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Chapter 6

ALGORITHMS FOR PO/PR PROTOCOLS

6.1 Introduction

In this chapter, we present the design and analysis of algorithms and data

structures for the implementation of a Partially-Ordered/Partially-Reliable (PO/PR)

Transport Protocol.  Specifically, we present algorithms for:

•  verifying that the sending application submits TSDUs in a valid
sending order (a linear extension of the partial order specified by
the application),

•  resequencing out-of-order packets at the PO/PR receiver, and

•  declaring objects lost according to the semantics of the PR
reliability class defined in Section 2.8.2.

We also discuss how these algorithms can be extended to support the

stream abstraction65 and explicit release66.  Finally, we present the linear extension

algorithm that is currently implemented in the ReMDoR parser, and discuss whether

this algorithm might be better placed in the PO/PR transport sender.

                                                
65 See Section 2.3 for a description of the stream abstraction.

66 See Section 2.6 for a description of explicit release.
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6.1.1 Organization of this chapter

This chapter is organized as follows.  Section 6.1 provides a context for

our discussion by defining the problems listed above more formally, and comparing

these problems with the corresponding ones in the standard ordered/reliable transport

protocol TCP.  We briefly outline how the corresponding problems are addressed in

the de-facto reference implementation of TCP, namely BSD Unix67.  Section 6.2

describes a basic algorithm for topologically sorting a directed acyclic graph (DAG-

TS); this basic algorithm forms the basis of most of the other algorithms described in

this chapter.

Sections 6.3-6.5, in a sense, “tell the story” from beginning to end of how

a ReMDoR document makes its way through the PO/PR transport protocol:

•  Section 6.3 describes the modified (DAG-TS) algorithm used by
the ReMDoR parser to compute a linear extension of the partial order
for transmission of the document.  The algorithm is modified in two
ways: (1) it must take into account the stream abstraction, and (2) it
must take into account the fact that transmission of audio packets
requires a certain minimum bandwidth guarantee.

•  Section 6.4 describes the modified (DAG-TS) algorithm used by
the PO/PR sender to verify that the sending order used by the
application is a valid linear extension of the partial order.  We also
explain why verification must be done to prevent protocol deadlocks.

•  Section 6.5 describes the algorithm used by the transport receiver
to resequence arriving PDUs for delivery; that is, an algorithm to
topologically sort arriving PDUs according to the partial order.  We
describe both the basic algorithm, and how it is modified to support
explicit release.  We also compare this approach with a matrix-based

                                                
67 As our source for the reference implementation for TCP/IP, we use the annotated
source code for 4.4BSD-Lite as it appears in (Wright and Stevens, 1995), since it is
widely available and, due to Wright and Stevens’ efforts, excruciatingly
well documented.
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algorithm, and with the algorithm used for resequencing in the
reference implementation of TCP.

Sections 6.6–6.8 describe how the DAGITS algorithm can be modified to

support the PR reliability class68 of POCv2.

•  Section 6.6 describes the challenges involved in implementing the
PR reliability class, and integrating it with the explicit release and
stream abstraction features.

•  Section 6.7 describes how to adapt the DAGITS algorithm to
support PR without explicit release, without changing its worst-case
running time.

•  Section 6.8 describes an algorithm to support PR with explicit
release, with a worst-case running time that is slightly worse, but still
acceptable (i.e., it is no worse than that of TCP.)

Section 6.9 surveys the advantages and disadvantages of various ways a

partial order can be represented for processing and for transmission across the

network.  Section 6.10 provides a chapter summary.

6.1.2 Processing overheads in O/R and PO/PR transport protocols

Processing overheads in transport layer protocols have been studied

previously in (Clark et al., 1989).  The main conclusion of this work is to recommend

a two-path design: a highly optimized fast path for packet processing that optimizes

the normal case, with a slower path that takes care of the unusual cases.

The underlying concern of all work in this area is to keep the per-packet

processing small, so that the transport layer keeps up with arriving PDUs.  Therefore,

any lengthy processing associated with a single PDU is to be avoided.  Avoiding

lengthy processing times associated with a single packet operation is also crucial when

                                                
68 See Section 2.8.2
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a user-space implementation with cooperative multitasking is used, as is the case for

UTL (see Chapter 3.)

The author raised this concern in the context of early specifications of

POC, which represented the partial order as the transitively-closed adjacency matrix.

While this is an efficient representation in terms of bits (upper triangular form can be

used by renumbering elements such that 0,1,2,…,n-1 is a linear extension), it requires

an O(n) computation for each Read() or Write() operation to perform operations

such as checking the deliverability status of messages.   As part of this research,

therefore, the author investigated more efficient algorithms for performing the

computations necessary for PO/PR service.

6.1.3 Packet resequencing at the transport receiver in ordered protocols

One of the most time consuming parts of the processing for an ordered

protocol is the resequencing of out-of-order packets.  Essentially, the problem is one of

implementing a priority queue.   The standard data structure for this purpose, a min

heap, provides O(log k) running time, where k is the current number of outstanding

packets.   However, due to some practical considerations, resequencing is seldom

implemented using a min-heap.  First, when a packet arrives, it is necessary to

determine whether or not that packet is a duplicate, which involves searching the

buffer.  Since a heap does not provide an efficient search mechanism, a heap alone is

an inappropriate choice.

One might therefore consider a binary search tree.  However, it turns out

that in practice, an ordered linked list is the most appropriate data structure.   There are

two reasons why this is so.  First, an essential principle of efficient transport protocol

design is to optimize the common case.  The common case for most transport protocol
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implementations is that the next packet to arrive is the one expected.   If the buffer of

out-of-order packets is maintained as a simple sorted linked list, adding the expected

packet to that buffer is an O(1) operation; indeed it involves only a handful of

instructions.

Second, the length of this list can be bounded by a constant: namely, the

window size.  In the initial design of TCP, the maximum window size was 64K, and

the common packet size was 512 bytes.  With these parameters, at most, 128 packets

could be outstanding for any given connection.   Until quite recently, a far more

common window size was between 4-24K, that is, between 8 and 48 packets.  An O(k)

search as the “rare” case is not very objectionable when k is this small, and thus the

overhead and complexity of a binary search tree is not attractive.  Indeed, a careful

reading of the annotated TCP source code in (Wright and Stevens, 1995) shows that a

linear search is used.

We conclude from the preceding arguments that any packet processing

that is of similar magnitude (that is, O(k), where k is the number of outstanding

packets) should be considered good enough for practical purposes.

6.1.4 The goal for resequencing in PO protocols: O(1) per operation

In terms of packet resequencing in the transport receiver for partially

ordered service, the Holy Grail would be to make the processing of each packet O(1).

However, given that we need to ensure that every constraint in the partial order is

satisfied, the lower bound for n packet operations is O(e/n) per operation (amortized).

This precludes the possibility of finding an O(1) algorithm for the general class of all

partial orders.
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Note however, that if we restrict the class of partial orders, we can find a

tighter worst-case bound. Note, for example, that for a chain partial order, O(e/n)

reduces to O(1).  We now define a more general class of partial orders for which we

find an O(1) algorithm:

Definition 6.1.1: A partial order has bounded-out-degree d if and only if

every vertex in the corresponding transitively reduced precedence graph has

out-degree ≤ d.

We will show that for bounded-out-degree partial orders, in addition to bounding the

overall running time as O(n+e) amortized, we can also bound the worst-case running

time of each single protocol operation by O(d), not amortized.  For ReMDoR, d

corresponds to the number of successors of any element in a PMSL document.

One might ask whether it is useful to distinguish between O(n) and O(d),

since in the worst case, O(d) = O(n).   Consider, for example, a partial order consisting

of an antichain of  2/n  elements, all of which precede all of the remaining  2/n

elements.  However, we conjecture that for multimedia documents, most human

authors would limit the number of successors for any given element to a reasonably

small value; usually no more than 10, and rarely more than 30, which may in practice

be much smaller than n. Thus, for multimedia document retrieval, it is useful to

distinguish between a worst case of O(d) vs. a worst case of O(n).

More significantly, the distinction between O(n) and O(d) provides a

yardstick for measuring whether the PO/PR algorithms developed in this work are

practical for applications other than multimedia document retrieval.   For instance,

suppose that it is suggested that PO/PR protocols are useful for some application X.

We can then compare the expected sizes of n and d in the partial orders that arise in
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application X, with those that arise in multimedia documents. used in the experiments

of Chapter 5, or any future experiments that are carried out using ReMDoR.

Comparing these sizes allows us to develop hypotheses about whether the algorithms

developed in this work  will be practical in the context of application X.

6.2 Topological sort of a directed acyclic graph by incremental delete (DAGITS)

Nearly all of the algorithms described in this chapter are variants of a

specific algorithm for the problem of topologically sorting of a directed acyclic graph

(TS-DAG).  We call this basic algorithm DAGITS: (directed acyclic graph incremental

topological sort).  The main feature of DAGITS that distinguishes it from other

approaches to topological sort is that the linear ordering is produced incrementally,

and we can bound the worst-case running time of each incremental step.  We assume

that the underlying algorithm of DAGITS is well known, since (Cormen et al., 1990)

assigns the description and analysis of this algorithm as an exercise69.   Our

contribution is therefore not the DAGITS algorithm itself, but rather

•  the characterization of this algorithm as an incremental process,
along with

•  the analysis of the individual steps, and

•  the application of our incremental characterization of this
algorithm to the efficient solution of problems arising in the provision
of PO/PR transport service.

•  The remainder of Section 6.2 proceeds as follows.

•  Section 6.2.1 outlines the basic TS-DAG problem, and a variant
that determines if the input graph is acyclic or not (TS-DAG-V).

                                                
69 Exercise 23-4.5, p. 488.  The name “DAGITS”, however, is our suggestion.
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•  Section 6.2.2 describes how the TS-DAG and TS-DAG-V relate to
PO/PR transport protocols processing.

•  Section 6.2.3 motivates an incremental version of the TS-DAG
problem (INCR-TS-DAG) based on the requirements of PO/PR
transport protocols.

•  Section 6.2.4 shows how a simple and efficient algorithm for TS-
DAG (reverse finishing time of a depth-first search, one of the most
commonly presented approaches to this problem in introductory
algorithms texts) is not suitable as a basis for INCR-TS-DAG.

•  Section 6.2.5 presents pseudocode for the DAGITS algorithm for
TS-DAG and TS-DAG-V as suggested by (Cormen et al., 1990).  In
this algorithm, vertices with in-degree zero and their outgoing edges are
successively added to the linear ordering, and incrementally deleted
from G.

•  Section 6.2.6 provides a worst-case running time analysis of the DAGITS
algorithm for TS-DAG and TS-DAG-V.

•  Section 6.2.7 shows how to adapt the DAGITS algorithm to the
INCR-TS-DAG problem, and then presents the most important result of
this section:

We show that for DAGITS, the worst-case running time for
incrementally computing each vertex in the linear ordering is
bounded by the out-degree of the vertex returned.

As explained in Sections 6.2.4 through 6.2.7 below, it is this property the DAGITS

algorithm—the bound on each step in the incremental computation—that makes it

suitable as the basis for processing algorithms in PO/PR transport protocols.
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6.2.1 The TS-DAG and TS-DAG-V problems

Problem TS-DAG: Topological sort of a directed acyclic graph

Input: a directed acyclic graph G=(V,E)

Output: a linear ordering of the vertex set V such that if edge
(u,v) ∈  E then u appears before v in the ordering
(Cormen et al., 1990.)

We often will relax the assumption that the input is acyclic, and include determination

of this in the problem itself:

Problem TS-DAG-V: TS-DAG with validation of input

Input: a directed graph G=(V,E)

Output: if G is acyclic, a linear ordering of V as in TS-DAG;
otherwise, an error indicating that the graph contains a
cycle.

Equivalently, we can characterize any algorithm for topologically sorting a DAG as an

algorithm to produce a linear extension of the partial order induced by the DAG (see

Section 2.2).

6.2.2 Topological sorting and PO/PR transport protocols

To motivate our discussion of topological sorting, this section briefly

describes two problems related to topological sorting which arise in the

implementation of PO/PR transport protocols: (1) sending order validation, and (2)

resequencing TPDUs for delivery.   We discuss these and several other problems in

more detail in Sections 6.3 through 6.6.

Sending order validation in PO transport service (PO-SND-VALID)

For partially-ordered transport service (regardless of reliability), the

transport sender must determine whether the sequence of objects submitted via
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Write() operations constitutes a legal sending order—that is, a valid linear extension

of the partial order.  This problem is equivalent to determining whether a given

permutation of the elements of a vertex set V is a valid topological sort of a DAG

G=(V,E).

The PO/R receiver TSDU resequencing problem (PO/R-RCV-RESEQ)

For partially ordered/reliable (PO/R) transport service, the transport

receiver must be able to efficiently:

(a) resequence arriving TPDUs for delivery as TSDUs according to the
partial order,

(b) suspend delivery when the partial order constraints would prevent
the delivery of any of the TSDUs that have already been received, and 

(c) efficiently detect whether the arrival of a particular TSDU permits
delivery to resume.

This processing is essentially a form of incremental topological sorting.  However,

unlike the general TS-DAG problem where the algorithm may freely choose from

among multiple linear orderings of the input graph if such exist, PO/R-RCV-RESEQ

imposes an extra constraint.  Suppose that at some step in an ordinary TS-DAG

algorithm, a particular vertex u is chosen as the next one to add to the linear ordering.

In the PO/R-RCV-RESEQ problem, vertex u may be as yet unavailable—that is, it

may correspond to a TSDU for which the TPDU has not yet been communicated to the

transport receiver.  The PO/R-RCV-RESEQ problem requires that in this case, if any

other vertex v is a legal next vertex, it must be selected immediately rather than

suspending the topological sort until vertex u becomes available.  Thus, the linear

extension that emerges from an algorithm to solve the PO/R-RCV-RESEQ is not an
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arbitrary choice from among all the linear extensions of that PO; rather, the selection is

constrained by the arrival times of the TPDUs.

6.2.2 Incremental TS-DAG (INCR-TS-DAG)

As stated previously, the transport receiver must keep up with arriving

PDUs, and avoid creating application bottlenecks.  Therefore, it is crucial to establish

an upper bound for the worst-case running time of each atomic operation in a transport

protocol implementation.  The running time of the TS-DAG algorithm can be divided

into atomic operations as follows:

Problem INCR-TS-DAG: Incremental topological sort of a DAG

Operations:

init(G)initialize data structures representing a directed acyclic graph
G=(V,E) supplied by the caller.

v = next() returns the next element in a linear ordering of V, or nil
when the entire set of vertices has been exhausted.

The TS-DAG program is thus broken down into a sequence of (n+1)

operations starting with a call init(G) followed by n calls to next().  This

INCR-TS-DAG version of the problem allows us to pose two questions about any

algorithm proposed to solve it:

•  what is the worst-case running time of the entire sequence of operations?

•  what is the worst-case running time for a particular operation in the
sequence?

The second question is the crucial one for PO/PR transport protocol processing. To

provide for efficient scheduling between the application and transport layer processes,
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we must bound the worst-case running time for individual  init(G)  and next()

operations.

6.2.3 The usual DFS-approach to TS-DAG is problematic for INCR-TS-DAG

A widely-used algorithm for TS-DAG appearing in many algorithms

textbooks computes a linear ordering in time O(n+e) (where n=|V|, e=|E|) based on the

reverse finishing times of a depth-first search of G (Cormen et al., 1990).  While this

algorithm is simple and efficient, it has a property that makes it unattractive for our

purposes: the entire set of vertices and edges must be processed before the first

element in the ordering can be produced. If we nonetheless do solve INCR-TS-DAG

using the reverse finishing time approach,  the overall running time for a sequence of

(n+1) operations starting with a call init(G) followed by n calls to next() will be

O(n+e).  However, in this solution, we cannot bound, in the worst case, the cost of any

particular call to the next() operation.  If a straightforward implementation of the

reverse finishing time DFS algorithm is used, either the first call to init(G) or the first

call to next() will require the entire O(n+e) running time, while the successive calls

require only O(1) time.  The O(n+e) running time is required because it is necessary to

run the algorithm to determine the first element in the sorted list from the input as

given, storing all the sorted vertices on a stack as they are finished. Successive calls to

next() are then implemented as pop() operations.  We can try to improve the average

case by using an approach where we apply the algorithm to TG , reversing edges only

as we encounter them rather than in a pre-processing step. The startup cost is O(n+e),

just as before.  However, the worst-case running time of the initial operation would be

unaffected: consider, for example, the operation of this algorithm on the DAG

corresponding to a linear order.
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6.2.4 Topological sorting by incremental delete and the DAGITS algorithm

The basis for what we refer to as the DAGITS algorithm is the repeated

delete approach to topological sorting outlined in (Cormen et al., 1990), exercise 23.4-

5, as shown in Figure 6.1.

while (there exist  vertices in the graph)
{

find a vertex v with in-degree 0;
output v;
remove v and all of v’s outgoing edges from the graph;

}

Figure 6.1 Topological sort via repeated delete

 (Cormen at al., 1990) poses the problem of implementing the algorithm in Figure 6.1

in O(n+e) time, and asks what happens if the input contains cycles.   The DAGITS

algorithm is an application of the algorithm in Figure 6.1 to the INCR-TS-DAG

problem posed earlier.  The DAGITS algorithm requires the data structures shown in

Figure 6.2

DAGITS Algorithm: Data Structures:
int: in-degree[i] // current in-degree of vertex [i]

list of vertices: adj-list[i] // list of outgoing edges from vertex [i]
queue of vertices: front // queue of vertices with in-degree 0.

Figure 6.2: DAGITS (DAG incremental topological sort)
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We ignore the cost of initialization because our purpose is to highlight the

time required by each successive invocation of the next() operation, which is

implemented as shown in Figure 6.3.

DAGITS Algorithm:
operation next():

if (front.isEmpty())
   return nil; // indicates that sort has finished successfully
vertex u = front.dequeue();
foreach v in adj-list[u]   // (u,v) is an edge in G
{

if (in-degree[v] == 0)
    halt-with-error; // input was inconsistent, or graph contains a
cycle
decrement in-degree[v];  // logically, removes (u,v) from G;
// optionally, we can also remove v from adj-list[x], but this is
unnecessary

if in-degree[v] ==  0 // v can now be added to the sorted list
front.enqueue(v);

}
return u;

Figure 6.3: operation next()

6.2.5 The DAGITS algorithm: proof of correctness and running time

Theorem 6.2.1: The values returned by successive calls to the next() operation

constitute a topological sort of graph G.
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Proof: The items that are initially in the front list will be the first values returned

by next() operations.  Since these items have no predecessors in the DAG, any

permutation of these values is by definition a legal prefix for the topological sort.  It

now suffices to prove the following three lemmas, which we do below.

Lemma 6.2.2 The order in which the remaining vertices are enqueued onto the

front queue is an order consistent with a topological sort.

Lemma 6.2.3 Every vertex will be added to the list; that is, we cannot return

nil without having first output every vertex in the graph.

Lemma 6.2.4 The value nil will be returned on the (n+1)th call to next().

Proof of Lemma 6.2.2 At the step in the algorithm where each vertex is

enqueued, its logical in-degree at that step is zero.  This implies that every

incoming edge to this vertex has been logically removed from the graph.  Since an

edge (u,v) is removed only at the step where u is returned as the result of a next()

operation, this implies that before any v can reach the head of the front queue, all

vertices u, such that there exists an edge (u,v), have already been returned as the

result of a next() operation (which matches the definition of a topological sort)

Therefore, the order of values returned is a legal topological sort of graph G. ❑

Proof of Lemma 6.2.3 (By contradiction.)  Suppose there were some vertex x in

a connected component that had not been output by this algorithm before nil was

returned.   Since all vertices with zero predecessors are added  to the front queue

initially, it must be the case that x has at least one predecessor.   Furthermore, if x

is never output, this implies that at least one of x’s predecessors is never output,

since if all of x’s predecessors were output, in-degree[x] would be decremented to

zero, and x would be output.   We can now make the same argument concerning
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the predecessor of x.  However, this cannot repeat indefinitely: since G is acyclic

and the number of possible edges is finite, this implies that there must be some

ancestor of x that has no predecessor, but was never output.  Since this contradicts

the fact that all vertices with zero predecessors are output, we conclude that every

vertex is output before nil is returned. ❑

Proof of Lemma 6.2.4 Since every vertex is returned at least once, to show that

nil is returned after exactly n vertices are returned, it suffices to show that each

vertex can be added to the front queue at most once.   A vertex w is only a

candidate to be placed in the front queue when the algorithm is processing an

incoming edge incident on that vertex.   Given that we have already established in

(1) above that the order of vertices returned is a legal topological sort at the step

where the vertex w is added, it is impossible for the algorithm to process any more

edges (v,w).  If (v,w) were to be processed at this point, it would imply that vertex

v was about to be added to the front queue following w, which would violate the

topological sort property.  Therefore, once a vertex has been added to the front

queue, it is not possible for it to be added a second time. ❑

Theorem 6.2.2: The worst-case running time for a sequence of n calls to the

next() operation for a given graph G is O(n+e).

Proof: There are n calls to the next() operation; which gives us the O(n) term. All

operations within each call to next() take O(1) time except for the loop on the

adjacency list of each vertex as it is encountered.  Since every vertex in the graph

is processed exactly once, every edge is processed by this loop exactly once,

which explains the O(e) term.  ❑

Theorem 6.2.3 The running time of the next() operation is:
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•  O(d) for the first n next() operations returning an element, where d
is the out-degree() of the vertex returned by the next() operation.

•  O(1) for the final next() operation.

Proof: The proof is by trivial inspection of the algorithm: all operations take O(1)

time except for the loop over the adjacency list of each vertex.  Since every step in this

loop takes constant time, the entire loop takes time proportional to the out-degree d of

the vertex returned. ❑

6.2.6 Concluding Remarks

In Section 6.2 we introduced a particular way of doing topological sort and

called it the DAGITS algorithm.  The key property of this algorithm is the incremental

nature of the algorithm; we can divide the total processing time of O(n+e) into discrete

steps, each of which takes time O(d) where d  is the out-degree of the vertex returned

at each step.   In the remainder of the chapter, we will see several adaptations of this

algorithm to problems that arise in the implementation and use of PO/PR transport

protocols.

6.3 Choosing a linear extension in ReMDoR

The first problem we consider is the application layer processing that must

be performed before a PO/PR transport service can be used.  The POCv2

implementation (as represented in this case, by the prototype in the POL layer of UTL)

expects the partial order part of the service profile to be provided in transitively

reduced form.  Since the techniques to transitively reduce a directed graph can be

found in any algorithms text (e.g.,Cormen et al., 1990), we will not address this issue

further.
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Of greater interest is the problem of selecting a linear extension.    If all

linear extensions of the partial order are equally acceptable in terms of performance,

then finding a suitable linear extension constitutes nothing more than performing a a

topological sort over the elements of the partial order, and outputting the sorted list.

However, there are several complicating factors.

First, the topological sort algorithm must be adapted to handle the stream

abstraction (see Chapter 2)  For the most part, this is an inconsequential change. More

difficult than extending the algorithm to handle the stream abstraction is dealing with

the fact that the choice of linear extension cannot be made in an arbitrary fashion, as it

can in the general case of topological sorting. In the usual formulation of the

topological sort problem, the algorithm may choose freely from among equally valid

topological sorts, or, in partial order terms, linear extensions. (From here on, we will

abuse the notation somewhat by freely interchanging the terms topological sort and

linear extension).  However, for several reasons, we need a topological sorting

algorithm with a bit more intelligence:

(1) (Marasli et al., 1996b) showed that strategic selection from
among several linear extensions may provide improvements in
performance.

(2) According to the semantics of partial order delivery, all linear
extensions may be acceptable; however, from an end-user
perspective, not all are equally desirable.  For example, in the
img8par.pmsl document used in Chapter 5, it would be legal
to send the entire first image, then all of the second image, etc.
However, the partial order indicates that the author intends the
eight images to be interleaved rather than sent sequentially in
what would constitute a linear order.

(3) Most importantly, when audio is included, it is essential to
ensure that the linear extension provides a sufficient fraction of
the available bandwidth to the audio stream so that underflows
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do not occur.  Specifically, as data are interleaved, the overall
fraction of the bandwidth for audio must not drop below
64Kbps for any sustained length of time.

A full exploration of linear extension selection would form the basis of another

complete dissertation.  In its full generality, optimal linear extension selection for pre-

fetching multimedia documents over constrained bandwidth lengths becomes an NP-

complete scheduling problem as illustrated by work on the DEMON project at

Bellcore (Rosenberg et al., 1992a, 1992b; New et al., 1992).   However, for purposes

of evaluating the performance of partially-ordered transport service, a simple heuristic

suffices.  Therefore, in this work, we address only items (2) and (3) above, and defer

item (1) to future work.

The ReMDoR parser uses a variation of the DAGITS algorithm called

ReMDoR-LESTAB (Linear Extension Selection w/Target Audio Bandwidth), shown

in Figures 6.4 through 6.6) to produce a linear extension of the underlying partial order

over individual TSDUs (cells) which is implied by the partial order at the stream

object level.  This linear extension also guarantees a minimum bandwidth allocation

for audio designed to avoid underflow. As shown in Figure 6.6, the finish(u) procedure

decrements the successors of u, in the same manner as in the DAGITS algorithm.  If

any successor of u ends up with an in-degree of zero as a result, the finish(u) procedure

also either adds that successor to the front queue, or makes it the

currentAudioElement, as appropriate.

Regarding the parameter targetAudioBandwidth, note that the nominal

value for this parameter should be 64kbps, which is the bandwidth requirement for the

8Khz µ-law audio encoding used by ReMDoR.  In practice, we use a higher value to

provide a margin of safety, since the actual bandwidth provided will oscillate around

this target value.  Table 6.1 shows the parameters used for the performance
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experiments involving audio cited in this dissertation (see Chapter 5).  Note that the

actual targetAudioBandwidth values used are larger than 64kbps.  The practical effect

of a particular value is to reserve either a particular fraction of the true available

bandwidth, for example, 62.5% in R4, and 50% in R5. Future work might incorporate

a more sophisticated approach to this scheduling; however, this simple heuristic

suffices for our purposes.

Summary of Section 6.3

In this section we have described how the DAGITS algorithm can be

adapted to select an appropriate linear extension for transmission of PDUs via

ReMDoR, incorporating the stream abstraction, and the need to provide a minimum

bandwidth for audio.  Future work in this area may incorporate the linear extension

optimization techniques described by (Marasli et al., 1996b) to improve performance.

Table 6.1 Audio Parameters Used for Chapter 5 performance experiments

Experiments targetAudioBandwidth totalBandwidth fraction reserved
for audio

R4.1, R4.2,
R4.3, R4.4

80kbps 128kbps 80/128=0.625

R5.1 , R5.2 128kbps 256kbps 128/256=0.5
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Algorithm ReMDoR-LESTAB:
Inputs:

•  a DAG G=(V,E), represented as for the DAGITS algorithm
(Figures Algorithm 6.2.2, Algorithm 6.x), where each vertex
is associated with:

– type: a data type (audio or non-audio)

– APDUlist: a list of APDUs, each of which is labeled with the
size of the application data contained within (in bytes)

•  targetAudioBandwidth: a target bandwidth for audio in kbps

•  pktHeaderLen: the total amount of overhead present in each
packet for headers at the transport, network and data link
layers (above and beyond the actual data portion) in bytes.

•  totalBandwidth: the available bandwidth for transmitting PDUs.

Output:

•  a sequence of PDUs, representing a linear extension of the
partial order over the PDUs implied by G, as per the stream
abstraction defined in Section 2.3, with the following
properties

(1) When there are parallel stream objects with deliverable
cells, and none of these stream objects is an audio
element, cells are added to the linear extension by visiting
the objects in round-robin order.

(2) When one of the stream objects is an audio element70, the
audio element is given priority any time the total effective
bandwidth for audio PDUs (counting only the application
level bytes) falls below the targetAudioBandwidth.

Figure 6.4 Algorithm ReMDoR-LESTAB inputs, output

                                                
70 Currently, ReMDoR does not permit multiple audio elements to be played
simultaneously.  Future work on ReMDoR may add audio mixing, to permit, for
example, an audio track of background sounds (music, crowd noise, etc.) in parallel
with an audio track of narration.  This feature is interesting for evaluating PO/PR
service since it motivates multiple priorities and/or levels of reliability for multiple
audio streams.
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Algorithm ReMDoR-LESTAB:
Pseudocode:
while not (front.isEmpty())
{

vertex u = front.dequeue();
vertex currentAudioElement = nil;
while (u ≠≠≠≠nil) or (currentAudioElement ≠≠≠≠ nil)
{

if  (currentAudioElement ≠≠≠≠ nil) and the average bandwidth
provided to audio up to this point < targetAudioBandwidth)
{

output the next PDU from currentAudioElement
if (it the last PDU for currentAudioElement){ finish(audio);

}
}
else
{

output the next PDU from the vertex u.
if (that was the last PDU for u)
{

finish(u)
}

}
}

Figure 6.5 Algorithm ReMDoR-LESTAB Pseudocode
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procedure finish(u)
foreach v in adj-list[u]   // (u,v) is an edge in G

{
if  (u == currentAudioElement)

{ currentAudioElement = nil;} // this audio element is finished
if (in-degree[v] == 0)
    halt-with-error;
// input was inconsistent, or graph contains a cycle
decrement in-degree[v];  // logically, removes (u,v) from G;
// optionally, we can also remove v from adj-list[x], but this is
// unnecessary

if in-degree[v] ==  0 // v can now be added to the sorted list
{

if (v is an audio element)
currentAudioElement = v;

else
front.enqueue(v);

}
}

Figure 6.6 ReMDoR-LESTAB, implementation of procedure finish()
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6.4 Verifying the sending order

In any realistic implementation of a PO/PR transport protocol, the

available memory for buffering and resequencing out-of-order TPDUs at the partial

order receiver is finite.   If the PO receiver’s buffers become full of packets that are

undeliverable because their predecessors have not yet been received, a resequencing

deadlock can occur. The resequencing deadlock problem for PO/PR protocols was first

recognized in (Amer et al., 1994).  That paper proposed the rule that POC users should

submit TSDUs to the PO sender in a sequence that is a valid linear extension of the

partial order.  This section describes how the DAGITS algorithm is applied to enforce

this initial sending order.  We also present a more complete argument than the one in

(Amer et al., 1994) justifying the need for enforcing this initial sending order in light

of application-transport end-to-end flow control.

6.4.1 The ISOLE rule

As notation, we define the ISOLE rule as the rule that the initial sending

order for objects must be a linear extension of the partial order.  The ISOLE rule is

enforced both for the submission of objects (TSDUs) by the application to the PO

sender, and for the order of the initial transmission of TPDUs from the PO sender to

the PO receiver.

6.4.2 Enforcement of the ISOLE rule in UTL PO/PR services

The following notes indicate how PO/PR services provided by UTL

enforce the ISOLE rule:

•  The POL layer implements a modification of the DAGITS algorithm (as
explained below) to enforce the ISOLE rule for the order in which TSDUs
are submitted via utl_Write() calls.
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•  All UTL middle layers (NUL, TOL, POL) enforce a rule that the order in
which TSDUs are submitted by the layer above is the same order in which
the corresponding TPDUs are submitted to the layer below.  This enforces
the ISOLE rule at the Service Access Point (SAP) between POL and the
layer below.

•  All UTL bottom layers (TXL, KXP, KX2, KX3) enforce a rule that the
order in which TPDUs are placed in the sending window corresponds to the
order in which the corresponding TSDUs were submitted by the layer
above.

6.4.3 Using the DAGITS algorithm to enforce the ISOLE rule

To enforce the ISOLE rule for submitted TSDUs, a PO sender must

comply with three constraints:

(1) Within each period, the order in which TSDUs are submitted
must be a valid linear extension.

(2) No TSDU may be sumitted twice.

(3) All TSDUs of period i are submitted before any TSDUs of
period i+1 are submitted.

Formally, we call this the ISOLE (Initial Sending Order must be a Linear Extension )

problem, and formulate it as shown in Figure 6.7.

Problem ISOLE: Initial Sending Order must be a Linear Extension

Operations:

init(G) initialize data structures representing a directed acyclic
graph G=(V,E) supplied by the caller.

returnCode = submitTSDU(TSDU, objnum)submit the TSDU with
objnum as its object number; return success if TSDU was
submitted, or failure to indicate that sending the TSDU
would violate the ISOLE rule.

Figure 6.7 Problem ISOLE (operations)
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The Algorithm PO-SENDER-ISOLE (PO Sender enforcement of ISOLE

rule) enforces the above constraints by maintaining an adjacency list representation of

the partial order, and a count of the number of submitted objects within the current

period. Figure 6.8 shows a simplified version of the algorithm that assumes there is a

single period.  Extending this to multiple periods adds extra bookkeeping to the code,

but does not change its running time.

In this algorithm, each object is initially marked as “not submitted yet”.

When a TSDU is submitted, a check is made to ensure all of the corresponding

object’s predecessors have already been submitted.  This is done in O(1) time by

simply examining the in-degree of the object.  Assuming that submission of the object

is legal, the in-degree of the object's successors are then decremented, which takes

O(d) time, where d is the out-degree of the object.  Thus the running time for each

Write() operation is O(d), and overall, the algorithm takes time O(n+e).

6.5 Resequencing out-of-sequence PDUs for delivery using partial order

At the PO receiver, out-of-order PDUs must be resequenced for delivery.

Early specifications of POC accomplished this using a matrix representation of the

partial order, where A[i,j] indicated ipj in the partial order.

The matrix approach to resequencing PDUs for PO service

Using the matrix approach, each time a packet [i] was delivered, all

elements in column i would be cleared, thus removing the constraint on the successor

objects.  The operation that delivers objects would simply scan the buffered objects to
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Algorithm PO-SENDER-ISOLE
Data Structures:

boolean: submitted[i] // has TSDU [i] been submitted
// yet? Initialized to false

int: in-degree[i] // current in-degree of vertex [i]
list of vertices: adj-list[i] // list of outgoing edges from

vertex [i]

operation init(G); // initialize submitted, in-degree and adj-list from G.
boolean submit_TSDU (unsigned int objNum); // called from utl_Write()

// objNum is the object number of the submitted TSDU
// return value is true on success, and false if an error occurs.

operation submitTSDU(objNum):
if (submitted(objNum))
   return false; // this object was already submitted
if (in-degree(objNum)>0)
   return false; // sending this object would violate the partial order
// now we know that sending this object will be legal
send the TSDU over the network as a TPDU;
foreach v in adj-list[objNum]   // (u,v) is an edge in G
{

decrement in-degree[v];  // logically, removes (u,v) from G;
}
return true;

Figure 6.8 Algorithm PO-SENDER-ISOLE
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see if any had a row that was entirely filled with zeros; these objects were deliverable.

This algorithm requires at least71 time Ω(n) for each packet delivery, and thus time

Ω(n2) for the entire algorithm.   This analysis raises two questions:

(1) Can we do better using an adjacency list representation? (as in
the DAGITS algorithm)

(2) Does it really matter?  What is considered a reasonable amount
of processing in a transport layer protocol?

The matrix approach is not acceptable for PO service

Given that TCP uses a linear search for packet resequencing, one might

be tempted to conclude that the matrix-based approach to processing a partial order is

perfectly reasonable.   After all, if TCP can resequence packets using a linear search,

why go to the trouble to eliminate an O(n) operation on each packet arrival or delivery

in POC?  However, this reasoning has several flaws.

First, in comparing the resequencing algorithms for a PO protocol to those

of an ordered protocol (e.g., TCP), one must distinguish between a linear search of k

elements (the number of out-of-sequence elements currently buffered) vs. a linear

search of a data structure containing n elements, where n is the number of elements in

the partial order.

Second, the O(k) operation in TCP is the worst-case upper bound of the

uncommon case, while the O(n) Read() and Write() operations in the matrix-based

version of POC are in fact Θ(n); that is, every invocation of these operations requires

no more—and no less—than a linear amount of time.72

                                                
71 Big-Omega of n (Ω(n)) is used here to indicate that this is a lower-bound, not an
upper bound on the running time.

72 Θ(n) indicates that the running time is bounded above by O(n) and below by Ω(n).
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Finally, it is quite reasonable for values of n to reach into the hundreds for

the size of a partial order (see the example documents in the appendix.) Meanwhile the

number of outstanding out-of-order packets in a TCP connection is limited not only by

the maximum window size, but also by the congestion window. It is true that higher

bandwidths, and longer delay paths are leading to larger window sizes (see, for

example, RFC1323).   We have no hard data regarding the actual distribution of

effective window sizes in the Internet, however, our anecdotal evidence suggestions

that TCP congestion window sizes << 50 packets are still the norm. (A more scientific

measurement of what is “normal” here would be a good subject for future

investigation, perhaps by measuring window sizes seen on a busy web/mail/telnet/ftp

server.) Therefore, to avoid having to do Θ(n) work to resequence out-of-order PDUs

on each PDU arrival, we propose as an alternative to the matrix approach, an

adaptation of the DAGITS algorithm shown in Figures 6.9 through 6.13.  We call this

algorithm PO/R-RCV-RESEQ (PO/R receiver resequencing).

Incorporating explicit release synchronization into PO resequencing

The structure of the pseudocode for Algorithm PO/R-RCV-RESEQ

justifies the claim that explicit release synchronization adds little complication to

PO/R resequencing.  In fact, all that is necessary to implement explicit release is (1)

remove the call to the releaseSuccessors() procedure from the implementation of

getNextTSDU(), and (2) make the local procedure releaseSuccessors() an operation

that can be invoked directly by the transport service user.   (Incorporating explicit

release into the PO/PR algorithm is more difficult, but still feasible, as Section 6.8 will

illustrate.)
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Algorithm PO/R-RCV-RESEQ:
Data Structures:

int: n // number of elements in PO
int: count // number of TSDUs delivered so far

boolean: received[i] // has TSDU [i] been submitted yet? Initialized to false
TPDU pointer: data[i]  // pointer to data; initialized to nil

int: in-degree[i] // current in-degree of vertex [i]
list of vertices: adj-list[i] // list of outgoing edges from vertex [i]
queue of vertices: output // queue of vertices with in-degree 0, and

// data pointer not equal to nil.

Operations:
operation init(G); // initialize values from graph G.
operation processIncomingTPDU(TPDU, objnum); // arrival from network
operation getNextTSDU() returns TSDU; // returns next TSDU in PO

 // blocks until one can be delivered; returns nil on EOF
operation isAnythingDeliverable() returns boolean;

// true if something can be delivered, or if we
// have reached EOF.  Signifies that a call to
// getNextTSDU() will not block if called.

Local Procedures:
local procedure releaseSuccessors(u); // release successors of object u

Figure 6.9 Algorithm PO/R-RCV-RESEQ, specification

Algorithm PO/R-RCV-RESEQ:
operation processIncomingTPDU(TPDU, objNum):

if (received(objNum))
   discard TPDU; // this object is a duplicate (perhaps a retransmission)
else

{
data[objNum] = TPDU;

 if (in-degree(objNum) == 0)
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output.enqueue(v); // queue this object for delivery.
}

return;

Figure 6.10 PO/R-RCV-RESEQ, operation processIncomingTPDU()

operation getNextTSDU() returns TSDU:
local variable TPDU pointer tpdu;
if (count == n) return nil; // all objects have been delivered
wait (not output.empty());// wait until something is added to output queue.
tpdu = output.dequeue;
releaseSuccessors[tpdu.objnum];

// remove this line to provide explicit release
return encapsulated TSDU from inside tpdu

Figure 6.11 PO/R-RCV-RESEQ, operation getNextTPDU()

operation isAnythingDeliverable() returns boolean:
return (count == n or not output.empty());

Figure 6.12 PO/R-RCV-RESEQ, operation isAnythingDeliverable()

local procedure releaseSuccessors (u):
foreach v in adj-list[u]  // (u,v) is an edge in G
{

decrement in-degree[v];  // logically, removes (u,v) from G;
if (in-degree[v] ==  0 and received[v]) // v is now deliverable

output.enqueue(v);
}
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Figure 6.13 PO/R-RCV-RESEQ, procedure releaseSuccessors()

6.6 Implementing the PR semantics of POCv2

Modifying Algorithm PO/R-RCV-RESEQ to implement the PR reliability

class of POCv2 presents a particularly interesting challenge.   Recall that the semantics

of U and PR objects in POCv2 allow the application to say about a particular object:

•  An object in class U or class PR is useful but not essential, and the
delivery of other objects (regardless of their reliability class)
should not be delayed by its absence.

•  A class U object should never be retransmitted.

•  A class PR object is important enough that it should be
retransmitted if extra time is available.

To implement these semantics, any time the application invokes the transport service’s

Read() operation, if there is no data currently deliverable, the transport layer must be

able to efficiently answer the question: “Is there some object x that would become

deliverable if a non-empty set of undelivered PR and/or U objects were declared lost?”

If the answer is yes, then we say that object x is waiting, and that the undelivered U

and PR predecessors of x are loss candidates.   The remainder of this section presents

formal definitions for these notions; these definitions are used in Sections 6.7 and 6.8

to develop algorithms for PO/PR service.
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Definition 6.6.1:  An object x is resolved if either:

•  x has been delivered and its successors have been released, or

•  x has been declared lost and its successors have been released.

(Object x is unresolved if it is not resolved.) ❑

The terms resolved and unresolved allow us to avoid the awkward phrase

“delivered or declared lost”.  The term resolved also encapsulates the

releaseSuccessors() operation together with that of delivering an object or declaring it

lost; this encapsulation will be particularly useful when moving from the basic

algorithm without explicit release to the more advanced algorithm that incorporates

explicit release.

The semantics of POCv2 require that the receiver does not declare

anything lost until both of the following are true:

(1) the service user is currently issuing a read request,

(2) nothing is currently deliverable, but something would become
deliverable if one or more objects were declared lost.

These two conditions motivate the definition of a waiting object:

Definition 6.6.2: An object x is waiting if and only if all of the following are true:

(1) x is buffered

(2) x has at least one unresolved immediate predecessor, and

(3) x has no unresolved reliable proper predecessors. ❑

The concept of a waiting object is useful because the presence of one or more waiting

objects triggers the POCv2 receiver's getNextTSDU() operation to declare objects lost.

However, it is not enough to simply define the concept of a waiting object; we also
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require an efficient algorithm to determine which objects are waiting at any point in

time.

To accomplish this, one suggestion would be to maintain in each object x,

a count of the number of unresolved reliable predecessors  of object x.  This would

allow us to evaluate condition (3) of the definition of waiting in constant time.

Conditions (1) and (2) can already be evaluated in constant time:

•  Condition (1) requires a per-object boolean variable called
buffered(i)  to indicate whether or not the object is buffered. This
boolean variable is initialized to false during the init(G) operation,
and is modified whenever an object is placed in or removed from
the buffer.

•  Condition (2) requires us to check the in-degree of the object. The
in-degree(i)  variable is initialized from the service profile, and is
decremented each time a covered object releases its successors.

Thus both the evaluation of conditions (1) and (2), and the maintenance of the

necessary state (the variables buffered(i) and in-degree(i)) requires only constant time

per protocol operation.

Being able to evaluate all three conditions in constant time allows us to

maintain a list of all objects that meet the three conditions by simply checking all three

conditions whenever any operation is performed on an object that could change any of

the three conditions.   Since the previous algorithm already keeps the state necessary to

check conditions (1) and (2) in constant time, the only additional processing needed is

the maintenance in each object of the number of unresolved reliable predecessors.

However, keeping track of the number of unresolved reliable predecessors

is more information than we need, and would likely require too much work.  Setting

aside for the moment the issue of how such a value would be initialized, consider just

the problem of maintaining the value.   Suppose that the partial order is an antichain of
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n/2 reliable objects followed by a chain of n/2 unreliable objects.  Each time a reliable

object is resolved, this action could affect the number of unresolved reliable

predecessors of Θ(n) objects, and there are Θ(n) such reliable objects. Therefore this

example will require O(n2) processing (which is especially poignant, since in this

special case, O(n+e) ∼  O(n).)   However, as we explain below, we can do better.

What we would prefer is a method that allows us to keep track of just

enough information to determine in constant time whether an object meets condition

(3) of the definition of waiting, and we would like to be able to determine this with

processing that adds no more than O(n+e) to our running time for processing an entire

period of n objects.  Even if this time is distributed unevenly among the operations, if

we can bound the total time, we can use an amortized analysis to argue that the total

running time is not increased.   It would also be particularly convenient if the

expensive operations did not take place during the routine that handles incoming

packets. The real-time performance of the incoming packet processing  is crucial, since

slow processing can lead to overflows in the incoming packet queue, and consequently

to packet loss.

A key observation is that condition (3) of the definition of waiting requires

only a binary decision: either the number of unresolved reliable predecessors of an

object x is greater than zero, or it is not.  One way to determine this is to keep track of

how many of the immediate predecessors of x (also known as the covered objects of x)

have unresolved reliable predecessors.  If none of the immediate predecessors of object

x have unresolved reliable predecessors, then by a simple argument (made formally in

Theorem 6.6.5 below), neither does object x.   This observation motivates the

following definitions:
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Definition 6.6.3: COURPs(y) is the set of  Covered Objects with Unresolved Reliable

Predecessors, and consists of all objects x such that

•  x is covered by y (i.e., y covers x, or equivalently, x is an
immediate predecessor of y; see definition of covers in Chapter 2)
and,

•  x has at least one reliable predecessor that is unresolved.  (Note
that this predecessor need not be a proper predecessor.  Just as the
notions of ancestor and descendent are often treated as reflexive
binary relations over the nodes in a tree, with node x being both an
“ancestor” and a “descendant” of itself, the predecessor relation is
also defined as reflexive.  An element y of a partial order PO is a
predecessor of x if and only if y p= x w.r.t PO.  Thus if x has
reliability class R, it may be considered a reliable predecessor of
itself.) ❑

Definition 6.6.4: numCOURPs(y) = |COURPs(y)|, that is, the number of objects

covered by y that have at least one unresolved reliable predecessor. ❑

The advantage of tracking numCOURPs(x) rather than the number of

unresolved reliable predecessors is this: tracking numCOURPs(x) requires the

algorithm to keep only local information in each node, which is less expensive than

maintaining global information in each node.  Essentially, the algorithm exploits the

transitivity of the partial order to save computation cost.

The following Theorem about numCOURPs will be useful, since it shows

that the predicate (numCOURPs(x) == 0) is equivalent to one part of the definition of a

waiting object (Definition 6.6.2).

Theorem 6.6.5: For any object x:

( numCOURPs(x) == 0 ) ⇔ (x has no unresolved reliable proper predecessors)

Proof: (⇒⇒⇒⇒ , by contradiction.)   Let a be an unresolved reliable proper predecessor of

x, and let coveredBy(x) be the set of all objects covered by x (x’s immediate
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proper predecessors). Since object a is a proper predecessor of x, it must be a

predecessor (not necessarily proper) of some element w in the set coveredBy(x).

However, this would imply that w is a covered object of x with an unreleased

reliable predecessor, namely a, contradicting the assumption that numCOURPs(x)

== 0. ❑

(⇐⇐⇐⇐ ) (By contradiction) Suppose that x has no unresolved reliable proper predecessors,

but that, nevertheless, numCOURPs(x) > 0.   This would imply that there exists

some w ∈  coveredBy(x) such that w has an unresolved reliable predecessor.

However, since w p x, any unresolved reliable predecessor of w would necessarily

be an unresolved reliable proper predecessor of x, contradicting our premise.

Therefore, no such w exists, and consequently (numCOURPs(x) == 0). ❑

In the case where the POCv2 receiver has no deliverable data, but has at

least one waiting item that could be delivered if its loseable predecessors were

declared lost, the receiver will need an algorithm to actually find all of these

unresolved unreliable predecessors. Furthermore, to preserve the partial order, these

objects will need to be resolved in some linear extension of that partial order, which

will require a topological sort.  Therefore, the discussion of POCv2-style partial

reliability in Section 6.7 includes an algorithm to find these unresolved unreliable

predecessors and resolve them in linear extension order.  The following definition is

useful in the discussion of that algorithm:

Definition 6.6.6: Given that y  is a waiting object, the set L(y) consists of all of y’s

undelivered unreliable predecessors. The elements of L(y) are referred to as loss

candidates. ❑
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The capital letter  “L” in the notation L(y) stands for “loss candidates”, but

it can also serve as a reminder that all objects in the set L(y) are loseable objects

(objects with reliability class U or PR); indeed, these are exactly the set of objects that

must be resolved before y may be delivered.  It is useful to note, however, that not all

of the objects in L(y) are necessarily  ones that will be declared lost; it is possible

within the constraints of the definition that some or perhaps even all of the elements of

L(y) may have actually arrived, and will be delivered rather than being declared lost.

With this framework in place, we can now proceed to the development of

algorithms for the PO/PR receiver

6.7 PO/PR-DEL-BASIC: Basic POCv2 delivery (no stream, no explicit release)

If the PR semantics of POCv2 are to be feasible, we need an algorithm

that can either:

(1) determine that no waiting objects currently exist, or

(2) identify at least one waiting object x, and the set of loss

candidate objects L(x) that must be resolved before that object x

can be delivered.

Furthermore, we need to be able to invoke this algorithm efficiently at any time the

application performs a Read() operation on an empty input queue.  Our strategy is to

do enough bookkeeping with every packet arrival event, delivery event, and release

successors event, such that the total running time is still O(n+e) for the processing of

an entire period of objects.

In this section, we develop and present a basic algorithm for PO/PR

delivery (PO/PR-DEL-BASIC) that follows the PR semantics of POCv2. The PO/PR-
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DEL-BASIC algorithm provides the reader with a clear explanation of the extra

processing necessary to support the POCv2 PR semantics without the clutter

introduced by supporting explicit release and the stream abstraction. PO/PR-DEL-

BASIC then serves as the basis for Algorithm PO/PR-DEL-FULL, which implements

the full specification of POCv2, including the explicit release mechanism and stream

abstractions

Overview of Section 6.7

Section 6.7.1 develops the PO/PR-DEL-BASIC algorithm by presenting

pseudocode for the basic operations and local procedures.  In each case, we take the

corresponding operations from the PO/R algorithm PO/R-RCV-RESEQ and explain

what changes are necessary to incorporate the U and PR classes of POCv2.

Section 6.7.2 then provides proofs of correctness and running time for this

pseudocode, and elaborates some of the details omitted in the pseudocode version.

Section 6.7.3 provides a comparison and contrast between the PO/R-RCV-RESEQ and

PO/PR-DEL-BASIC algorithms.  Section 6.7.4 concludes with a summary of the main

points related to the PO/PR-DEL-BASIC algorithm.
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6.7.1 Extending the PO/R-RCV-RESEQ algorithm to incorporate PR

We begin our presentation of PO/PR-DEL-BASIC with an outline of the

basic operations and local procedures (Figures 6.14 through 6.21).

Comparing Figure 6.14 with Figure 6.9, we see that the basic operations in

PO/PR-DEL-BASIC are exactly the same as those in PO/R-RCV-RESEQ.  We retain

the local procedure releaseSuccessors() (Figure 6.16), and in addition, we have added

two new local procedures that compute the numCOURPs and L(x) values defined

previously (Section 6.6).  We now show how the pseudocode for each of these four

operations is extended to incorporate partial reliability.

Compare the implementation of the isAnythingDeliverable() operation for

the PO/R-RCV-RESEQ algorithm (Figure 6.12) with the implementation of the

isAnythingDeliverable operation for PO/PR-DEL-BASIC shown in Figure 6.15.  For

PO/R service, this algorithm is O(1), and trivial to implement.  However, in PO/PR,

the processing is more complex.   Figure 6.15 shows a partially specified pseudocode

for isAnythingDeliverable()—partially specified, in the sense that at this stage, the

pseudocode does not explain how to compute the value of the boolean expressions in

the second and third if-tests; later sections explain how this can be done in constant

time.

Figure 6.16 provides an outline of the pseudocode for the getNextTSDU()

operation for PO/PR service. If we compare this pseudocode to that of the

getNextTSDU() operation for PO/R service, we first note that the if-block following

the wait statement is exactly equivalent to the implementation of the getNextTSDU()

operation  for PO/R service.  Therefore, it is the first else-block that is of interest.  In

Section 6.7.2, we will prove that whenever we reach this block, there will always be at

least one waiting item, and that we can find one of these waiting items in O(1) time
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(given some prior O(n+e) processing; this prior processing gets amortized in with the

O(n+e) processing of Algorithm PO/R-RCV-RESEQ).  We will then show how the

procedure fillDeliverOrDeclareLostQueueWithSortedLSet(y) can find all the loseable

items that need to be declared lost (or delivered, if by chance they arrive in time) so

that the waiting item becomes deliverable.  This procedure not only finds these items,

but also topologically sorts them, and places them into a queue called the

deliverOrDeclareLost queue.   We will show that all of the processing that takes place

in this procedure over the lifetime of the connection cannot exceed O(n+e), by a

simple accounting argument that no node or edge can be processed by this algorithm

more than once.   We will also show that once this queue has been constructed for any

given waiting item, we can march through this queue declaring items lost until the

waiting item comes to the front of the queue, at which point it can be delivered as the

next TSDU.

The processIncomingTSDU() operation is virtually unchanged; the only

difference is that we may have to remove an item from the deliverOrDeclareLost

queue if it becomes deliverable while it is sitting in that queue.  (Note that because of

this processing, the deliverOrDeclareLost queue is not strictly a queue, since a

deliverable item that is removed from the deliverOrDeclareLost queue by the

processIncomingTPDU() procedure may in fact be found somewhere other than the

head of this queue.)

Finally, we turn to the init(G) operation.  We did not show pseudocode for

this operation in the case of the PO/R-RCV-RESEQ algorithm (6.5.1) because it was

trivial to implement; however for the PO/PR-DEL-BASIC algorithm, there is an

additional step: the updating of the numsCOURPs values for each node.  This updating
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is done by a truncated DFS operation called updateNumCOURPsofSuccessorNodes(x)

that starts from each element that has no predecessors in the graph, and stops when a

reliable element is encountered, or an element is encountered that already has

numCOURPs= =0.   The DFS is resumed each time a reliable node is delivered; in this

manner, over the course of the algorithm, each node's numCOURPs is updated, and

each edge in the graph is traversed at most once.  Section 6.7.2 will explore further

how this processing works, and will prove that the total running time for this

processing does not exceed O(n+e) over the course of the algorithm.
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Algorithm PO/PR-DELBASIC:
Data Structures:

int: n // number of elements in PO
int: count // number of TSDUs delivered so far

boolean: arrived[i] // has TSDU [i] arrived yet? Initialized to false
boolean: resolved[i] // has TSDU [i] been resolved yet? Initialized to false
enum: color[i]: {white, gray, black} // marks nodes in DFS
TPDU pointer:

data[i] // pointer to data; initialized to nil
int: in-degree[i] // current in-degree of vertex [i]

list of vertices: adj-list[i] // list of outgoing edges from vertex [i]
list of vertices: trpot-adj-list[i] // adjacency list in transpose of partial order
queue of vertices: output // queue of vertices with in-degree 0.
list of vertices: deliverOrDeclareLost // loss candidates to be resolved

Operations:
operation init(G); // initialize values from graph G.
operation processIncomingTPDU(TPDU, objnum); // arrival from network
operation getNextTSDU() returns TSDU; // returns next TSDU in PO

 // blocks until one can be delivered; returns nil on EOF
operation isAnythingDeliverable() returns boolean;

// true if something can be delivered, or if we
// have reached EOF.  Signifies that a call to
// getNextTSDU() will not block if called.

Local Procedures:
local procedure releaseSuccessors (u); // release successors of object u
local procedure updateNumCOURPsofSuccessorNodes(x);

// called whenever we deliver a reliable object; this procedure and its
// recursive calls on loseable successors help to find waiting objects

local procedure fillDeliverOrDeclareLostQueueWithSortedLSet (x);
// called on a waiting object to find the set L(x); recursive calls
// constitute a DFS of the transpose of the PO, which is a topological sort.

Figure 6.14 Algorithm PO/PR-DEL-BASIC, specification

operation isAnythingDeliverable() returns boolean:
{

if (not output.empty() or count == n) return (true);
else if (there are no buffered items)
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{return false} // there’s no data at all
else if (there exist no waiting items) // see defn 6.6.2; thm 6.7.1

{return false} // there’s data, but each object is waiting on a least one
// reliable predecessor, so declaring things lost won’t help

else {return true} // there is at least one item we could deliver if we declared
// its predecessors lost; see theorem 6.7.8

Figure 6.15 PO/PR-DEL-BASIC, operation isAnythingDeliverable()

operation getNextTSDU() returns TSDU:
local variable TPDU pointer tpdu;
if (count == n) return nil; // all objects have been delivered
wait(isAnythingDeliverable);

// if false, sleep; recheck condition after each processIncomingTPDU() call;
// in practice, the sleep can be avoided by never calling getNextTSDU()
// without first checking isAnythingDeliverable().

if (not output.isEmpty())
{

tpdu = output.dequeue;
releaseSuccessors(tpdu.objnum);
return encapsulated TSDU from inside tpdu

}
else // deliver a waiting item (after possibly declaring some items lost)

{
if (deliverOrDeclareLost.isEmpty())
{

choose y = an arbitrary waiting item // see Thm. 6.7.9
fillDeliverOrDeclareLostQueueWithSortedLSet(y);
// find the set L(y), consisting of all of y’s undelivered unreliable
// predecessors, and topologically sort them according to the
// partial order, and place these items on the
// deliverOrDeclareLost queue.

}
while (true)
{

if (not output.isEmpty()) // if a waiting object become deliverable
{

x = output.remove;
releaseSuccessors(x.objnum);
return encapsulated TSDU from inside x
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}
else
{

x = deliverOrDeclareLost.remove();
declareLost(x);
releaseSuccessors(x.objnum);

}
}

 assert(false); // by theorem 6.7.9, we should never reach this statement

Figure 6.16 PO/PR-DEL-BASIC, operation getNextTSDU()

operation processIncomingTPDU(TPDU, objNum):
if (received(objNum))
   discard TPDU; // this object is a duplicate (perhaps a retransmission)
data[objNum] = TPDU;
if (in-degree(objNum) == 0)
{

if (objNum is in the deliverOrDeclareLost queue)
{

deliverOrDeclareLost.removeByObjNum(objnum);
}
// because of the preceding line, deliverOrDeclareLost is not strictly a
// queue
output.enqueue(objNum); // queue this object for delivery.

}
return;

Figure 6.17 PO/PR-DEL-BASIC, operation processIncomingTPDU()

operation init(G):
foreach (node x in G)
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{
initialize numCOURPs(x) to in-degree(x);

// G′  is initially a copy of G
initialize color(x) to white; // used in DFS algorithm; see Fig. 6.21

};
foreach (node x that is unreliable, and has numCOURPs(x)= = 0)
{

updateNumCOURPsofSuccessorNodes(x);

// logically, remove x from the graph G′
}
foreach (node x in G)
{

traverse x’s adjacency list, constructing a corresponding
adjacency list trpot-adj-list(y) for every y in the transpose of G,
i.e., TRPOT.

}
return;

Figure 6.18 PO/PR-DEL-BASIC, operation init()

local procedure updateNumCOURPsofSuccessorNodes(x):
foreach (y in successors(x))

{
decrement numCOURPs(y)
if (numCOURPs(y) == 0 and y is not reliable)

updateNumCOURPsofSuccessorNodes(y);
}

}
return;

Figure 6.19 PO/PR-DEL-BASIC, updateNumCOURPsofSuccessorNodes()



389

local procedure releaseSuccessors (u):
foreach v in adj-list[u]  // (u,v) is an edge in G
{

decrement in-degree[v];  // logically, removes (u,v) from G;
if (in-degree[v] ==  0 and received[v]) // v is now deliverable
{

if (object objNum is in the deliverOrDeclareLost queue)
{

deliverOrDeclareLost.removeByObjNum(objnum);
} // deliverOrDeclareLost is not strictly a queue
output.enqueue(v);

}
if (object u is reliable)
{

decrement numCOURPs(v); // u was a covered object with an
// unresolved reliable (not proper) predecessor.

if (numCOURPs[v] ==  0)
updateNumCOURPsofSuccessorNodes(v);
// propagate the effect

}
}

Figure 6.20 PO/PR-DEL-BASIC, procedure releaseSuccessors()

local procedure fillDeliverOrDeclareLostQueueWithSortedLSet (x):
// compare with DFS of CLR, p. 478.  As in CLR’s version, colors indicate
// discovery/finishing times:
// white=undiscovered, gray=discovered, not finished; black=finished

color[x] = gray; // as in DFS of CLR (p. 478),.
if (in-degree[x]= =0) // can only be true on recursive call; original call is

// always on a waiting object, which cannot have in-degree= =0.
{

color[x] = black; // finished with x
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assert (not buffered(x)); // if it were, we shouldn’t be here; this routine
 // would not be invoked if a deliverable object existed.

deliverOrDeclareLost.enqueue(x);
return;

}
// note: the check on in-degree= =0 is not redundant, since we do not
// actually remove the edges from trpot-adj-list as in-degree is decremented.
foreach v in trpot-adj-list[w]

// (v,w) is an edge in G, (w,v) is an edge in G′ ,
{

if (resolved[v])
{continue};

// resolved elements treated as black, already finished;
else if (color[v]= =white)

{ fillDeliverOrDeclareLostQueueWithSortedLSet (v);}
// finished with v

}
color[w] = black;
deliverOrDeclareLost.enqueue(x);
return;

Figure 6.21 PO/PR-DEL-BASIC, fillDeliverOrDeclareLostQueueWithSortedLSet(x)
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6.7.2 Proofs of correctness, running time for PO/PR-DEL-BASIC pseudocode

Our series of proofs is divided into two parts.  In the first part, we

concentrate on the correctness of the isAnythingDeliverable() routine, which is

dependent on the maintenance of the list of waiting items, which in turn depends on

maintaining the numCOURPs values for each object.   In the second part, we focus on

the running time of the DFS of the TRPOT to compute the L(y) set and the correctness

of the getNextTSDU() operation.   We omit formal proofs of the correctness and

running time of the remaining routines, since they are either self-evident, or follow

directly from the remaining material; their inclusion would not shed any extra light.

Proofs related to maintaining the numCOURPs values.

Theorem 6.7.1: The PO/PR receiver can maintain a list of all waiting objects by

adding extra processing to the init(), getNextTSDU(), and

processIncomingTPDU() operations of Algorithm PO/R-RCV-RESEQ, without

increasing the total running time of O(n+e) for the processing of an entire period

of n objects.

Proof:  We divide the proof into three parts:

(1) We can initialize the correct value of numCOURPs for each
object by adding code to the init() operation.

(2) We can maintain the correct value for numCOURPs, and
maintain a list of waiting items by adding code to the
getNextTSDU() operation.

(3) The running time of the added code is O(n+e) over a sequence
of n getNextTSDU() and n processIncomingTPDU() operations.

Part (1) of proof:   Our claim is that after the initial call to init(G), the numCOURPs

value for each x is correct.   Consider the set min(G) consisting of all elements in G

that have in-degree 0; that is, the minimum elements in the partial order.  By
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transitivity, all elements of G contain at least one (not necessarily proper) predecessor

in the set min(G).  The operation updateNumCOURPsofSuccessorNodes is called on

every element of min(G), essentially simulating the resolution and removal from G of

all unreliable objects with no unresolved proper predecessors.  Let G′  be the graph

consisting of G minus all elements that are “removed” by the operation

updateNumCOURPsofSuccessorNodes. After the removal of all the unreliable

elements from G′  that have no reliable predecessors, the in-degree of the remaining

graph (which corresponds to the value of numCOURPs) will indicate only the number

of covered objects of each x in G that were not able to be removed because they have

at least one reliable predecessor.   Therefore, after the init(G) operation, the values of

numCOURPs are correct.

Part (2) of proof:  Our claim is that the correctness of the value numCOURPs is

maintained throughout the algorithm.  Note that the only action that can change the

value of numCOURPs is the resolution of a reliable object.  Reliable objects can only

be resolved by delivery, and in this version of the algorithm, each time an object is

delivered, the procedure releaseSuccessors() is immediately called.  For each reliable

object, releaseSuccessors(x) calls updateNumCOURPsofSuccessorNodes(x), which

essentially removes element x from the graph G′  just as in the proof of part (1) above.

Thus the correctness of the numCOURPs value is maintained throughout the course of

the algorithm.

Part (3) of proof: Our claim is that the asymptotic worst-case running time of the

extra processing added by the invocations of updateNumCOURPsofSuccessorNodes()

in both the init() and releaseSuccessors() operations is O(n+e).  This property follows

immediately from the observation that the updateNumCOURPsofSuccessorNodes()
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calls are essentially nothing more than a shadow version of the basic algorithm used

for resequencing and delivering objects.  Since this processing is equivalent to the

processing that is done when each object is either delivered or declared lost—

foreshadowing this processing for unreliable objects, and executing in parallel to this

processing for reliable objects—the asymptotic running time is the same.   We can

amortize the extra processing of updateNumCOURPsofSuccessorNodes() by charging

the time consumed to the actual resolution of each object when it is delivered or

declared lost.  Therefore, from an amortized sense, the total running time for a period

of n objects with e edges is not increased by the extra processing needed to maintain

the value numCOURPs. ❑ .

Lemma 6.7.2: Given the index of any waiting object b, a topological sorting of the set

L(b) can be produced by the reverse finishing times of a DFS of the unresolved

elements of the TRPOT

bxxx bL ,,,, 1)(21 −L

where the last element in the topological sorting of L(b) is the element b itself.

Proof of Lemma 6.7.2: Consider a DFS that follows the TRPOT from element b, but

prunes the DFS search-tree whenever an element is found that has zero unresolved

predecessors.   The lemma makes three claims:

(1) that all unresolved predecessors of b will be located by this method,

(2) that the DFS can put them in topologically sorted order, and

(3) that the element b will end up at the end of the list.

To prove claim (1) by contradiction, assume that some object x is an

unresolved predecessor of b that is not located in the DFS search tree described
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above.   This assumption implies that there are two possible cases for object x,

both of which lead to a contradiction:

•  Case(i): Object x cannot be reached by traversing the edges of
TRPOT from b to x, which would imply that it cannot be reached
by traversing the edges of TRPO from x to b, contradicting the
assumption that x is a predecessor of b.

•  Case (ii): Object x can be reached by traversing the edges of
TRPOT from b to x, but some element y with zero unresolved
predecessors lies on the path between b and x, and consequently,
the DFS search tree is pruned before reaching x.  However, if
element y lies on the path in TRPOT from b to x, then x is an
unresolved  predecessor of y.  Hence, no such y can exist.

With respect to claim (2), it is well known that a topological sort of a directed

graph can be obtained from the reverse finishing times of a DFS; see for example,

Theorem 23.11 of (Cormen, Leiserson and Rivest, 1990; hereafter referred to as

CLR.)  Equivalently, the unreversed finishing times of a DFS of TRPOT will also

give us a topological sort (if vp u in TRPO, then up v in TRPOT, thus by

Theorem 23.11 of CLR, finishingTime[v]<finishingTime[u] in the DFS.).

Therefore, by adding the nodes in the DFS to a list as they are finished, the

topological sorting can be computed without additional expense.  Claim (3)

follows immediately from the proof of claim (2), since object b would be the last

to be finished in the DFS search tree. ❑

Lemma 6.7.3: The procedure fillDeliverOrDeclareLostQueueWithSortedLSet of

Figure 6.21 carries out the topological sort described in Lemma 6.7.3.

Proof of Lemma 6.7.3: Follows immediately from comparison of code with DFS-

VISIT(u) of CLR, p. 478. ❑
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Lemma 6.7.4: The first element x1 in a topological sorting of L(b)
bxxx bL ,,,, 1)(21 −L

is guaranteed to have no unresolved predecessors, and therefore can be resolved

immediately.

Proof of Lemma 6.7.4: The DFS used to construct this sequence bottoms out only

when an element is encountered that has no unresolved predecessors.  Therefore,

the first element to finish is guaranteed to have no unresolved predecessors.  If it

has no unresolved predecessors, it can be declared lost or delivered

immediately.❑
Lemma 6.7.5: For each item xi in the topological sorting of L(b), all elements

xj ∈  L(xi), j ≠ i, will precede xi in the sequence.

Proof of Lemma 6.7.5: Since L(b) consists of all unresolved predecessors of b, and

since xj ∈  L(b), all elements xj ∈  L(xi) must also be in L(b).  If some element

xj ∈  L(xi), j ≠ i, then xj precedes xi in the partial order.  Therefore  xj  must also

precede xi in any topological sorting based on that partial order. ❑

Theorem  6.7.6: Let b be a waiting object.   The following pseudocode will

correctly resolve all elements in L(b), ultimately resulting in the delivery of object b:

construct the sequence bxxx bL ,,,, 1)(21 −L  as per Lemma 6.7.2

for (i=1; i<=|L(b)|; i++)

{resolve (xi)};

Proof of Theorem 6.7.6: By Lemma 6.7.4, the first element xi of this topological

sorting can be resolved immediately.  By Lemma 6.7.5, all the unresolved predecessors

of each element xi precede element xi; therefore, after each element xi is resolved,

element xi+1 will have no unresolved predecessors.  By induction, therefore, we can
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resolve all elements of L(b) by proceeding through the topological sorting of L(b),

ending with the resolution of object b.  Since object b is buffered, this resolution will

consist of the delivery of object b. ❑

Theorem 6.7.7:  The PO/PR receiver pseudocode shown in Figure 6.15 correctly

implements the isAnythingDeliverable() operation.

Proof of Theorem 6.7.7:  We will assert that the correctness of the first two if-tests

and their respective return values is self-evident, and focus on the remainder of

the code. If control reaches the third if-test, the algorithm has established that

there is some data that is buffered, but none of that data is currently deliverable.

So at this point there are only two cases: either there does or does not exist any

buffered object b that is also waiting.

Case 1: There does exist some such object b that is waiting. The definition of

waiting tells us that object b can be delivered, and Theorem 6.7.6 gives us an

algorithm for accomplishing this. Therefore, we should return true. ❑

Case 2: If there does not exist some such object b that is waiting then each of the

buffered objects has as least one reliable predecessor.  Thus declaring things lost

would not help in any way, and we should return false; thus the then-clause of the

third if-test is correct.

Theorem 6.7.8 The isAnythingDeliverable() operation can be implemented in constant

time.

Proof of Theorem 6.7.8:  The first if-test can be calculated in O(1) time.

The second if-test can be calculated in O(1) time as follows: the PO/PR

receiver maintains a count of how many items are buffered.  The counter is

incremented when a TPDU arrives, and decremented when a TSDU is
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delivered.73   If there are no buffered items at all, then the return value of

isAnythingDeliverable() should be false.

The third if-test can be calculated in constant time, by simply checking

whether the list of waiting objects is empty.  Therefore the entire operation can be

implemented in constant time. ❑

So far, we have shown that the pseudocode for the

isAnythingDeliverable() operation for the basic PO/PR algorithm (Figure 6.15) is

correct, and that this operation can be performed in constant time.  We have also

shown that the processing that was added to the getNextTSDU() operation that keeps

track of the numCOURPs values can be amortized in such a way that we do not exceed

our O(n+e) upper bound for a period.

Proofs related to computing the L(y) set via a DFS of the TRPOT.

We now proceed to the other two operations.   First Theorem 6.7.9 shows

that the extra processing added to find the L(y) set of a waiting item does not exceed

O(n+e) per period.  Finally, we establish the correctness of the getNextTSDU()

operation by showing that it will always deliver exactly one object per invocation.

Theorem 6.7.9: The total worst-case cost of computing DFS search trees from the

TRPO
T  

is bounded by O(n+e), and can be amortized over the cost of the

getNextTSDU() operations.

Proof of Theorem 6.7.9:  It is sufficient to show that the adjacency list of each node

in the TRPO
T

 can never be traversed more than once, since this would limit the

                                                
73 Note that TPDUs and TSDUs are in a one-to-one relationship in POCv2, in contrast
with TCP, where this is not always the case.)
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total processing to O(n+e), a quantity that can be amortized over the

getNextTSDU() operations. Note that the computation of the DFS search tree

based on the TRPO
T

 is invoked only when the getNextTSDU() operation is

invoked at a time when some waiting element b must be delivered.  When this is

done, no further calculations of DFS search trees over the TRPO
T 

can be made

until after the queue deliverOrDeclareLost is empty, which ensures that all the

elements of L(b) have already been resolved (i.e., the predecessors of b, including

b itself).  Thus, if any future DFS of the TRPO
T

 visits some element x in L(b),

element x is guaranteed to be already  resolved, and its adjacency list will not be

traversed. ❑

As a side-comment on Theorem 6.7.9, we note that unless there is a

getNextTSDU() operation at a time when no data is deliverable, the computation of

DFS trees over the TRPO
T 

never takes place at all, so we are truly computing a worst-

case running time.

Note that the object we end up delivering first may or may not be the one

that we chose at the step “choose y = an arbitrary waiting item”. Suppose object x and

object y are both objects with zero unresolved reliable predecessors, and x p y in the

PO.  If y arrives before x, then y may be the arbitrary waiting item that is chosen.

Object x will be part of the sorted L(y) set, notwithstanding the fact that it has arrived.

Since objects are then resolved in the order in which they were topologically sorted,

object x will get delivered before object y, and the getNextTSDU() operation will

return before object y is delivered.   On a subsequent invocation of the getNextTSDU()

operation, if deliverable objects have arrived in the meantime, they will have been

placed on the output queue.   Any objects still sitting in the deliverOrDeclareLost
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queue will either have been transferred to the output queue as they arrive, or will just

stay on the deliverOrDeclareLost queue until the next time that it is necessary to begin

resolving loseable items.  In any case, as Theorem 6.7.10shows,  some object x will

always be delivered. This object x will be one that was waiting at the time when the set

L(y) was computed. Before that object x is delivered, all of x’s predecessors will have

been previously either delivered or declared lost.

Theorem 6.7.10: The operation getNextTSDU() will always deliver at least one object;

that is, after the “wait” for isAnythingDeliverable to be true, either (1) there will

be a deliverable object already on the output queue, or (2) there will be a waiting

object y, and some object x will subsequently be delivered.  As a consequence, the

final “assert(false)” statement of the pseudocode in Figure 6.2 should never be

reached.

Proof of Theorem 6.7.10:  Theorem 6.7.6 already established the basic soundness of

the approach of computing L(y) and resolving all elements in that list.   All that is

needed to establish the claims in this theorem is to fill in the details.

We wait until the isAnythingDeliverable() routine returns true.  Inspection

of this routine indicates that once it returns true, there will either be a buffered or

a waiting item.  If there is a buffered item, we deliver it, so the only part of the

claim still in question is whether it is possible, when the code enters the

“while (true)” loop, for the “assert(false)” statement to be reached before some

object x can be delivered.  Since all items on this list are unreliable, and can be

declared lost if necessary, the only way that we can reach the “assert(false)”

statement is if, when the loop is entered, no element on the deliverOrDeclareLost

queue is a buffered object. If there were some buffered object x, on the
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deliverOrDeclareLost list, by Lemma 6.7.5, at the time that x was placed on the

list, all elements of the set L(x) would have been placed on the list in a position

preceding x.   As a result, any unresolved predecessors of x would have been

resolved before x reached the front of the list, and x would have been transferred

to the output queue, and delivered.

However, by Theorem 6.7.6, the elements placed on this list constitute a

topological sorting of all the predecessors of some buffered object, and then the

buffered object itself.  Therefore, the last element on this list is always guaranteed

to be a buffered object at the time the initial list is constructed, and until that list is

entirely resolved, no new elements can be placed on that list.   In addition, by

Theorem 6.7.6, the final element on that list must be the y element from which the

list was constructed, and everything that precedes y on this list is a predecessor of

y.  The only way for y to leave the deliverOrDeclareLost list is if y were

transferred to the output queue (which cannot happen until all of y’s predecessors

have been resolved) or to reach the front of the list without being so transferred.

Object y cannot reach the front of the list without being transferred to the output

queue, since y is a buffered object, and if everything in front of y on the list has

been resolved, y will have in-degree 0.  Furthermore, anytime the getNextTSDU()

operation is invoked, it is impossible for the deliverOrDeclareLost queue to

contain any of the elements of L(y) unless object y is also sitting in the queue

following these elements.

Therefore, we can never enter the “while (true)” loop under any

circumstance except the one where at least one of y’s predecessors needs to be
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declared lost before y can be delivered. Under these circumstances, at least one

object (not necessarily y) will always be delivered before the loop terminates.❑

6.7.3 Comparison/Contrast of  PO/PR-DEL-BASIC with PO/R-RCV-RESEQ

It is instructive to compare and contrast the PO/PR-DEL-BASIC algorithm

with the PO/R-RCV-RESEQ algorithm from which it was derived, both in terms of

how the algorithm works, and in terms of running time—both actual and amortized

worst cases for each operation.

Both algorithms keep track of when objects should be placed on the output

queue by tracking when their in-degree changes and when they arrive.  In addition, the

algorithms for the PO/PR receiver also track when objects meet the definition of

waiting by tracking the numCOURPs of each object along with each object’s arrival.

Both of these algorithms essentially constitute an execution of the DAGITS algorithm

for topologically sorting the partial order: in the first case, we are actually resolving

each object x by delivering or declaring x lost, and releasing x’s successors.  In the

second case, we maintain a shadow of the original graph G, which we call G′ .  The

reliable objects in G′  are resolved at the same time they are resolved in G, while each

unreliable object in G′  is resolved as soon as it has no unresolved reliable

predecessors.

The extra processing necessary to maintain the shadow graph G′  actually

gets scheduled at two times: in the init(G) routine (which is already O(n+e), not

amortized) and in the releaseSuccessors() procedure.  For the PO/R-RCV-RESEQ

algorithm, the releaseSuccessors(x) routine is O(d), where d is the out-degree of x in G

(i.e., the TRPO).   Since each successor is released only once, we add the processing



402

for each call to releaseSuccessors() together, resulting in a total of O(n+e) for the

entire processing of a single period.

For PO/PR-DEL-BASIC, a given releaseSuccessors() operation may

require O(n).  As an example, consider again the PO consisting of an antichain of n/2

reliable objects followed by a chain of n/2 unreliable objects.   Each

releaseSuccessors() operation for the reliable objects (except for the last one) will

require only constant time to decrement the numCOURPs of the first unreliable object,

however the last invocation of releaseSuccessors() on a reliable object will take O(n)

time to traverse the chain of the n/2 remaining unreliable objects. However, note that

this processing occurs only once over the course of the algorithm, and the total amount

of processing is still O(n+e).    In practice, if multimedia documents are constructed

with a mix of reliable and unreliable objects, and the total number of objects is kept

modest (n≤1000), one would not expect an occasional O(n) “hit” such as the one

described here to be a serious concern.

6.7.4 PO/PR-DEL-BASIC: Section Summary

In this section, we have provided algorithms for the POCv2 receiver that

implement partial order and partial reliability (with the POCv2 PR semantics).  These

algorithms accomplish this with a running time of O(n+e) per period (amortized) by

using:

•  two parallel instances of the DAGITS algorithm, and

•  an instance of DFS over the transpose of the transitively reduced
precedence graph

As with PO/R-RCV-RESEQ, the init() operation requires time O(n+e),

and the isAnythingDeliverable() and processIncomingTPDU() operations run in
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constant time (without amortization).  Over the course of the algorithm, the

getNextTSDU() operation always invokes releaseSuccessors(x) for each object in the

partial order; each call to releaseSuccessors(x) is O(d) (not amortized), where d is the

out-degree of x, and may additionally require O(n) (not amortized) in the worst case

for the updating of the numCOURPs fields of successor objects.    However, this

additional processing can be amortized to the previous O(d) running time, or O(n+e)

over the entire period.   Each getNextTSDU() operation may also invoke, if needed to

declare predecessors of a waiting object lost, a DFS over the loss-candidates

associated with some waiting object.  This DFS processing can also be amortized over

the O(d) running time of the releaseSuccessors() operations.

Therefore, while in the case of PO/PR receiver processing,  individual

releaseSuccessors() or getNextTSDU() operations may require as much as O(n) time,

the total amortized running time of processing a period of n objects with e edges in the

corresponding TRPO is unchanged as compared to the processing time required for the

PO/R-RCV-RESEQ algorithm.

In the next section, we extend the PO/PR-DEL-BASIC algorithm to

incorporate explicit release, and the stream abstraction.

6.8 PO/PR-DEL-FULL: Adding streams and explicit release to POCv2

POCv2 incorporates three features that, in isolation, are relatively simple

to describe and implement, namely, (1) a particular semantics for partial reliability,

(2) explicit release synchronization, and (3) a stream abstraction for describing the

incorporation of larger objects into partial orders.   However, the interaction of these

features presents certain problems.
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Overview of Section 6.8

Section 6.8.1 describes some of the questions that must be resolved in

defining the interactions of these three features, and the definitions adopted for

purposes of the current investigation.    Section 6.8.2 describes the main difficulty with

integrating the three features.  We then describe two approaches to extending the

algorithm of Section 6.7 to include these three features:.

•  Section 6.8.3 describes an approach that preserves the computation
efficiency, but requires giving up two desirable properties of the
properties of the POCv2 PR semantics.

•  Section 6.8.4 describes an approach that preserves the full POCv2
PR semantics but requires an inefficient brute-force computation.
Determining whether an efficient algorithm exists for the full
POCv2 PR semantics remains an open problem.

Section 6.8.5 concludes Section 6.8 with suggestions for future work, including

possible directions to pursue in finding a more efficient algorithm for implementing

the full POCv2 PR semantics.

6.8.1 Integrating POCv2’s PR class with explicit release and stream objects

The following questions arise when we consider how to integrate the PR

reliability class with explicit release synchronization and the stream abstraction.

Interaction of Reliability Classes with Stream Objects

The first question that arises is whether all cells of a stream object should

be required to have the same reliability class. It may be useful to allow the various

cells of a stream to have different reliability classes.  For example, in an MPEG video

stream, it may be useful to send the “I” frames (complete images) with higher

reliability than the “P” and “B” frames that represent deltas from some neighboring “I”
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frame.  However, for purposes of simplicity, in the current work we answer “yes”,

requiring that all cells of a particular stream object carry the same reliability class, and

defer the complication of multiple classes within a stream object to future work.

Another question that arises is whether POCv2 should enforce an “all or

nothing” semantics for PR stream objects.  That is, once a stream object with

reliability class PR has begun to be delivered, should it then be treated as reliable?

We clearly cannot implement such a semantics for stream objects with reliability class

U, since there is no mechanism for retransmitting lost cells of a stream object with

class U.  Therefore we allow  each cell to be delivered or declared lost independent of

all other cells, although we will require that the individual cells that comprise a

particular stream object be resolved (delivered or declared lost) in linear order.

Integration of stream objects with explicit release

In the context of explicit release, an object is not resolved until it has been

both delivered and its successors have been released.   To clarify this further, consider

the following example:

Suppose that explicit release synchronization is being used to

synchronize the end of an audio object, x, where all of x’s cells are of class PR.   The

first half of the cells for object x  have been given to the audio device, but have not yet

finished playing.  An object y follows object x in the partial order and is now waiting;

the remaining cells of object x seem to have been lost or delayed, and the application is

now requesting data.

The question is: should the transport layer declare the remainder of the

cells of x lost and deliver y, or should the transport layer wait for a signal from the

application that the first half of the cells have been resolved?  If we proceed to declare
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the second half of the cells of x lost and release the successors of x, including y, then

we may deliver y before the cells of x that were delivered have finished playing.  This

violates the synchronization semantics of the document, and cannot be allowed.

Therefore, there must be a requirement that within an object, any cells that

were delivered must be explicitly released before successor cells of the same object

can be declared lost.   If implemented naively as an explicit release operation per cell,

this could be rather costly in terms of increasing the interaction between the

application and the transport layer, but fortunately, there is an efficient solution as we

now explain.

Streaming vs. Stalled objects, and the underflow notification

Consider the case of an audio stream where each cell contains 20ms of

audio.  Requiring the application to explicitly release each cell might require 50 extra

operations across the TSAP every second, effectively doubling the number of TSAP

operations required for an audio stream.

Instead, we impose a lesser burden on the application that desires

synchronization of U or PR stream objects; the application must notify the transport

layer anytime the playout of the stream object underflows.  For example, in the case of

an audio object, the object underflows if the queue of data flowing to the audio device

empties out.   With this extra information from the application, we can now make a

determination as to whether a stream object is streaming (i.e. currently the process of

playing out content) or when it is stalled (a stream object that is ready to play, but is

waiting for cells to arrive.)74  The synchronization relationships can then be preserved

with the following rule:
                                                
74 Formal definitions of streaming and stalled appear in Section 6.8.3
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•  unreliable cells or objects that have predecessors in the streaming
state may not be declared lost,

•  unreliable or partially reliable cells from a stalled object can be
declared lost.

Essentially, an underflow notification serves as an explicit release for all

outstanding cells.   The underflow notification provides the transport layer with

sufficient information to preserve the synchronization relationships, because it is only

at underflow points that an explicit release is needed at a finer granularity than that of

complete objects in the partial order. A cell-level explicit release serves only to

determine when to declare successor cells within a stream object lost.  Until an

underflow actually occurs, there is still the hope that the next undelivered cell in the

stream may yet show up and be delivered, preventing—or at least, postponing—an

impending underflow.

What running time can be achieved when incorporating all three features?

First, we should recognize that when incorporating the stream abstraction,

it is necessary to add the number of cells, c,  to our notation.   Therefore, instead of

seeking an O(n+e) running time, we may seek an O(n+e+c) running time. Whether or

not this goal is achievable is currently an open problem.  In this section, we will

describe both the running time that is currently acheivable, as well as the barriers to

reaching the goal of O(n+e+c).

First, we note that re-sequencing the cells within a stream object is

equivalent to the problem of reordering TCP segments.  For reasons that were

explained earlier in Section 6.1.3, a simple linear search of the out-of-sequence

packets is the preferred technique to solve this problem; clearly this technique cannot

guarantee an O(n+e+c) running time.
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However, since our focus is the analysis of the processing that pertains

directly to the implementation of partial reliability, partial order and explicit release,

we will account for the resequencing of cells within a stream object separately from

the remainder of the processing; if we do this, O(n+e+c) is at least a conceivable goal.

6.8.2 The main difficulty: explicit release of streaming objects

The problem that arises is with streaming objects.   The correctness of the

O(n+e) algorithm presented in Section 6.7 depends on the following  property:  if an

object is determined to be waiting, meaning that all of its unresolved predecessors are

unreliable, then if all of the unresolved predecessors of that object are visited in the

order of a topological sort (determined by a DFS of the TRPOT), then some object will

become deliverable.  However, when we admit the possibility that one or more of

these unresolved predecessors may include a streaming object, then this property is

violated.   The next two sections describe two options to resolve this problem.

The first option, described in Section 6.8.3 is to relax two requirements of

the POCv2 PR semantics, namely

(1) that an object should never be declared lost unless such
declaration will result in the immediate delivery of some data

(2) that if an object is waiting and has no unconstrained
predecessors, then it will always be deliverable.

We considered this approach undesirable, however it has the advantage that when this

approach is taken, the running time for the algorithms presented in Section 6.7 is

preserved.
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The second option, described in Section 6.8.3, is to maintain all of the

requirements of the POCv2 PR semantics, regardless of the computation time

required. Implementing this option efficiently is currently an open problem.

6.8.3 An efficient algorithm that sacrifices two desirable properties

In this section, we sketch an algorithm called PO/PR-DEL-OPTION1,

which is a modification of the PO/PR-DEL-BASIC algorithm from Section 6.7.   In

this algorithm, we add linear-time resequencing of cells within stream objects (as in

the standard practice for TCP), and additional constant time operations per protocol

operation.  Therefore, the algorithm can be considered efficient.  However, we also

sacrifice two desirable properties of the POCv2 PR reliability semantics.  In this

section, we first sketch the algorithm, and then explain two properties of the definition

of the POCv2 PR class that are violated.

Sketch of algorithm PO/PR-DEL-OPTION1

To develop Algorithm PO/PR-DEL-OPTION1, we start with PO/PR-

DEL-BASIC algorithm from Section 6.7. Certain modifications are necessary to

implement the stream abstraction, and to provide the necessary bookkeeping so that

the current stream state of each object can be determined in constant time.   These

modifications are straightforward, and they add little insight; we therefore omit

them.75   Instead, we focus on three specific modifications that illustrate the problems

                                                
75 The actual code for the POCv2 implementation used in the ReMDoR experiments
contains the modifications for explicit release and the stream abstraction (but not the
PR semantics) and is available on-line.  Therefore, we concentrate only on the PR
semantics in this section.
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involved in modifying the PO/PR-DEL-BASIC algorithm to provide the features

necessary for the full POCv2 specification.

The first modification is to add an operation reportUnderflow(objNum)

that supports explicit release synchronization for unreliable and partially reliable

stream objects.   Let x be the object referred to by the integer objNum.  The application

may—and in some cases, must—call this operation any time that object x is starving

for additional cells; that is, all cells that the application has read from object x have

been completely presented.  This operation signals the POCv2 receiver that no

synchronization relationships would be violated by declaring lost the next cell (or

chain of consecutive cells) from this stream object.

Whether the application may invoke the reportUnderflow(objNum)

operation or must invoke this operation depends on the reliability class of the object x

referred to by objNum:

•  If object x is unreliable, then invocation of this operation is
necessary anytime object x contains more than one cell, and the
network is lossy.  This invocation is necessary because unreliable
objects are not retransmitted, and if a cell other than the first cell is
lost, without a call to this operation, the transport protocol will
deadlock waiting for an object that will never arrive.

•  If object x is partially-reliable, than this operation is optional;
calling it allows the PO receiver more flexibility in trading off
reliability for delay.

•  If object x is reliable, than this operation is meaningless, and is
ignored

The next two modifications take place in the implementation of the

getNextTSDU() operation. We require the following definition:
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Definition 6.8.1: The function currentObjectState(x) maps each object x in the

current period at the PO Receiver to one of the following stream

states:{unstarted, streaming, stalled, ready, resolved}.  The stream state of each

object x is defined by the finite state automata shown in Figure 6.22.
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start

when deliver(nextCellToDeliver);

when deliver
(nextCellToDeliver);

when (reportUnderflow(x)) && 
(nextCellToDeliver is available);
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(nextCellToDeliver) is not available

when releaseSuccessors(x);
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when (x reaches front of deliverOrDeclareLost queue
     && not (cellQueue.isEmpty() ) )
{ declareLost(all cells between
    nextCellToDeliver and cellQueue.front.cellNum - 1);
 assert(nextCellToDeliver is available); }

when (reportUnderflow(x)) && 
(nextCellToDeliver is not available);

when (x reaches front of
  deliverOrDeclareLost queue)
  && cellQueue.isEmpty()
{ declareLost (remaining cells of x);
   releaseSuccessors(x); }

when cellArrival(nextCellToDeliver);

Figure 6.22 Finite State Automata for stream states

For sake of space, we make two claims about the Finite State Automata in

Figure 6.22 without formal argument.  Claim 1: We can add bookkeeping operations

to the pseudocode for the algorithm in Section 6.7 to keep track of the current stream
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state of each object.  Claim 2: This extra bookkeeping does not increase the asymptotic

running time per operation beyond the analysis presented in Section 6.7.

We can now describe the remaining two modifications, both of which take

place in the getNextTSDU() operation as shown in Figure 6.23.  The bullets in this

figure indicate the lines that have been modified as compared to the previous version

from Figure 6.2.   To implement explicit release, we remove the line of code that

implicitly released the succesors of each object after it was delivered, and instead

make the releaseSuccessors() and reportUnderflow() operations directly available to

the transport service user (the receiving application).

Finally, we must prevent cells from being delivered or declared lost

whenever predecessor cells from the same object are currently streaming.   Recall from

Section 6.7 that the deliverOrDeclareLost queue contains a list of topologically sorted

objects, with the property that one or more of the objects in the list (at least, the final

object) has deliverable data.   The second section of added code in Figure 6.23

specifies that if an object comes to the front of this queue while it is streaming, then

the PO receiver must suspend declaring objects lost until that object is no longer

streaming.

This latter modification prevents synchronization violations that would

result if streaming objects could be declared lost while still streaming.  Furthermore,

this modification will not cause a deadlock provided that either the application

eventually either reports an underflow, or releases the successors of the object; nor will

it prevent or unnecessarily delay the delivery of any objects that do arrive.  However,

this algorithm fails to implement two desirable properties of an algorithm for the

POCv2 PR class, as we explain below.
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operation getNextTSDU() returns TSDU:

…
[This section of code exactly as in Figure 6.2]
…

while (true)
{

if (not output.isEmpty()) // if a waiting object become deliverable
{

x = output.remove;· // Note: do not release successors here;
// wait for explicit release
return encapsulated TSDU from inside x

}
else
{· x = deliverOrDeclareLost.peek();· if (x is streaming)· return null;

x = deliverOrDeclareLost.remove();
declareLost(x);
releaseSuccessors(x.objnum);

}
}

 assert(false); // by theorem 6.7.9, we should never reach this statement

Figure 6.23 Modified psuedocode for getNextTSDU(), option 1
The · symbol indicates changes from the psuedocode presented in Section 6.7

The first property we sacrifice: no premature loss declarations

PO/PR-DEL-OPTION1 violates the requirement that no cell of any object

will be declared lost unless and until this action directly results in the delivery of some

other cell.   As an example, consider the following scenario: unreliable objects x and y

both precede z, which has data available.  Object x is a one-cell object, while y is a

multiple-cell object that is currently streaming.  The DFS of the TRPOT that locates

the predecessors of z places x on the deliverOrDeclareLost queue in an earlier position

than y.   As a result, x is declared lost before y is determined to be streaming.  Object x
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has now been “sacrificed” earlier than was necessary. It is possible that x could arrive

before y is finished streaming; in this case, x would have been able to be delivered if

only the PO/PR receiver had not been hasty to declare it lost.  It is undesirable for an

algorithm providing PR delivery to declare an object lost unless that declaration results

in a specific tangible benefit, viz., a reduction in delay for some other specific object.

The second property we sacrifice: no deliverable data waiting for unreliable data

The second property we sacrifice is the one that the delivery of data should

never be delayed by unreliable predecessor data.   This property is violated in the

modified algorithm. Given that the delivery of TSDUs is prevented any time the head

object of the deliverOrDeclareLost queue is streaming, the delivery of a TSDU by the

getNextTSDU() operation can no longer be guaranteed whenever there is waiting data.

To see how the property is violated, first review how the property is shown

to be maintained by the PO/PR-DEL-BASIC algorithm.  Theorems 6.7.7 and 6.7.10

proved the correctness of the isAnythingDeliverable() and getNextTSDU() operations,

respectively.  The argument is that if there is any waiting data, isAnythingDeliverable()

will return true, and if the operation getNextTSDU() is invoked at a time when

isAnythingDeliverable() would return true, at least one cell will be delivered.  The

operation getNextTSDU() chooses an arbitrary waiting item y as the basis for the DFS

of the TRPOT that fills the deliverOrDeclareLost queue.

In the modified algorithm, this arbitrary choice is invalid.   Suppose there

are several waiting objects (here we assume that the definition of “waiting” is not

modified to exclude objects with streaming predecessors.)  Partition the waiting

objects according to whether or not each object has a streaming predecessor.

Choosing any of the objects that lacks a streaming predecessor results in the delivery
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of some cell by the getNextTSDU() operation.  However, choosing any of the other objects

may or may not result in delivery of a cell.  If some predecessor of the chosen object has

deliverable data that ends up in the deliverOrDeclareLost queue before any and all streaming

predecessors of the chosen object, then a cell is delivered. If not, then the property of “no

deliverable data waiting for unreliable data” has been violated: a waiting object that could

have been delivered exists, yet the getNextTSDU() operation returns with no cell.

6.8.4 A brute-force algorithm that implements the full POCv2 PR semantics

To develop an algorithm with the desired properties, we face several

challenges.

•  First, we must ensure that the isAnythingDeliverable() operation
can distinguish between a waiting object that has a streaming
predecessor, and one that does not.

•  Second, we need to ensure that the getNextTSDU() operation
returns only the latter kind of object as the basis for the DFS over
the TRPOT.

•  Third, and perhaps most challenging, we must deal with the fact
that the stream state of an object is dynamic, and can therefore
change between invocations of getNextTSDU().

To deal with this third challenge, we would like to ensure that the

deliverOrDeclareLost queue is completely emptied after each call to getNextTSDU(),

so that we can treat the stream state as static when reasoning about the contents of this

queue.  To ensure that the queue is emptied, we require that no waiting object with a

waiting predecessor should be chosen as the basis of the DFS over the TRPOT—

instead, the waiting predecessor should be chosen.   If the chosen waiting object y has

no waiting predecessor and no streaming predecessors, then the final loop in

getNextTSDU() will always have the same outcome: a sequence of unreliable/partially
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reliable objects is declared lost, and then a cell from the waiting object y is delivered.

With this extra requirement, deliverOrDeclareLost becomes a true queue since it will

be filled and emptied in strict FIFO order within a single call to getNextTSDU().

Sketch of algorithm PO/PR-DEL-OPTION2

We now sketch PO/PR-DEL-OPTION2, a modification of PO/PR-DEL-

BASIC that preserves all of the properties of the proposed POCv2 semantics for the

PR reliability class, but at the expense of an inefficient running time.   We do not

propose PO/PR-DEL-OPTION2 as an algorithm to be implemented. Rather, the

purpose of PO/PR-DEL-OPTION2 is to provide a starting point for future work

towards a more efficient algorithm, or towards lower-bound proofs showing that more

efficient algorithms cannot be found.

As with our sketch of PO/PR-DEL-OPTION1, we omit certain

housekeeping details, and focus only on the changes that are crucial to the running

time, and key properties of POCv2’s PR semantics.  We add just one new local

procedure, as shown in Figure 6.24. We then place calls to this new procedure into

isAnythingDeliverable() and getNextTSDU() as shown in Figures 6.25 and 6.26.

The difficulty now is to find an efficient implementation of the procedure

findWaitingObjectWithNoWaitingOrStreamingProperPreds().   We consider this problem

in the next section.
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local procedure findWaitingObjectWithNoWaitingOrStreamingProperPreds()
returns pointer to object;

// returns pointer to object meeting the necessary criteria, or
// null if no such object exists.
// Used in both isAnythingDelierable()and getNextTSDU() to choose object
// that serves as basis of the DFS on TRPOT

Figure 6.24 Procedure findWaitingObjectWithNoWaitingOrStreamingProperPreds()

operation isAnythingDeliverable() returns boolean:
{

if (not output.empty() or count == n) return (true);
else if (there are no buffered items)

{return false} // there’s no data at all
else if (there exist no waiting items) // see defn 6.6.2; thm 6.7.1

{return false} // there’s data, but each object is waiting on a least one
// reliable predecessor, so declaring things lost won’t help

else {· y = findWaitingObjectWithNoWaitingOrStreamingProperPreds();· if (y == null)· return false;· else· return true; // there is at least one item we could deliver
if we· // declared its predecessors lost
 }

}

Figure 6.25 Modified pseudocode for isAnythingDeliverable(), option 2
The · symbol indicates changes from the psuedocode presented in Section 6.7

operation getNextTSDU() returns TSDU:
local variable TPDU pointer tpdu;
if (count == n) return nil; // all objects have been delivered
wait(isAnythingDeliverable);

// if false, sleep; recheck condition after each processIncomingTPDU() call;
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// in practice, the sleep can be avoided by never calling getNextTSDU()
// without first checking isAnythingDeliverable().

if (not output.isEmpty())
{

tpdu = output.dequeue;· // Note: do not release successors here; wait for explicit release
return encapsulated TSDU from inside tpdu

}
else // deliver a waiting item (after possibly declaring some items lost)

{
if (deliverOrDeclareLost.isEmpty())
{· y = findWaitingObjectWithNoWaitingOrStreamingProperPreds();· assert(y != null); // implied since we waited for isAnythingDeliverable();

fillDeliverOrDeclareLostQueueWithSortedLSet(y);
// find the set L(y), consisting of all of y’s undelivered unreliable
// predecessors, and topologically sort them according to the
// partial order, and place these items on the
// deliverOrDeclareLost queue.

}
while (true)
{

if (not output.isEmpty()) // if a waiting object become deliverable
{

x = output.remove;· // Note: do not release successors here; wait for explicit release· assert(x == y); // if no object predecessor of y was waiting, first object· // to become deliverable will be y
return encapsulated TSDU from inside x

}
else
{

x = deliverOrDeclareLost.remove();
declareLost(x);
releaseSuccessors(x.objnum);

}
}·assert(false); // we should never reach this statement

Figure 6.26 Modified pseudocode for getNextTSDU(), option 2
The · symbol indicates changes from the pseudocode presented in Section 6.7
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Running time of algorithm PO/PR-DEL-OPTION2

The key to the running time of PO/PR-DEL-OPTION2 is to implement the

procedure findWaitingObjectWithNoWaitingOrStreamingProperPreds() efficiently.  The

corresponding problem in the PO/PR-DEL-BASIC algorithm was to find any waiting

object; this could be done in O(1) time by simply keeping a list of such objects, and

returning the front element of the list.   The time necessary to maintain the list was

amortized to other operations.   However, in PO/PR-DEL-OPTION2 the problem is

more difficult.

First, let us suppose that in addition to the adjacency list representation of

the TRPO, the PO receiver also initializes a transitively closed adjacency matrix

representation denoted by TCPO.  The benefit of initializing the TCPO for each epoch

is that it subsequently permits the PO receiver to determine in O(1) time whether x p y

for arbitrary objects x and y.   The cost of this initialization is either

•  an additional O(n2log n) bits in the transmission of the service
profile, plus O(n2) initialization cost, or else

•  an O(n3) computation to compute the TCPO directly from the
adjacency list representation of the TRPO sent in the service
profile.

Now, consider the problem of finding a waiting item that has no streaming

predecessors or waiting predecessors.   Given the availability of TCPO, the brute force

approach to either finding such an item, or determining that no such item exists is

shown in Figure 6.27.  As can be seen from the nested loop structure, this

implementation of findWaitingObjectWithNoWaitingOrStreamingProperPreds has a worst

case running time of O(w2 + sw).   Recall that our goal is to be able to amortize the

time required by each operation to O(1) per operation.  Instead, since both s and w

could be O(n), we have a worst case running time that could be as much as O(n2).
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Furthermore, there seems little hope that this time can be amortized: because the

stream states of object can change between invocations of isAnythingDeliverable() and

getNextTSDU(), it seems unlikely that an incremental data structure can be built to

avoid repeating the expensive operations.  Therefore, we are less than satisfied with

this running time, a fact which leads us to suggest three specific lines of future

investigation, as described in the next section.

local procedure findWaitingObjectWithNoWaitingOrStreamingProperPreds()
returns pointer to object;

// returns pointer to object meeting the necessary criteria, or
// null if not such object exists.
// Used in both isAnythingDelierable()and getNextTSDU() to choose object
// that serves as basis of the DFS on TRPOT

{
foreach (w in the list of waiting items)
{

boolean noWaitingOrStreamingPreds = true;
foreach (s in the list of streaming items) while (noWaitingOrStreamingPreds)

if (s p w)
noWaitingPreds = false;

foreach (x in the list of waiting items) while (noWaitingOrStreamingPreds)
if (x p w)

noWaitingOrStreamingPreds = false;
if (noWaitingOrStreamingPreds)

return w

}
return null;

}

Figure 6.27 Brute-Force approach to PO/PR-DEL-OPTION2
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6.8.5 Future work related to the POCv2 PR reliability class

There are several unresolved questions related to the POCv2 PR reliability

class.  The overarching question is whether the proposed POCv2 definition of the PR

reliability class is useful—that is, can the POCv2 definition of PR offer performance

benefits that are perceivable by an end-user?  This question is best resolved by

experiments with PO/PR service similar to the ones for PO/R service presented in

Chapter 5.   The fact that we do not currently have an efficient algorithm to efficiently

implement the POCv2 PR semantics in their full specification leads to three

subproblems:

(1) Is the algorithm in PO/PR-DEL-OPTION1, in fact, good
enough? It may be the case that the problems foreseen with
PO/PR-DEL-OPTION1 rarely arise in practice, or are mitigated
by performance gains.  This case can be investigated by
implementing the PO/PR-DEL-OPTION1 algorithm in the
UTL/ReMDoR framework, and conducting performance
experiments.

(2) Is there a better algorithm for PO/PR-DEL-OPTION2?
Several potential approaches for improving the efficiency of this
algorithm are outlined below.

(3) What do simulation results tell us about the overarching
question, as to whether PO/PR can provide benefits
perceptible by an end user? We can use discrete event
simulation to measure the expected performance of the
ReMDoR application using PO/PR-DEL-OPTION2, assuming
that the processing time is negligible.  The outcome of such a
simulation would tell us whether an efficient algorithm for
PO/PR-DEL-OPTION2 would be a matter of practical interest
or merely theoretical interest.
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Approaches to improving the running time of PO/PR-DEL-OPTION2

There are several approaches to improving the performance of PO/PR-

DEL-OPTION1.  First, note that the algorithm does not need to check all elements of

the waiting set, but only those that are minimal within the waiting set w.r.t. to the

partial order.  By analogy with a min-heap (which returns the minimum element of a

totally ordered set in constant time, and allows inserts and deletes in time O(log n)),

we might pursue the implementation of a partially-ordered min-heap.  This data

structure would provide an operation to iterate through the list of the minimal elements

in time O(m), where m is the number of minimal elements currently in the set. It is

clear that a circular list of multiple min-heaps could provide this operation; what is

less clear is how efficiently inserts and deletes could be performed.

Suppose, however that such an operation could be implemented.  Now the

procedure findWaitingObjectWithNoWaitingOrStreamingProperPreds() can be sketched as

shown in Figure 6.28. The algorithm may be able to take advantage of the fact that the

list of minimal waiting objects, l1, and the list of streaming objects, l2 possess certain

known properties: (1) they are both antichains, (2) they are both disjoint, and (3) no

element of l2 precedes any element of l1. The fact that both lists are antichains limits

the size of each list to the maximum width of the partial order, which is already an

improvement over the previous algorithm (discounting the as yet unknown cost of

implementing a partially-ordered heap.)   

Future work may consider whether use of a k-dimensional representation

of the partial order (representing the order as an intersection of k chains) can improve

the running time of PO/PR-DEL-OPTION2.  Such a representation may allow an

efficient algorithm for k-dimensional partial orders. (Most partial orders have

dimension 1 or 2, and partial orders with dimension 5 or more are extremely rare.)
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local procedure findWaitingObjectWithNoWaitingOrStreamingProperPreds()
returns pointer to object;

{
let list l1 = the list of streaming objects

let list l2 = the minima of the waiting objects.
// now the following properties hold:
//  l1  and l2 are both antichains
// l1  and l2 are disjoint (defn’s of streaming and waiting are mutually exclusive)
// no element of  l2 precedes any element of list l1 .
find an element of l2 with no predecessor in l1, and return it

OR determine that no such element exists and return NULL
}

Figure 6.28 Alternate pseudocode for PO/PR-DEL-OPTION2

6.9 Representation of partial orders (encodings, data structures)

One objection that can be raised to a PO/PR transport protocol is that there

is overhead associated with the transmission of the service profile.  To make efficient

use of the bandwidth, it is desirable to represent this data structure with as few bits as

possible.  On the other hand, it is sometimes desirable to tradeoff efficient processing

at sender and receiver for a larger number of bits in the protocol header

(Chandranmenon and Varghese, 1995).    In this section, we survey some of the

techniques that can be used to represent these data structures, and the tradeoffs

associated with these data structures. We then argue that the transitively-reduced

adjacency list is the preferred representation for PO/PR transport protocol specification

and implementation.

The question of how to represent a partial order P arises in at least three

contexts:
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•  Transmission: how the partial order is represented in the PDUs
exchanged between peer transport-layer entities, i.e. at connection
establishment time.

•  Processing: how the transport-layer sender and receiver represent
the partial order internally during the data transfer phase.

•  Application Interface: how the application represents the partial
order when it is passed to the transport protocol through the API
when the connection is requested.

Previous work on POC dealt only with the transmission of the PO and the sender and

receiver processing; the API was not defined. ((Amer et al., 1993, 1994), (Marasli

et al., 1996a: 1996b, 1997a, 1997b, 1998), and RFC1693)). These efforts used the

transitively closed matrix representation for both transmission of the partial order

during connection establishment, and for the internal representation of the partial

order.

Table 6.2 lists various techniques that can be used to encode a partial order

P over n objects, along with the number of bits required.
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Table 6.2 A partial listing of POCv2 service primitives

Representation Number of bits
required

Class of partial orders
for which this is valid

Reference

Full 0-1 adjacency matrix n2 any partial order (well-known)
Upper Triangular
0-1 adjacency matrix

n(n-1)/2 any partial order where
(1 2 3…n) is a valid
linear extension

(Amer et al.,
1993)

Two Total Orders
(take intersection)

 nn 2log2 Any series-parallel
partial order

(Valdes,
Tarjan and
Lawler, 1982)

One Total Order ∩
with {1p 2p…p n}

 nn 2log any partial order where
(1 2 3…n) is a valid
linear extension

easy extension
of (Valdes,
Tarjan and
Lawler, 1982)

Adjacency List of
Transitively-reduced
precedence graph

 1log)( ++ nen any partial order (well-known)

Two of the representations in this table require that 1..n be a valid linear

extension of the partial order.  On the one hand, this may not seem like a burdensome

requirement, since the objects can simply be renumbered.  However, for some

applications, it may create a real inconvenience.   Consider the screen-refresh example

in Section 2.2.1.  The user of the window system is free at any time to change the

orientation of the windows in such a way that 〈1;2;3;4〉  is no longer a valid linear

extension.  To maintain 〈1;2;3;4〉  as a valid linear extension, both sending and

receiving application would have to communicate a new mapping between the

applications numbering scheme and the one used by the PO/PR protocol.  This

requirement would likely wipe out any gain realized by using an object representation

that relies on the assumption of 〈0;1;2;…;n-1〉  as a valid linear extension.

The adjacency list encoding is simply the concatenation of the adjacency

lists for objects 0,1,…,n-1 with each list preceded by its length.  In the case of

ReMDoR, the overhead of transmitting the partial order is negligible when put into

context.  Let p be the number of periods during which a given partial order P is in
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effect.   The overhead for transmitting the partial order for the (n+e)( log n)

representation is

( )( )bits log1 bits log)(
2

12 n
np

nen
n
e

p +=




 +

when amortized.  While there is no corpus of multimedia documents that can be

consulted to verify this, a reasonable guess at the value of e/n suggests that somewhere

around 5 might be a reasonable upper bound, and that around 1000 is a reasonable

upper bound for n.   Thus, even if p is 1, we are looking at PO representations in the

range of 60 bits, or around 8 bytes per object

Finally, we must consider how quickly we can convert one representation

to another; Table 6.3 summarizes applicable results.  M(n) denotes the running time of

n × n matrix multiplication.  Currently, the best known time for M(n)=O(n2.36)(Cormen

et al., 1990). A more practical algorithm for transitive closure due to Warshall takes

time O(n3) (Cormen et al., 1990) and can be used to implement transitive reduction by

applying techniques from (Aho, Garey and Ullman, 1972). To put this conversion in

perspective, Table 6.4 shows some figures for the running time of this algorithm in

practice, from an implementation that is hardly optimized (i.e., it contains a

considerable amount of debugging code.)  Even with this relatively unoptimized code,

we can:

•  process POs with n<= 100 with sub-second response time

•  process POs with n<= approx. 200 elements in a couple of seconds
(what would be considered a “fast” compile time for a
programmer)

•  process POs with n<= approx. 400 elements in around 10-15
seconds (which might be considered a “moderate” compile time
for a programmer)
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•  process POs with n<= approx. 800 in a few minutes; say, the time
it currently takes an average PC to complete a full virus scan on all
the files of a reasonably large hard drive.

However, as n goes beyond 400, the running times moves into the realm of minutes—a

user might need to get up and get a cup of coffee, check his/her email, or run a quick

errand while the document is being compiled.   As n moves to our hypothetical upper

bound of 1000 elements, the running times are feasible, but unattractive (somewhere

in the realm of 1 to 15 minutes), and most likely impractical beyond 1000.

While using a more sophisticated algorithm based on reducing transitive

reduction and closure to matrix multiplication and applying something like Strassen’s

algorithm might help, a more practical solution might be to use the POCv2 concepts of

“epochs” and “periods”.  The strategy would be to decompose the document into

multiple partial orders, where the size of each partial order is determined by the

following tradeoff:

•  keeping n below some number that, in practice, allows the
computation of transitive reduction and transitive closure within a
reasonable running time (say, no more than 3 seconds)

•  within that constraint, making the size of each period as large as
possible to avoid the performance penalty imposed by the strict
sequencing requirement between periods.

Once can envision a document authoring tool that allows the author to control this

tradeoff in a manner similar to that used by compilers that can turn code optimizations

on or off with a run-time option.   Just as programmers often will turn off code

optimization during the code/compile/test sequence during development, a document

author might choose to decompose documents into smaller periods for faster

compilation during the authoring process.   When the document is resolved and ready

to be placed on the server, the author could then select a higher target maximum for
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document decomposition, and run the necessary calculation off-line (overnight, if

necessary) to provide better performance during document delivery.

In the end, we have chosen the transitively reduced adjacency list

representation chiefly because it is a convenient representation for the algorithms at

both sender and receiver, and the resulting PDU sizes are acceptable.

Table 6.3 Algorithms to convert between PO representations

We can convert this
representation…

…to this one… …in time: Reference for
algorithm

Adjacency matrix Adjacency list O(n2) well-known

Two Total Orders Adjacency list
(provided P is series-
parallel)

O(n+e) (Valdes, Tarjan
and Lawler,
1982)

Matrix (or adj. list)
with arbitrary
transitivity

Transitively-reduced
matrix (or adj. list)

M(n)=O(n2.36) (Aho, Garey and
Ullman, 1972)

Matrix (or adj. list)
with arbitrary
transitivity

Transitively-closed
matrix (or adj. list)

M(n)=O(n2.36) (Aho, Garey and
Ullman, 1972)
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Table 6.4 Time to compute transitive closure and transitive reduction in the
ReMDoR parser for various values of n on Sun Ultra 10.

m
(see

note*)

n
(# of

elements)

Time to compute
transitive reduction

Time to compute
transitive closure

1 8 <1ms <1ms

2 11 <1ms <1ms
4 17 <100ms <100ms
8 29 <100ms <100ms
16 53 <100ms <100ms
32 101 424ms 504ms
64 197 3.0sec 2.7sec
128 389 13.5sec 10.4sec
256 773 106sec 79sec
512 1541 14min 1 sec 10min 13sec
1024 3077 1 hour 53 min 1 hour 21 min
2048 6149 15 hours 9 min 11 hours 27 min
*The documents used for this experiment were generated by a
script and were authored solely for the purpose of testing the
system with large documents.  They have the following
storyboard: they present the numbers 1 through m  with a one
second pause between each number.  After each number is drawn,
it is erased before the next number is displayed, and the word
“DONE”  is displayed at the end.  The number of elements in each
such document is n = 3m+5.

6.10 Chapter summary and suggestions for future work

This chapter motivated, described, and provided proofs of correctness and

running time analysis for several algorithms required for provision of a PO/R transport

service. In particular, we showed how a particular view of the Topological Sort

problem as a incremental process provides a foundation for several algorithms related

to the implementation of partial order transport.
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The chapter also described algorithms needed to integrate a PO/R

transport service within the ReMDoR multimedia document retrieval system,

including the algorithm for explicit release synchronization.

Several problems related to the implementation of the POCv2 PR

semantics were described.   As a basis of future investigation, we provided two

algorithms: one that is efficient—O(n+e+c) per period, amortized—but does not

implement the full semantics of the POCv2 PR reliability class, and another that

implements the full semantics, but has an inefficient running time: O(n2) per

operation, not amortized.

Finally, we analyzed several possible data structures for encoding partial

orders for transmission, and representing partial orders as data structures for efficient

computation.  We concluded that for PO/PR transport protocols the best PO

representation both for transmission and internal storage is an adjacency list

representation of the transitively reduced precedence graph corresponding to the partial

order.

Section 6.8 contains many suggestions for future work in the area of

algorithm development for PO/PR transport service; the reader is referred to that

section for details.  In addition, we provide here some additional comments on some of

the other future work suggested in this chapter.

Future work: linear extension selection

This dissertation uses only static selection of the initial sending order for

the ReMDoR server.  The static algorithm used is a greedy algorithm that incorporates

a simple heuristic for providing priority for a single audio stream, based on a static

prediction of the available bandwidth.   Future work may investigate both more
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sophisitcated static approaches, as well as dynamic approaches,  incorporating any or

all of the following:

•  results from the real-time systems area in rate-monotonic
scheduling

•  provision for more than one audio stream

•  timing of pause and continue objects

•  previous work on dynamic linear extension selection for PO/PR
service (Marasli et al., 1996b)

Empirical Observation of Internet Metrics

Some of the arguments in this chapter and elsewhere in the dissertation

area based on anecdotal observation of what is “normal” for the Internet.  In particular,

we have made claims of various strengths about TCP Window Sizes, loss rates, and

round-trip delays.   Work towards continuous sampling of these quantities is clearly

useful, not just for the research in this dissertation, but for the entire protocol design

field.   The IDMaps project (Jamin et al., 2000) is one example of work currently

underway along these lines.


