiswhere the throughput-centric
argument breaks down.

Case 2: If the application processing time is large compared to the round-
trip time, then there islittle benefit to out-of-sequence delivery. By the timethe
application is finished with a particular ADU, enough time has elapsed that any gap
that may have existed can be filled by retransmission.

Unlike the previous argument, this argument also pertains to progressive
display. No progressive display is obtained from delivering packets out-of-sequence
if the transport layer can fill gaps more quickly than the application can process
successive packets.

Case 3: If the application processing time, the round-trip time, and the
interpacket arrival time are of the same order of magnitude, out-of-sequence delivery
can improve throughput. In this case, when a gap occurs, the application may be
blocked waiting for aretransmission. If the application processing time is only
dlightly smaller than the interpacket arrival time, when the retransmission fills the gap
resulting in aburst delivery of buffered data, the application processing may be too
slow to compensate for the time that was lost while waiting for the retransmission.

Any lost time increases the delay of the final packet, thus reducing throughput. By
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keeping the application pipeline flowing when there is a gap, this extradelay is
avoided, and throughput is increased.

One useful application of Diot and Gagnon’s principlesisto point the way
towards where we can expect to find benefits from partially-ordered service, and
where those benefits are unlikely to be found. In particular, from Diot and Gagnon's
work, we can derive the hypotheses that we are more likely to find gains from

partially-ordered service:

. at low bit rates (because of the large round trip times),
. at high bit rates only where there is a significant propagation delay
(again, resulting in a significant round-trip time), and
. when the application processing time is not large as compared to the
round-trip-time.
On the other hand:
. we are unlikely to find any benefit from partial order on networks

where the bit rate is high and the propagation delay is small, such as
local area networks.

These hypotheses are devel oped more formally in the experiments throughout the

remainder of this chapter.
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Figure5.3 lllustration of ncg8par. pnsl

5.2.2 Experiment N1: parameters
Tables 5.1 and 5.2 shows the parameters and UTL mechanisms (i.e., the

transport protocols) used for experiment N 1.
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Table5.1 Parametersfor Experiment N1

Parameter Values

Mechanisms X2E,R2E,S2E, T2E

Loss Rates 0,10,20

Network PPP

Bitrate 38.4kbps

Propagation D€l ay negligible: distanceisless
than 5 meters

Document i ng8par . prsl

Window Sze 32

Bold indicates the parameters that are the focus of the experiment.

Table5.2 UTL Mechanismsused in Experiment N1
TPDU header
M echanism®2 | Service Layers size
X2E unordered/reliable>3 KX2 20 bytes
R2E partialy-ordered/reliable | KX2,NUL,POL 52 bytes
S2E ordered/reliable KX2,TOL 24 bytes
T2E ordered/reliable KX2,TOL,POL 52 bytes

Note: Congestion control disabled for all four mechanisms (See Section 5.11.2)

5.2.3 Format of performance graphs
A consistent format will be used for performance graphs throughout this
dissertation; in this section, we explain this format by referencing Figure 5.5, showing

thefirst set of graphs from Experiment N1.

52 See Table 3.1, 3.1afor more details about the entries in this table.

53 X 2E normally provides U/PRk service (see Table 3.1, 3.1a); for R1 and R2 the
default value of k=0 is left unchanged by the application, resulting in U/R service.
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The graphsin the left hand column show the average progressive delivery
of bytes for mechanisms X2E, R2E, S2E and T2E, while the right hand column shows
the average progressive display of pixelsfor mechanisms X2E, R2E, S2E and T2E.

The main independent variable in this experiment isthe lossrate. The top
row shows results for 0% loss, while the subsequent rows show results for 10% and

20% loss. In general, except where specifically noted, this layout of:

. multiple protocols on each graph,
. BYTES on the left, PIXELS on the right
. values of the independent variable in rows down the page

will be used throughout for the presentation of performance graphs. Except where
thereis adeviation from this layout, we will not repeat this explanation in subsequent
sections.

Note that both the bytes and pixels metrics have significant implications.
The pixels metric allows us to assess the impact on the human end user for this
particular application. The bytes figure allows us to understand the advantage of out-
of-sequence delivery from atransport layer viewpoint, and may allow us to predict the

impact of out-of-sequence delivery on other applications.

5.24 Experiment N1: observations
We would like to highlight three observations concerning the graphs for

Experiment N1:

(1) Each of the bytes graphs begins an upward curve from time zero,
while the pixels graphs all have a delay of around 3 seconds before
any delivery begins.
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(2) Thereisanoticeable performance difference among the protocols at
0% loss, with X2E and S2E providing the best performance, R2E
and T2E providing slightly worse performance.

(3 Therearelarger performance differences at 10% and 20% loss:

T2E provides the worst performance,

S2E provides dlightly better performance than T2E,

R2E provides considerably better performance than S2E, and

X2E provides the best performance of all.

The next three sections interpret these observationsin light of our hypotheses.

5.25 Exp.N1lanalysis: delay in delivery of pixelsvs. bytes

Our first observation is to note an interesting difference between the bytes
graph and the pixels graph. The bytes graph shows that we begin receiving bytes
nearly from time O, while in the case of the pixels graph, there is a delay of about
3 seconds before we start recording any progressive display of pixels. Thisdelay
reflects the fact that the first two ADUs of each GIF image contain a GIF header and
the color table for theimage. For the 0% loss case, the GIF header and color table
ADUsfor each of the eight parallel images are guaranteed to be the first sixteen ADUs
to arrive. Thus we will not see any progressive display of pixels until the seventeenth
ADU arrives. Inthe case of thei ng8par . pnsl document, the first sixteen ADUs
contain atotal of 6,918 bytes of data. Therefore, we expect that the bytes graph would
reach 6,918 at about the same time (actually one ADU time sooner) as the first rise of
the pixels graph from zero—and indeed, as we compare the two graphs, thisis the

case.
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Exp. N1 analysis: differencesin performance at 0% loss

Next, we find evidence to support Hypotheses 5.2.1 and 5.2.3. For the
network conditions tested, with 0% loss, the progressive display of theimagesis
amost the same, regardless of the delivery order enforced by the transport service, but
there is a measurable difference among the four services. The green and red lines,
representing simple unordered (X 2E) and ordered service (S2E), are nearly identical to
one another, and show that the entire document is presented in approximately 22
seconds on average. The red and purple lines, representing partial order service
(R2E), and total order service (T2E) with explicit release and identical overheads, are
nearly identical to one another, with the red and purple lines reflecting an overhead
that results in approximately 2 seconds of extradelay. The difference in performance
is due to the processing requirements and TPDU headers that differentiate X2E and
S2E from R2E and T2E, as shown in Table5.2.2:

. X2E has the smallest amount of processing overhead (1 layer) and the
smallest TPDU header (20 bytes). Thus, when thereis no loss, X2E
provides the best performance.

. S2E has the next smallest amount of processing overhead (2 layers) and
the next smallest TPDU header (24 bytes). Therefore, S2E performs
next best, with nearly identical, but slightly worse performance than
X2E for 0% loss.

. R2E and T2E have the largest processing and TPDU header overheads,
and thus perform the worst at 0% loss. Because the overhead for R2E
and T2E isnearly identical, so istheir performance at 0% loss.

However, note that for this document, at this bitrate, the performance gap among all

four protocolsis small. We make the following observations:

(1) All four protocols start delivering bytes and/or pixels at virtually
the same instant.
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(2) All four provide smooth data delivery, with no noticeable
interruptions in the flow.

(3 The maximum gap between the average performance of the
X2E and R2E protocols occurs at 22.1 seconds after the
document request. At this point, X2E is, on average, finished
with the entire document, while R2E still has on average 56,833
pixels remaining (about 8.7% of the total pixels). R2E does not
complete the document until, on average, time 24.1 seconds.
We can make a similar observation about any comparison of
either X2E or S2E with either R2E or T2E.

The left hand side of Figure 5.4 shows the completed document, representing the view
the user would have at 22.1 seconds with X2E. The right hand side of thisfigure
shows the document with 56,831 pixels, which is close to the average of 56,833 that
would be on the screen at time at time 22.1 seconds for R2E. Asthe reader can see,
thereisasignificant difference in appearance between the two screen dumps.
However, both protocols deliver pixels at a steady rate, and two seconds after this
picture, the entire document is finished for both protocols. The main differenceisthe
slope of the line, which would probably not be noticed by most users. We can draw

the following conclusions from these resullts:

(1) TheTPDU and processing overhead of R2E and T2E as
compared to X2E and S2E is significant enough to be measured,
but probably not significant enough to cause a noticeable
performance penalty for ncg8par . pnsl at 38.4kbps.

(2) Webelieve that we can safely extrapolate this result to
documents that are smaller than or equal in sizeto
ncg8par . pnsl , and bit rates equal to or larger than 38.4kbps;
we should not draw any particular conclusions about larger
documents or slower bitrates, since the “lines’ that appear in the
first row of Figure 5.5 may not be lines at all, but may be aflat-
appearing region of anon-linear function.

(3 Most importantly, we can conclude therefore that the TPDU and
processing difference between R2E and T2E is much smaller
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than the difference between the R2E, T2E mechanisms and the
X2E,S2E mechanisms. It isimportant to the significance of
resultslater in the chapter that R2E and T2E have virtually
identical processing overheads. This experiment provides the
first indication that R2E and T2E do have virtually identical
processing overheads, at least for this document at bitrates >
38.4kbps.

5.2.7 Exp.N1lanalysis: differencesin performanceat 10% and 20% loss
Next, we see evidence for Hypothesis 5.2.2 in the second and third rows of
Figure5.5. When the loss rate isincreased to 10% and 20%, we make the following

observations:

(1) Intermsof progressive display of pixels, unordered service (the
green line) isthe clear winner over partially-ordered service (the
blue line) or either of the ordered services (red and purple)

(2) Intermsof both bytes and pixels, partially-ordered service
(blue) is better than ordered service (red and purple)

A question that arises, however, is: what is the significance of these gainsto the end
user? In Section 5.2.9, we address this question by relating the graphs to the example
screen dumps in Figures 5.6 through 5.8.  These illustrations provide tangible proof
that in this experiment, there are significant performance gains for unordered service
vs. partially-ordered service, and partially-ordered service vs. ordered service. We will
rely on illustrations such as these throughout the chapter. Nevertheless, as helpful as

these illustrations are, some important caveats are involved in their interpretation.
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5.2.8 Caveatsregarding interpretation of example ReMDoR screen dumps
Throughout this chapter, we present screen dumps®* from the ReMDoR
browser for comparison purposes. For example, Figures 5.6 through 5.8 show the
ncg8par . pnsl document at various stagesin its progressive display over three
different protocols. Asthefigures' captions show, each screen dump illustrates, for a

given experiment with a given document:
* animage closeto that with the average number of pixels on the
screen, (momentarily, we explain what we mean by “close to”)

o acrossal repetitions of that experiment,
e a aparticular point in time,
e using aparticular protocol,

e aagivenlossrate.

In this section we explain what we mean by “close to.”

As an example, consider the screen dump in the lower left-hand corner of
Figure 5.6. The text under screen dump reads “avg. 1151 (1169 pixels shown)”. This
label “avg. 1151” indicates that when protocol S2E is used to retrieve the
ncg8par . pnsl document at 10% loss, five seconds after the document is requested,
there are, on average, 1151 pixels on the screen. However, the phrase “ (1169 pixels
shown)” indicates that the screen dump that appearsin Figure 5.6 actually shows 1169
pixels, not 1151. Therest of this section explains why thisis the case, and indeed,
why this discrepancy is necessary if theseillustrations are to be used to make afair

evaluation of the benefits of unordered and partially ordered transport service.

>4 The term screen dump refers to a graphic representation of the entire ReMDoR
display at a given moment in the display of the document. Thisterm avoids any
ambiguity that might result if we called these screen dumps images, we reserve the
term image for single image elements in aPMSL document.
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The p(t) function: pixels on the screen asa function of timefor ordered service
For any given experiment, let p(t) as afunction represent the number of
pixels on the screen at timet. Because all pixels from each ADU are placed on the
screen instantaneously by a single operation, p(t) is a step function that can only take
on afinite number of discrete values. For ordered protocols, given the arrival time of
each ADU, arr; we can characterize this step function precisely by the following

formula:

For ordered protocols, given arr, for all i 0{1,2,...,1}
K(t)

p(t) = Z number of pixelsin packeti
J:

wherek(t), istheindex of the most recently arrived packet :
k(t) = maximumi [{ 1,2,...,n} such that arr; <t, or Oif nosuchi exists.

On the other hand, in our experimental results, we report an average number of pixels
present on the screen at some point in time. For a given number of experiments, say,
30, there are again afinite number of values that the average of 30 instances of this
step function (as determined by the particular set of arr; values) can take on.

However, it islikely that few, if any of these average values will correspond exactly to

any of the possible pixel valuesin the range of the function p(t):

rangeset of p(t)={0} U JES number of pixelsin packetiE

i=1[ [|=

Therefore, the images we will show as representative images are ones with pixels that

come from the range set and are close to the average number of pixels reported.
Returning to our example, for protocol S2E, Figure 5.6 shows that, on

average, after 5 seconds, 1151 pixels are displayed. However, in the actual runsit

never occurs that exactly 1151 pixels are displayed. Therefore, to represent the value
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1151 with a screen dump, we use a screen dump with 1169 pixels, which isavalue

close to 1151 representing an actual screen dump that can occur in practice.

For unordered or partially-ordered service, the p(t) function is problematic

In the case of totally ordered service, since the delivery order is fixed,
there is adirect mapping from a given number of pixelsto a unique screen dump, with
a specific number of pixels allocated to each of the eight parallel images. However,
for unordered, or partially ordered service, there is afinite, but astronomically huge set
of possible delivery orders for the given ADUSs. In particular, the ncg8par.pmff file
contains 119 ADUSs, therefore there are (119! = 5.57x10"%) possible delivery orders
for the unordered case. Therefore, as a practical matter, we cannot compute the most
likely delivery order for any given number of pixels; and we consequently cannot
determine the most likely image to be presented on the screen.

Therefore, to produce sample screen dumps with a given number of pixels
for the unordered or partially ordered protocols, instead of trying to come up with a

most-likely screen dump with a certain number of pixels, we took the following steps:

. we ran the browser with the same document and mechanism as the
original experiment.

. we enabled a special option on the browser that causesit to freeze when
acertain number of pixelsis reached.

. we chose a value as close as possible to the pixel value reported in the
table.

This produces a real screen dump with close to the same number of pixels asthe
average reported in the experimental results. However, unlike the totally ordered case,
where the exact screen dump shown did actually occur in every experiment at some

point in time (on average, closeto the time interval with which it is associated in the
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picture), the screen dumps we show for the unordered and partially ordered cases may
or may not have occurred in any particular experiment, since the number of possible

screen dumpsis astronomical.

Avoiding biasin the choice of screen dumps

This method of selecting images close to a particular average number of
pixels for the unordered or partially-ordered case risks introducing bias. For each
protocol and time instant, it is usually the case that an image must be chosen that is
either higher or lower than the actual average number of pixels. The choice of the
higher or the lower value could tend to exaggerate or minimize the benefit of partially-
ordered transport service. Therefore, to guard against bias we have chosen always to
err on the side that would reduce, rather than exaggerate, the benefits of partial order.
In essence, then, the benefit seen in the images, is alower bound on the actual benefit
represented by the averages reported for the experiments.

For example, in comparing R2E and S2E at 10% loss, our claimis that
R2E provides better progressive display than S2E. Whenever we had to choose
images to represent S2E, we always chose the image with the next higher number of
pixels, rather than the image with the closest number of pixels. Similarly, for R2E, we
always chose the image with the next lower number of pixels rather than the one with
the closest number of pixels. The labels under the screen dumpsin Figures 5.6
through 5.8 show this avoidance of bias.

In summary:
*  Theactual number of pixels shown in a screen dump for ordered

service (S2E) is aways more than the corresponding average
number of pixelsfor the given loss rate and time.
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*  Conversdly, the actua number of pixels shown in a screen dump
for unordered or partially-ordered service (X2E, and R2E,
respectively) is always less than the corresponding average.

5.2.9 Exp.N1lanalysis: interpretation of sample screen dumps

Figures 5.6 through 5.8 shows representative images of the R2E and S2E
graphs at 10% loss. Starting with Figure 5.6, we see that after 5 seconds, the partially-
ordered protocol, R2E has started placing portions of four images on the screen, while
the ordered protocol, S2E has only begun to place one image on the screen. By 10
seconds, R2E isworking on all eight images, while S2E still has only two. By 15
seconds, R2E has slightly obscured images of all six weapons systems, and has started
to unveil the Army and Air Force seals, while S2E till has only obscured images of all
the equipment and has not yet begun to unveil the seals. At 20 seconds, R2E has
entirely finished two of the images, while S2E has not yet completely finished any of
the images. By 25 seconds, R2E has finished five images, to S2E’ s three images
complete. Finaly, after 30 seconds S2E essentially catches up with R2E, and the
protocols provided essentially equivalent performance for the final 1-3% of the pixels

that remain.

5.2.10 Exp. N1: conclusionsand summary

The results of Experiment N1 support Hypotheses 5.2.1, 5.2.2 and 5.2.3.
The results indicate that for a document with parallel images being sent over a PPP
link at 38.4kbps, when there is significant>> packet loss (10% or 20%), unordered

service provides noticeable improvements in progressive display over partially ordered

55 See Section 1.4.1 for amotivation of various rates of packet loss.
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service, which in turn provides noticeable improvements in progressive display over

ordered service.

+ AH-64 APACHE j ¢ Drones (RPVs)

» F-117A Stealth E ) _“ » B-62 Stratofortress
- -

X2E at time 22.09 seconds, 66266 Pixels (100%)

* MIM-104 Patrin:

» B-52 Stratofortress

R2E at time 22.09 seconds, 5683 Pixels (91.2%)

Figure5.4 Illustration of maximum performance gap for Exp. N1 at 0% loss
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Figure5.6 Screen dumps: ncg8par . pnsl , 10% loss, 38.4kbps PPP link
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+ AH-64 APACHE
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Figure5.7 Screen dumps: ncg8par . pnsl , 10% loss, 38.4kbps PPP link
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Screen dumps: ncg8par . pnsl , 10% loss, 38.4kbps PPP link
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5.3 Experiment R1: O/R vs. PO/R for eight parallel GIF images at 9.6kbps.

This section describes Experiment R1, the first of five sets of experiments
evaluating partially-ordered/reliable transport service for remote multimedia document
retrieval.

Experiments R1, R2, and R3 all involve retrieval of the same document;
the difference among the three is the bitrates that are used. The document used in R1
through R3iscaled i ng8par . prsl . This document contains eight images (taken
frommlitary. pnsl) presented in parallel. To the end user, the final appearance of
this document isidentical to that of the ncg8par document used in Experiment N1
(illustrated in Figure 5.3). However, the images are coded differently, and hence result
in significantly different progressive display. In the ncg8par . pnsl document, we
used the NCGIF file format (Iren, 1999b). For thei ng8par . pnsl document, the
same images are compressed using the traditional GIF file format. The GIF format
requires ordered/reliable delivery for each image, because the entire block of pixelsis
compressed using Lempel/Ziv compression. Therefore, since the interpretation of
every bit in every ADU depends on all the bits that precede it in the entire encoding,
we cannot use unordered/reliable service for GIF images. However, because the data
for the eight separate images can be processed in eight parallel streams (one stream per
image), we can use partially-ordered service with the stream abstraction (Section 2.3).

Thisideais captured in the hypothesis for this experiment:

For al loss rates > 0%, , partialy-ordered/reliable (PO/R) service
provides, on average, better progressive display for parallel GIF images
than ordered/reliable (O/R) service.
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For practical reasons, it is necessary to refine this hypothesis somewhat. It would be

absurd to evaluate the gain at very low loss rates (<1%). For very low loss rates, the

gain will be so small asto be insignificant for all practical purposes. It would be

equally absurd to evaluate PO/R service vs O/R service at |oss rates approaching

100%. At these lossrates, the performance of both services would be unacceptable.

So instead of trying to characterize the gains of partial order over the entire range of

|oss rates between 0% and 100%, we focus on afew loss rates, and on the trend in

performance as the loss rate increases:

Hypothesis 5.3.1: When there is no packet loss, partially-
ordered/reliable service and ordered/reliable service should perform
identically, apart from any difference in overhead. Specifically, since
R2E and T2E have virtually identical overheads, their performance
should be nearly identical.

Hypothesis 5.3.2: For packet loss rates of 10%, 20% and 30%,
partially-ordered/reliable (PO/R) service provides better progressive
display for paralel GIF images than ordered/reliable (O/R) service.

Hypothesis 5.3.3: Asthe packet |oss rate increases from 0% to 10%,
20% and 30%, the gain from partially-ordered service for parallel GIF
images will increase.

Organization of Section 5.3

Section 5.3.1 provides background concerning this experiment,
including an explanation of the drawbacks of using parallel TCP
connections for this application (as is done in many current Web
browsers.)

Section 5.3.2 describes the parameters for Experiment R1.
Section 5.3.3 explains the choice of R2E and T2E as the best available

UTL mechanisms for comparing partially-ordered/reliable and
ordered/reliable service for multimedia documents.
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. Sections 5.3.4 through 5.3.8 describe our results and conclusions for
Experiment R1.

. Section 5.3.9 provides an overal summary for Section 5.3.

5.3.1 Related Work: other ways of providing parallel flows

When the author and his colleagues have made presentations on partially-
ordered transport service, a frequently asked question is why a partially-ordered
serviceis needed at all, when opening multiple TCP connections in parallel would
provide all or most of the putative benefits of partially-ordered service. In this section,
we briefly discuss the idea of parallel TCP connections, and discuss another protocol

that provides parallel streams

The paralle TCP connections approach has serious drawbacks

Given that the document used in Experiments R1 through R3 is non-
temporal and contains parallel images, it is essentially equivalent to many web pages
having asimilar structure. The popular Netscape web browser opens multiple TCP
connections to retrieve these images, in essence, implementing a crude form of
partially-ordered transport service over TCP. However, this approach has serious
disadvantages. It increases the likelihood of congestion, and requires extra round-trips

and control packet overhead for connection establishment (Mogul, 1995).

The Multi-Stream Protocol

(LaPortaand Schwartz, 1991) describes the performance analysis of a
MultiStream Protocol (MSP). This protocol provides for the transfer of up to seven
parallel streams of packets. However, in MSP, each of these streams has a particular

set of characteristics; for example, STREAM 1 provides ordered/reliable/no-duplicates
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service, STREAM?2 provides ordered/unreliable/no-duplicates service, STREAM3
provides unordered/partially-reliable/no-duplicates service, and so forth.  Thuswhile
parallel streams are provided, the number of streams and type of service provided by
each stream isfixed. Thisisfundamentally different from the parallel streams that can
be provided by PO/R service, where an arbitrary number of parallel, ordered-reliable

streams can be specified.

5.3.2 Experiment R1: parameters
Table 5.3 shows the parameters used for Experiment R1. Table 5.4 shows

the UTL mechanisms used in R1 (these mechanisms are also used in Experiments R2

through R4.)
Table5.3 Parametersfor Experiment R1
Values for Experiment
Parameter R1.1 | R12 | R13 | R14
Mechanisms R2E,T2E
Loss Rates 0, 10, 20 0, 10, 20 10 10
Network PPP reflector PPP reflector
Bitrate 9.6kbps 7.68kbps 9.6kbps 7.68kbps
(=0.8x9.6kbps) (=0.8x9.6kbps)
Propagation Delay negligible: distanceislessthan 5 meters
Document i mg8par . pnsl
Window Size 16 | 16 | 8,16,32 | 816,32

Bold indicates the parameters that are the focus of the experiment.

215



Table54 UTL Mechanismsused in Experiments R1 (also Exps. R2—R4)

M echanism®6 | Service Layers TPDU header size
R2E partialy-ordered/reliable | KX2,NUL,POL 52 bytes
T2E ordered/reliable KX2,TOL,POL 52 bytes

Note: Congestion control disabled for both mechanisms (See Section 5.3.3)

5.3.3 Why the R2E and T2E mechanisms are used for Experiments R1-R5

Experiments R1 through R5 compare exactly two transport services:
. UTL mechanism R2E, providing partially-ordered/reliable service, and

. UTL mechanism T2E, providing totally-ordered/reliable service.
There are several reasons these two particular services were chosen from among the
dozens availablein UTL:

(1) These mechanisms provide the services we want to compare. To
evaluate PO/R service, the crucial comparison is against O/R service, sincein the
absence of the provision of partial order, applications requiring partial order must use
O/R service (e.q., TCP).

(2) Thiscomparison isfair in terms of overhead. R2E iscomposed of
(KX2, NUL, POL); T2E is composed of (KX2, TOL, POL). Thus the top and bottom
layersareidentical. The middle layer, in both cases, adds afour byte sequence
number; thus the total header lengths are identical. The only difference between the
two middle layersisthat one of them reorders out-of-sequence packets while the other
does not. Thisis more fair than, for example, a comparison of P2E (KX2, POL) vs.

T2E (KX2, TOL, POL).

56 See Table 3.1, 3.1afor more details about the entries in this table.
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(3) These mechanisms support explicit release synchronization.
Placing a partia order layer (POL) on top of atotal order layer may seem superfluous
until one recognizes the need to provide explicit release synchronization for both the
PO/R and O/R cases. While explicit release synchronization is not strictly necessary
for the ssmple documents in Experiments R1—R4, it is essential for thepari s. pnsl
document used in Experiment R5. Furthermore, Experiments R1-R4 are intended to
represent excerpts from larger documents. Therefore, it makes sense to perform all the
ReMDoR related experiments using transport services supporting explicit release. We
argue that this does not bias our resultsin favor of either total order or partial order
because this processing is necessary regardless of whether it is performed by the
application layer or the transport layer. The need for explicit release motivates having
POL asthe top layer in both cases.

(4) These mechanisms use K X2, with the slow-start and cwnd
congestion avoidance features disabled, which isthe best choice among current
options available. From a standpoint of best practice, the ideal experiment would
compare PO/R vs. O/R service using a protocol offering sender and receiver
application-transport flow control, and TCP-friendly congestion control—that is, it
would be based on KX 3. However, at the time these experiments were conducted,

K X3 had not been tested and validated, while KX2 had been. The next best choice was
K X2 with congestion control totally disabled.

5.34 Experiment R1.1: observationsand conclusions
Experiment R1.1 illustrates the performance of the PO/R service provided

by the R2E protocol, with the O/R service provided by the T2E protocol. Figure5.3.1
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shows the average performance graphs for Exp. R1.1. We make the following

observations concerning these graphs:

(1) AsinExp. N1, at 0% loss, R2E and T2E have virtually identical
performance.

(2) Also, asin Exp. N1, thereisaninitial startup delay before the
first pixels can be presented.

(3 Asthelossrateincreasesto 10% and 20%, the performance
degrades for both R2E and T2E, as indicated by the fact that the
progressive display curves moveto theright. This shift
indicates that the bytes (or pixels) are being presented to the
application (or to the user) at later pointsin time.

(4) Whileboth R2E and T2E experience worse performance as the
loss rate increases, the performance of R2E degrades more
slowly than that of T2E.

(5 At nearly every point in time, on average, R2E provides more
pixels to the end-user.

From these observations, we conclude that this set of experimenta data supports
Hypotheses 5.2.1, and Hypotheses 5.2.2, 5.2.3 as regards 10% and 20% loss over a
PPP link at 9.6kbps.

To provide an end-user perspective, Figures 5.9 and 5.10 show the
difference between R2E and T2E performance at afew sample points, for 10% loss
and 20% loss, respectively. Ascan clearly be seen, at each of these points, partially-
ordered service provides better performance than totally-ordered service. One of the
most dramatic differencesis at 25 seconds for the 20% loss case, where totally-ordered
service provides no pixels at al to the user, while partialy-ordered service provides
almost as many pixels, on average, at 20% loss asit did at 10% loss. While human
factors studies (which we suggest as future work) would be necessary to establish this

scientifically, we hypothesize that the initial delivery of at least afew pixelswill prove
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to be highly correlated with user satisfaction. Seeing at |east some progress provides
hope to the user, while seeing a screen that does not change for along period of time

(especially ablank one) can be discouraging.

5.3.5 Experiment R1.2: observationsand conclusions

Experiment R1.2 repeats the same parameters as R1.1, except that instead
of using the PPP link, the UDP reflector is used. The parameter settings for the
reflector are intended to reproduce as accurately as possible the conditions on the PPP
link. The propagation delay on the reflector is set to zero, since the propagation delay
of aPPP cable of lessthan 2 metersis negligible. The bitrate is set to 7.68kbps which
IS 80% of 9.6kbps, reflecting the fact that an RS-232 connection uses 1 stop and 1 start
bit to send each character; thus only 80% of the bitrate is effectively available to the
datalink layer.

With thisin mind, we would expect the results from the reflector to match
those of PPP. The data are similar, albeit not as close aswe would like. Figures5.12
and 5.13 show an overlay of the performance results from Experiment R1.2 on top of

the matching results for Experiment R1.1 We make the following observations:

(1) All five observations from Section 5.3.4 concerning R1.1 apply
equally to the performance graphs for R1.2.

(2) At 0% loss, both experiments product a straight line as the
average, however the slope of thelinefor R1.2 is steeper,
indicating that the effective bandwidth of the reflector is higher
than the effective bandwidth of the PPP link, in spite of the fact
that the reflector was set to alower bandwidth.

(3 However, astheloss rate increases to 10% and then 20% loss,
the results for R1.2 appear to move closer to those observed in
R1.1.
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Observation (2) was a disappointment, as we had hoped to use the PPP
link to validate the operation of the reflector. Further investigation revealed that PPP
uses byte stuffing for the flag byte (binary value 0111 1110) that marks the beginning
and end of each frame. We therefore tried to account for the difference by dumping the
raw data and IP and UDP packet headers, and counting the number of occurrences of
the flag byte, however this did not account for the difference. We then calculated,
using a spreadsheet, the time that each packet should be delivered, based on an
idealistic assumption of zero processing time. (In reality, both the PPP link and the
packet reflector actually do have to perform some processing.) We found that the
results calculated by the spreadsheet matched the reflector results exactly, while the
PPP link always provided less than the bandwidth at which it was configured. We
tried to find amodel for the PPP overhead through running experiments at different
bitrates with different packet sizes, and determining by solving a set of linear
eguations, values that we could add to the processing of each packet, and each byte
that would allow us to accurately model the behavior of the PPP link. Inthe end, we
abandoned this goal, since specifically modeling a PPP link was not central to our
work, and the spreadsheet results provided sufficient evidence of the correctness of the
reflector calculations.

Having noted the inaccuracy at 0% loss, surprisingly, at higher loss rates
the results from the reflector and the PPP link are close to one another. Moreover, the
genera trends do not change from one graph to another. Therefore, while our failure
to closely model the performance of the PPP link at 0% |loss was disappointing,
nevertheless the fact that the results match qualitatively increases our confidence in

conclusions drawn from experiments with the packet reflector.
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Experiment R1.1: Performance graphs
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5.3.6 Experiment R1.3: observationsand remarks
Experiment R1.3 investigates the effect of window size on performance at
10% loss. Figure 5.14 shows the average performance graphs for Exp. R1.3. Wefirst

make several observations concerning these graphs:

(1) Asthewindow sizeincreases, performance gets worse for both
protocols. However, the performance degradation is worse for
T2E thanitisfor R2E.

This observation seems counter-intuitive at first. We would normally expect that
providing more of aresource to a process would improve performance rather than
degrading it. Classic analysis of Automatic Repeat Request (ARQ) type protocols
(e.g., Tanenbaum 1986; Stallings 1997) indicates that larger windows (as in go-back-N
and selective repeat) provide better performance than smaller windows (as in stop-and-
wait, in the limiting case), up to a point of diminishing return. This point occurs when
the window size equals the bandwidth-delay product. Thus, while we would expect
that beyond a certain point, larger windows would not help performance, it seems
surprising at first that they would hurt performance (in Section 5.3.7 we explain why
they do).

We might also expect that the choice of window size would not be an
important factor in evaluating the benefit of partially-ordered service, provided that the
same window size is chosen for both transport services. The results here show that at
least for the document and network conditions that apply in this experiment, the
apparent benefit of partial order is highly dependent on the window size. When other
parameters are fixed, partial order provides more benefit at window size 32 than at 16,

and more benefit at 16 thanat 8. (Again, in Section 5.3.7, we explain why.)
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(2) Atwindow size 32, for T2E, thereisagap of 12.6 seconds
between time 29.8 and time 42.4 (relative to the initial
document request) where no packets were delivered in any run
of T2E 57 at loss rate 10%, window size 32. Under the same
circumstances, R2E does not seem to have any such gap in
packet delivery.

This surprising observation motivates a closer ook at the individual runs that
produced this average graph. Figure 5.15 shows graphs of bytes versustime for the 31
runs that are averaged to make up the single line for T2E in Figure 5.14, with 10 runs
in each of the four smaller graphs. These individual runslead usto the following

observation:

(3) Atwindow size 32 for T2E, the individual runs have gaps of
around 20 seconds in each case; the gap of 12.6 seconds in the
average graph represents the intersection of these larger gapsin
the individual runs.

We also present an individual runs graphs for the 8 and 16 window cases (Figures 5.16
and 5.17) We seein these graphs that while there is no apparent gap in the average
graph, in fact:

(4) Gapsindelivery for T2E are present at every window size, but
are smaller and more spread out in time at window sizes 8 and
16. Therefore, thereis no visible gap in the average graph at the
smaller window sizes.

These results for T2E raise the question as to whether these gaps are present in the
case of R2E. Figure 5.18 through 5.20 show the performance of individual runs for
R2E. We see that gaps do occur in runs with R2E, but more rarely than with T2E.

The next section presents our interpretation of these observations.

57 Keep in mind that these graphs plot the average number of bytes or pixels delivered
across al runs, at every point at which there is a packet delivery for any run. (That is,
any run, with that protocol, at that loss rate and window size.)
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5.3.7 Experiment R1.3: conclusions

Why does performance decrease as window size increases, and why does
this affect T2E without seeming to affect R2ZE? Because thisis a phenomenon we
will see throughout the experiments in this chapter, we provide a thorough discussion
of it here; in later experiments, we will only reference this discussion. Following this

explanation, we provide a higher level interpretation of experiment R1.3.

Why larger windows hurt performance morefor T2E, and lessfor R2E

Our explanation has two parts. First, we must explain why the gaps occur
more for ordered service vs. unordered service. Second, we explain why the gaps are
longer as the window size increases.

For ordered service, when any packet loss occurs, data delivery (at the
receiver) of newly arriving packets is suspended until aretransmission of the missing
packet is received. Therefore, for loss rates > 0, we would expect to see many gapsin
the data delivery for ordered service. On the other hand, for partially ordered service,

datadelivery is suspended in only two cases.

(1) whentheinitial TPDU containing the service profile is missing,
or,

(2) whenno TSDU isdeliverable according to the partial order,
which in the case of this document means that within asingle
round-trip time, thereisamissing TSDU on each of the eight
parallel streams.

For partially-ordered service, each single TPDU loss affects only the delivery of the
stream to which it belongs, roughly one-eighth of the traffic. Thuswith high
probability, at least one of the eight streams can deliver some data at al times. Total
gapsin the data delivery are therefore rare with partially-ordered service for this

document. What is more common is to see changes in the slope of the curve
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representing the delivery of bytes; this can be seen especially reflected in the
individual runs of R2E for window size 32 (Figure 5.20).

The length of the gaps is determined by the time it takes for the sender to
detect amissing packet and successfully send aretransmission. Thistimeisat least a
round-trip time, but in practice somewhat more. (See the discussion of RTO
calculation in Section 3.6.7). The reason the length of the gap grows with window
sizeis explained by queuing in the PPP link. Packets are submitted to the PPP link as
quickly as the server (host medoc) can read data from the disk file and put the packets
on the Ethernet (see Figure 5.1). PDUs are thus placed on the network by nedoc
much faster than the 9.6kbps bitrate of the PPP link. PDUstravel from medoc over
the Ethernet to the lossy router (al sace), and then (unless dropped by the lossy
router) to saut er ne, and are queued in saut er ne’soutgoing PPP link. This
outgoing queue is the bottleneck in the system.

How large will this queue grow? If there were not flow control in place, it
would grow arbitrarily long, since the arrival rate for this queue is higher—orders of
magnitude higher, in fact—than the departure rate. However, because R2E and T2E,
both based on K X2, use window flow control, the length of this queue will be limited
by the sending window size (w). For loss rates > 0, eventually a packet islost, and
times out. When this occurs, the retransmission may have to wait in line behind as

many as w packets.58 Thus for larger w, we see larger gaps.

58 There will tend to be afull window of packets even for the first retransmission,
because the initial retransmission timeout tends to be large. The Van Jacobson
algorithm has an initial RTO value of 6 seconds, which then goes up before it comes
down, because of the contribution of the large deviation between 6 seconds and the
first sample.
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Why finding the optimal window sizeisa hard problem

One suggestion of these resultsis that one should avoid using a window
size that is larger than the bandwidth delay product. Using awindow larger than this
cannot improve performance, and as these results show, it can hurt performance
because of queuing effects.

However, unlike at the data-link layer, where the bandwidth and delay are
typically fixed or have small variance (often negligible) due to processing times, at the
transport layer in the Internet, bandwidth and delay can be highly variable. Variation
in bandwidth available to a transport layer protocol in the Internet results from
variability in the number of packet flows using each intermediate link in the path.
Variation in delay arises from variations in queuing delays in intermediate routers.
Less often, variations in delay and bandwidth may result from routing changes that
may take place during the lifetime of a connection or flow (Paxson, 1996).

Therefore, transport layer protocols use various techniques to choose an
appropriate window size. The TCP congestion control algorithms of Jacobson (slow
start and cwnd) are one approach to this problem. While TCP does not directly
attempt to measure the bandwidth delay product, the net effect of the algorithm isto
dynamically determine a window size that balances severa goals. Essentially, the
overall goal isto maximize throughput, while maintaining fairness, and avoiding
packet drops due to congestion—that is, due to excessive queuing in intermediate

routers.>® Even when such techniques are used, because the bandwidth and delay can

59 Evaluating the effectiveness of the TCP congestion control algorithm at estimating
the true bandwidth-delay product (among other goals, such asfairness) is actually a
subject of considerable controversy. Researchers have come to different conclusions
regarding three major variants of the TCP congestion control algorithms known as
Tahoe, Reno and Vegas. A full comparison of these competing approaches is beyond
the scope of this chapter; it suffices for our purposes that all three algorithms take
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vary, sometimes the current window size will not be the best one at some particular

moment.

With partially-ordered service, choosing an oversized window isless detrimental
The results from this experiment (and later ones in this chapter involving
window size) show that one of the advantages of partially ordered serviceisthat it can
be more robust to an incorrect choice of window size. That is, if the window size ends
up being larger than the bandwidth-delay product, then partially-ordered service
degrades less than totally-ordered service under the same circumstances. This
reduction in degradation occurs because the increased delay in receiving a
retransmission of amissing packet affects only the successors of the missing packet,

rather than necessarily affecting all packets.

Futurework: evaluating gain for dynamic windows, correlating gain with density
Future work should use the KX3 TCP-friendly algorithms to evaluate the
gain from partial order when the window size is adjusted dynamically. In particular, it
would be interesting to determine what happens when there are one or more major step
changes in the underlying network (e.g., in bandwidth or delay) during the lifetime of a
connection. Such changes would have the effect that the transport layer’ s estimate of
the window size would suddenly become inaccurate. In those cases, would partially-
ordered service provide benefit during the time it takes the transport layer to detect that

change and adjust the window size appropriately?

steps to dynamically adjust the window based on feedback. In particular, al three
shrink the window to varying degrees in the presence of retransmissions.
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Also, we would expect the precise degree of benefit from partially-ordered
service to depend on the degree of parallelism in the partial order. In this experiment,
we have eight parallel chains. We would expect the gain from partial order to be less
when there are fewer chainsin parallel. Simulation studies (Maradli et a., 1998;
Marasli 1999b) show that the density of the partial order correlates well with expected
performance gains from partially-ordered service. Future work can investigate
whether the correlation found in these simulation studies can be replicated with

empirical results using ReMDoR.
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Figure5.14  Experiment R1.3: Performance Graphs
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5.3.8 Experiment R1.4: observations and conclusions

Experiment R1.4 repeats Experiment R1.3 using the reflector instead of
the PPP link. Figure 5.3.x shows the bytes results for R1.3 and R1.4 side by side,
plotted at the same scale. We omit the pixels results for this experiment, since for the
observations we make in this section, they would add little additional information to
the discussion.

Our experience hereis similar to that of comparing R1.2 with R1.1. We
find that the results do not match quantitatively, which we attribute to overheads in the
PPP implementation that the reflector does not model. Nevertheless, we find that the
results do match qualitatively, in that all the observations we applied to the results
from R1.3 apply equally to R1.4. Again, thisincreases our confidence in interpreting

results based on the packet reflector.

5.3.9 Experiment R1: summary

In Section 5.3 describing Experiment R1, we have shown the existence of
a set of network conditions (9.6kbps, window size 16, loss rate 10 or 20%) where
partially-ordered/reliable transport service provides significant benefits in progressive
display over ordered/reliable service. We have shown that window sizeis an
important parameter in determining system performance, and windows that are too
large can be detrimental because queuing at the bottleneck link delays retransmissions.
Moreover, we have shown that partially-ordered service can ameliorate the negative
effects of awindow size that isinappropriately large, providing better performance

overall because it isless susceptible to delays in retransmissions.
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Future Work

The fact that partially ordered service can provide performance benefits
over ordered service for parallel images has significant implications for work on
network-conscious image compression. The idea of network-consciousnessis to
replace image encodings that require ordered/reliable service with encodings that
allow out-of-sequence delivery (for example, unordered/reliable service). As (Iren,
1999b) shows, network-conscious image formats can improve progressive display at
higher loss rates, at the expense of a modest penalty in compression, and hence a
modest penalty in performance at 0% loss. Our results show that for documents with
parallel images, some gains in performance from out-of-sequence delivery (partially-
ordered delivery, in this case) are possible without paying any penalty in compression.
Further study of network consciousness and partial order in tandem is therefore
indicated. Future work can also investigate the correlation between performance
gains and the density of the partial order, by performing experiments with documents

that have various densities.
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54  Experiment R2: O/R vs. PO/R for eight parallel GIF images at 128kbps
Asin Experiment R1, Experiment R2 involves the retrieval of the

i ng8par . pnsl document, a document containing eight images presented in parallel.

However, in this experiment, we investigate the performance of PO/R service vs. O/R

service at asingle bit rate of 128kbps, using the reflector. There are several real-

world scenarios that can motivate this bit rate;

. narrowband ISDN service,
. xDSL service, or
. the effective throughput available to some particular connection over a

wide-area network such as the Internet.

We investigate the following hypotheses in Experiment R2:

Hypothesis5.4.1 For img8par, at 128kbps, there will be more gain
from PO/R service vs. O/R service at higher round-trip delays than at
lower round-trip delays.

Hypothesis5.4.2 For img8par, at 128kbps, there will be neither a
significant gain nor a significant penalty for using PO/R service vs. O/R
service at 0% loss.

Hypothesis5.4.3 For img8par, at 128kbps, there will be increasing
gains from using PO/R service vs. O/R service at 10%, 20% and 30%
loss.

Hypothesis5.4.4 For img8par, at 128kbps, as the window sizeis
increased from a value below the bandwidth-delay product to values
near the bandwidth-delay product, performance will increasingly
improve for both PO/R service and O/R service.

Hypothesis5.4.5 For img8par, at 128kbps, as the window sizeis
increased from values near the bandwidth-delay product to values
above the bandwidth-delay product, performance will (a) degrade for
both PO/R and O/R service, but it will (b) degrade more, and (c)
degrade faster for O/R service than for PO/R service.
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Organization of Section 5.4

. Section 5.4.1 describes the parameters for the experiments that
comprise R2.

. Sections 5.3.2 through 5.4.4 describe our observations and conclusions
for R2.

. Section 5.4.5 provides an overal summary for Section 5.4.

54.1 Experiment R2: parameters

As Table 5.5 shows the parameters that all the R2 Experiments havein
common isabit rate of 128kbps, thei ng8par . pnsl document, and the comparison
of R2E and T2E. Experiments R2.1 and R2.2 focus on the effects of loss rate for two
different one-way delays, 250ms and 500ms. Experiment R2.3 focuses specifically on
the effect of delay, adding the values Oms and 125 ms to the values 250ms and 500ms
aready studied in the previous two experiments. Finally, Experiment R2.4 examines

the effect of seven different window sizes on performance.

Table55 Parametersfor Experiment R2

Valuesfor Experiment:
Parameter R2.1 | R2.2 | R23 | R24
Mechanisms R2E,T2E
Loss Rates (%) 0102030 | 0102030 | 020 | 10
Network reflector
Bit rate (kbps) 128
One-way delay (ms) 250 500 0, 125, 250
250, 500
Document | ry8par . pns|
Window Sze (pkts) 32 4,8, 16,
32, 64, 128

Bold indicates the parameters that are the focus of the experiment
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54.2 ExperimentsR2.1 and R2.2: observationsand conclusions

Experiments R2.1 and R2.2 investigate the effect of loss rate on
progressive display at 128kbps, with a one-way delay of 250ms and 500ms,
respectively. These represent realistic delays that might occur if asatellitelink isin
place between two endpoints, or if a connection involves communication across
multiple continents. Figure 5.22 shows the average number of pixelsthat are
displayed at every point in time where there is a change in the number of pixels for any
run, with R2.1 on the left, and R2.2 on the right. We aso provide data about the
median case for progressive display of pixelsin Table 5.6. We make the following

observations from this data:

(1) Whenthelossrateis zero, the entire document takes roughly 5
seconds to display—slightly less when the one-way delay is
250ms, and dlightly more when the one-way delay is 500ms.

Observations (1) standsin contrast to our observations of Experiment R1, where the
document took over aminute to display at 0% loss. This difference affects our
interpretation of the impact of performance gains on end-user satisfaction. When the
entire document takes over a minute to download, one might expect that the user’s
attention will wander. When the entire download takes only 5 seconds, we can expect
that the user will remain focused on the progressive display. We also note that while
there is a measurable impact of increasing the one-way delay from 250ms to 500ms,

theimpact is negligible at 0% loss in terms of end-user perception.

(2) Asthelossrate increases from 0% to 10%, 20% and 30%, the
performance of both PO/R and O/R service degrades. However,
the performance of O/R degrades more severely than that of
PO/R.

(3 Asthelossrateincreases, both documents tend to finish at the
sametime. However, for the non-zero loss rates, from 1-2
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seconds after the document is requested until the end, PO/R
provides more pixels than O/R at every instant in time (in the
average case.)

(4) For R2.1, at each lossrate, in the median case for PO/R service,
pixels begin appearing in less than 1.2 seconds. In the median
case for O/R service, no pixels appear until after:

3.3 seconds for 10% loss,

5.0 seconds for 20% loss, and
7.1 seconds for 30% |oss.

Theresultsfor R2.2 are similar.

(5) There does seem to be an increase in the delay of pixel delivery
for the experiments at 500ms vs. the corresponding ones at
250ms, however it is unclear whether thisincreaseis a direct
result of the differing one-way delays, or is due to experimental
variance.

Observation (4) is particularly significant result in terms of user satisfaction. Human
factors studies summarized in (Mogul 1995) suggest that response times of two to four
seconds are preferred to those exceeding four seconds, for reasons related to attention
gpans. In conclusion, we note that the data from Experiments R2.1 and R2.2 provide
evidence to support Hypotheses 5.4.2 and 5.4.3. Thereis somewhat less evidence to

support Hypothesis 5.4.1.

Table5.6 First pixel delivered (median) for R2.1

lossrate R2E T2E
0% 11 1.2
10% 1.2 3.3
20% 13 5.0
30% 15 7.2

Table 5.6 shows the earliest time (measured in elapsed seconds from the
document request) at which the median over all experiments of the statistic
“pixels delivered” is non-zero.
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Figure5.22 Exp.R2.1, R2.2, pixels, 128kbps, 4 lossrates x 2 delays
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5.4.3 Experiment R2.3: observationsand conclusions

Experiment R2.3 examines the effect of round-trip delay on performance,
and on the gap between PO/R and O/R service. We model round-trip delay by
changing the propagation delay parameter of the reflector. The actual round-trip delay
encountered by the PDUs in the experiment includes not only this propagation delay
(times two) but also any queuing delay at the reflector.

Figure 5.23 illustrates the progressive delivery of pixelsfor both PO/R and
O/R service at 0% and 20% loss for four different one-way round-trip delays. We first
consider the left column of Figure 5.23, showing results for 0% loss. As predicted in
Hypothesis 5.4.2, there is no difference between the average case for PO/R and O/R
service a any delay. The difference among the delaysis visible by a shifting of the
entire graph to the right as the delaysincrease. Also as expected, the amount of the
shift corresponds precisely to the double the increase in the one-way round-trip delay
introduced in each experiment; for example, the 250ms case is shifted 500ms to the
right as compared to the Oms case, and the 500ms case is shifted another 500ms to the
right as compared to the 250ms case. The fact that these results come out precisely as
we expect increases our confidence in the accuracy of the experimental framework.

We now consider the resultsin the right column, showing the effect of
increased network delay at 20% loss. The first observation isthat at every network
delay, there is asignificant improvement in the progressive display for PO/R service
vs. O/R service. Consider the points at which each graph crosses the line y=80% for
both PO/R and O/R service. For PO/R service at each of the four network delays, the
80% lineiscrossed at times (5.4, 5.9, 6.0, 7.2) respectively. By contrast, for O/R
service, the corresponding figures are (10.1, 10.3, 10.6, 10.6). The clear advantagein

terms of providing early response belongs to PO/R service. At the time that PO/R has
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80% of the pixels for each of the respective network delays, the corresponding O/R
cases have only (13%, 30%, 27%, 27%) respectively.

As afina observation, we provide throughput figures based on the median
case for progressive display. For each network delay at 20% loss, Table 5.7 shows the
time at which the median number of pixels delivered was 100%. PO/R service
provides an improvement in throughput at each network delay. Thisobservationis
consistent with the general observation made in (Diot and Gagnon, 1999) that modest
throughput gains may be obtained from out-of-sequence delivery. We suggest that
more significant benefits can be illustrated by focusing on progressive display, a

benefit not considered by Diot and Gagnon.

Table5.7 R2.3: Last pixel delivered (median)

delay R2E T2E
Oms 115 13.3
125ms 111 11.7
250ms 11.1 12.8
500ms 12.6 13.7

Table 5.7 shows the earliest time (measured in elapsed seconds from the
document request) at which the median over all experiments of the statistic
“pixels delivered” is non-zero.
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Figure5.23 Experiment R2.3: Four one-way delays at 0% and 20% loss
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5.4.4 Experiment R2.4: observationsand conclusions

Experiment R2.4 examines the effect of window size on performance, and
on the gap between PO/R and O/R service. Figure 5.24 shows the average cases for
progressive display of pixelsfor six different window sizes. Unlike other similar
figuresin this dissertation, Figures 5.24 and 5.25 show results for six different window
sizes all on the same page, for 0% and 10% loss, respectively. There are two

observations to make about the results of this experiment.

(1) Theoptimal sending window size for this transmission lies
somewhere between 16 and 32.

(2) POIR service provides better progressive display then O/R
service over arange of window sizes, including those closest to
the optimum window size.

We now explain both of these observations in more detail.

The optimal window size for Experiment R2.4 lies between 16 and 32

Suppose that we fix the transport service, and compare, say, just the PO/R
results for each window size, or alternatively, compare just the O/R results for each
window size. Looking first at the results for 0% loss in Figure 5.24, we notice that as
the window size moves from 4 up to 128 (exponentially by powers of 2), that the
performance improves as we move from 4 to 8 to 16 to 32, then stays about the same
aswe move from 32 to 64 and 128.

These results are exactly those that are predicted by the usual analytic
model of diding window protocols (Tanenbaum, 1996; Stallings 1998). Asthe
window size of such protocols increase—for example, as one moves from the classic

stop-and-wait, to go-back-n, and finally to selective-repeat schemes—performance
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improves. However, thereisalimit on the potential improvement; when the window
size reaches 1+2a, where aisthe ratio of one-way network delay to packet
transmission time, no further improvement is feasible. At this point, the pipeline stays
full of packets continuously, and the usable window is limited to 1+2a.

In the classic textbook analysis of sliding window schemes, the
performance ssimply levels off after the window sizeisincreased to the 1+2a level.
Our results for 0% loss correspond exactly to thismodel. However, our results for
10% loss, shown in Figure 5.25, differ from what the classic analysis predicts, in that
after the 1+2aleve is surpassed, performance then beginsto degrade. Observe that
just as with the 0% loss case, performance improves as the window size isincreased
from 4 to 8 to 16, but then degrades as the window size is moved from 16 to 32, and
continues to degrade as the window size is increased from that point. Thisis
counterintuitive in the sense that one generally expects computer system performance
to stay the same or improve when available resources (in this case, memory) are
increased.

To understand why performance degrades as the window size is increased
beyond the optimum point, it is necessary to review the experimental design, and in
particular, the topic of flow control. Recall that the experimental environment (see
Figure 5.1) consists of afast link between the server and the packet reflector (the
loopback interface of the machine medoc) which feeds a simulated slow link (the
packet reflector, operating at 128K bps), which then emptiesinto fast links (100M bps
Ethernet) to the lossy router (al sace) and ultimately, the client (buzet ). Sincethe
TCP slow-start mechanism is not used in these experiments, as soon as the server

starts to transmit the multimedia document, the server fills up the input buffer of the
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packet reflector with an entire window’ s worth of packets at 100Mbps. Thisinitial
burst of w packets (where w is the sending window size in packets) creates a queuing
delay that affects the retransmission of any subsequent packets in two ways. First, for
the O/R case, the first missing packet, p; will have to wait behind thisinitial burst,
which delays not only p; but also all packets from p; up to p,. Second, in both the
O/R and PO/R cases, the adaptive retransmission timers will be tuned based on RTT
measurements that include this queuing delay. Thus, as the window size increases,
the RTO value of the transport sender aso increases, causing the recovery from errors
to take longer, thus decreasing throughput when the loss rate is non-zero.

We conclude that that the observed performance degradation for the 10%
loss case as the window size isincreased is an artifact of two aspects of the
experimental environment: (1) having a single bottleneck link with no traffic other
than our own, and (2) not employing slow-start. However, from the standpoint of
evaluating the usefulness of PO transport service, the observation we explain next is

more significant.

PO/R outperforms O/R over arange of window sizes at 10% loss

We now turn to an explanation of observation (2). Note that for 10% loss,
with the exception of window size 4 (which is clearly too small to provide reasonable
performance) PO/R service outperforms O/R service. Thisresult isimportant because:
(2) itisoften difficult for atransport protocol to determine the optimal window size,
and (2) this result indicates that PO/R service can outperform O/R service at awide
range of window sizes, including those near the optimal value. In fact, the optimal
window sizeis afunction of the round-trip delay, which is essentially arandom

variable, or more precisely, a stochastic process: arandom variable which isafunction
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of time. Therefore, the best the transport layer can do is to estimate the optimal
window size, and constantly refine its estimate based on measurements of the delay,
loss rate, and effective throughput. The results of Experiment 2.4 indicate that PO/R
service has the potential to improve progressive display as long as the transport layer is
reasonably close to the optimal value, which we would hope to be the normal case.
As afinal observation about the run where the window sizeis 4, we
observe that PO/R service at least does no harm when the transport services window
Size estimate is much too small. The situation of a“much too small window size”
occurs frequently during the slow-start phase of normal TCP congestion avoidance.
Since TCP' s congestion avoidance mechanisms dynamically change the window size
as aresponse to congestion, an interesting topic for future work would be to
investigate the effect of these window size changes on the performance difference
between PO/R and O/R service. Such an investigation might plot measured RTT,

effective window size, and the performance differential as afunction of time.

54.5 Experiment R2: summary

Overal, the results for Experiment R2 have shown avariety of conditions
under which a PO/R service can provide better progressive display than O/R service
for aparticular kind of document: specifically, a document with parallel streams of
data containing pixels, where each stream can be independently decoded and

displayed. Specifically, with respect to our five hypotheses:

* Theresults of experiment R2.3 provide little support for
Hypothesis 5.4.1. At 0% loss, thereis no gain or loss for PO/R
service vs. O/R service, while at 20% loss, the benefit of PO/R
service vs. O/R service seems to be fairly constant regardless of the
round-trip delay.

251



Hypothesis 5.4.2, on the other hand, is supported by the results of
Experiments R2.1, R2.2 and R2.3.

Hypothesis 5.4.3 is supported by the results of Experiments R2.1
and R2.2.

Finally, Hypotheses 5.4.4 and 5.4.5 are supported by the results of
Experiment R2.4.
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Figure5.24 Exp. R2.4: Performance Graphs (128kbps at 0% loss)
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Figure5.25 Exp. R2.4: Performance Graphs (128kbps at 10% loss)
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55 Experiment R3: O/R vs. PO/R, eight parallel GIF images, various bit rates

55.1 Experiment R3: motivation

In R3, we vary the bit rate to put the advantage of PO/R service over O/R
service into context. In contrast to R1 and R2, where we chose two fixed bit rates and
varied the loss rate, propagation delay, and window size, in R3 we choose fixed values
for loss rate, propagation delay and window size, and vary the bit rate.  We have one
hypothesis:

Hypothesis 5.5.1: At lower bit rates, the absolute gain (measured in
seconds) of PO/R service over O/R service will be larger than the gain
at faster bit rates.

In addition, we expect to find evidence to support the following conjecture:

Conjecture 5.5.2: For any fixed values of {loss rate, propagation delay,
window size}:

a) thereisarange of bit rates where the gain in progressive display has a
significant impact on end-user perceived performance, and conversely,

b) when the bit rate is below some threshold b,, or above some higher threshold
b,, the impact of the gain on end-user perceived performanceis negligible.

The basis of Conjecture 5.5.2 isthat for any given application context, there exists
some lower bound, perhaps different for each individual user, below which the
performance of both O/R and PO/R service would be considered unacceptable,
therefore the end-user is unlikely to care about any qualitative difference. Conversely,
above a certain bit rate, the gain is so small as to be imperceptible. We cannot
rigorously prove or disprove this conjecture without human subject experimentation,

however we can offer results to illustrate that this conjecture is reasonable.
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55.2 Experiment R3: parameters

Table 5.8 shows the parameters for Experiment R3. The 2.4kbps bit rate
ismotivated by SINCGARS combat net radios; these radios provide alow bit-rate
data channel as a side-feature to their main function as radios for voice
communication. (Estimates of effective bit rates for SINCGARS vary considerably;
2.4kbpsis areasonable target value for that domain.) The 33.6kbps bit rateis
motivated by dial-up modem service (V.34, 1998). The 128kbps bit rate is motivated
by residentia or small business ISDN or DSL service, or by the available throughput

for a particular connection on a best-effort WAN such as the Internet.

Table5.8 Parametersfor Experiment R3

Parameter Valuesfor Experiment R3:
Mechanisms R2E,T2E
Loss Rates (%) 0,20
Networ k reflector
Bit rate (kbps) 2.4,9.6, 33.6, 128
One-way delay (ms) 0
Document i mg8par . pnsl
Window Sze (pkts) 8

Bold indicates the parameters that are the focus of the experiment.

5.5.3 Experiment R3: observations and summary

For R3, we provide a more detailed analysis than that given in the
previous experiments: for R3, we compare not only averages, but also severa rank
statistics: min, 25" percentile, median, 75" percentile, and maximum (these can also
be described as the quartile boundaries of the data.) Comparing these rank statistics
adds additional insight into the implication of the results for end-user perceived

performance. Specifically, we provide the following graphs:
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»  Figure 5.26 shows the average results for the progressive display of
pixels at these four bit rates, for both 0% loss and 20% loss.

*  Figure5.27 shows the median results for progressive display of
pixels at 20% loss only.

*  Figures5.28 and 5.29 shows the quartile boundaries for
progressive display of pixelsat 20% loss.

Referring to Figure 5.26, we first note that at 0% loss, asin previous
experiments, there is no significant difference between the average performance of
R2E vs. T2E at 0% loss; the median graphs (omitted) show the same results.
Therefore, the remainder of our analysis will focus on the 20% loss case.

Referring to Figures 5.26 and 5.27, overall, we note that at each bit rate,
thereis asignificant improvement in the progressive display of R2E (PO/R service)
over T2E (O/R service.) We now make some more detailed observations about these

graphs for each bit rate.

Observationsfor bitrate 2.4kbps

Both the average case graph (upper right, Figure 5.26) and median case
graph (Figure 5.27, upper left as viewed in landscape) show an advantage for PO/R
over O/R service. Inthe median case, pixels begin appearing on the screen at 39.2
seconds for PO/R service. By the time, in the median case, that O/R serviceis
presenting the first pixel (32 seconds later, at 71.2 seconds), PO/R service has
delivered 13% of the pixelsin the median case. The PO/R median case crosses the
50% mark (that is, at least 50% of the pixels have been delivered) at time 156.0, while
the O/R median case requires 8.1 seconds longer to reach this point in the document.
Similar figures could be cited for the average case graph. An even more interesting

observation is that when one looks at the quartile boundaries (top left of Figure 5.28),
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the advantage of PO/R service of O/R service tends to increase as one moves from the
maximum towards the minimum rank statistic. The lines representing the maximum
number of pixels displayed at each point in time (best case performance) for O/R vs.
PO/R service are not significantly different from one another. However, asone
examines the respective quartile boundaries in sequence—that is, the 25", 50", 75™
and 100™ percentile of pixels displayed at each point in time—one observes that the
advantage of O/R vs. PO/R service increases at each boundary. Examination of the
worst cases for both O/R and PO/R service at various loss rates revealed long runs of
successive losses of the same packet early in the run. PO/R serviceis able to recover
sooner than O/R servicein these cases. We can make the general observation that

“the worse things get, the more advantage out-of-sequence delivery can offer.”

Observationsfor bitrate 9.6kbps

The results for 9.6kbps are similar to those for 2.4kbps. Both the average
case graph (right column, 2" from top, Figure 5.26) and median case graph
(Figure 5.27, lower left when viewed in landscape) show curves that are shaped very
much like those for 2.4kbps—the likeness is particularly striking in Figure 5.27, where
the two graphs have been scaled to alow afair comparison between the bitrates.
Because the shapeis similar, we will not provide detailed analysis of points on the
median graphs, but will point out only that the advantages at this bitrate are 25% of the
duration of the advantages for the 2.4kbps case. This makes the advantages less
significant in terms of end-user perceived performance, although relative to the entire
size of the document, they are essentially equivalent. The trend regarding the quartile
boundaries that was observed at the 2.4kbps |oss rate holds here as well, with the

exception of the minimum lines; we can expect that there will be more variance in the
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maximum lines, since these represent an extreme point in the dataset. Nevertheless,
there is an increasing advantage for PO/R service as one moves from the 75" to the

50" and 25™ percentiles.

Observationsfor bitrate 33.6kbps

While for 2.4kbps and 9.6kbps, we could reach roughly the same
conclusions regardless of whether we considered the average or the median graphs, for
the higher bitrates in Experiment R3, the shape of the average and median graphs do
not agree. Consider, in particular, the average graph for 33.6kbps (Figure 5.26, right
column, 3" from top.) We might conclude from this graph that the key advantage of
PO/R serviceis experienced during the delivery of the final 5% of the pixels.
However, when we examine the median and quartile boundaries, a different picture
emerges. In particular, consider the top row of Figure 5.29, and the top row of
Figure 5.30, where the same graph is presented at four different scales. We observe
that at all of the quartile boundaries except the minimum, the graphs show a 2-4
second advantage for PO/R service. When the worst case performance is compared,
PO/R service shows what appears to be a dramatic advantage, with an improvement in
progressive display of more than 30 seconds. However, it should be borne in mind
that the extreme case is more subject to variance, so we should be careful about
claiming this as an advantage for partial order. Instead, we highlight it to illustrate
how the average was affected by an extreme case. We will therefore sometimes use
the median rather than the average to summarize datasets in the remainder of this

chapter, because of the greater robustness of the median statistic.
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Observationsfor bitrate 128kbps

An interesting feature of the results for 128kbpsis revealed by considering
the progression of normalized graphsin Figure 5.28 and 5.29, particularly in the | eft
hand column, where each tick mark represents the delivery 12000 bytes of data. We
observe that while the absolute gain for PO/R service decreases, therelative gain in
terms of the document size actually increases. We also observe that at each
percentile, PO/R service outperforms O/R service, with the median case running 1 to 3
seconds ahead throughout most of the document. Another interesting feature of the
128kbps results is that, with the exception of the worst-case results, for each of the
percentiles, there is a particular shape to the gain. First, PO/R service jumps out to an
early lead. Then O/R service catches up, narrowing the gap (to zero gain, in the case
of the 100", 75" , and 50™ percentile graphs). Finally, PO/R service pulls ahead again,
restoring its earlier lead. It would be interesting to run more experiments at this
bitrate and other nearby bitrates (64kbps, 256kbps), with this document and other
documents, to determine whether this shape is feature of this dataset only, or is

consistent across many runs.

Experiment R3: summary
In summary, we conclude that for 20% loss, significant gains for PO/R

service can be shown over arange of bit rates from 2.4kbps to 128kbps.
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Figure5.26  Experiment R3: Average Performance Graph

Graphs in Figure 5.26 are scaled for each bitrate so that the last data point (last PDU arrival of the run with the slowest response
time) is included. The scales are not normalized w.r.t. throughput, as they are in Figure 5.4.
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Figure5.29 Experiment R3: Quartiles Performance Graph
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Figure5.30 Experiment R3: Scaled Quartiles Performance Graphs

The graphs in Figure 5.30 are scaled versions of the 33.6kbps and 128kbps graphs from Figure 5.29.
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5.6 Experiment R4: imagesin parallel with audio
(O/R vs. PO/R for images and audio from pari s. prsl )

This section describes Experiment R4 which extends the investigation of
ReMDoR performance to documents that include audio. For this experiment, we
retrieve adocument called par i sMap0. prsl , which contains three GIF images and
an audio clip (taken frompari s. pnsl ), al presented in parallel. In this experiment,
we measure performance statistics that capture both the progressive display of the
images and the smoothness of the audio presentation. The audio encoding used is the
standard SUN. au format (8Khz p-law), which requires 64K bps of throughput.
Because our PPP link provides a maximum throughput of less than 38.4Kbps, we use
the reflector to investigate bitrates ranging from 80K bps to 256K bps, with 128K bps as
the nominal target bitrate.

Section 5.6.1 provides background concerning this experiment, including
adescription of our metrics for audio performance. Section 5.6.2 describes the
parameters for Experiment R4, and our hypotheses about the results. Section 5.6.3

describes our results and conclusions.

5.6.1 Background: Three proposed metricsfor audio performance

When audio is streamed over a network with afully reliable service, the
goal isto ensure that the audio device never underflows, because underflows introduce
interruptions during playout. The method typically used is described in (Dempsey,
1994; Dempsey et a., 1996.). A small initial playout delay isintroduced, during
which a queue is alowed to accumulate packets. Once audio playout begins, this
gueue isdrained at a constant rate—for example, at 64Kbpsin the case of the 8Khz p-

law encoding used in the ReMDoR system. Since the service rate is constant, we can
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measure the queue length in seconds rather than in bits. The length of the queuein
seconds determines how much time is available for the transport layer to achieve a
retransmission of any missing packets.

If the queue length istoo short, using afully reliable service with audio
has the potential to introduce defectsin the form of interruptions when the audio
gueue underflows. Interruptions can be measured in two ways: the number of
interruptions that occur, and the length of each interruption.

Suppose the network delay is constant, or has relatively low variance (say,
a standard deviation of 5% of the mean value). In this case, afixed playout delay of,
say, twice the round-trip time should provide enough time for a single retransmission

of amissing packet. However, severa factors may cause areliable service to

underflow:
. The network delay may vary, causing the playout delay to be too
small for even asingle retransmission.
. The loss rate may be sufficiently high that multiple retransmissions
are required.
. Retransmissions may rob bandwidth from original transmissions,

causing the source to be unable to provide packets fast enough.

We would expect that for the case where the audio stream is transmitted in
parallel with other streams (e.g., image data) that PO/R service would result in fewer
underflows than O/R service. Thisis because missing packets in the non-audio
streams will impact the delivery of the audio stream for O/R service, while with PO/R
service, only missing audio packets would cause underflows. Therefore, we would
like to measure the impact of underflows on audio quality, to assess the performance

improvement offered by PO/R service.
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There is a complicating factor, however. We can measure audio
underflowsin severa ways, and it is unclear which way correlates best with perceived
end-user audio quality. For example, suppose a user is listening to an excerpt from the
French National Anthem lasting approximately 120 seconds. Which scenario would

that user prefer?

(@ asingleaudio interruption of 3 seconds, occurring right in the
middle of the piece

(b) 9interruptions of one-third of a second each, uniformly
distributed across the 120 seconds

(c) 3000 interruptions of 1 millisecond each, occurring every 40 ms
(that is, between every single audio packet)?

The author's anecdotal experienceisthat scenario (c) is perceived only asaslowingin
the tempo of the music, and for some listeners may be the least objectionable defect.
On the other hand, (a) is probably much less annoying than (b), since with (a) once the
defect has passed, it is easily forgotten, while with (b), there is a constant reminder of
noticeable problems.

This ssimple exampleillustrates that, when considered in isolation, neither
the number of interruptions, nor the total duration of the interruptions (which isthe
same for al three cases above) nor the mean duration of the interruptionsis necessarily
agood indicator of the impact on quality.

Further, the impact on perceived quality of various kinds of defects will
vary among listeners. The impact may also depend on the media content, and the
media purpose. A user retrieving aclip solely for entertainment purposes may be
intolerant of even slight defects, and may give up on the transmission altogether rather

than listen to less than perfect playback. On the other hand, a student replaying a
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lecture the night before an exam, or a soldier retrieving useful intelligence information
in a hostile environment may prefer a clip with fewer defects, but may nevertheless be
grateful for any information at all.

Because of the subjective nature of perceived audio quality, a subjective
metric called the Mean Opinion Score (MOS) has often been used. The MOS metric
has frequently been applied to investigate defects in audio quality introduced by
distortion resulting from A-D or D-A conversion, quantization, and |0ssy compression
schemes. However, we are not aware of previous work that assigns Mean Opinion
Scoresto reliable playback of audio with interruptions.  Such a study would be useful
as future work, but is out-of-scope for this dissertation.

Therefore, pending the outcome of such a study, this dissertation
introduces three objective metrics for defects introduced by interruptions of reliable
audio streams. The purpose of these metrics is to compare the difference between

using O/R and PO/R service for documents containing audio.

1) INT (Absolute number of interruptions)

Zero interruptions represents perfect playback. The more interruptions
there are, the worse the performance. Whilethisisauseful metric, it does not capture
all the information we might find useful. In particular, it would assign a much worse
metric to a playout with 10 barely perceptible (or possibly imperceptible) interruptions
of 1 millisecond, than it would to a playout with five interruptions of 3 seconds each,

which might be more annoying. This fact motivates the next metric.
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2) FRACPLAY (Fraction Playing ).

FRACPLAY isdefined as the fraction of time during the playout of the
audio that the user is actually hearing the audio playing, as opposed to hearing the
silence of an interruption.

FRACPLAY =

playing timeof clip
playing timeof clip + duration of audio interruptions

If there are no interruptions, then FRACPLAY = 1; this
represents perfect playout. But if, for example, a 9-second clip isinterrupted once for 1
second, than the metric would be 9/10, since the total playout time will now be 10
seconds.

The FRACPLAY metric makes a useful distinction between an 18 second
clip interrupted twice for one second each, and an 18 second clip interrupted 10 times
for .001 seconds each time, we assume that users will notice the former, and barely
notice (or be altogether unaware of) the latter.

However, the FRACPLAY metric also fails to capture exactly what we
might want. It does not distinguish between a 18 second clip interrupted once for 2
seconds, or the same 18 second clip interrupted 10 times for 0.2 seconds each time.
We assumebO that most users would find the second case more annoying.

The need to capture both the number of interruptions and the length of the

interruptions motivates the third metric:

60 Testing the validity of this assumption is outside the scope of this dissertation;
human subject research in this area is suggested as future work.

270



3) FRACPLAY'NT

To capture both the influence of the number of interruptions as well as the
size of the interruptions, we propose the metric FRACPLAY ™' (signifying
FRACPLAY raised to the INT power). Theintuition behind thisformulais that each
time there is an interruption, there is a cumulative effect on the degree to which the
user isannoyed; i.e., we suggest that annoyance multiplies. Aswith the INT and
FRACPLAY metrics, we can assert that avalue 1 represents perfect performance, and

that interruptions will cause the value to tend towards zero.

5.6.2 Experiment R4: parametersand hypotheses
Table 5.9 presents our parameters for the Experiments that make up R4; as
in the previous experiments, we investigate the effects of loss rate, bit rate,
propagation delay, and window size on transmission of a single document,
pari sMap0. pnsl . Thisdocument consists of three imagesin parallel with a short

audio stream lasting several seconds.

Table59 Parametersfor Experiment R4

Valuesfor Experiment:
Parameter R4.1 | R4.2 | R4.3 | R4.4
Mechanisms < R2E,T2E >
Loss Rates (%) | 0,10,20 | 0,20 | 0,20 [ 10
Networ k reflector >
Bitrate (Kbps) 128 128 80, 96, 128, | 128
256
One-way delay (ms) | 250 0,125,250, 250 250
500
Document pari sMap0. pnsl
Window Size (pkts) | 128 | 128 | 128 | 64, 128, 256

Bold indicates the parameters that are the focus of the experiment
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Our hypotheses about these experiments are as follows51

Hypothesis5.6.1 No difference at 0% loss: There will be no
significant gain or penalty for using PO/R service vs. O/R service at 0%
loss from the standpoint of (a) progressive display of pixels,(b) or in
any of the audio metrics. (all experiments)

Hypothesis 5.6.2 Better graceful degradation of progressive
display of pixels: At loss rates greater than zero, progressive display of
pixelswill be better when PO/R service used rather than O/R service.
(al experiments)

Hypothesis5.6.3 Gain increaseswith lossrate: Interms of
progressive display of pixels, there will be increasing performance
gains from using PO/R service vs. O/R service at 20% loss vs 10% loss.
(Exp. R4.1)

Hypothesis5.6.4 Better graceful degradation of audio: At loss
rates greater than zero, al three audio metrics will degrade more slowly
when PO/R service is used rather than O/R service.

Hypothesis5.6.5 Gain increases with delay: With respect to the
improvements in progressive display of pixels, or audio performance,
there will be less gain from PO/R service vs. O/R service at lower
round-trip delays, and more gain at higher round-trip delays.
(Experiment R4.2)

Hypothesis 5.6.6 Morerobust when bit rateistoo low. Asthe
bit rate is decreased from values that can support the audio stream in
the presence of loss to values that are insufficient to support the audio
stream in the presence of loss, PO/R service will degrade less rapidly
than O/R service in terms of both (a) progressive display of pixels, and
(b) audio. (Experiment R4.3)

Hypothesis 5.6.7 Morerobust in face of inappropriately large
windows. Asthe window sizeisincreased from values near the
bandwidth-delay product to values above the bandwidth-delay product,

61 Thetitlesin bold such as "No difference at 0%loss" refer to the benefits of PO/R
service over O/R service captured in each hypothesis.

272



performance will degrade for both PO/R and O/R service, but it will
degrade more for O/R service than for PO/R service. (Exp. R4.4)

As the next section shows, our results find clear evidence some of these hypotheses,
while the results are mixed for others. In general, the beneficial impact of PO/R
service vs. O/R service on the progressive display of pixelsthat was observed in
Experiments R1-R3 is maintained when audio is introduced in parallel. In some cases,
PO/R service provides better audio performance than O/R service. In other cases,
however, there is no clear evidence that PO/R service provides better quality than O/R
service for the audio portion of the document. At the sametime, neither is there any
evidence that PO/R service significantly impairs the audio quality when compared to

O/R service.

5.6.3 Experiment R4.1: observations and conclusions

In this experiment, we make observations about both pixels, and audio
performance. Figure 5.31 shows performance graphs similar to the ones that were
presented for Experiments R1-R3; each graph shows the median (across all
experiments) of the number of bytes or pixels presented at each point in time.
Figures 5.32 through 5.34 show performance graphs for audio based on the metrics
described in Section 5.6.1.

Observations and conclusionsfor pixels and bytes

We make the following observations concerning these graphs:

(1) At0% loss, thereislittle difference between the bytes and
pixels graphs for PO/R service vs. O/R service. This offers
support for Hypothesis 5.6.1(a).

(2) The pixels graphsfor the 0% loss case has a sharp bend
upwards towards the end.
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Observation (2) is explained by the fact that at this point in the document, the
transmission of audio isfinished. Audio is given preferential treatment in the linear

extension selection algorithm (see Chapter 6.)

(3) For bytes, the gain of PO/R service over O/R serviceisrather
modest, but when thisis translated into pixels, the gain is more
impressive.

(4) Thefact that thereisagain for PO/R service, and that the gain
increases for 20% vs. 10% loss provides evidence to support
Hypotheses 5.6.2 and 5.6.3

Observation (3) isworth further exploration for two reasons: (1) it is counterintuitive:
how can there be an advantage in pixels when there is no advantage in bytes? (2) We
will seethis pattern in Experiments R4.2, R4.3 and R4.4 as well.

In the BY TES graph, the advantage of PO/R service appears rather
modest, with the O/R service frequently showing identical or even slightly better
progressive display. Meanwhile, on the PIXELS graph, the PO/R service seems to be
the clear winner. For example, for 10% loss, at time 11.3 seconds, PO/R service
displays 36850 pixelsin the median case (80% of the total pixels) while O/R service
presents only 11962 pixels (26%). It takes O/R service 5.1 additional secondsto
deliver 80% of the pixels. The gain for 20% loss, as predicted, islarger: in this case,
PO/R service displays 36889 pixels in the median case (80%) at time 13.8 seconds,
while O/R service displays only 7967 pixels (17%) after 13.8 seconds. In the 20% loss
case, O/R service requires an additional 16.2 secondsto deliver 80% of the pixels.

The explanation for the discrepancy between the BY TES and PIXELS
resultsliesin the fact that the BY TES metric includes both audio and image data,
while the PIXELS metric focuses only on image data.  When ordered serviceis used,

it is necessary to hold back the presentation of image data because of out-of-sequence
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audio data, and vice-versa. With PO/R service, the two kinds of data can be
interleaved. Asaresult, when PO/R service, image data can overtake the audio data,
and get presented earlier, while with O/R service, thisisimpossible.

Thereis clear evidence in the graphs that pixels are in fact overtaking
audio when PO/R serviceis used, as compared to the fixed linear extension enforced
by O/R service. To seethis, one can consider, for both PO/R and O/R service, the
point at which 50% of the total bytes have been displayed vs. the point at which 50%
of the total pixels have been displayed. For PO/R, the point at which 50% of the
pixels are displayed occurs before the point at which 50% of the bytes are displayed,
while for O/R service, the oppositeistrued. Similar observations can be made at other

percentages.

Interpreting the graphsfor the audio metrics

The meaning of the CDF graphs for the audio metrics may not be
immediately intuitively obvious. This section provides some general help in
interpreting the results in these graphs. It is generally helpful to compare the CDF for
each loss rate with the CDF for 0% loss, and ask the question: how is perfect playback
represented?

For the INT metric, theideal caseisthat the CDF goesimmediately to 1
when the x-axisis at O interruptions. As the x-axis value increases, representing an

increasing number of audio interruptions:

* If the CDF rises slowly to one, thisindicates that there were alarge
number of audio interruptions.

» If the CDF rises quickly to one, thisindicates that there were fewer
audio interruptions.
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Thus, for the INT metric, the transport service represented by the higher curveisthe
one that provides superior audio quality.

For the FRACPLAY and FRACPLAY™T metrics, the ideal caseisthat the
CDF remains at zero until the x-axis reaches 1, then it jumpsto 1, indicating that 100%
of the experiments had perfect playback (i.e., the entire duration of the audio consists
of audio playback.) If the CDF moves above zero any earlier than when the x-axis
reaches 1, thisindicates that some portion of the experiments experiences sub-optimal
playback. Thus, the longer the CDF remains low, the better, and the transport service

represented by the lower curve is the one with the superior playback.

Observations and conclusionsfor audio metrics

(5 Audio performanceisidentical, and perfect at 0% loss. This
offers support for Hypothesis 5.6.1(b).

(6) At 10% loss, PO/R clearly experiences fewer interruptions that
O/R service. On the other hand, the fraction of time spent
playing is slightly worse for PO/R service than for O/R service.
When these results are combined using the FRACPLAY'™T
metric, the combined metric assigns a higher quality score to the
performance of PO/R service.

(7) Theresultsfor 20% loss are similar to those for 10% loss, with
the exception that there is no clear winner between the two
servicesin terms of the FRACPLAY metric.

(8 Comparing the results for 10% and 20% |loss, we observe that
the advantage of PO/R service over O/R service increases as the
loss rate goes from 0% to 10%, but then diminishes as the loss
rate goes from 10% to 20%.

Taken together, Observations (6) through (8) offer some evidence to support

Hypothesis 5.6.6. It would be interesting to investigate, in both objective and human
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factors studies, |oss rates between 0% and 10%, and between 10% and 20% to

determine the following:

whether, asthe loss rate increases from 0% to 20%, thereisatrend
of an increasing gap between PO/R and O/R service followed by a
narrowing gap, and

whether the gap is perceivable in terms of end-user quality, within
arange where the quality is still usable/acceptable for some
applications. It may be the case, for example, that above some loss
rate, the performance of both servicesis considered by most end
users to be equally unacceptable.
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FRACPLAY =

duration of audio interruptions
playing timeof clip + duration of interuptions
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R4.1: FRACPLAY'NT metric
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Experiment R4.1: FRACPLAY'NT metric
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5.6.4 Experiment R4.2: observationsand conclusions

Experiment R4.2 investigates Hypothesis 5.6.5, which predicts that round-
trip delay will have an impact on the gain in performance of PO/R service over O/R
service. Round-trip delay is modeled by one-way delays in each direction through the
reflector. The hypothesis states that with respect to the improvements in progressive
display of pixels, or audio performance, there will be less gain from PO/R service vs.
O/R service at lower round-trip delays, and more gain at higher round-trip delays. We

make the following observations regarding Experiment R4.2:

(1) Ingenerd, the results are consistent with those of Experiment
R4.1 w.r.t. hypotheses 5.6.1 and 5.6.2; there is no significant
difference between PO/R and O/R service for bytes, pixels, or
audio metrics.

(2) Intermsof progressive display of pixels, while at each round-
trip delay, PO/R serviceisidentical to O/R service at 0% |oss,
and outperforms O/R service at 20% loss,(further supporting
hypotheses 5.6.1 and 5.6.2.) However, there is no significant
difference among the performance graphs for bytes or pixels for
the various round-trip delays chosen. Thus, there is no evidence
to support Hypothesis 5.6.5

(3 At 20% loss, thereisno clear winner between PO/R and O/R
service for audio.

It might be interesting in future work to repeat this experiment at 10% loss, where
there is more likelihood of a gap between the audio performance or PO/R and O/R
service. However, the results of this experiment, taken together with those of
Experiment R2.3, seem to provide little evidence that round-trip delay, per se, isa
significant factor in determining the degree of benefit provided by PO/R service over

O/R service (at least for the parameter ranges studied)
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Figure5.36  Experiment R4.2: pixel performance graphs
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number of audio interruptions at 0% loss for R4.2

histogram of intervals (bins) of size 2, ) T .
eg. [0,2), [24) ... [18,20), [20,20]; cumulative distribution function

[Note: total # of experiments may be unequal] | (CDF) of observed # of interruptions

35 1 P E—"
0.9
30 0.8
25 0.7
0.6
% OR2E 05 +$22§
—a—
-
0.3
10 0.2
5 0.1
L I 0
0+ y y ' y y y - - - ? 0 2 4 6 8 10

10 0.2
0.1

35 13 H
0.9
30 0.8
25 0.7
0.6
20 05 ——R2E
ER2E 0‘4 TE
15 ET2E ’
0.3

*»

10

35 1
09
30 o8
25 07
" 06 ——R2E
OR2E g-i = T2E
15 -
mT2E 03

10+

35 1 P
0.9
304 0.8
25+ 0.7
0.6

20+ 05 ——R2E

OR2E —=—T2E
15+ BT2E 0.4
0.3

_ _ T T T

Figure5.37 Experiment R4.2: audio interruptions at 0% loss
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number of audio interruptions at 20% loss for R4.2

histogram of intervals (bins) of size 2,
eg., [0,2),[24) ... [18,20), [20,20];
[Note: total # of experiments may be unequal]

cumulative distribution function
(CDF) of observed # of interruptions

14

12

10

o N b O ®

o

1

1 ; —

0.9

0.8
0.7

0.6

——R2E
—_—T2E

BR2E 05
0.4
WT2E
03

0.2

01 —

08

0 1 2 3 4

=

O R, N WHUON®OO

" [ [ []]

" T

0.9

0.8
0.7

0.6

——R2E
—®—T2E

0.5
OR2E

0.4
ET2E

0.3

0.2

0.1

-

ORPNWDUWWO~N®OO

OR2E 0.6
BT2E 05

——R2E
—&—T2E

12

10+

——R2E
—=—T2E

OR2E 05
0.4
BT2E 03

o
= e

Figure5.38 Experiment R4.2: audio interruptionsat 20% loss

286




R4.2 at 0% loss, FRACPLAY metric = playing timeof clip + duration of interuptions

duration of audio interruptions

histogram of intervals (bins) of size 0.1:
[0,0.1),[0.1,0.2) ... [0.9,1.0), [1.0,1.0]

cumul ative distribution function

(CDF) of observed data
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Figure5.39 Experiment R4.2: FRACPLAY metric at 0% loss
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duration of audio interruptions
R4.2 at 20% loss, FRACPLAY metric = playing timeof clip + duration of interuptions

histogram of intervals (bins) of size 0.1: cumulative distribution function
[0,0.1),0.1,0.2) ... [0.9,1.0), [1.0,1.0] (CDF) of observed data
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Figure540 Experiment R4.2: FRACPLAY metric at 20% loss
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INT .
R4.2 at 0% loss, FRACPLAY ™ metric
histogram of intervals (bins) of size 0.1: cumulative distribution function
[0,0.1),[0.1,0.2) ... [0.9,1.0), [1.0,1.0] (CDF) of observed data
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Figure5.41 Exp.R4.2: FRACPLAY'NT metric at 0% loss
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R4.2 at 20% loss, FRACPLAY ™" metric

histogram of intervals (bins) of size 0.1: cumulative distribution function
[0,0.1),[0.1,0.2) ... [0.9,1.0), [1.0,1.0] (CDF) of observed data
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Figure5.42 Exp.R4.2: FRACPLAY'NT metric at 20% loss
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5.6.5 Experiment R4.3: observationsand conclusions

Experiment R4.3 looks at the effect of bitrate on performance of parale
audio and image streams. In this experiment, we perform a stress test by deliberately
reducing the bit rate below that at which presentation of the document is feasible
(because of the presence of the audio stream). We investigate the difference in
robustness between PO/R service and O/R service. Hypothesis 5.6.6 predicts that as
the bit rate is decreased, PO/R service will degrade less rapidly than O/R servicein
terms of both (a) progressive display of pixels, and (b) audio. We make the following

observations regarding Experiment R4.3:

(1) Ingenerd, the results are consistent with those of Experiment
R4.1 w.r.t. hypotheses 5.6.1 and 5.6.2; there is no significant
difference between PO/R and O/R service for bytes, pixels, or
audio metrics, and when the loss rate is non-zero, PO/R service
outperforms O/R service w.r.t. progressive display of pixels.

(2) At eachbit rate, PO/R service provides better progressive
display than O/R service in terms of pixels, providing evidence
to support Hypothesis 5.6.6 part (a).

(3 At 128Kbps, which isthe bit rate for which the document was
optimized, at 20%loss, PO/R service provides better audio
performance than O/R service for all three metrics. (Thisresult
is consistent with Experiment R4.1, supporting Hypothesis
5.6.4).

(4) Asthe bitrate decreases from the value for which the document
was optimized (128K bps), the gain of PO/R over O/R service at
20% loss vanishes.

A common sense observation about this data can be summarized by comparing PO/R
serviceto anumbrella. In ahurricane, an umbrellais not of much use. However, ina
light to moderate rain storm, an umbrella can be valuable indeed. Our data suggests

that PO/R service can function analogoudly. If network conditions are extremely bad,
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as represented by the 80K bps and 96K bps bit rates, PO/R service does not help much.
Note that even at 0% loss, PO/R and O/R service are both providing far less than
optimal audio performance. However, when network conditions are less than optimal,
but not horrible, PO/R service improves performance considerably, as represented by
the 128K bps case.

It would be useful, as future work, to investigate bit rates that are less than
128K bps, but closer to it, such as 120, 112 and 104K bps to determine how the audio
performance curve at 0% loss relates to the change in bandwidth. If the audio
performance curve is perfect or near perfect for any value less than 128kbps, this
might provide a more interesting value at which to further investigate

Hypothesis 5.6.4.
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number of audio interruptions at 0% loss for R4.3
histogram of intervals (bins) of size 2, . . i
eg. [0,2), [2,4) ... [18,20), [20,20]; cumulative distri bqu_n functhn
[Note: total # of experiments may be unequal] | (CDF) of observed # of interruptions
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Figure5.45 Experiment R4.3: audio interruptionsat 0% loss
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number of audio interruptions at 20% loss for R4.3
histogram of intervals (bins) of size 2, . . i
eg. [0,2), [24) ... [18,20), [20,20]; cumulative distri bqu_n functhn
[Note: total # of experiments may be unequal] | (CDF) of observed # of interruptions
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Figure5.46 Experiment R4.3: audio interruptionsat 20% loss
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duration of audio interruptions

R4.3 at 0% loss, FRACPLAY metric = playing timeof clip + duration of interuptions

histogram of intervals (bins) of size 0.1: cumulative distribution function
[0,0.1), [0.1,0.2) ... [0.9,1.0), [1.0,1.0] (CDF) of observed data
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Figure5.47  Experiment R4.3:
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duration of audio interruptions

R4.3 at 20% loss, FRACPLAY metric = playing timeof clip + duration of interuptions

histogram of intervals (bins) of size 0.1: cumulative distribution function
[0,0.1), [0.1,0.2) ... [0.9,1.0), [1.0,1.0] (CDF) of observed data
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Figure5.48 Experiment R4.3:
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R4.3 at 0% loss, FRACPLAY™" metric
histogram of intervals (bins) of size 0.1: cumulative distribution function
[0,0.1),[0.1,0.2) ... [0.9,1.0), [1.0,1.0] (CDF) of observed data
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Figure5.49 Experiment R4.3: FRACPLAY'™T metric at 0% loss
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R4.3 at 20% loss, FRACPLAY'T metric

histogram of intervals (bins) of size 0.1:
[0,0.1),[0.1,0.2) ... [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data
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Figure5.50 Experiment R4.3: FRACPLAY'NT metric at 20% loss

300



5.6.6 Experiment R4.4: observations and conclusions

Experiment R4.4 explores Hypothesis 5.37, that PO/R serviceismore
robust than O/R service when the window sizeisincreased. We investigate three
window sizes, 64, 128 and 256 packets, where the effect of increasing the window size
isto reduce performance (see explanation accompanying Experiment R2.4 in
Section 5.4.5). 0% lossis used to validate the results, while 20% loss is used to

investigate the effects of large window sizes in the presence of loss. Our observations:

(1) Ingenera, the results are consistent with those of Experiment
R4.1 w.r.t. hypotheses 5.6.1; at 0% loss: (a) thereisno
significant difference between PO/R and O/R service for bytes,
pixels, or audio metrics, and (b) when the loss rate is non-zero,
PO/R service outperforms O/R service w.r.t. progressive display
of pixels.

(2) For 20% loss, while at the window size of 64, the audio INT
metric and FRACPLAY ™" metric both show better performance
for PO/R service, this advantage vanishes as the window sizeis
increased.

The fact that PO/R service shows an advantage at the window size of 64 (a suboptimal
window size), and that this advantage vanishes as the window size increases, provides
another instance of the umbrella principle described in the previous section: if the
window sizeis suboptimal (as may occur early in the slow-start phase of a TCP
connection, for example, or if the receiver's window isless than the bandwidth-delay
product), then PO/R offers a performance advantage over O/R service.

We aso conclude that in terms of progressive display of pixels, PO/R
service offers advantages over a wide range of window sizes, even when pixels occur
in parallel with audio. However, as compared with pixels, the advantages of PO/R

service for audio are limited to a narrower range of parameter values.
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number of audio interruptions at 10% loss for R4.4

histogram of intervals (bins) of size 1,
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duration of audio interruptions

R4.4 at 0% loss, FRACPLAY metric = playing timeof clip + duration of interuptions
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R4.4 at 10% loss, FRACPLAY metric = playing timeof clip + duration of interuptions

duration of audio interruptions
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R4.4 at 0% loss, FRACPLAY '™ metric
histogram of intervals (bins) of size 0.1: cumulative distribution function
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R4.4 at 10% loss, FRACPLAY™" metric
histogram of intervals (bins) of size 0.1: cumulative distribution function
[0,0.1),[0.1,0.2) ... [0.9,1.0), [1.0,1.0] (CDF) of observed data
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5.7 Experiment R5: a complete multimedia document
(PO/R vs. O/R for pari sScenel. pnsl )

In this section, we describe Experiment R5, which represents the
culmination of our evaluation of ordered/reliable service vs. partially-ordered/reliable
service for multimedia document retrieval. In contrast to Experiments R1, R2, R3 and
R4, which focus on small documents and excerpts from larger documents, Experiment
R5 looks at afull document. The document pari sScenel. prsl represents the first
section of thepari s. pnsl document (see appendix).

Section 5.7.1 describesthe par i sScenel. pnsl document. Section 5.7.2
discusses the issue of flow control. Section 5.7.3 describes the parameters and
hypotheses for Experiment R5. Section 5.7.4 describes our results and conclusions
regarding progressive display of bytes and pixels while Section 5.7.5 discusses our

results and conclusions related to audio performance.

5.7.1 Experiment R5: description of document pari sScenel. pnsl

Inthepari sScenel. pnsl document, the entire French national anthem
isplayed in parallel with two image streams. The first image stream is a chain of maps
zooming in to the city of Paris. In parallel with the maps, and with the audio, a series
of eight postage-stamp sized scenes from Parisis presented. Images 1 through 4 are
presented, by default, sequentially; this ordering is accomplished by specifying each
image as a successor of a particular part of the linear audio stream. However, no
precedence relationship exists among images 1-4, which means that when partial
order serviceisused, if an image is delayed by aretransmission, later images can be
presented without delay. Images 5-8 follow images 1-4, with 5 following 1, 6

following 2, etc.
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After the anthem, map sequence, and scenes have all been presented, an
audio clip proclaims "Welcome to Paris’, in parallel with the presentation of the final
map of Paris. A continue button is then presented, which for purposes of the

experiment is always pressed exactly one second after it appears.62

5.7.2 Experiment R5: flow control, and the use of R3 and T3 mechanisms

Experiment R5 uses the UTL mechanisms R3 and T3, rather than R2E and
T2E, which were used in Experiments R1 through R4. R3 and T3 correspond to PO/R
and O/R service, respectively, just as R2E and T2E did. From the perspective of their
UTL implementation, there are two main differences between { R3,T3} and
{R2E,T2E}:

(1) R3and T3 arebased on the KX3 layer rather than the KX2
layer.

(2) R3and T3 havethe TCP-friendly mechanisms (slow start, etc.)
enabled.

However, of more interest are the operational and qualitative differences between

{R3,T3} and { R2E,T2E}:

. R2E and T2E use only selective acks. R3 and T3 supplement the
use of selective acks with a cumulative ack value (based on sending
order sequence numbers) on each TPDU.

. R3 and T3 provide afast-retransmit feature, which is based on
receiving three duplicate cumulative acks, asin TCP. By contrast,
R2E and T2E provide retransmission only when an RTO timer
expires. Note that this change might be expected to actually reduce
the benefit of out-of-sequence delivery. In spite of this expectation,

62 The ReMDoR browser and experiment scripts allow the experimenter to simulate
the pressing of continue buttons by a human user after afixed, specified delay.
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our results show that PO/R service still provides an advantage over
O/R service.

While the differences between { R3,T3} and { R2E, T2E} cited above are useful
improvements to the transport protocol, they are not the chief reasons for choosing
{R3,T3} for Experiment R5. Rather, the reason it was necessary to use { R3,T3} for
Experiment R5 has to do with flow control.

Theroleof flow control in out-of-sequence delivery

Someiinitial test runs carried out while preparing for Experiment R5 made
it clear that flow control is an essentia factor in evaluating out-of-sequence delivery.
Early test runs using R2E vs. T2E (the results of which are omitted for sake of space)
showed no significant difference between R2E and T2E performance for any set of
parameters where performance was adequate at 0% loss. Closer inspection showed
the lack of end-to-end flow control in R2E and T2E was the key factor in this
outcome. Specifically, R2E and T2E lack any means of providing feedback to the
transport sender about the level of occupancy in the buffer that lies between the
transport receiver and the receiving application. Without such afeedback mechanism,
the only way to prevent the application from underflowing isto overprovision: that is,
to make the sender send faster than the rate of playout at the receiver. Over thelong
run, this overprovisioning results in the occupancy of the receiver's buffer growing
without bound.

For small documents (as in Experiments R1-R4) this unchecked growth in
the receiver buffer occupancy is not an issue, since the occupancy can be made to grow
slowly, if aproper transmission speed is chosen. However for larger documents,
eventually the occupancy of the transport receiver's buffer provided a playout buffer

such that even at relatively high loss rates, all retransmissions were completed before a
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packet reached the front of the delivery queue. The browser was downloading most
of the document in advance; hence, the document was being pre-fetched rather than
streamed.

The dilemma regarding flow control and the benefits of out-of-sequence

delivery can be summarized as follows:

If the receiving transport entity builds up a receive buffer that, in terms
of document playout delay, islarger than the time required to do a
retransmission, than out-of-sequence delivery cannot possibly be of any
benefit to the application.

On the other hand, if the receiving transport entity's buffer is too small,
or the transmission speed istoo slow to keep the buffer occupancy
strictly greater than zero, then the application may frequently
underflow regardless of whether ordered or partially-ordered serviceis
used.

KX 3 allows mechanisms built on top of it (such as R3 and T3) to provide
full application-transport end-to-end flow control. The application can specify a strict
upper bound (in bytes) on the amount of data that may be buffered at the receiver
waiting to be delivered to the application. The sending transport entity maintains a
conservative estimate of the available buffer space at the receiver, and sends packets
only when there is buffer space available in the window. Thus, the sending rate at the
transport sender is regulated by the occupancy of the transport receiver's buffer. This
scenario ismore realistic for a usable transport protocol.

Asthe remainder of this section shows, by using R3 and T3, and
experimenting with the receiver window size, we were able to find two sets of
parameters where PO/R service provides an advantage over O/R service for alarger

document.
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Table5.10 Parametersfor Experiment R5

Experiment Number
Parameter R5.1 | R5.2
Mechanisms R3,T3
Loss Rates (%) 0,5,10
Networ k reflector
Bit rate (kbps) 512
One-way delay (ms) 250
Document pari sScenel. prrsl
Sender Window S ze (pkts) 256
Receiver Window Size (bytes) 4096 | 8192

Bold indicates the parameters that are the focus of the experiment

5.7.3 Experiment R5: parametersand hypotheses

Table 5.10 presents our parameters for the experiments that make up
Experiment R5. This experiment focusses on whether the gains that were illustrated in
smaller scale experiments can be realized in the context of alarger document.
Overdl, our goal in Experiment R5 is not to do a complete study of the performance of
PO/R vs. O/R service for larger documents, but rather to provide a starting point for

such a study by an example document, and a set of parameters meeting two criteria

(1) the performance gains for PO/R service over O/R service
illustrated in the earlier experimentsin this dissertation can be
extended to alarger document at these parameter values, and,

(2) the parameter values represent arealistic scenario for
multimedia document retrieval.

Together with the results of the previous experiments, such a set of parameters
provides a framework for future, more detailed study of the benefits of PO/R
protocols, perhaps within the framework of emerging multimedia document standards

such as SMIL, and emerging partia order transport protocols such as SCTP.
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Our hypotheses for Experiment R5 are as follows:63

Hypothesis5.7.1 No difference at 0% loss: There will be no
significant gain or penalty for using PO/R service vs. O/R service at 0%
loss from the standpoint of () progressive display of bytes/pixels, (b)
or in any of the audio metrics.

Hypothesis5.7.2 Better graceful degradation of progressive
display of bytes and pixels: At loss rates greater than zero, progressive
display of bytes and pixels will be better when using PO/R service
rather than O/R service.

Hypothesis5.7.3 Gain increases with lossrate: In terms of the
graceful degradation of the progressive display of bytes and pixels,
there will be increasing gains from using PO/R service vs. O/R service
at 10% loss vs 5% loss.

Hypothesis5.7.4 Better graceful degradation of audio: At loss
rates greater than zero, al three audio metrics will degrade more slowly
when PO/R service is used rather than O/R service.

Hypothesis5.7.5 Throughput will improve with larger receive
window sizes. Asthe window sizeisincreased from 4096 bytes to
8192 bytes, the throughput will improve for both PO/R and O/R
service.

5.7.4 Experiment R5: observationsand conclusionsfor pixelsand bytes
Figures 5.59 through 5.61 show performance graphs for bytes and pixels

We make the following observations concerning these graphs:

(1) At0% loss, thereislittle difference between the bytes and
pixels graphs for PO/R service vs. O/R service. This offers
support for Hypothesis 5.7.1(a).

Observation (1) can be seen in the top rows of Figures 5.59 and 5.60.

These figures plot the progressive display of bytes and pixels, respectively, vs. time.

63 Thetitlesin bold such as "No difference at 0%loss’ refer to the benefits of PO/R
service vs. O/R service captured in each hypothesis.
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We see that the green and blue lines representing PO/R and O/R service, (R3and T3,
respectively) are directly on top of one another. In fact, the blue line for T3 obscures
the green line for R3 ailmost entirely.

Observation (1) can also be seen in the green lines of the graphsin
Figure 5.61. Each point in Figure 5.61 shows the difference between the average
performance of R3 and the average performance of T3 at each point intime. These
points are plotted for al three loss rates, for both R3 and T3. We observe that the
green line in each graph, representing the performance at 0% loss, remains close to the
x-axis throughput the entire presentation of the document, showing that the

performance of R3 and T3 are nearly identical.

(2) Thefirst derivative of the pixels graphs for the 0% loss case
varies over time, while the byte graph for the 0% loss caseis
closeto linear.

The near linear shape of the bytes graph reflects the fact that the flow control is
effectively regulating the throughput; the application is consuming data at a steady
rate, thereby opening up space for new packets to be submitted at a steady rate.

The curvesin the pixels graph represent the fact that at different pointsin
the linear extension, the fraction of the byte stream devoted to pixels vs. other data,
most notably audio, changes over time. When present, audio is given preferential
treatment in the linear extension selection algorithm (see Chapter 6). The linear
extension used in this case was tuned so that audio would receive, on average, 50% of

the bandwidth during periods where an audio element was available for transmission.

(3 Ascompared to O/R service, PO/R service offers significant
gainsin both the progressive display of bytes and pixels at two
different window sizes, for both 5% and 10% loss, offering
support for Hypothesis 5.7.2.
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(4) Thefact that thereisagain for PO/R service, and that the gain
increases for 10% vs. 5% |loss provides evidence to support
Hypotheses 5.7.3

(5 Throughput increases with increased window size, regardless of
the loss rate, providing evidence to support Hypothesis 5.7.5

(6) Theadvantage of PO/R over O/R serviceisreduced at the
window sizeisincreased from 4096 to 8192.

Observations (3) through (6) can be seen in the 2™ and 3" rows of Figures 5.59

and 5.60, but are more evident in Figure 5.61, In Figures 5.59 and 5.60, the gap
between the green and blue lines representing PO/R and O/R service shows the
performance gain. The gain, relative to the entire size of the document, may appear
small on these graphs. Figure 5.61 is more useful in putting the absolute gain into
perspective. We see that the blue and red lines, representing 5% and 10% |oss,
respectively, show again that for bytes, starts at zero and increasesin a near linear
fashion, until near the end of the document. For the 8192 byte receive window, the
gain tops out at 30—-35K B, while for the 4096 byte receive window, the gain is even
larger: again of 50—-70KB. The drop in gain near the end can be explained by the fact
that with out-of-sequence delivery, the end of the transmission is marked by a dramatic
decrease in throughput, while the transport protocol retransmits the last few remaining
packets. The decrease in throughput due to packet losses for the average performance
of an ordered protocol is more evenly distributed over the entire transmission.

For pixels, the gain rises and falls with an interesting shape with three
smaller peaks followed by afourth larger peak. This shape is consistent across all four
combinations for loss rate (5% or 10%) and window size (4096, 8192). Thisshapeis
an artifact of the proportion of data in the document devoted to pixels vs. other data,

and can be easily understood viaan analogy. Consider a race between two runners, A
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and B, where A isfaster than B on average, but both runners slow down and speed up
from time to time. During periods where A is speeding up and B is slowing down, the
distance between them will increase. During the periods where A is slowing down
and B isincreasing in speed, the distance between them will decrease.

The comparison between the progressive display of pixelsfor PO/R and
O/R serviceis analogous to the distance between the runners. The "speeding up" and
"slowing down" of the runners corresponds to the fact that the proportion of the
bandwidth available to pixelsislarger at certain parts of the document, and smaller at
other parts. The user accessing a document via PO/R service arrives earlier at each of
the points in the document where pixels are displayed rapidly, on average, than the
user accessing the same document via O/R service. The gain for PO/R service "shoots
up" when the PO/R user arrives at each of these points. The gain for PO/R service
then falls when the O/R user "catches up" to the point where pixels are displayed more
rapidly.

The exact shape of the curve istied to the particular document content;
other documents would have different curved shapes, as would the same document, if
audio were scheduled with a different priority with respect to non-audio data.

Note that for 5% and 10% loss, the average gain over timeis strictly
positive, and increases steadily amost to the end of the document, and once
established, for the bulk of the document, never falls below:

30,000 pixelsin the case of the receive window of 4096, and

15,000 pixelsin the case of the receive window of 8192.
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Overall conclusionsrelated to bytes/pixels

Overdl, we conclude that we have found a set of parameters and a
document where partial order delivery offers user-perceivable performance benefitsin
terms of progressive display of pixels and bytes. These results can provide a starting
point for future investigations aimed at establishing the limits of the parameter space
in which PO/R service can offer such perceptible improvements. Based on the
observations above, along with those of all previous experiments, we conclude that

this parameter space should be explored further along the dimensions of
. document size and structure

. round-trip delay

. bitrate
. sender and receiver window size
. loss rate

Of particular interest would be to investigate what happens to the absolute and relative
gain for PO/R service when all the parameters of R5.1 and R5.2 are repeated, and the

size of the document is increased.

Experiment R5: observations and conclusions for audio metrics$4
Figures 5.62 through 5.67 show performance graphs for audio.

We make the following observations concerning these graphs:

(7) At 0% loss, there are some minor audio performance problems
at awindow size of 4096, but virtually no problems at a window
Size of 8192.

64 See also the discussion labeled " Interpreting the graphs for the Audio Metrics' in
Section 5.6.3.
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(8 At 0% loss, the performance of PO/R vs. O/R service was
virtually identical, even down to the distribution of interruptions
occurring for the receiver window 4096 case, offering support
for Hypothesis 5.7.1(b).

Observations.(7) and (8) pertain to the top row of each of the Figures 5.62, 5.63

and 5.64 for Experiment R5.1 (receive window 4096) and Figures 5.65, 5.66, and 5.67
for Experiment R5.2. For R5.1, we see that the small window size resulted in at least
one audio interruption in every run, and in two audio interruptions 20% of the time.
Aswe would expect, the distribution of audio interruptions for R3 and T3 isvirtually
identical. For Experiment R5.2 (receive window 8192), we observe that at 0% loss,
not more than 1 out of 40 experiments experienced anything less than perfect audio
performance (defined as the absence of any interruptionsin playout). Again, the
distribution of the (now rare) defectsis virtually identical for the two transport

services.

(90 For areceive window size of 4096, the CDFs of al three
metrics indicate that a user can expect better audio quality from
PO/R service than O/R service at both 5% and 10% loss.

(10) For areceive window size of 4096, the performance advantage
of PO/R over O/R serviceis higher for 10% loss than for 5%
loss.

Figures 5.62, 5.63 and 5.64 show that there is a measurable advantage to PO/R vs O/R
service for audio performance, when the receiver window islimited. The advantageis
somewhat modest at 5% loss: as Figure 5.62 shows, PO/R service nearly always
experiences only 2 interruptions, while thisis only true of O/R service about 3/4 of the
time. However, at 10% loss the advantage is clearer. The average number of
interruptions is only 2.46 for PO/R service, vs. 3.41 for O/R service. However, amore
telling statistic is that for PO/R service, the number of interruptionsis 3 or less, 97%

of thetime. For O/R service, the number of interruptionsis 3 or less only 56% of the
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time. The other metrics (FRACPLAY and FRACPLAY™T) show similar trends: a
dlight advantage for PO/R vs. O/R at 5% loss, and alarger advantage at 10% loss. As
indicated earlier in this chapter, future work is needed to correlate these metrics with

subj ective opinions from human listeners.

(11) For areceive window size of 8192, the difference between
PO/R and O/R service ranges from practically nothing, to only a
dlight advantage for PO/R service.

Aswith our results for bytes and pixels, the gains for PO/R service were
reduced when the window size was increased from 4096 to 8192. As stated before, as
the receiver window size increases, this effectively increases the playout delay that is
available for retransmission of missing audio packets. When playout delay in

increased, out-of -sequence delivery isless helpful in reducing audio interruptions.

Overall conclusionsrelated to audio

Overal, with respect to audio, we conclude that PO/R service certainly
does no harm with respect to audio, and may offer some help. Aswe suggested in our
analysis of Experiment R4, it would be interesting to pursue further objective and
human factors studies to explore the parameter space further with respect to
Experiment R5. In particular, it would be interesting to investigate what subjective
score human subjects give to the audio performance at 4096 for both 5% and 10%
loss, for both PO/R and O/R service. Thiswould be useful in determining whether

the gains seen in the metrics are perceived to be useful by end users

321



R5.1, Receive Window=4096 bytes
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Figure5.59 Exp. R5.1: bytes, pixels perf. graphs
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R5.2, Receive Window=8192 bytes

bytes

pixels

0%l oss
Py (IVTER. Eigaasd

ETEPEE

wop | DT L per Soees | 0B-A BT IFTESwn Tew L= 00 %
— — - - - - i — - -

™ izm m
Vi ey

™ ma B o

&
=i
&

o, O IR | bereSorrw Vel AAHZ  FUNPO pnmeed o 071D v Tiem
W ——1—— = . - —— i

—

-

5

Al INLIRPIE e @ 110 0 el

o B 3 H A MY EREEBES

m T o m omn mm
(L]

m m o™

5%l oss
Ry (IVTER. Bt

SEEEEEE

o | DR N0 pwrn Soems | 0l A BHE IYTES e Tew LA-B%
G r= - . . S =% S

A L I ) S S W U [
a .3 W TR W Iz W TH oma B o
Tt iy

ara Mjgtlnmlmlﬂﬂall? PRI, w1 17| K0 v, Teme |
W ——1——1 e . z —— S

=

] LB peawal @ 11 S0 e
i HE A 4 B3 B B

L]

B

WM wm e m om o
Tl iie

Y —

' nm omom

10% loss
Py (IVTER. Eigaasd

SEEEEEE

o | DT L per e | 0B-A TR IFTESwn Tew L= 10 %
— — - - - - i — - -

L] m;lmlmlﬂﬂall? PRSP c w117 ] DOV v T
Wi ——1——7 reda . . - n L

—

Ao LR pasa @ 110 S0 ds el
E A BEA MY EFEB

5

™ om o

=

L
LT ]

mo™

Figure5.60 Exp.R5.2: bytes, pixels perf. graphs
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Figure5.61 Exp 5.1 and 5.2, plotting the advantage of R3 over T3

324



R5.1: number of audio interruptions

histogram of intervals (bins) of size 2,

eg. [0,2), [2,4) ... [18,20), [20,20]; cumulative distribution function
[Note: total # of experiments may be unequal] | (CDF) of observed # of interruptions
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Figure5.62 Experiment R5.1: audio interruptions
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R5.1: FRACPLAY =

duration of audio interruptions

playing timeof clip + duration of interuptions

histogram of intervals (bins) of size 0.1:
[0,0.1),0.1,0.2) ... [0.9,1.0), [1.0,1.0]

cumul ative distribution function
(CDF) of observed data
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Figure5.63 Experiment R5.1: FRACPLAY metric
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R5.1: FRACPLAY'NT metric

histogram of intervals (bins) of size 0.1:
[0,0.1),[0.1,0.2) ... [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data
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Figure5.64 Experiment R5.1: FRACPLAY'NT metric

327



R5.2, number of audio interruptions

histogram of intervals (bins) of size 2,
eg., [0,2),[24) ... [18,20), [20,20];
[Note: total # of experiments may be unequal]

cumulative distribution function
(CDF) of observed # of interruptions
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Figure5.65 Experiment R5.2: audio interruptions
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FRACPLAY =

duration of audio interruptions
playing timeof clip + duration of interuptions

histogram of intervals (bins) of size 0.1: cumulative distribution function
[0,0.1),[0.1,0.2) ... [0.9,1.0), [1.0,1.0] (CDF) of observed data
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Figure5.66 Experiment R5.2: FRACPLAY metric
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R5.2: FRACPLAY™" metric
histogram of intervals (bins) of size 0.1: cumulative distribution function
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Figure5.67 Experiment R5.2: FRACPLAY'NT metric

5.8 Problemsin performance measurement

Many difficulties present themselves in measuring computer system
performance in general, and the performance of distributed applications in particular.
Classic textsin this area of computer system performance measurement (in general)
include (Ferrari et d., 1983) and (Jain, 1991). Thereis also a helpful chapter by Mogul
in (Lynch and Rose, 1993), providing advice more specific to performance

measurements in the Internet. A useful summary of the main issues raised in these
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primary sourcesis provided in (Tanenbaum, 1996), in the form of alist of seven
pitfalls that experimenters should avoid. We organize our discussion around thislist,

describing each of these pitfalls, and the steps we took to avoid them.

5.8.1 Tannenbaum’sPitfall #1: Insufficient sample size

Tanenbaum advises: “Make sure that the sample sizeis large enough”.
For each of the performance statistics we report, we took many independent
measurements, and cal culated the mean and std. deviation across these multiple runs.
The number of runs varies with each experiment, and is reported along with the
experimental data. In each case, we performed at least 30 runs.

In some cases we chose to discard some of the runs. Specifically, we
discarded runs in which there was packet loss during the initial connection
establishment. Our reason for doing isthat given theinitial RTO values used in most
TCP implementations (which values we a'so usein UTL) cause adelay of several
seconds if there is a packet timeout before the true RTT has been measured. In
experiments where the entire document retrieval lasts only afew seconds, inclusion of
these runs can distort the results in ways that are entirely unrelated to the use of
ordered vs. unordered or partially ordered transport. We claim that discarding such

runs.

(1) introduces no bias, since the initial connection establishment is
equivalent regardless of the ordering used, and we applied the
same discard criteriato all experiments regardless of the
ordering being used, and

(2) actualy provides a more accurate comparison between or
among protocols, since it reduces variance that is unrelated to
the aspect of protocol performance being studied.
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Table 5.11 shows the number of observations on which each experiment is based. In
most cases, our results are based on at least 40 repetitions. In no case do we report

any numbers based on fewer than 15 repetitions.

5.8.2 Tannenbaum’s Pitfall #2: Non-representative samples

Tanenbaum advises: “Make sure that the samples are representative,”
observing that network conditions may vary with time of day, day of week, etc., dueto
fluctuations in system or network load. We performed the experiments reported in
this dissertation during a periods of time (June 1999 to May 2000) when the Protocol
Engineering Lab was used almost exclusively for the experimentsin this dissertation
thus we would expect the effects of time of day and day of week to be minimal.
Nevertheless, in case there were such effects, we designed the repetition of
experiments in such away that all observations for a given run would be uniformly

distributed over the entire time range of the experiment.
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Table5.11 Number of repetitionsfor each experiment

Experiment N1 Exp. Parameters R2E T2E
Parameter | X2E | R2E | S2E | T2E bitrate 2.4, LROO 56 57
LR0O 30 30 26 30 bitrate2.4, LR20 49 44
LR10 29 29 27 30 bitrate 9.6, LROO 57 57
LR20 25 26 24 25 R3 bitrate 9.6, LR20 44 49
bitrate 33.6, LROO 57 57
Exp. Parameters R2E T2E bitrate 33.6, LR20 43 48
LROO 29 28 bitrate 128, LR0OO 57 57
R1.1 LR10 22 22 bitrate 128, LR20 45 47
LR20 22 22 LROO 50 50
LROO 24 25 R4.1 LR10 46 50
R1.2 LR10 21 21 LR20 42 50
LR20 15 18 prop 0, LROO 35 35
win8 29 31 prop 0, LR20 32 28
R1.3 winl6 27 34 prop 125, LROO 35 35
win32 25 32 RA2 prop 125, LROO 29 26
win8 29 24 ' prop 250, LROO 35 35
R1.4 winl6 26 17 prop 250, LR20 25 27
win32 29 26 prop 500, LROO 35 35
LROO 61 61 prop 500, LR20 27 26
R21 LR10 56 53 bitrate 80, LR0OO 31 31
' LR20 45 45 bitrate80, LR20 25 25
LR30 34 39 bitrate 96, LR0OO 30 30
LR0OO 61 61 RA3 bitrate 96, LR20 27 22
R22 LR10 52 50 ' bitrate 128, LR0O 30 30
' LR20 51 52 bitrate 128, LR20 23 25
LR30 45 47 bitrate 256, LROO 30 30
prop 0, LR0OO 59 59 bitrate 256, LR20 25 25
prop 0, LR20 51 48 win 64 34 31
prop 125, LROO 59 59 R4.4 win 128 33 38
R23 prop 125, LROO 53 50 win 256 32 35
' prop 250, LROO 59 59
prop 250, LR20 51 46
prop 500, LR0O 59 59 Exp. Parameters R3 T3
prop 500, LR20 53 42 LROO 40 40
win 4 49 49 R5.1 LR05 39 37
R2.4 win 8 51 53 LR10 37 32
win 16 50 52 LROO 40 40
win 32 51 53 R5.2 LRO5 34 36
win64 52 53 LR10 34 2
win128 50 54
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To ensure this, we designed the loop to automate experimentsin a
particular way. Our experiments were designed test the effect on the performance of
two more transport protocols/services (i.e., UTL mechanisms) at one or more |0ss
rates. In some experiments, we also varied one or more other parameters such as
bitrate, round-trip delay, or window size. The scripts to repeat these experiments

followed the pseudocode shown in Figure 5.68.

for (1 =1;i < numberOfExperiments; i++) do
foreach lossrate (listOfLossRates) do
foreach value (listOfVauesForTheV aryingParameter) do
foreach utlMechanism (listOfUtlM echanisms) do
{ perform thei’th iteration of the experiment for
(lossrate, value, utiMechanism); }

Figure5.68 Pseudocode for Experiment Loop

To understand why this design is advantageous, consider that the pitfall to be avoided
isto compare, for example, results gathered for partia order in the morning, with
results for total order gathered in the afternoon. Thus, the more importance or
significance we intend to attach to a particular comparison of two experiments, the
more deeply nested the varying of that parameter should be.

For example, since the main purpose of the experiment isto find the
performance advantage or disadvantage of one protocol with respect to another, we
should place experiments with two different protocols at the same set of parameters as
close to each other in time as possible.  Similarly, for experiments where we vary a

parameter other than loss rate—say, window size—we will be comparing experiments
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that have the same loss rate, but two different window sizes. Therefore, we want to
vary the window size more quickly than the loss rate, so that two experiments that will
be compared are close to each other in time.

The outermost loop is the experiment iteration. Because of this structure,
our experiment framework is robust against changes in background network
conditions. For example, suppose, for sake of argument, that background network
conditions change dramatically over the period of some experiment. Provided the
changeis gradual enough that on average, an entire period of the outermost loop is
affected in roughly equal proportion, the comparisons of different protocols, different
parameter settings, or different loss rates should still be afair comparison.

In addition to this design, we also plotted the statistics of each individual
run, in addition to the averages and standard deviations of the values shown in this
chapter. We do not show all of these individual runs for reasons of space, however we
did examine them for each experiment. In each experiment, we ran acase at 0% loss,
even when we do not report results for 0% loss; this allowed usto detect anomalies
more easily. In rare cases we found outliers, we were able to correlate these with
periods where the operator was backing up the hard disks of our experimental systems
over the network. We therefore added lines to our scripts to detect when backups were
running, and we threw out all such runs. Other than the period backups, we observed
no obvious artifacts of time-of-day or day—or-week on system performance across

individual runs at the same loss rate.

5.8.3 Tannenbaum’s Pitfall #3: I naccurate time measur ements
Tanenbaum advises: “Be careful when using a coarse-grained clock.” The

timer measurements in this dissertation are taken using the get t i neof day() Unix
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system call. While this system call reports results at a microsecond level, it isnoted in
the documentation that only the millisecond level is considered accurate. Fortunately,
most of our experiments are generally concerned with the impact of performance on
the human user of the system, so we are generally not concerned with differencesin
times of less than 50-100ms. Thus the millisecond accuracy of the get t i meof day/()
call should be sufficient for our purposes.

There are three other concerns related to time measurement. Thefirst is
the cost of theget t i meof day() call itself: how much time does it take to call
get ti neof day() and take atime measurement? We found through repeating the
getti neof day() systemcall inaloop, that the call itself takes, on average, one
microsecond or less to complete and thus does not add significantly to the overal time
for the experiment.

The second concern pertains to context switches: while the effect of a
singleget ti meof day() system call may be at the microsecond level, it is possible
that a context switch may occur either just before, or just after aget t i meof day()
system call. Thiscan result in over or underreporting the actual elapsed time for some
sequence of instructions by tens of milliseconds. In practice, this event does occur,
but rarely enough that we can consider it as noise in the system, the effect of whichis
eliminated by taking the average of repeated measurements.

The third concern pertains to taking time measurements in a distributed
system, where clocks may not be synchronized among hosts. Our solution to this
problem was simple: we never compare time measurements taken on different
systems. Since our focusis on performance improvements as perceived by the end

user, we make all time measurements on the end users system (the client) relative to
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the instant at which the document isrequested. Thus, “time zero” is always the instant
at which a user of the ReMDoR system clicks a button or hits the enter key to indicate
arequest for a particular document; all subsequent times are recorded only on the

client host.

5.84 Tanenbaum’sPitfall #4: Unexpected interference

During early testing with ReMDoR, we occasionally noticed that
performance problems we had solved the week before would suddenly seem to
reappear when we had, we thought, made no changes to the source code (it turns out
we were correct.) After some investigation (and loss of hair) we discovered that a
particular version of a popular web browser had a bad habit of leaving runaway
background processesin a CPU bound loop, eating up all available CPU cycleson a
given machine. After this discovery, we added instrumentation to our experiment
scriptsto record statistics on the top CPU time processes between each iteration of the
experiment loop. Thisinstrumentation allowed us to check for any rogue processes
that might interfere with the experiments. To the extent possible, we aso kept other
use of the machines involved in the experiments to a minimum while the experiments

were being conducted.

5.8.5 Tanenbaum’sPitfall #5: Artifacts of Caching

Tanenbaum also mentions the artifacts of caching as a pitfall of
performance experimentation. Caching is a concern, for example, in measuring the
performance of the World Wide Web, where repeated retrieval of a particular web
page may result in only one transfer, and many subsequent consistency checks on a

cached copy that complete much more quickly. Other caching concerns might include
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loading of files from an NFS server, loading of instructions into memory, Domain
Name Service lookups, or Address Resolution Protocol (ARP) lookups.

In some experiments, we noted that the very first run of set of experiments
experienced extra delays, ranging from 200msto 4s. We were unable to determine the
exact cause of this phenomenon, but it is reasonable to suggest that it may be cache-
related. In some cases we compensated for this by, in some cases, throwing out the
entire first iteration (the outermost loop referred to in Section 5.8.2.) In other cases,
based on the hypothesis that the artifact in the first run was cache-related, we tried
doing asingle “priming run” at 0% loss for an arbitrarily chosen parameter set prior to

the running the actual experiment. In practice, this eliminated the artifact in question.

5.8.6 Tanenbaum’sPitfall #6: Misunder standing what is being measured
Tanenbaum notes that it isimportant to understand that performanceis
affected by many factors. When one wishes to compare the performance of one or
more transport protocals, it is crucial that there not be any unrelated bottlenecksin, for
example, inefficient application level code, poorly designed Ethernet or PPP drivers,
etc., that would obscure the main subject of study. In early testswith ReMDoR, we
found that performance was noticeably affected by several such unrelated factors.

Hereisapartia list of these, and the steps we took to work around them:

* Toplot performance graphs of progressive display, it is necessary
to record the delivery time and number of pixels or audio samples
in each packet. Writing this out to disk while the experiment isin
progress could significantly affect the performance of the system.
Therefore, in the ReMDOR browser, we pre-allocate a large static
memory buffer into which all statistics are written while the
experiment isin progress, only after it is complete is this buffer
dumped to afile on disk.
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*  Originally the client and server software was stored on asinglefile
server and retrieved viathe Sun Network File System (RFC1094,
RFC1813). Thisretrieval sometimes created a noticeable artifact
in system performance. For the performance experiments reported
in this chapter, we took stepsto avoid NFS related interference. All
software was placed on the local disks of the client and server,
respectively, aswere all log files for recording data.

e Our loca X-Windows environment is setup, by default, to do
encryption of remote X-Windows sessions via the Secure Shell
protocol (Metzger et al., 1999). We found that this extralayer of
data copying significantly slowed down the performance of the
ReMDoR client. Therefore, for the experiments, we used “ setenv
DISPLAY unix:0.0” to avoid this extra overhead.

5.8.7 Tanenbaum’sPitfall #7: Unwarranted extrapolation

Tanenbaum warns against the dangers of extrapolating performance data
for one range to input parameters to values outside thisrange. In the interpretation of
the experiments in this chapter, we are careful to limit our claims only to the particul ar

ranges of parameters that we have studied.

5.9 Overall conclusionsfrom our experiments

Our goal in conducting the experiments presented in this chapter was to
investigate the extent to which PO/R service could provide tangible performance
benefits for some application: in particular, multimedia document retrieval, and to
show some parameter values for which thisgain is possible.  We have accomplished
this goal, and have determined that, indeed, PO/R service can provide measurable
performance benefits over O/R service. We will not reiterate the specific numbers
have been presented in the chapter aready, but will instead provide our interpretation
of the larger significance of these results, and what future directions they may suggest

for work in transport protocol and multimedia system devel opment.

339



Let us recognize that the analysis of PO/R service presented in this
dissertation represents a starting point, rather than a destination. We have investigated
only PO/R service; the incorporation of partial reliability with partial order, PO/PR
service, remainsto be studied empirically. We have shown benefits for PO/R for a
handful of documents that we believe are representative of typical multimedia
documents. Further study will be needed to validate this claim in some reasonable
scientific manner. We have shown arange of parameter values over which thereis
measurable benefit. Future study is needed both to determine over what range these
performance benefits are perceptible, and to assess (and continually reassess, as the
Internet and other network infrastructures undergo constant change) the extent to
which these parameter ranges are realistic for various environments. Thus, there
remains much work to be done.

Nevertheless, the results of this chapter are significant, and timely for at
least three reasons. First, the protocol SCTP (discussed further in Chapter 7) is
currently under review by the IETF, and represents an important step in the direction
of PO/PR transport protocols within the official Internet standards track. While SCTP
is primarily intended as a protocol for signaling of infrastructure devices within the
Public Switched Telephone Network (PSTN), the authors of the related Internet Drafts
recognize that SCTP may have other uses. The results of the Experiments N1, N2, and
R1 through R3 suggest that SCTP may indeed be useful for transport of Web
documents (static in time) containing multiple GIF or JPEG images over amodified
HTTP protocol.

Second, the W3C consortium has standardized a multimedia document

specification language known as SMIL (W3C 1998), which contains many (though not
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all) of the same capabilities as ReMDoR. Again, the results of this chapter suggest
that it is worthwhile to incorporate features into SMIL that would allow SMIL
document retreival systems to take advantage of PO/PR protocols such as POCv2, or
perhaps SCTP.

Third, the study of TCP-friendly congestion control is currently atopic of
considerable interest and importance to the Internet community. While flow control
and the related topic of TCP-friendly congestion control can be isolated from the study
of out-of-sequence processing, our results clearly indicate that the converseis not true.
We have seen that the details of particular flow/congestion control mechanisms, and
indeed, other related details such as retransmission and acknowledgment schemes,
RTO estimation, etc., can have a significant impact on the measured benefits of out-of-
sequence delivery (i.e., partial order or unordered delivery.) We can concludethat itis
unwise to extrapolate either positive or negative results about the benefits of out-of-
sequence delivery from one flow-control and retransmission scenario to another. This
suggests a need to reeval uate results such as those reported in (Diot and Gagnon,

1999) in the context of more precise simulations of TCP-friendly flow and congestion
control, to either scientifically reproduce and confirm them, or report the impact of
TCP-friendly mechanism on their conclusions, if any.

Chapter 7 provides an overall discussion of the six chief contributions of

this dissertation, however to end Chapter 5, we recap three of these, which can be

summarized as means, methods, and results:

. We have provided a means to carry out PO/PR experiments, namely
the Universal Transport Library, taking PO/PR service from the
conceptual, theoretical and simulation realm into the experimental
realm.
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. We have provided methods by which to carry out experiments with
PO/PR transport protocols, by providing an experimental
framework, including an application for PO/PR service, and a set of
experimental tools, parameters and metrics to evaluate PO/PR
service.

. We have provided the results of enough experiments to
(1) demonstrate that PO/PR service is useful and worthy of further
study and (2) provide a starting point for a number of future
investigations.

Suggestions made throughout the chapter concerning possible directions
for these future investigations will be summarized in the “ Future Work” section of

Chapter 7.
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