Chapter 3

THE UNIVERSAL TRANSPORT LIBRARY (UTL)

3.1 Introduction

This chapter describes the Universal Transport Library (UTL) devel oped
by the author as atool for investigating flexible Transport QoS in general, and PO/PR
transport protocolsin particular. The author designed the core architecture of this
transport layer software, and completed a substantial portion of the implementation.
Two MS students, Ed Golden and Mason Taube, provided design consultation,
programming and debugging support under the author’ s supervision.

UTL isalibrary that can be linked in with an application, to provide a
range of transport services through asingle API. The transport services provided in
UTL include simple wrappers for TCP and UDP, as well as arange of PO/PR
transport services. For devel opers of transport layer services and protocols, UTL
provides a framework for rapid prototyping of transport layer implementations. For
application writers, UTL provides the ability to easily compare an application’s
performance over awide range of transport protocols. The implementation of UTL
used in this dissertation isfor Solaris 2.6; an implementation for Linux has also been

compl eted.

92

3.1.1 Organization of thischapter

This chapter is organized as follows. Section 3.2 first describes the

motivation for UTL, namely certain problems that we encountered with comparing the

performance of ReMDoR over various transport protocols. Section 3.2 goes on to

describe how UTL addresses these problems. Section 3.3 provides an executive

summary of UTL; this section is an overview of the most important aspects of UTL

that should be understood before reading the performance experiment results of

Chapters 5 through 7.

Sections 3.4 through 3.7 describe UTL in detail; readers primarily

interested in performance results may wish to skip these sections on first reading:

Section 3.4 provides aformal specification of the rules for
composing UTL mechanism from layers, and determining the
resulting QoS.

Section 3.5 describes afew of the key design decisions that faced
the developers of UTL, and provides the rationale for the design
choices made.

Section 3.6 highlights afew protocol details for KXP, KX2 and
KX3; these protocols are basis of the key transport services
provided by UTL.

Section 3.7 describes the means by which UTL was tested and
debugged.

Section 3.8 describes related work, including work on
implementing protocols at user level, and an overview of the x-
Kernel (Hutchinson and Peterson, 1988) which providesasimilar
protocol framework.

Finally, Section 3.9 summarizes the materia presented in this chapter.

93

3.2 Maotivation

Suppose we want to compare a PO/PR transport service such as POCv2 to
traditional transport services: e.g., ordered/reliable service, and unordered/unreliable
service. We might imagine that we could compare POCv2 to TCP and UDP.
However, it turns out that TCP and UDP differ in many ways other than order and

reliability. Here arejust three examples:

» TCPisconnection oriented, while UDP is connectionless.
Connection-oriented communication requires a different set of
system calls to set up communication, and clean up afterwards.

* TCPisbyte-stream oriented, while UDP is message-oriented. To
achieve message-oriented communication over TCP, a
considerable amount of extra code must be added to the
application.

» TCP providesflow control and congestion control; UDP does not.

If we want to write an application that can operate over both TCP and
UDP, aswell as experimental protocols such as POCv2, we will likely have to write a
great deal of special-case code. Special-case code that depends on specific transport
layersis unappealing for several reasons. First it istime-consuming and error prone.
Second, writing special-case code makes experimentation with additional transport
services difficult, since with this approach, each time we want to add a new transport
service to the experiment, the application must be modified. Finally, it opensthe
experiments up to criticism that the comparison is unfair, since the application code
being executed depends significantly on the transport protocol.

Therefore, our first goal in developing UTL isto eliminate (or at least,
greatly reduce) the need for special-case code in the application. An application
developer using UTL should only have to write the communications part of an

application one time, and the application should then work in a sensible fashion

94

regardless of the transport protocol being used. The vision isthat an application
specifies the transport protocol only once. The protocol is specified as a parameter to
the function that listens for connections (in the case of a server) or the function that
requests a connection (in the case of aclient.)

Now clearly, there are times when some services are inappropriate for
some applications. An application that inherently requires areliable service—for
example, a banking application—cannot be expected to perform correctly over an
unreliable service. UTL does not promise that all applications will run correctly over
all protocols. The application designer is responsible for restricting applicationsto a
subset of UTL services that are appropriate for the needs of that application.

What UTL does promise isthat (1) the basic transport layer functions of
read, write, connect, listen, accept, and so forth, will take the same parameters
regardless of the transport service selected, (2) that each of these functions will behave
in amanner consistent with the service selected. For example, if an application does a
write() operationover aUTL servicethat isreliable, UTL guarantees that either the
message is delivered, or else the application will receive anotification that the
message may not have been delivered. If the application doesawri t e() withaUTL
service that is unreliable, the message may or may not be delivered.

In summary, the first principle of UTL isthat except when selecting the
transport service on theinitial listen or connect operation, the application need never

be concerned with what transport service is being used at any given time.

3.3 Overview of UTL
This section provides the reader with a quick introduction to the most

important aspects of UTL. It isespecially appropriate for the reader who wants just

95

enough understanding of UTL to be able to interpret the performance resultsin their
proper context. Nearly al the issues discussed in this section are covered in more

detail later in this chapter, or elsewhere in the dissertation.

3.3.1 Central principlesof UTL
Several central principles guided the design and implementation of UTL.
Here, we merely list them with abrief explanation; each is covered in more detail later

in the chapter.

(1) Avoidance of protocol20 specific, special-case codein the

application. (Explained in Section 3.2 above).

(2) Application level framing. Following the example of (Clark
and Tennenhouse, 1990), UTL follows the philosophy that
transport and application layers should cooperate to preserve
ADUs as atomic entities, and provides appropriate reliability

and order for individual ADUs where possible.

(3) Reasonablefallbacks. Thisprincipleisacorollary of the “no-
special-case-code” principle. If an application requests an
operation that cannot be performed by the specified mechanism,
UTL will do the best it can. For example, if apartial order is
requested when the mechanism only supports unordered service,
the protocol will still allow data transfer, abeit providing

unordered service.

20 After we define the term “mechanism” in Section 3.3.2, we will cite this principle as
“avoidance of mechanism-specific code” rather than “avoidance of protocol-specific
code.”

96

(4) Minimizing Data Copies. Minimizing data copiesis crucial,
since performance is of the essence for any application using
UTL.

3.3.2 Common service model: connection oriented, PO/PR message service

UTL provides an APl similar, though not identical, to the Berkeley
Sockets API. While the purpose of UTL isto provide adiversity of transport services,
to meet the goal of providing acommon API, UTL is based on acommon service
model of connection-oriented, message-oriented service. Section 3.5.2 explainsthe
rationale for this choice in more detail.

In addition, since PO/PR is the most general service in terms of order and
reliability, the common service model assumes PO/PR service. Therefore, operations
to modify the service profile2! areincluded in the basic APl of UTL. However, based
on the reasonabl e-fallbacks principle, since the default service profileisfor asingle
reliable object per period, UTL applications are free to ignore the partial order and
partialy reliability features of UTL. If the only services required for agiven
application or experiment are combinations of (ordered vs. unordered) and (reliable vs.
unreliable) service, the API functions specific to partial order and partial reliability
never need to be called.

3.3.3 Connection-oriented impliesthree phase oper ation—nothing more
While the term connection-oriented (CO) is often associated with

ordered/reliable service, it should be emphasized that CO does not imply either order

21 See Section 2.4.3 for adiscussion of the term “service profile” asit pertainsto a
PO/PR service.

97

or reliability. CO refers only to the fact that there are three phases of operation: (1)
connection establishment, (2) data transfer, (3) connection teardown. (A more detailed
discussion of this point can be found in (Iren et al., 1999a)). Though all the transport
services provided by UTL are CO, the levels of reliability and order range from
unordered/unreliable to ordered/reliable, with many gradationsin between.

For CO transport protocols, a consequence of three-phase operation is that
state information is aways maintained at both sides of the connection—at least, to
indicate the current phase of operation. More typically, state variables are kept to
manage the provision of features such asreliability, order, flow control, and so forth.
Within UTL, this state is maintained in an abstraction called a session. Just asin the
Berkeley Sockets API, an application references a session using afile descriptor. A
file descriptor is a positive integer that corresponds exactly to the file descriptor used
by Unix for the underlying UDP or TCP socket that provides serviceto the UTL

session.

3.3.2 Sdectingtransport QoSvia UTL mechanisms

Asof UTL version 0.90, there were 34 different transport services
provided, as shown in Table 3.1. For reasons explained in Section 3.5.8, we refer to
each of these services as amechanism. Each mechanism has a2 or 3 character name
consisting of letters and digits name; the names should be regarded as mnemonic
codes rather than abbreviations or acronyms. To use a transport service provided by
UTL, an application must either passively listen for a connection (the usual case for
servers), or actively connect to alistening application (the usual casefor clients). The
utl _Listen() andutl_Connect () functionsused for this purpose require that

one of the mechanismsin Table 3.1 be specified. The mechanism specified in these

98

function callsis the primary means by which the application specifies the desired
transport service, protocol, and QoS for a connection.

Typically, an application based on UTL provides either acommand line
option or amenu to the application user by which a UTL mechanism can be selected,
asshownin Figure 3.1. Because of the no-special-case-code design principle, an
application using UTL can simply

(1) takeacharacter string representing a UTL mechanism name,

(2) convertittoaUTL mechanism number
(viatheut | _StringToMech() function)

(3) passthe UTL mechanism number to the
utl _Connect () orutl Listen() function.

After theut | _Connect () orutl _Listen() returns, the application usesthe

connection in the same manner regardless of the mechanism being used.

99

ren[8: 15pnj > server -help
Proper invocati on:

TCP server [options]
TCP il Opt i ons:
UDP -help (as first option only: prints this nessage)
-p <port> (default: 2000)
POCv2 =l -h <host> (default: Iocal host)
-m <pr ot ocol > (values: TCP (default), UDP, POCv2, KXP)

-s <frame size> (default: 1024)
-n <no of frames> (default: 20)
ren[8: 15pnj >

Figure3.1 Selecting from among different transport protocols by a menu (left)
or command line option (“-m” for “mechanism”, right).

3.3.3 Maodifying transport QoSvia UTL protocol parameters
In addition to selecting a mechanism, the UTL service user can modify any
of several optional protocol parameters to further tailor the transport service and/or

protocol. For example, some UTL mechanisms alow the application to:
* modify the sending and receiving window sizes,
* modify theinitial values used for RTO estimation,

* turnon and off various aspects of congestion avoidance features
such as slow start, and fast-retransmit.

Table 3.3 shows the protocol parameter values that are supported in UTL
version 0.90. In keeping with the no-special-case-code principle, any of these
protocol parameters can be set for any mechanism. Based on the reasonable-fallbacks
principle, if the protocol parameter is not applicable to or incompatible with the
mechanism selected, a reasonable aternative action will be taken—usually, doing

nothing.

100

Table3.1

UTL mechanisms

UTL QoS Parameters (see Table 3.2 for explanation of values) Layers
Mech 0 Expl.Rel Cong. App/Tr
rder Rel. Dupl. Sync. avoid | Flow ctrl (bottom to top)

U| PRk Y N N S _|KXP
X 0 R N NIT S |TXL
uc U U Y N N S |KXP
SP 0 R N N N S | KXP,TOL
POC PO R N Y N S | KXP,POL
PT 0 R N Y T S | TXL,POL
NX U| PRk Y N N S | KXP,NUL
NT 0 R N N|T S | TXL,NUL
X2 U| PRk Y N 2 S | KX2
PTX 0 R N Y N S | KXP,TOL,POL
NTX 0 PRk |N N N S | TX,NUL
POS PO R N Y N S | KXP,POL
PO2 PO R N Y 2 S | KX2,POL
PS2 PO R N Y 2 S | KX2,POL
T2 0 R N Y 2 S | KX2,TOL,POL
T3 0 R N Y 3 SR KX3,TOL,POL
R2 PO R N Y 2 S | KX2,NUL,POL
R3 PO R N Y 3 SR KX3,NUL,POL
SP2 0 R N N 2 S | KX2,TOL
X3 U| PRK |N N|3 SR KX3
PO3 PO R N Y 3 SR KX3,POL
T3 0 R N Y 3 SR KX3,TOL,POL
SP3 0 R N N|3 SR KX3,TOL
N2 U| PRk Y N 2 S | KX2,NUL
N3 U| PRK |N N|3 SR KX3,NUL
X2E U| PRk Y N N S | KX2
X3E U| PRK |N N N| SR KX3
N2E U| PRk Y N N S | KX2,NUL
N3E U| PRK |N N N| SR KX3,NUL
P2E PO R N Y N S | KX2,POL
P3E PO R N Y N| SR KX3,POL
S2E 0 R N N N S | KX2,TOL
S3E 0 R N N N| SR KX3,TOL
T2E 0 R N Y N S | KX2,TOL,POL
T3E 0 R N Y N| SR KX3,TOL,POL
R2E PO R N Y N S | KX2,NUL,POL
R3E PO R N Y N| SR KX3,NUL,POL
SR Ul PR Y N N S | KXP,SRL

*SRL isthe segmentation/reassembly layer, not yet implemented as of version 0.90.

101

Table3.2 UTL QoS Parameters (legend for Table 3.1)

To help the reader understand Tables 3.1, the codes for each QoS parameter are

positioned differently in the column, corresponding roughly to the level of service

provided:

* entries positioned toward the left of the value column do
more work to enhance of the underlying network QoS
* entries positioned towards the right do less work
* entrieslying between the two extremes are positioned accordingly.

UTL QoS . see
Parameter Values | Explanation Section
0 ordered: messages delivered in exact sequence submitted by sender
Order . .)
0 ={0,P0,U} PO partially ordered: partial order governs message delivery 21
U | unordered: no resequencing of out-of-order messages is done
R reliable: all messages delivered, or connection is aborted
partially reliable: varying reliability guarantees for each message.
Reliabilit PRk PRk: partial reliability as in KXP: individual messages may be given k values,
R =(R PRyk PR2 where k is the number of transmissions (0 indicates infinity, fully reliable)
PFEZ K’U} ' PR2: partial reliability as in POCv2 (See Section 2.8) 21
n k-xmit reliable: no delivery guarantees, msgs retransmitted k-times, where k is
K) e .
fixed for the lifetime of the connection.
U | unreliable: no delivery guarantees
Duplicates N no-duplicates; each message delivered at most once 21
D={N,Y} Y | maybe-duplicates: duplicate messages may be delivered '
T TCP-congestion-avoidance: TCP actually used (not an emulation)
Congestion 3 KX3: emulation of TCP congestion avoidance, including slow start, cwnd, and fast
Avoidance retransmit (work in progress.) 337
C={T,32N} 2 KX2: emulates only TCP slow start and cwnd; no fast retransmit
N | none: traditional sliding window flow control only.
Explicit Y yes: explicit release synchronization is provided
Release 2.6
E={Y,N} N no: explicit release synchronization is not provided
streamEnd 1 1: streamEnd is on by default: each write produces a separate object
Default 0 0: streamEnd is off by default: each write appends to the current object 23
S={1,0,n/a} n/a | n/a: not applicable; stream abstraction not supported by mechanism
sender and receiver: application sender can be throttled to enforce a finite buffer
SR size for both (a) queued outbound data at transport sender, and (b) queued
o inbound data at transport receiver.
Application/ ; - — :
Transport sender only: application sender can be throttled to enforce a finite bu_ﬁer size for
queued outbound data at transport sender, but the amount of queued inbound 3.5.9
Flow Control S) o - :
_ data at transport receiver can arbitrarily large, limited only by available heap
A={SR,S,N}
space.
N | none: app-tr transport flow control is not done: inbound and outbound queues at
the TSAP may grow without bound as heap space permits.
3.3.5,
Layers see Table 3.4 and Table 3.5 336

102

Table3.3 UTL protocol parameters

The index column oneis used in the formal definition of aUTL protocol parameters

vector (Section 3.4.1).

index| Protocol Parameter Data Type Explanation
(units)

1 maxXmits unsigned Maximum number of times a packet will be
integer transmitted; 0 indicates infinity (reliable

service).This is the k value as in the k-xmit
reliability defined in (Marasli, 1997b). Used in
KXP, KX2, KX3.

2 enableCongestionAvoidance | Boolean Enables or disables the congestion avoidance

features of the KX2 and KX3 layers)

3 serviceProfile array of Partial order and reliability vector for PO/PR
unsigned service. Used only by POL. (See Section 2.4.3)
integers

4 explicitRelease Boolean For PO service, indicates whether successors of

delivered objects should be released
immediately, or only when the application
specifically indicates to do so. (used for coarse-
grained synchronization) Used only by POL.

5 localReceiveWindow unsigned integer | When app-transport flow control is used at the
(bytes) receiver (as in KX3), indicates the number of

bytes that may be buffered for delivery at the
receiver before the flow is halted

6 localSndWindow unsigned integer | Size of sending window for ordinary window-
(messages) based flow control between sending and

receiving transport entity; upper bound on
number of outstanding unacknowledged
messages. Used only in KX2, KX3.

7 RTOInitialAverage unsigned integer | Initial value for estimate of mean RTT in Van
(ms) Jacobson’s formula for computing round-trip

times?2 Used in KXP,KX2,KX3

8 RTOInitialDeviation unsigned integer | Initial value for estimate of mean deviation of
(ms) RTT in Van Jacobson’s formula for computing

round-trip times3. Used in KXP,KX2,KX3

9 streamEnd Boolean should next object written finish a stream object,

or continue the current stream object? use only
by POL.

10 objNum unsigned integer | object number used for next Wi t e()

operation

22 (Jacobson 1988). For atutorial presentation of the formula, see (Stevens, 1994).

103

3.34 UTL isalibrary providing flexible transport QoS, not a QoS Ar chitecture

QoS architectures typically include provisions for an application to request
a specific guaranteed QoS from the service provider. When presented with arequest, a
service provider assesses its own ability to provide the requested QoS, given its current
resources and current load. The service provider then either accepts the request, or
denies the request (in some cases, this constitutes admission control), perhaps making
a counter-proposal asin a human negotiation. A connection is only established when
the negotiating entities can agree to a QoS contract. (Aurrecoechea et a., 1998)
provides a survey of QoS architectures that fit this general model.

UTL, by contrast, makes no attempt to negotiate, or guarantee minimum
service levelsif the application chooses a mechanism that isinappropriate for agiven
application. The logical consegquence of the no-mechanism-specific-code and
reasonabl e-fallbacks principlesisthat with UTL, the application aways gets exactly
the protocol that the application requests, even if that protocol does not meet the
application’s qualitative needs. Quantitative QoS guarantees are, of course,
impossible since UTL assumes an underlying unreliable network that can make no
guarantees. Thus, the QoS provided by UTL is based only on the mechanism
selection, the protocol parameter values chosen, and the QoS of the underlying
network.

While not all protocol parameter settings are appropriate to all
applications, an application would typically not restrict the user from setting whatever
protocol parameters she or he chooses, even if such settings would have no effect. In
some cases, UTL will return error codes to indicate that a certain protocol parameter
setting is not supported for a particular mechanism, for example, if aservice profileis

offered to a mechanism that does not support partial order. However, aswe explain

104

further in Section 3.5.6, UTL does not close a connection if inappropriate protocol

parameter choices are made.

3.3.5 Mechanismsare composed of layers
Table 3.1 also shows that (with the exception of the RAW mechanism,

explained in Section 3.5.8) UTL mechanisms are composed from UTL layers.
Tables 3.4 and 3.5 summarize the layersin UTL, while Figure 3.2 shows a subset of
the UTL mechanisms, illustrating the configuration of the various UTL layers of which
each is comprised. Each UTL layer is essentially a sublayer of the transport layer, and
operates according to the usual layered architecture principles. That is, each UTL
layer:

* providesaserviceto the layer above,

* by utilizing the services of the layer below,

* toexchange PDUswith its peer layer.
Each layer operates according to its own protocol, and has its own protocol header. As
per the usual practice, upper layers encapsulate their PDUs in lower layers. For
example, we note that in Table 3.1, the T3 mechanism is composed of the KX3, TOL
and POL layers. Figure 3.2 illustrates the positions of the various headers on a
message sent viathe T3 mechanism. Thusaclear box view of UTL isthat the T3
mechanism is atransport service composed of three layers, each with its own protocol.
By contrast, a black box view of UTL would see T3 as asingle protocol, wherethe T3
header consists of the concatenation of the headers of its constituent layers, from

bottom to top (KX3, TOL, POL).

105

UTL Core
RAW [uCc[xP | xP [sP3 | T3 [P03 [pT X
mul) | kxp | kxa|_TOL l PO'-l XL
UDP | TCP
Figure3.2 UTL mechanisms composed of layers

Data ADU
1424 bytes 1424 bytes
Ir_lternal (clear box) POL Har Daa oL POU
view of UTL [24bytes | 1424bytes 1448 bytes
TOL Hdr | POL Hdr Data TOL PDU
__4bytes | 24 bytes 1424 bytes 1452 bytes
KX3 Hdr | TOL Hdr | POL Hdr Data KX3 PDU
20 bytes | 4 bytes | 24 bytes 1424 bytes _|1472 bytes
External) :
(black box) 13PDU
view of UTL T3 Hdr Data
48 bytes 1424 bytes |1472 bytes
UDP Hdr T3 Hdr Data UDP Datagram
__8hytes 48 bytes 1424 bytes | 1480 bytes
UDP Hdr T3 Hdr Data IP Datagram
20 bytes | 8 bytes 48 bytes 1424 bytes 1500 bytes
Eth. Hdr| IP Hdr | UDP Hdr T3 Hdr Data Eth. Trl.
22 bytes 20 bytes | 8 bytes 48 bytes 1424 bytes 5 bytes
- Ethernet Frame: 1527 bvtes -
Figure 3.3 UTL layer encapsulation example: T3 over Ethernet

As explained previously in Section 3.3.1, the first principle of UTL is no mechanism-

specific code. It turnsout, that just as there is no mechanism-specific code in the

applications that run over UTL, in fact there is also no mechanism-specific code

106

within the implementation of UTL. A UTL mechanism is specified only by a set of
protocol parameter values, and a stack of layers. While each layer isimplemented
with specific code, the only code in UTL that refers to specific mechanismsisthe
initialization of a data structure?3 that encodes Table 3.1. All referencesto
mechanismsin UTL then use this data structure to execute the appropriate functions
implemented by each layer making up that mechanism. Adding a new mechanism to
UTL istherefore a simple fifteen-minute process of adding afew table entriesin the
routines that initialize this data structure headersfiles, and recompiling. (Adding a

new layer, by contrast, can be on the order of days, weeks or months.)

3.3.6 Rulesfor composing mechanisms from layers

Section 3.4 provides a detailed formal description of the rules for
composing mechanisms from UTL layers; in this section, we just sketch the main ideas
of this framework.

The QoS provided by a UTL mechanism is determined by the layers and
protocol parameter values of which it is composed. Each UTL mechanism has exactly
one bottom layer to interface with the standard transport services TCP or UDP. The
bottom layer must one of the layerslisted in Table 3.4. In addition, the mechanism
may have zero or more additional upper layers on top of the bottom layer. The layers
that may be used as upper layersarelisted in Table 3.4. All UTL layers are required to
provide a standard set of servicesto the layer above and the layer below. This

standard layer-to-layer interface alows the layers to be placed in any configuration, as

23 (programmer’ s note) specifically, seet he ut| Mechl nf o array inut | Def s. h.

107

long as the layer below meets the minimum service requirements of the layer above.24
The service requirements of upper layers are listed in the second column in Table 3.5.
Note that since upper layers are not required for a mechanism, any of the so-called
bottom layers may aso end up being the top layer of a mechanism. For example, the
UTL mechanisms TX, XP, UC, X2 and X3 are all single layer mechanisms, where the
bottom layer isaso thetop layer. The fact that the KXP, KX2 and KX 3 layers may
serve as both bottom layer and top layer for a given mechanism is significant because
the top layer of a mechanism has a special responsibility: specificaly, thetop layer is

responsible for communication with the application.

3.3.7 Bottom layers: TXL, KXP, KX2, KX3

Certain layers are specifically designed to interface with either UDP or
TCP directly; these layers are referred to as bottom layers. Each mechanism must
include exactly one bottom layer. UTL mechanisms are named in the same manner as
UTL layers, with three-letter codes that should be regarded as mnemonics rather than
acronyms or abbreviations. Table 3.5 provides alist of the bottom layersin UTL
v0.90 in the order in which they were first written, and not surprisingly, in ascending
order of complexity. Note that TXL iswritten on top of TCP, while KXP, KX2 and
KX3 areall written on top of UDP. The KXx family of layersillustrates one of the
benefits of the UTL architecture: KXP, KX2 and KX3 are al iterations of the same
basic service, but with mgjor changes to the protocol. Because the UTL API hidesthe

differences among underlying services, it was easy to introduce new versions of KXP

24 From a design pattern perspective (Gammaet al., 1995), the bottom layers can be
seen as examples of the adapter design pattern since they convert the underlying UDP
and TCP transport services to the layer-to-layer interface required by UTL.

108

to experiment with innovations: the applications were unaffected. They required only
to be recompiled? and relinked with the new version of UTL. Furthermore, the upper
layer providing partial order and total order (POL and TOL) were entirely unaffected
by the changesto KXP asit evolved into KX2 and KX3.

Section 3.6 summarizes some of the details of the KXP, KX2 and KX3

protocols.

3.3.8 Upper layers: TOL, POL, NUL, SRL, and layer stacking rules

The upper layers of UTL are shown in Table 3.5. Therole of upper layers
in UTL isto provide services such as resequencing out-of-order packets, and
segmentation/reassembly. Upper layers can function at the top or in the middle of a
mechanism’ s stack, but may never appear at the bottom. A bottom layer is always
required as an adapter between the UDP or TCP interface provided by the operating
system, and the UTL layer-to-layer interface. Similarly, since a bottom layer
implements UTL’ s layer-to-layer interface only at its upper Service Access Point

(SAP), abottom layer can never appear anywhere except the bottom of a mechanism.

25 Recompilation picks up the header files containing the new protocol definitions; no
change to the application source code is required.

109

Total Ordering Layer (TOL)

The TOL layer (total ordering layer) assumes that the underlying layer is
reliable. Typically, the layer below TOL is KXP, KX2 or KX3, with an immutable
maxxXmits value of O (representing reliable service.) The TOL layer smply adds a 40-

byte sequence number and uses it to resequence out-of-order packets.

Partial Ordering Layer (POL)

The POL layer (partial ordering layer) provides partial order service with
explicit release synchronization. Future versions will also implement the PR
reliability class as defined in Chapter 2. A full implementation of POCv2 will consist
of the combination of POL (with the addition of support for PR reliability class) plus
KX3.

110

Table3.4 Bottom layersin UTL (may also serve astop layers)

Thefunctionsreferred toin thetable and defined beneath it areused in the
formal specifications of Section 3.4.

QoS provided (see Table 3.2 for explanation of values)
. . . - App/Tr
Layer Explanatlon Built Enhaqces under_lylr?g Order| Reliability | Duplicates Explicit Con_g Flow
of Mnemonic |over service by adding: Release| Avoid Ctrl
TCP-xmission) .
TXL % TCP Message orientation 0] R N T
layer®,
k-xmit ion-ori '
KXP - Connecpon orientation, N
protocol partial reliability S
Connection-orientation, Y
k-xmit protocol partial-reliability, and
KX2 .) f,
version two optional slow start/cwnd
UDP congestion avoidance U N
Connection-orientation, fy
partial-reliability, and
kxmit orotocol optional slow start/cwnd
KX3 . P congestion avoidance with N fa SR
version three . -
fast retransmit, application-
transport flow control at the
receiver.

Definitions for QoS functions referenced in Table 3.4:

f1: if mutable(pv.maxXmits) use PRk
else

{

if maxXmitsisO, use R
if maxXmitsis1, useU
otherwise use K

f,: if pv.enableCongestionAvoidance is true, use 2
otherwise use N

f3: if pv.enableCongestionAvoidance istrue, use 3
otherwise use N

26 “xmission” is pronounced “transmission”.

27 “k-xmit” is pronounced “k-transmit”, and is defined in (Maradli et al., 1996) as
partial reliability where a packet is transmitted at most k times, and then dropped.

111

Table3.5

Upper layersin UTL (may be middle or top layers)

A blank entry indicates a QoS parameter not affected by the layer.

Exolanation Built over QoS provided
Laver P of (minimum service Enhances underlying (see Table 3.2 for explanation of values)
y . requirements for service by adding: - . Explicit
Mnemonic - Order | Reliability | Duplicates
underlying stack) Release
Lormed nothing; a null layer
NUL | nullayer | *WPERTE0 | for testing purposes N
only
TOL fg;i'rgrder any reliable?8 stack [totally ordered servicel O R |N N
o any partally partial order, and
POL | Earialorder o partial reliability asin| PO| PR30 |N Y
layer reliable<~ stack
POCv2
segmentation/ el segmentation/reasse
SRL |reassembly | @V parzggk-re 'able mbly U N N
layer (not yet implemented)

28 The KXP, KX2 or KX3 layers can be made reliable, for purposes of this

requirement, by setting an immutable k value of zero at the mechanism level.

29 The current implementation of the POL layer requires the underlying stack to be
reliable; future work includes a new version of the POL layer that can be placed over a
partialy-reliable stack so that the full specification of POCv2 can be realized in the

UTL framework.

30 The POL layer does not add reliability in the sense of providing for retransmissions
or forward error correction. However, if the underlying layer supports cancellation of
reliability for individual messages, POL adds a PR reliability class that integrates

reliability with partial order and explicit rel ease synchronization.

112

Null Layer (NUL)

(1)

(2)

3)

The NUL (null) layer adds no functionality but does serve three purposes:

It provides a means to add four bytes of dummy header so that a
comparison of partial order to total order is more fair (we
explain this point further in Section 5.1)

It provides a means of evaluating the overhead of having
multiple layersin a UTL mechanism e.g., by comparing the
performance of

* P2=KX2,POL VS R2=KX2,NUL,POL, or
» X3=KX3 VS. N3=KX3,NUL.

It provides atool for helping to isolate bugsin UTL. For
example, suppose a certain bug occursin SP2. Checking
whether the same bug occursin X2 and/or N2 can help the
investigator better determine the nature of the bug:

* A bug occurring only with SP2 indicates a TOL problem.
* A bug occurring with SP2, N2 and X2 indicates aKX2 problem.
* A bug occurring with N2 and SP2, but not X2, indicates a problem

related to KX2' sinterface to alayer above.

113

Segmentation Reassembly Layer (SRL)

The SRL layer is a segmentation/reassembly layer. The origina design of
POCv2 and UTL called for such alayer to implemented, and the internal data
structures of UTL were designed to support segmentation/reassembly. Asit turned
out, by the time we were ready to begin implementing, the increasing emphasis on
Application Level Framing in our project made the notion of segmentation/reassembly
somewhat of an anathema. ALF design suggests that all data units should be divided
into ADUs that are less than or equal to the Path MTU size, thus avoiding the need to
segment/reassemble at the transport layer or below. Thus for the performance
investigations in this dissertation and in (Iren, 1999c¢), the need never arose for a
segmentation/reassembly layer in practice. Finishing an SRL layer is part of the future
work for UTL.

3.3.9 User level implementation with cooper ative multitasking

The transport layer functionaity in UTL isimplemented at user level31
rather than in the kernel. UTL lies between the application and the UDP and TCP
services provided by the operating system. (Section 3.5.1 highlights the benefits of
this approach.) The UTL code is actualy linked in with the application itself. All
transport layer processing apart from the message framing and demultiplexing
provided by UDP—e.g., acknowledgments, retransmission, reordering, duplicate
detection, flow-control, and congestion control—is done within the same process as

the application. In the current version, cooperative multitasking is used to share the

31 Some references in the literature use the term “ user-space”, emphasizing the
division of virtua memory between user application memory, and memory reserved
for the operating system kernel; see for example (Edwards and Muir, 1995).

114

CPU between the application and the background transport layer functions (for
example, acknowledgment processing, and managing retransmission timeouts) within
the application process. Section 3.5.7 discusses the pros and cons of this approach vs.
amultiple process or multiple thread implementation, while Section 3.8 surveys

related work on user-level protocol implementations.

34 Formal specification of rulesfor composing UTL layers
In this section we provide formal definitions for the rules for composing

mechanisms from UTL layers and protocol parameter specifications.

3.4.1 Déefinition: UTL protocol parameter s vector

A UTL protocol parameters vector isan-tuple consisting of
ordered pairs, (vj, mj), (1 <i<n), where:

* nisthenumber of UTL protocol parameterslisted in Table 3.3

* Eachvj, (1<i <n)iseither g, representing the empty value, or it is
a specific value that should be used for the ith parameter from
Table3.3

* Eachmj, (1<i < n)isaBoolean value indicating whether the

valuevj is mutable. mj = true indicates that the value vi may be
changed, while

m; = false indicates that the value may not be changed.

We also use the following notations for UTL protocol parameter specifications:

* pv.xindicatesthe vj value for the protocol parameter from
Table 3.3 named “x”; for example, pv.maxXmits is equivalent to
the notation v;.

* mutable(pv.x) refersto corresponding mj value. [

115

3.4.2 Déefinition: UTL QoS specification

A UTL QoS specificationisatupleQ=1[o,r,d, c, a,s, e}
Q {0 D{eh}{R D{e}}y{D O{e}}x{C O{e}}q{A D{e}}¥{S
D{e}}{E D{e}}.

Each element in the tuple representing a UTL QoS specification indicates avalue for a
specific QoS parameter from Table 3.2, or the null value € signifying a“don’t care”
condition. [

3.4.3 Definition: Well-formed UTL stack

A UTL stack specificationisatuple s = [, pvL]where
* L=(Lo Ly Lz... Liny) isalist of nUTL layers, and
 pvisaUTL protocol parameters vector. [J

A well-formed UTL stack is defined recursively as follows:

» Basecase: A UTL stack s= [{b),pvLiswell-formed, where (b) isa
singleton list containing only b, one of the UTL bottom layers
listed in Table 3.4, and pvisany UTL parameter list.

* Recursive step: Any UTL upper layer u placed on top of awell-
formed UTL stack s= [{Lo, Ly, ... L(n-y), pviIforms anew well-
formed UTL stack
s =[Lo, Ly,... Ln-2), U), pvl) provided that the QoS specification
Q=stackQoS(s) meets the minimum QoS service requirements of
u, as specified in Table 3.5. (see definition of the stackQoS
function below.) . [

116

3.4.4 Definition and algorithm for function stackQoS

The function stackQoS maps awell-formed UTL stack s=[L, pv[lto a
UTL QoS specification Q = [0, r ,d, ¢, a, S, e[l The following algorithm can be used
both to determine whether a stack s= [, pvLis well-formed, and if so, the value of
stackQoS(s):

(1) Compute the QoS specification Qo of the stack sy=[{ Lo,),vJ
from the values and functionsin Table 3.4.

(2) ForeachlayerLi,1<i<n:
Lookup the minimum QoS requirements of L;, in Table 3.5. If
Qi-1 does not meets or exceeds these requirements, report that s
isnot well-formed and halt. Otherwise, compute the QoS
specification Q; of the stack s=[{ Lo, ...,L, pv)(through the
values and functionsin Table 3.5.

(3) return Q1 asthe value of stackQos(s). [

3.5 Designissues

Aswith any complex software project, the development of UTL involved
many design decisions. This section is not intended as an exhaustive list; rather it isan
overview of the more important and/or interesting decisions. These design issues

include:

o User-level vs. Kernel-level development: Should UTL be
developed exclusively in the kernel (as TCP and UDP traditionally
are), exclusively at user level, or in some hybrid form following
the model of previous work on user-level protocol
implementations? (Section 3.5.1)

* Servicemodel: To provide avariety of transport services through a
single API, there needs to be some commonality among these
services. What should the common features be? (Section 3.5.2)

In particular, we discuss two aspects of the common UTL service:

— Connection-oriented vs. connectionless service (Section 3.5.3)

117

— Message-oriented vs. byte-oriented service (Section 3.5.4)

* Minimizing data copies for efficiency: How can an extra data copy
between the UTL implementation and the application be avoided?
(Section 3.5.5)

* QoS negotiation: Should UTL include QoS negotiation?
Our answer to this question may be somewhat controversial.
(Section 3.5.6)

» CPU scheduling: Istransport layer background processing (e.g.,
retransmissions, processing of control packets) handled by a
daemon process, a separate thread, or via cooperative multi-
tasking? (Section 3.5.7)

e 1/O multiplexing: How does a process multiplex I/O from UTL file
descriptors with I/O from non-UTL file descriptors? (This section
motivates the RAW mechanismin UTL.) (Section 3.5.8)

* Application-Transport flow control: Should UTL read and write
functions be blocking or non-blocking, and how is buffering of
datain the transport layer handled? Thisissueisrelated to, yet
distinct from the issue of flow control between transport layer
entities. (Section 3.5.9)

3.5.1 User-leve vs. kernel-level development

In most operating systems, transport layer protocols are implemented
inside the kernel, asisthe case in many popular implementations of Unix. So one
might assume that the best place to develop alternative transport layers would bein the
kernel. The other aternative isto develop thisfunctionality at user level. A user-level
implementation can be a separate daemon process running at user level, a separate
thread (or set of threads) within the application, or smply a set of functions called by
the application to simulate cooperative multitasking. Once the decision is made to

pursue a user-level implementation, the choice from among these three alternatives

118

(daemon process, threads, or function) is a separate design issue that we consider in
Section 3.5.7.
The notion of implementing transport layer functions at user level

sometimes causes confusion. The transport layer API often represents both:
» the boundary between the transport and application layers, and

» the boundary between kernel functions and user program
functions.

While the first of these is always true by definition, the latter need not be
the case: aswe note in Sections 3.5.7 and 3.8, many researchers have investigated
user-space implementations of transport layer protocols.

There are three main advantages to pursuing a user-level implementation
rather than a kernel-based implementation. The first advantage is portability. User
level codeisfar more portable than kernel level code. While there are platform and
operating system specific differences among machines, these are far better hidden from
the application programmer at user level than from the system programmer who is
extending the operating system.

The second advantage is stability. Extensionsto the kernel are far more
likely to have to be changed when the operating system is upgraded. While user-level
code is not immune to problems introduced by OS upgrades, providers of operating
systems generally try to shield user-level code from changes to the extent possible, and
provide backwards compatibility. Kernel code, by contrast, is considered fair game for
overhaul, sinceit is supposed to be a black box to operating system users and
developers.

Third, kernel level development poses a unique set of difficulties. A

segmentation fault in a user-level program ends that program, while a segmentation

119

fault in the kernel may well crash the operating system. Rebooting for each
testing/debugging cycle can make kernel development far more time-consuming.

On the other hand, the main disadvantage of implementing a protocol at
user level isthe potential performance penalty. When a transport entity in
implemented in the kernel, it can be interrupt driven, and the CPU scheduling
algorithm can give consideration to the real-time nature of packet arrivals and time-out
events. By contrast, when the entity implementing the protocol is subject to the context
switches at any time, it is more difficult to ensure that protocol events are handled in a
timely fashion. Context switches may contribute to burstiness in the transport protocol
processing. During a context switch, while one of the cooperating transport entities
does not have the CPU (let us call thisside A), the other side (side B) may send alarge
number of TPDUs. When A gets the CPU again, it may end up sending B alarge burst
of acks, all at once. This burst of acks may cause the flow-control window to open,
resulting in another large burst of datafrom B to A. Thus, a cycle of bursty behavior
may result. Such burstiness can cause throughput to drop since the sending side may
become blocked waiting for acknowledgments to open the window.

Even with the disadvantages of a user-space implementation, in the end,
we felt that the benefits of portability outweighed the performance considerations for
our purposes. Aspart of UTL, we have implemented ordered/reliable services,
partially-ordered/partially-reliable services, and unordered/unreliable services, all
operating at user level as part of the same framework. We postulate that by using this
approach, we can make fair comparisons among various kinds of transport service.
That is, we believe that our results that can give us a good indication of how those

services might perform relative to one another if all were implemented in the kernel.

120

Performing this comparison first with a user-level implementation can provide an
indication of whether the (considerable) effort of developing a kernel-level
implementation is worthwhile.

If the answer to this last question turns out to be yes, we note that some
parts of UTL are particularly appropriate for migration into the kernel, while others
might be better left as a user-level library. One reasonable aternative might be to put
the functionality corresponding to the lowest layers of UTL (i.e., TXL, KXP, KX2 and
KX3) inthe kernel, while retaining the ordering functions represented by layers POL

and TOL asauser-level library.

3.5.2 Service model

The primary purpose for which UTL was devel oped was the comparison
of partially-ordered/partialy-reliable transport service with ordered/reliable and
unordered/unreliable transport service. One approach to this comparison might be to
compare POCv2 to TCP and UDP. However, as Table 3.6 illustrates, many
differences exist between TCP and UDP other than order and reliability. TCPis
connection-oriented and based on the model of areliable byte-stream (similar to the
Unix concept of afile being a stream of bytes). UDP is connectionless and message-
oriented—UDP messages are atomic units that are delivered either completely, or not
at all.32 Setting aside POCv2, for the moment—even just to write an application that
can run over both TCP and UDP, some common service model is necessary if the

special-case code is to be avoided.

32 The assertion that UDP provides atomic delivery of messages ignores pathological
cases where the application provides insufficient buffer space for an incoming
datagram; the result in those cases is system dependent, as noted in (Stevens, 1994, p.
160).

121

Since the focus of our work is order and reliability, we have chosen to
bridge the gap between TCP and UDP by basing UTL on a common service model.
Thus, all UTL services are connection-oriented and message-oriented. The

next two sections provide the rationale for this design choice.

3,53 Whyall UTL servicesare connection-oriented

Connection-orientated service is necessary for any protocol providing
reliability, since to provide reliability, an initial sequence number must be established.
While connection establishment is not necessary for an unreliable service, we are more
interested in the comparison between partially-reliable and reliable services, both of
which reguire connection-orientation. Moreover, even when comparing against
unreliable services, we do not consider the overhead of establishing a connection to be
asignificant factor in computing statistics such as delay and throughput. Connection
establishment overhead is primarily a performance issue for applications that are
seeking to carry out arequest-response transaction in 2 or 3 TPDUs—for example,
DNS queries. By contrast, our experiments will involve a data transfer of tens or
hundreds of TPDUSs, so making all services connection-oriented does not seem an
unfair burden for comparing unreliable servicesto reliable services. For true request-
response applications, order isirrelevant since thereis only one TPDU in either
direction. Thusa protocol such asVMTP (RFC1045) or T/TCP (RFC 1379,
RFC1644) is amore appropriate choice. Even these protocols do not really avoid the
establishment of a connection; rather in essence, they avoid repeating a three-way
handshake for connection establishment by saving state from previous

communications. If one takes the view that a protocol is connectionlessif and only if

122

it is stateless, in some sense even these protocols are not connectionless, but rather a

third type of protocol, asargued in (Iren et al., 1999).

3,54 Why all UTL services are message-oriented

The choice to make all UTL services message orientated has roots in both
theoretical and practical concerns. From atheoretical point of view, the Application
Layer Framing principle suggests that the proper unit of transfer for upper layer
protocols (Transport and above) should be an Application Data Unit (ADU)—which is
to say, amessage. From a practical point of view, one can argue that the message
orientation is providing a service that the application would frequently have to provide
anyway, and at minimal overhead.

To see why message-oriented service would have to be provided by the
application anyway if it were not donein UTL, first note that since TCP does not mark
message boundaries, any application written directly on top of TCP's service has the
burden of marking the message boundariesitself. Record boundaries can be identified

through

» character counts (a header on each message containing the message
length), or

* by including explicit records boundaries, e.g., a special character
such as the newline character (thisis what most ASCII-based
protocols such as FTP and SMTP do in practice.)

Marking these boundariesis not such a problem for the sender. The larger
burden falls to the receiving application. If the receiving application issues aread
request to TCP for up to n bytes, it must be prepared to accept any number of bytes
between 1 and n. Thereisno way for an application to say to TCP, “ Give me the next

message in its entirely, and only the next message”. Rather, if the receiving

123

application wants to process an entire message as a unit, the application must do its
own buffering of the bytes of the message until all are delivered. If on any given read
request, less than n bytes are delivered, the application must repeatedly loop,
requesting additional bytes until the entire message arrives.

The message orientation of UTL becomes afairness issue only when
making claims of comparison vs. TCP. The TX service of UTL provides a message-
oriented service on top of TCP's byte-stream service. The TX service accomplishes
this by having the sender prepend a four-byte length field to each message. The loop
to build up the complete message at the receiver is then placed inside UTL, and the
message is given to the application only when complete. Putting the message
boundary marking function inside UTL relieves the developer from having to write the
code to perform this function. However, it may aso introduce an extra delay, an extra
price paid for message-oriented service.

The issue of fairness hinges on whether the application can make use of
individual bytes of a message asthey arrive, or whether an entire message must be
received before processing can begin. For example, suppose a GIF or JPEG decoder is
written in such away that it can accept as little as one byte at atime, and keep all of its
state between calls. Inthiscase, it is conceivable that an application for displaying
images might perform better over a byte-stream service than a message-oriented
service. An experiment to investigate the penalty of message service vs. byte stream
service is suggested in the future work section of this dissertation; in the meantime,
one should keep this limitation in mind when interpreting results based on UTL's TX

service.

124

For other comparisons however—that is, comparisons among UDP-based
services, which includes all the performance experiments presented in this
dissertation,—we claim that making all UTL services message-oriented is a reasonable

choice, supported by the Application Layer Framing principle.

3.5.5 Minimizing data copiesfor faster throughput

A magjor theme in work on improving the throughput of protocols
(especialy in the related work on user-level protocol implementations) is the issue of
minimizing data copies (Clark and Tennenhouse, 1990; Edwards and Muir, 1995,
Thekkath et a., 1993). Assuming a single processor architecture, if that architecture
can copy data at s bits/second, then s represents an upper-bound on the throughput of
any transport protocol. This upper bound is a consequence of the fact that, at the very
least, data must be copied from the network into memory. If there are k data copies,
then the maximum throughput dropsto s/k. Thus, it is advantageous to have has few
data copies as possible.

In atypical Unix architecture, a minimum of two data copies takes place
for each incoming TPDU. Thefirst isfrom the network interface card into kernel
memory. In the case of Berkeley-derived TCP/IP implementations, arriving data link
PDUs are placed into in-kernel memory buffers called mbufs. Mbufs are designed
with pointers so that they can be easily manipulated for adding and stripping off
headers and trailers for encapsulation/de-encapsul ation of PDUs. Mbufs are also used
for other aspects of the operating system as well, and as such, are a protected resource.
Therefore, when the application reads data from a TCP or UDP socket, the data must

be copied a second time, from the in-kernel memory into user space.

125

174}

Table 3.6 Services provided by varioustransport layers
APl | Berkeley UTL Example UTL Services
Sockets POCVY2 E:ommo
Transport Service| TCP UDP . PO3 TX UC XP XP3 SP3
Service
Connection Orientation CO CL CO CO CO
Service Orientation Byte | Mesg | Mesg Mesg Mesg
Order O U PO — PO O U U U ©)
Reliability R U PR — R R U PR | PR R
o Transport-Transport Y N Y — Y Y N Y Y Y
o) e App-transport at Y N Y — Y Y N Y Y Y
§ E ‘g sender
a O | App-transport at Y N Y — Y Y N N Y Y
3 receiver
(a}- TCP-friendly congestion Y N Y — Y Y |N N Y Y
control
Legend:

CO: connection-oriented
Byte: byte-stream

O: Ordered
R: Rdliable

CL: connectionless
Mesg: message-oriented
U: Unordered
U: Unreliable

PO: Partialy Ordered
PR: Partially Reliable

Since UTL is built on top of UDP and/or TCP, these two data copies
are present. To preserve the sockets API exactly, it would have been necessary to add
athird data copy. Instead, the UTL API was designed in such away asto avoid any
extra data copies.

In the sockets API, ther ead call takes three parameters:

int read(int fd, /* file descriptor /
char buf /* pointer to buffer */
int len /* length of buffer */);

The pointer buf points to some static or dynamically allocated storage in the
application’s memory where the data should be placed, and | en pointsto the
maximum amount of datato be read. The return value is the amount of data actually
read, which may be lessthan thevaluel en.

By contrast, theut | _Read() call takestwo parameters:

int utl_Read(int fd, /* file descriptor /
char **msg_H /* handl e of packet /);

Here, the parameter nsg_Hisahandle; that is, a pointer to a pointer. The application
supplies the address of a(char *) variable where a pointer to theincoming TSDU
should be stored. Thereturn value of ut | _Read() isthelength of the TSDU that is
now pointed to by *msg_H. After asuccessful ut | _Read() call, the application now
has custody of the memory at this pointer—that is, it may use that memory for
whatever purpose it wishes, but when it is done, it has the responsibility to free that
memory viaacall to the functionut | _Fr eeFr ane() . Thefact that the

ut | _Read() call returns a pointer to memory already allocated by UTL avoids an
extra data copy at the expense of a deviation from the standard Berkeley Sockets API/
If utl _Read() followed the Berkeley Sockets API strictly, an extra data copy would

127

be required to move data that UTL had already read from UDP or TCP into the
application’ s data space.

A similar procedure is used for output; when an application wants to build
amessage to transmit over the network, it must first call a UTL function to allocate a
special placein memory. UTL automatically prepends sufficient memory for packet
headers based on the transport service that has been selected. When the
utl _Wite() functionis performed, no data copy is done; only a pointer valueis
passed. UTL then takes custody of the frame. When the datais actually written to the
network, because the space for the headers was already allocated contiguous with the

data, the entire TPDU can be written to TCP or UDP in one operation.

3.5.6 QoS negotiation

QoS negotiation is a feature by which the application can specify specific
quality of service parameters, and make the establishment of a connection contingent
on a minimum service guarantee from the transport layer, for example, ordered,
reliable service. In Section 3.3.4, we pointed out that UTL does not currently have
negotiation. If applications built over UTL were to be used in a production
environment, a QoS negotiation feature would be essential, thus future work on UTL
might include the addition of such afeature. For our current research purposes of
experimenting with flexible transport QoS tradeoffs, we clam that a negotiation
facility would only get in the way.

To understand this point, imagine how the interaction between the
application and UTL might proceed if such afacility werein place. If UTL provided
QoS negotiation, at connection establishment time the connection request would

include a specification of the requirementsin terms of order, reliability,

128

synchronization, etc., either in lieu or, possibly in addition to arequest for a specific
mechanism. Then, if the mechanism could not meet the service requirements of the
application, the connection would be rejected. While rejecting a connection request
when the service cannot meet the applications needsis clearly useful for a production
application, this rejection would have no additional benefit in the context of evaluating
application performance over various transport services. The results of an experiment
that rejects a connection request are not interesting from the standpoint of delay,
throughput or jitter. On the other hand, the results of an experiment where the
mechanism does not precisely match the QoS needs of the application can be
interesting.

For example, suppose a particular application requires partial order, but
not total order, and consider what will happen in two cases.

(1) Themechanism used provides total order service (e.g., SP2)

(2) The mechanism used provides unordered service (e.g., X2)

In the first case, provided that the sender uses alinear extension of the
partial order asthe origina sending order, the application will perform correctly, abeit
possibly with worse performance. We claim the application will perform correctly,
because the sending order will be preserved, and isalegal linear extension of the PO.
On the other hand, there will be performance degradation, at least at some level of
network loss, if our central hypothesis holds true: that partially-ordered transport
service provides performance improvements over lossy networks.

In the second case, the application may fail to perform correctly if a packet

reordering occurs, since the transport layer will not detect this. However, for purposes

129

of transport protocol experimentation, it is still useful to allow the connection to
proceed in spite of potential failures. It allows one:
(1) todemonstrate the failure mode that occurs when an
inappropriate transport serviceis used; (for example, to show

what a ReMDoR document looks like when explicit release

synchronization is not provided)

(2) todemonstrate that at low loss rates, failure does not occur

(because there is no reordering), and

(3) toexperimentally estimate the failure probability as a function

of theloss rate.

ReMDoR provides another example. While complex multimedia
documentssuch astheparis. pnsl andmilitary. pnsl (seeappendix) require
partial order and explicit release synchronization, the simple single image documents
used in the NETCICATS experiments (Iren, 1999b) require neither of these. On the
other hand, they do require total order in the case of experiments with GIF files. UTL
provides the experimenter with flexibility by allowing the selection of any protocol
with any parameter for any application.

Thus a QoS architecture that prevents mismatches between application
needs and the QoS the transport layer provides, while certainly necessary in a
production environment, might just interfere with the performance experiments for
which UTL wasinitialy designed.

If programs based on UTL reach a point where they may be useful as
production applications, a QoS negotiation facility should be added to UTL. This

facility would allow an application to be agnostic concerning UTL mechanisms, and

130

instead, to specify quality of service by indicating alist of minimum service
requirements for each QoS parameter that would ensure correct operation. UTL
would then search its list of mechanisms, make an appropriate choice if possible, and
establish the connection. If UTL determined that more than one mechanism could

meet the requested quality of service, it could either
(1) make the best choice, according to some heuristic,
(2) makean arbitrary choiceif no useful distinction can be made, or

(3) provide alist of appropriate mechanisms to the application
The third choice would allow the application to present the list of
acceptable mechanisms to the user. The user could then make a selection from among
only the mechanisms guaranteed to perform correctly according to the minimum QoS
needs of the application. Of course, to retain the capability for experimenting with
failure modes resulting from an inappropriate selection of transport service, there

should be some way of disabling any such QoS negotiation mechanism.

3.5.7 CPU scheduling in UTL via cooper ative multitasking

UTL isan example of auser-level (sometimes called user-space) protocol
implementation. This section discusses a key challenge facing the developer of a
user-level protocol implementation, that of CPU scheduling. Wefirst review the
handling of CPU scheduling for transport processing in the BSD Unix kernel, since
this serves as the reference implementation of TCP/IP, and the yardstick against which
previous researchersin this area measure their designs. We then highlight two
problems that arise in CPU scheduling for user-level transport protocol

implementations: the top-half/bottom-half problem, and the lingering connection

131

problem. We first define these problems, then survey the solutions to these problems
described in previous work, and finally explain how the solutionsin UTL differ from
these.

The BSD Unix kernel (McKusick et al., 1996) serves as the reference
implementation for the Internet protocol suite, which is arguably the most widely used
protocol suite in the history of computing. In BSD Unix, transport protocol processing
takes place in the kernel. Requests from the user trap to system calls processed
synchronoudly in the so-called top-half of the kernel. Timeouts and incoming packets
are processed viainterrupts in the so-called bottom-half of the kernel. Thus, the
normal CPU scheduling mechanisms of Unix handle the scheduling of all transport
layer processing. Since al of this processing takes place inside the kernel, sharing
data between the top-half and bottom-half routinesis not difficult.

Research on user-level implementations of TCP (Thekkath et al., 1993;
Edwards and Muir, 1995) highlights two key design problems, which we have given

the following names:

* Thetop-half/bottom-half division problem: How are the top-half
and bottom-half processing to be scheduled in away that they do
not interfere with one another, or the application? Avoidance of
context switching and sharing of data are two concerns.

* Thelingering connection problem: The semantics of the Berkeley
Sockets API allow TCP connections to live longer than one side of
the application process. Specifically, an application sending data
such as a server, may write the last window’ s worth of datato the
transport layer, and then close the connection. The Berkeley
Socketscl ose() operation is by default non-blocking33, so it
returns immediately and allows the application process to
terminate. However, the kernel is still delivering data on behalf of

33 The SO_LINGER option can be used to make it blocking.

132

the terminated process. If retransmission is handled by the
application, either the cl ose() operation must block until al data
has been transmitted, or the application must hand-off this
responsibility to some other process.

If the transport layer processing isto linked in with the application, how is

this processing to be scheduled? Here are three possible solutions

Multiple processes

In the first solution, the application process performs the top-half
processing when the API functions are called. The bottom-half processing is
performed by a separate daemon process; either (a) a single process shared among all
processes on the host, (b) a single process per running application, or (c) asingle
process per connection. Since there are two separate processes, the top and bottom-
half are scheduled independently by the operating system. Processing for lingering
connections can be handed off to the separate daemon process.

Examples of this approach include (Thekkath et al., 1993) which describes
an implementation of option (a), and (Edwards and Muir, 1995) which describes an
implementation of option (b). This approach has the advantage that it allows the
implementation to closely model the BSD reference implementation.

It also has two main disadvantages. context switching between the top-half
and bottom-half code, and the complexity of sharing data between the top and bottom-
half processes by message passing or shared memory with mutual exclusion. Inthe

conclusions section, (Edwards and Muir, 1995) notes that

A consequence of [the multi-process architecture was that] our TCP
was constantly context-switching, which lowered performance. Also,
the multi-process nature of the implementation meant that we seemed
to spend as much time worrying about concurrency as about our real
goals.

133

Multiple threads

An dternative to the heavyweight context switching of the multiple
process solution is use lightweight threads, for example, POSIX threads
(Nicholset a., 1996). In this solution, the top and bottom-half processing are
implemented by different threads. However, while one no longer hasto deal with the
difficulties of message passing or shared memory, the complexity of enforcing
concurrency and mutual exclusion remain an issue. Furthermore, as (Edwards and
Muir, 1995) note, multiple threads do not address the lingering connection problem,
since all threads die with the application.

However the paramount concern for our project was whether POSIX
threads and X-Windows could co-exist in the same application; at the time we were
undertaking our initial design in Fall of 1995, it was unclear whether Xlib was thread-
safe. Since our ReMDoR browser was an X11 application, this concern led us to avoid
the multiple thread model. At this point, we are more confident the X11 and POSIX
threads can be used together, and we are therefore considering this approach for a

future redesign of UTL.

Signal Handlers

Another option isto have a single process perform all processing, and use
the SIGALRM signal with signal handlers to implement the bottom-half processing.
(Edwards and Muir, 1995) points out that since the application may aready be making
use of the signals, it would be necessary to “silently take control of alarm handling”
through wrapper functions. While this approach is feasible, we again avoided it due to

concerns about compatibility with X11; the X Consortium’s official recommendation

134

isthat X11 applications should avoid signal handling, advice that is reinforced by
(Heller and Ferguson, 1994).

Cooper ative multitasking
This leads usto the solution used in UTL: cooperative multitasking. Our
approach builds on an observation in (Edwards and Muir, 1995) in their suggestions

for future work section:

One possible approach isto exploit the fact that most application
programs use sockets in ‘blocking mode’, sleeping on the socket till
there is more datato receive or space available for sending. If a packet
arrives during this ‘sleep’, we could perform receive processing in the
context of the application process, which would eliminate context
switches in the common case. With these improvements, even better
performance should be achievable.

While Edwards and Muir observation is correct for many applications, it overlooks

two important (at least to us!) classes of applications:

(1) Applicationsthat block on thesel ect () call. Applications
such as the ReMDoR server, may need to process more than one
I/O stream simultaneously: for example, a socket listening for
new connection requests, and several output sockets for
connections being actively served. These applications block not
onaread() orwrite() operation, as suggested by Edwards
and Muir, but rather on asel ect () system call.34

(2) Applicationsthat use callbacksfor network 1/0 (e.g., X11)
X-Windows applications such as the ReMDoR browser must
use callback functions to process I/0 streams with waiting data.
Thisis because the X 11 library hasits own event loop, which
implements awrapper around the sel ect () system call.

34 Thesdect() system call allows an application to register interest in aset of file
descriptors, and be notified when any of them become readable or writeable, or when a
timeout isreached. The timeout is passed by reference; atimeout of zero indicates a
poll, while atimeout pointer of NULL indicates a blocking call. (Stevens, 1998)

135

Therefore, in an application using the X11 protocol, to read (or
write) data from the network, the programmer must provide a
callback function that gets called automatically by X whenever
the socket becomes readable (or writeable).

Therefore, our approach follows Edwards and Muir’ s suggestion, but in away that
considers not only applications that block onread() orwrite(), but also provides
for applications that block onsel ect (), applications that use callbacks, and
applications that may wish to avoid blocking on network conditions altogether.

In UTL, all protocol processing is done in the application, and all data
structures for transport layer code are in user space. Because we build most transport
functionality over UDP, we rely on UDP to provide assignment of port numbers for
incoming packet demultiplexing, afunction that both (Thekkath et al., 1993) and
(Edwards and Muir, 1995) implemented with asingle trusted connection server
process per host.

Top-half processing is done synchronously when the application calls the
UTL API functionsut | _Li sten(), utl _Connect(), utl _Accept (),
utl _Wite(), utl_Read(), and so-forth. The bottom-half processing, including
timer management and processing of incoming packets, is donein afunction called
utl _1Q(). Thisutl I Q) functionisthe heart of the UTL implementation, for it is
responsible for timer management, moving data up and down through the layers of the
UTL protocols stacks for each mechanism.

Following Edwards and Muir’ s suggestion, each time one of the API
functionsiscalled, itinturn callstheut | _1 Q() function to handle any pending
bottom-half processing. If the API function is blocking, for example, ar ead() call
when no datais available, the application will remain in the utl_lO function until data

becomes available. To avoid busy-waiting, utl_IO first handles any processing for

136

timers that have expired, then blocks on the sel ect () system call waiting for either
input from the network, or the expiration of the next timer.

In addition, thereisaut | _Servi ce() cal, that emulates the semantics
of asel ect () system cal, and provides adirect meansto invoketheut | _1 Q()
bottom-half processing. An application that is designed to block on thesel ect ()
system call can simply block onut | _Ser vi ce().

Finally, in the case of the XWindows application, the callback function for
the socket file descriptor canincludeacall tout | _Ser vi ce() . In addition,
XWindows allows a callback for background processing (afunction that is called
when all other processingisidle). Theut| _Servi ce() function can be provided to
this callback as well.

Applications that do not wishto block onread() orwrite() operations
can simply make anon-blocking sel ect () call (by passing adelay value of zero) to
check whether agivenread() orwite() operationswould block before attempting
it.

The advantage of our approach is its simplicity; there are no mutual
exclusion problems since the application has only one thread of control. A
disadvantage is that the application programmer has a particular burden: specifically,
to structure the codein such away that ut | _I () is called frequently enough to
guarantee that background processing of acks and timeouts takes place as needed. We
refer to our approach as “cooperative-multitasking” because the application and the
transport layer must cooperate to share the CPU; specifically, the application must
periodically yield its share of the CPU time to the bottom-half transport layer

processing. If utl 1 Q() isnot called often enough, performance will suffer, and if

137

utl 1) isnot called at al, the protocol will deadlock. By embedding bottom-hal f
processing in the callsto top-half functions, we have made it likely that even without
any particular planning on the part of the application programmer, ut | _I () will get
called often enough for the typical network applications paradigm—a read and process
loop that blocksonread(), wite() or select(),andthen performsamodest
amount of processing3® on the next piece incoming or outgoing data. However, there
may be some applications where this arrangement is unsuitable—for example,
applications where there is occasionally a requirement to do along computation in
between network operations. In such cases, the application programmer must schedule
occasional callstout | _Ser vi ce() to ensure that the appropriate transport layer
processing takes place.

To free the application programmer from the burden of having to consider
CPU scheduling at al, we plan to investigate a multiple thread approach as an
alternative for future implementations of UTL. Although the use of multiple threads
introduces the difficulties of mutual exclusion for the UTL implementer, we argue that
making the bottom-half CPU scheduling transparent to the application programmer
would make UTL amore useful and robust tool, and would therefore be worth the
effort.

Another disadvantage of UTL isthat we offer no solution to the lingering
connection problem except the following: when an application is terminating, it must
call thefunction ut | _Fi ni sh(). Thisfunction blocks until all pending connections
are complete. This approach to the lingering connection problem alowsthecl ose()

call to be non-blocking, but it does not allow the server process to complete until all

35 Anywhere up to around 200ms or so.

138

processing isfinished. As Edwards and Muir point out, this problem would afflict a
future thread-based implementation aswell. However, while the lingering connection
problem has been highlighted as a crucial issued by both Edwards and Muir as well as
Thekkath et al., and both projects invested considerable effort in addressing it, by
contrast, we do not consider thisto be a serious problem in practice. We argue that it is
probably good for most applications to linger until they receive positive notification
that al connections have completed safely and reliably (unless they choose to abort

rather than request a graceful close.)

3.5.8 1/0O multiplexing, and the need for a RAW mechanism

Theut | _Service() call described in Section 3.5.7 normally assumes
that all file descriptors passed to it represent sockets on which thereis an active UTL
connection. To provide the semantics of thesel ect () system call for a mixture of
UTL and non-UTL file descriptors, UTL provides a special mechanism called “RAW”.
For example, a chat application that must read from both the keyboard and the network
can register the keyboard as a UTL connection using the RAW mechanism. UTL will
then pass that file descriptor through untouched to the underlying sel ect () cal in
utl _1 (), and report the results along with those of the UTL connections.

The existence of the RAW mechanism is the one reason we use the term
mechanism rather than protocol or service. Another reason isthat the original design
for UTL also called for a mechanism (never implemented) for testing, by which
information could be read from alocal disk file using the UTL API, rather than from a

remote host; in this mechanismwr i t e() operations would be discarded.

139

3.5.9 Application-Transport flow control

Traditional presentations of flow control in networking textbooks focus on
sliding window flow control between two data-link-layer entities or two transport layer
entities (Tanenbaum, 1996; Stallings, 1998). However, there is another important
aspect to end-to-end flow control frequently overlooked in these discussions. The
presentations of the classic algorithms (stop-and-wait, go-back-N, selective repeat)
often make the simplifying assumption either that (a) there is an infinite queue
between the service provider (e.g., the data link layer, or the transport layer) and the
service user (e.g., the network layer, or the application layer,) or (b) that the service
user is dways immediately available to the service provider to provide anew SDU to
send, or to consume an SDU that has been received.

In practice, particularly at the transport layer, such assumptions are
unrealistic. Therefore, in addition to the usual window flow control between the
transport entities, it is also necessary to provide flow control at the TSAP, which we
call application-transport flow control. With application-transport flow control in
place, if the receiving application stops reading data and deliverable data queues up,
filling the transport receiver’ s buffers, the flow control algorithm will halt the
submission of new data at the sending application. TCP provides application-transport
flow control through window advertisements in each TPDU, and by blocking the
submission of new data at the TSAP if there is no remaining space in the window.

In the remainder of this section, we describe two different forms of

application-transport flow control:
* Sender and receiver application-transport flow control, and

* Sender-only application-transport flow control,

140

and then distinguish between mandatory application-transport flow control (asin TCP)

and advisory application-transport flow control (asin UTL).

Sender and receiver application-transport flow control
The use of sender and receiver application-transport flow control (asin

TCP) impliesthat fixed size buffers are used at both:
» thetransport sender (for unsent data and unacked TPDUSs), and

* thetransport receiver (for datathat is undeliverable, or deliverable
but still unread by the receiving application)

If the receiver’s buffers are full, the window flow control scheme throttles
the sender. If the sender’ s buffers are full, the sender prevents the sending application
from submitting additional TPDUs until window space opens up. The net effect is that
if the receiving application stops reading data and deliverable data queues up filling
the transport receiver’s buffers, the flow control algorithm will halt the submission of
new data at the sending application.

Both TCP and the KX 3 layer of UTL provide sender and receiver
application-transport flow control by blocking the submission of new data at the TSAP
if thereis no remaining space in the window. In TCP, the receiver informs the sender
as the remaining window space through two fields in the acknowledgment TPDU: the
cumulative ack, and the window advertisement. Because TCP isreliable and ordered,
these two values precisely determine the starting and ending byte of the current legal
sending window.

In KX3, the fact that the service is unordered and partially reliable makes a

scheme based on a cumul ative acks and windows advertisements of available buffer

141

space unfeasible. Instead a novel approach is used which uses the cumulative ack field

along with two additional sequence numbers.

(1) A receiver-least-undelivered field is sent from receiver to
sender to indicate the lowest numbered packet that has not yet
been delivered or declared lost. This value represents the lowest
numbered packet for which buffer space needs to be reserved.

(2) A sender-left-edge field is sent from sender to receiver,
indicating the left edge of the sending window; the receiver uses
this value to detect when unreliable or partially-reliable
messages have been declared lost at the sender.

Sender-only application-transport flow control.

Sender-only application-transport flow control implies that the service
provider has afixed size sending buffer for unsent or unacknowledged TPDUSs, but the
receiver has an infinite (or more, precisaly, an arbitrarily large) queue between the
transport receiver and the user application. KXP and KX2 provide sender only

application-transport flow control.

Application-transport flow control ismandatory in TCP, advisory in UTL

One additional detail isthat in UTL, application-transport flow control at
the sender is advisory, not mandatory. In fact, early versions of UTL provided no
application-transport flow control at all. An arbitrarily large queue between the UTL
user and the UTL transport serviceis still provided for applications for which thisisa
desirable feature. Our experience is that to make accurate measurements of delay,
application-transport flow control is necessary. A UTL user desiring application-
transport flow control can inquire before every Wi t e() operation as to whether the

W ite() would result in queuing of data. If it would, the application can choose to

142

perform other processing, or ask to be blocked in the transport layer service routine3®,

until buffer space becomes available.

3.6 Selected service and protocol detailsfor the KXP, KX2 and KX3 layers

In this section, we summarize afew details of the services and protocols
implemented by the KXP, KX2 and KX3 layers described in Section 3.3.7. This
section is not intended as a compl ete service/protocol specification, but rather a
reference to help the reader better understand the UTL framework and interpret the
results of performance experiments involving these protocols.

KXP and KX2 have been extensively tested, while KX3 has received
comparatively lesstesting. For that reason, most of the empirical results reported in

this dissertation are based on KX 2.

3.6.1 Unordered, k-xmit reliable service
All three KXx protocols provide unordered, k-xmit reliable service, which

isdefined in (Marasli, 1999b) as follows:

A packet with k-xmit reliability can be transmitted (original plus
retransmissions at most k times. If [the] transport sender is still waiting
for the ack of a packet after the k™ transmission timeout, the packet will
be released from [the] transport sender’ s buffers. Releasing a packet
from the sender’ s buffers without receiving an ack for it iscalled
“declaring that packet lost at [the] transport sender”.

b utl _Service(), discussed in Section 3.5.7.

143

3.6.2 Flow control
All three KXx protocols provide sliding window flow control between
transport entities, and application-transport flow control at the sender. Only KX3

provides application-transport flow control at the receiver.

3.6.3 Packet types

Each of the KXx protocols provides four packet types: SYN, FIN,
RDATA and ACK. The SYN (synchronize) and FIN (finish) packet types are used
for connection establishment via three-way handshake, and connection teardown via
dual half-close exactly asin TCP (RFC793). The RDATA (reliable data) packet type
is used to send data, while the ACK (acknowledgment) packet type provides selective
positive acknowledgments (acks) of SYN, FIN and RDATA packets. All RDATA
packets also carry a piggybacked ack field; although the use of thisfield varies
between KXP, KX2 and KX3 (as explained in Section 3.6.4).

3.6.4 Acknowledgments

All three KXXx protocols use positive selective acknowledgments (acks).
Each TPDU is acknowledged by an explicit ack sent as a separate control packet. In
addition, KXP and KX2 have alastAck field in every TPDU, which repeats the
segquence number of the most recently acknowledged packet. This extraredundancy in
acks helps ameliorate the effect of ack losses, which Marasli’s analytic model showed
have an important influence on the performance of partially-reliable transport
protocols (Marasli, 1999b). KX3, by contrast, supplements the lastAck field with a
cumulative ack based on the linear order of sequence numbers. While delivery is still

unordered, using this cumulative ack allows KX3 to implement the fast-retransmit and

144

recovery algorithms of TCP (RFC2581), which preliminary results show can improve

delay and throughpui.

3.6.5 Sequence numbers

KXP uses a complicated two part sequence number scheme explained in
(Golden, 1998) that istied to the internal management of buffersin the transport
sender. This scheme makes analysis and debugging of the protocol more difficult.
KXP also lacks congestion control features. 1n KX2 and KX3, the sequence number
schemeis simplified: each successive TSDU submitted by successive Wi t e()
operations is assigned a consecutive sequence number. This simplification was
motivated by adesire to simplify the protocol and was also necessary to implement

cumulative acks for fast-retransmit and recovery.

3.6.6 Congestion control

KXP provides no congestion control features whatsoever. Protocols
lacking congestion control are considered harmful for use on the wide-area Internet
because they unfairly compete for bandwidth (Floyd and Fall, 1999). KX2 and KX3
represent incremental steps towards the goal of afully TCP-friendly implementation of
KXP. A TCP-friendly application is defined by Floyd and Fall as one whose “arrival
rate does not exceed the arrival rate of a conformant TCP under the same
circumstances.” Research modeling the behavior of the TCP congestion control
algorithms has characterized TCP-friendliness as an arrival rate that is at most some
constant over the square root of the packet loss rate. (Floyd, 1991; Lakshman and
Madhow, 1997; Mathis et al., 1997.)

145

Our approach to TCP-friendliness isto emulate TCP' s exponential backoff
of retransmissions, and the four congestion control a gorithms documented in
RFC2581: dlow start, congestion avoidance, fast-retransmit and fast-recovery.

KX2 always performs exponential backoff of retransmissions, and, if the
enableCongestionControl parameter of UTL is set to true, KX2 also enables slow start
and congestion avoidance. However, KX2 lacks the ability to implement fast-
retransmit and recovery due to itslack of cumulative acks.

K X3 adds fast-retransmit and recovery to KX2, providing what should be
a complete emulation of TCP-friendliness. Establishing KX3's TCP-friendliness by

measuring its throughput against the (k/ \/6) formulais part of the ongoing work on

KX3.

3.6.7 RTO calculation

To calculate the retransmission timeout (RTO), all three KXx protocols
use a set of common UTL functions37 that implement TCP' s algorithms for RTO
calculation—Karn’s algorithm (Karn and Partridge, 1987) and Jacobson’ s algorithm
(Jacobson, 1988). In the process of implementing these algorithms, we made a
counter-intuitive discovery. The reference implementation of TCP uses a coarse
granularity for the RTO timer (500ms). We assumed that more accuracy would be
better. On the contrary: it turns out that improving the accuracy of this timer can
have negative effects! The validity of Jacobson’sformulasis predicated on a coarse
measurement of the RTT. In this section, we explain the performance problem that
can result if these formulas are applied naively to overly accurate measurements of

RTT. To highlight this counter-intuitive result, we briefly review the main ideas of

37 Programmer’ s note: These common functionsarein the ut | Tool module.

146

the Jacobson algorithm, explain why it failsif accurate timers are used, and explain
how we addressed thisin UTL.
If RTT were afixed value, theidea value for RTO would be RTT+tgsfe,

where tggfe IS the time necessary to process an incoming acknowledgment and thus
prevent an unnecessary retransmission. The value RT T+tggfe allows for a
retransmission at the earliest possible instant the sender can detect with certainty that a
failure occurred in either the transmission or the acknowledgment. Unfortunately, at
the transport layer, considerable variation in RTT is caused by queuing delays, routing
changes, and context switching in the end hosts. Therefore, the mean and variance
RTT must be estimated, and the tgfe Value must include both the minimum
processing time as well as allowing for any variance.

Jacobson’ s algorithm (Jacobson, 1988; Stevens, 1994) computes RTO by
sampling the RTT values, and using the samples to estimate the average, A, and mean
deviation, D, of the RTT via exponentially decay. If M isthe measured RTT sample:

g=0.125 Anen = (1-9)Aaid + gM

h=0.25 Dnew = (1-h)Daia + h(IM-Agid| - Doi)
RTO isthen calculated viaRTO=(A + 4D). The intuition behind thisformulais that
four times the deviation in RTT samples provides enough tsgfe time to prevent
premature retransmissions.

However, in his explanation of this calculation, Jacobson assumes that the
values are measured in so-called “ticks”, asin the reference BSD Unix implementation
of TCP. Table 3.7 showsthe tick size used for the estimation of A and D in BSD Unix
TCPvs. UTL.

147

Table3.7 Tick sizesfor RTT/RTO calculationin TCP and UTL

UTL |BSD Unix TCP
RTO 1ms | 500ms (/> sec)
Mean RTT (A) 1ms | 62.5ms (/16 Sec)
Mean Deviation (D) | Ims | 125ms(*/, sec)

The end result isthat TCP's RTO ends up with what (Jacobson and Karels,
1998) calsabiasof 1.5t0 1.75ticks38 That is, the RTO ends up being, on average,
somewhere between 750 to 825 milliseconds higher than the true value of A +4D. In
practice, this biasis usualy sufficient to ensure that if D goes to zero, TCP still does
not timeout prematurely.

In early versions of UTL by contrast, the tick value was 1ms. This
accuracy led to a pathology in which certain connections would experience
catastrophic drops in throughput after afew hundred packets. Investigation of this
phenomenon showed that it was due to premature retransmissions due to an inadequate
RTO value. Wherethe biasin RTO for TCP is between 750 to 825ms, the equivalent
biasin early UTL versions was on the order of 1 to 2ms. Asaresult, if during some
interval, the RTT remained stable long enough, the D factor could drop to a small
value, e.g., between 10-15 ms. If the RTT then suddenly increased by a value greater
than 4D, a premature retransmission resulted. This sequence of eventsled to a

syndrome where every packet was transmitted twice: because of Karn's algorithms39,

38 1.5 tickswas in the printed SIGCOMM '88 proceedings; a
"revised 1992 version of the paper" on their web site says 1.75.

39 RTT measurements are not used for any packet that is retransmitted, because the
value is ambiguous; there is no way to know whether an acknowledgment comes from
theinitia transmission or the retransmission. (Karn and Partridge, 1987)

148

UTL could not update the RTT again unless and until the true RTT dropped below the
RTO, enabling UTL to update the RTT estimates.

Our solution to this problem was to explicitly introduce an extra 750ms
safety margin into the RTO calculation: that is, weuse A + 4D + 750msasthe RTO in
UTL. Thisvaueis, onthe one hand, arbitrary: one can describe specific scenarios
where it would not be sufficient to prevent the syndrome from occurring. On the other
hand, this value is based on emulating the behavior of a successful protocol (TCP) and

seems to have eliminated the problem in practice.

3.7 UTL development, testing and debugging

This section describes the devel opment, testing and debugging tools and
processes used for development, testing, debugging and enhancement of UTL. We
make no claim that these techniques are particularly novel. Nevertheless we include
them because (1) abrief explanation of these tools and processes may help the reader
appreciate the scope and usefulness of UTL, and (2) other developers of user-space

protocol libraries may find this discussion of practical issues helpful.

3.7.1 UTL development

Aswith most large pieces of software, UTL is not the work of asingle
person. However, the author of this dissertation has been the chief designer and
architect of UTL, has supervised its construction, and has written at least half of the
UTL code. Significant additional contributions have been made by Edward Golden
(Golden, 1997), and Mason Taube.

149

While the need has been recognized to move to aformal version control
system such as CV S0, that has not been done with UTL to date. Instead, an informal
system for managing versions has evolved into a set of standard procedures that have
been followed since release 0.74 (Nov. 1997). A master directory is maintained for
the UTL source code, which is updated only when a new production release is made.
New production releases are made only after extensive testing, and only when thereis
asignificant change (either a bug fix, or an enhancement) that is useful for our
protocol research. To provide agenera idea of the process of development, Table 3.7
shows the numbers and dates of production releases done since version 0.74, and

descriptions of some of the key changes in the recent releases.

3.7.2 UTL testing

To test the functionality of UTL, at first a series of ad-hoc test programs
was used. Later it became clear that a more comprehensive approach was needed to
provide assurance that new releases did not introduce new bugs; in the software
development community, thisis called regression testing. For this purpose, apair of
programs called di ag (for diagnostic) and r d (for read) were developed originally by
Mason Taube, and later extensively modified by the author. These programs have
been used for regression testing in every version of UTL since version 0.80. The
purpose of these two programsisto give UTL an extensive workout. No clam s
made that these two programs provide any formal test coverage (for example,

executing every transition of the Finite State Automata of each layer.) However, they

40 Concurrent Versions System (ftp://prep.ai.mit.edu/pub/gnu/cvs-1.3.tar.gz).

150

have been helpful in finding bugs and in providing some level of confidence in a each
new release.

Thedi ag and r d programs operate in three phases as follows:

Phase 1:In this phase, rd operates as a server, and diag operates as a
client. For each UTL service to be tested listensfor a
connection. diag makes the connection for each UTL servicein
turn, sending exactly one packet before tearing down the
connection.

Phase 2: The programs now switch roles, with di ag operating as a
server, and r d astheclient. For each service, thedi ag
program does alisten call, and accepts a single connection from
rd. r d then sends (by default) 20000 messages of 1024 byte
each, using the selected protocol, and then closes the
connection.

Phase 3: The programs switch roles for athird time. Thistime, rd
listens for each selected service simultaneously, and diag
establishes n simultaneous connections, where n is the number
of UTL services being tested. The connections are established
in random order. Then diag sends 20,000 messages of 1024
bytes each, each time making a random selection from among
the n open connections. (This tests for any unexpected
interactions among mechanisms, or stray pointers that might
corrupt the memory of another layer.) Finaly, diag closes each
of the n connections, and terminates.

By default, di ag and r d check al defined mechanisms within UTL, and send 20,000
messages of size 1024 bytes for each test. Every production release since v0.80 has
passed this test before being added to the master directory.

Thedi ag and r d programs can also accept command line options to test

only particular subsets of services, and to change the number and size of test messages.

151

3.7.3 Debugging macros

Two specific techniques were used in debugging UTL that may be of
general interest. These include a set of debugging macros for controlling diagnostic
output (described in this section) and a set of wrapper functions for mal | oc and
f r ee that help to find pointer related bugs (described in the next section).

While general purpose debuggers such asdbx41 or gdb42 have their
place, it is sometimes more helpful to put trace output into a program. However, trace
output can create certain problems. Network protocols can be considered real-time
systems, in the sense that the progress of the computation is governed by events that
happen in real time, such as packet arrivals and timeouts. The time it takes to produce
diagnostic output may introduce artifacts into the timing of events such that a
particular bug does not occur.

What can help isto allow fine control over the level of diagnostic output.
If the content and amount of diagnostic output can be controlled, by repeated
experimentation, the developer can find the level of output at which the error still
occurs, but the amount of useful information provided to the developer is maximized.
Therefore, to provide thisfine level of control, each module in UTL has a 32-bit debug
variable, where each bit controls a particular subset of diagnostic output. A set of pre-
processor macros (#defines) are provided so that the programmer can easily identify
the subset of debugging output to which any given print statement belongs. At run

time, if aparticular piece of debugging output is not selected, the overhead for each

41 dbx is part of Sun’s Workshop development environment (www.sun.com)

42 gdb isthe GNU debugger provided by the Free Software Foundation
(www.gnu.org)

152

debugging output block isonly the time it takes to do a bitwise-and, a compare, and a
branch operation. Furthermore, one can produce an optimized binary by ssimply
substituting a “no-op” macro for each of the regular debugging macros. Having a
means to remove the debugging output without deleting it from the source means that

it will still beinthe codein caseit is needed again later—which, it invariably is.

3.7.4 Memory debugging macros
A fregquent cause of problemsin developing softwarein C or C++ isthe
manipulation of pointers. Network software in particular has this problem, because of
the pointer arithmetic involved in efficient encapsulation and de-encapsul ation of
protocol data units (PDUs). Therefore, as part of UTL we developed routines to help
us find two particularly nasty classes of bugs:
(1) memory leaks
(2) heap corruptions due freeing of dangling pointers
The basic approach is described in (Young, 1995.) We put awrapper
around the heap allocation and deallocation routinesmal | oc() andfree(). Our
wrapper routines, mrem coBl ock() and mem ci Bl ock(), (memory check out block,
and memory check in block) call the regular systemmal | oc() andf r ee() routines,
but add a header to each piece of memory that is allocated. In the header of each
chunk, we store a serial number, and the source code line number and filename of the

statement that allocated the block of memory, and a“magic number” (a sentinel value

153

Table3.7 Production releasesof UTL (partial list)

154

used for data validation.)*3 We also keep track globally of how many pieces of
memory have been allocated, and the total amount of memory allocated; these values
are printed in diagnostic output controlled by the debug bits mentioned in the previous
section. We then keep abinary search tree where the key is the pointer value itself; the
tree contains a node for each chunk of memory that is outstanding.

Within UTL, any call tomal | oc() orfree() isredirected via
#def i nes tonmem coBl ock() and nem ci Bl ock(), respectively. The
mem coBl ock() routinedoesanmal | oc() call for the requested amount of memory,
plus the extra header, then adds the memory chunk to the search tree, and to the total
of memory outstanding, and finally returns a pointer to the allocated chunk (past the
extraheader.) Thenem ci Bl ock() routine verifiesthat the pointer to be freed isin
the tree; if not, it aborts the program with an error message, This message indicates
that af r ee() was done on adangling pointer (the standard run time library does not
check for this, probably for reasons of efficiency.) On the other hand, if the block is
found in the tree, then it is removed, the counters are decremented appropriately, and
the real system free() routineis called.

Memory leaks are detected by turning on diagnostic output that is printed
by mem ci Bl ock() and mem coBl ock(). This output allows the developer to
match up themal | oc() and f r ee() calls, and ensure that at the end of the program, the

amount of outstanding memory is zero.

43 The source code and line number come from the C pre-processor symbols
__LINE_and__FILE .

155

3.8 Related work
In this section, we survey related work in two areas: user-level (ak.a. user-

space) protocol implementation, and flexible protocol architectures.

3.8.1 User-level (user-space) protocol implementations

Previous work on user-level implementations of protocols frequently cites
(Mogul et a., 1987) as abasis, which describes the Packet Filter, afacility in the
kernel to provide efficient demultiplexing of incoming packets. The key idea of the
Packet Filter isthat demultiplexing is best done by a trusted processin the kernel, but
that once the destination of the packet is determined, it should be delivered to a user-
level process for the remainder of the processing. While thiswork isimportant for
establishing the advantages of user-level implementation of upper layer protocol
functions, because we rely on UDP for packet demultiplexing, the mechanismsin this
work are not needed in our case.

(Thekkath et al., 1993) provides a summary of the arguments for building
protocols at user level. It then describes a three component architecture for a
user-space protocol implementation, and present performance results for a user-level
TCP implementation built with their architecture. One component of their architecture
isaprotocol library linked in with the application, similar to our own UTL. The other
two components are a registry server, which is single trusted user-level process per
host, and a network 1/0 module that is located in the kernel.

This last component highlights a key difference between their work and
ours: their architecture provides for user-level implementations of lower layer
protocols such as IP and ARP in addition to TCP. As such, a more complex

architecture involving some new elementsin the kernel is required. Because we focus

156

only on transport layer processing, we are able to use the facilities of UDP and avoid
having to extend the kernel in any way.

Other work in this areaincludes the following:

e (Edwards and Muir, 1995) which was already extensively
discussed in Section 3.5.7.

* (Maedaand Bershad, 1993), which use essentially the same
architecture as (Thekkath et al., 1993), but puts a greater emphasis
on absolutely preserving the semantics of the original Berkeley
Sockets API.

e Thex-Kernel, which we discuss in the Section 3.8.3 on flexible
protocol architectures.

3.8.3 Flexible protocol architectures

Several other researchers have studied environments for implementation
of protocols. The most prominent isthe x-Kernel developed at the Univ. of Arizona.
(Hutchison and Peterson, 1988; Hutchinson and Peterson, 1991; O’ Malley and
Peterson, 1992.) The x-Kernel provides a framework for constructing protocols or
protocol stacks from smaller microprotocols (similar to UTL layers). Asin UTL, there
isastandard layer-to-layer interface, and a meta-protocol defining the legal waysin
which protocol can be composed. In these ways, UTL and the x-Kernel are similar.

However, the x-Kernel isalarger project in scope, and has different goals.
UTL focuses exclusively on interactions between the application and transport layers,
and provides a means to develop protocols at user level. The x-Kernel provides a
means to build new in-kernel protocol stacks, along with an x-Kernel simulator
allowing these stacks to be developed and tested at user level. It also provides an
environment for building protocol stacks all the way from the data link layer, up

through the network layer, to transport and application.

157

At the time we chose to develop our own library, the x-Kernel was less
mature and less widely documented than it is today. Support for using the x-Kernel has
increased dramatically, due to documentation and code available over the Web, and an
introductory networks textbook based on the programming in the x-Kernel framework
(Peterson and Davie, 1996). Therefore, as future work, we propose reexamining the
architecture of UTL in light of the availability of the x-Kernel, and perhaps developing
an x-Kernel based implementation of the functionality present in UTL. Thiswould
open up many new areas for investigation, since x-Kernel implementations of standard
protocols (TCP, UDP) aready exist.

Other work on flexible protocol schemes includes

e PascalCom which outlines an architecture based on a Pascal-like
language (Tschudin, 1991)

» The ADAPTIVE project, aframework for experimenting with
high-performance transport protocols, with an emphasis on
multimedia applications and exploiting opportunities for
parallelism in the protocol processing. (Schmidt and Suda, 1993;
Schmidt et al., 1992)

3.9 Chapter summary, and futurework related to UTL

This chapter described how the author designed and supervised the
development of the Universal Transport Library (UTL), atool for investigating
flexible Transport QoS. UTL provides aframework for rapid prototyping of transport
layer implementations, experimenting with application performance over awide range
of transport protocols.

We described the core principles that guided the UTL design and

implementation: (1) avoidance of protocol-specific special-case code in the

158

application, (2) application level framing, (3) reasonable fallbacks, and (4) minimizing
data copies.

We also described the means by which UTL provides a wide range of
transport QoS to the application. The QoS provided is determined by the selection of a
mechanism at connection establishment time, and by the setting of a set of parameter
values. UTL mechanisms are composed of layers, and default parameter values.
Layers provide the implementations of protocols and services. A set of formal rulesis
specified for composing mechanisms and determining the resulting QoS.

We also surveyed some of the challengesinvolved in the design and
implementation of transport layer protocolsin general, and user-level implementations
in particular, including application-transport flow control, RTO calculation, and CPU
scheduling.

Suggestions for future work on UTL already mentioned in this chapter

include:

* Fully implementing the features of POCv2 not already in UTL,
including the PR reliability class (Section 3.3.8)

* Finishing KX3 and evaluating it against other TCP-friendly
protocols

* Completing the SRL layer (Section 3.3.8)

* Evauating whether to migrate some UTL functions to the kernel,
either directly, or through the x-Kernel (Section 3.5.1)

» Evauating the penalty of message-oriented vs. byte-stream service
(Section 3.5.4)

* Provision of afacility for QoS negotiation (Section 3.5.6)

* Redesigning the CPU scheduling to use POSIX threads (Section
3.5.7)

159

In addition, the following projects would be useful additions:

* Adding window size negotiation and mechanism negotiation to the
KXx family of protocols. These features would aid considerably
in automation of experiments, since currently, to test multiple
window sizes and mechanism, it is necessary to have a separate
server listening for each window size and mechanism under test.

* Adding the data preview feature described in Chapter 2 to the POL
and TOL layers.

In the next chapter, we discuss the ReMDoR system, which has been the

key application with which UTL has been tested.

160

