
176

Chapter 5

RESULTS OF PERFORMANCE EXPERIMENTS

5.1 Introduction

This chapter presents the core of this dissertation. While many of the side-

products of this investigation have proved useful and significant, it is this chapter that

directly addresses the problem statement first presented in Section 1.1, and repeated

here for the reader’s convenience:

To determine through experimentation with real systems the extent to

which PO/PR transport service can provide performance benefits for

real applications.

In this chapter, we present results from performance experiments that address this

question.

5.1.1 Goals and limitations of our investigation

This section describes the limitations of our investigation and clarifies our

goal with respect to the problem statement cited above.

First, consider the term real applications. In this investigation, we

examine only one application for PO/PR service, namely multimedia document

retrieval. Using PO/PR service to support multimedia document retrieval was first

proposed in (Amer et al., 1994), and developed further in (Conrad et al., 1996). Only

one other concrete application has been proposed for PO/PR transport service:

177

(RFC1693) proposes using PO/R service to transmit the results of database queries.

Section 7.2 comments further on the applicability of our results to this application.

For other hypothetical applications, we can produce only negative results.

For example, we can show a range of network conditions under which the benefits of

partial order in terms of delay or throughput are zero. However, if the benefit is

anything other than zero, we cannot determine the significance of the gain except in

the context of a particular application, because any gain, no matter how arbitrarily

large or small, might be significant, or insignificant in a particular set of

circumstances. An improvement in delay or throughput that is significant in one

context may be meaningless in another. The fact that we cannot extrapolate the

significance of a performance improvement from one application to another highlights

the advantage—as well as the disadvantage—of examining PO/PR transport service in

the context of a specific application.

We should also recognize that even within the context of ReMDoR, our

experiments are limited to specific documents. We have tried to use documents for

our experiments that are reasonable examples of multimedia, similar to those seen in

practice. However, we make no claim that our documents are representative in any

scientific sense. One might imagine that someday we might be able to perform

experiments on randomly selected multimedia documents from a huge corpus of

literature, as is the practice of researchers in natural language processing. However, no

such corpus of PMSL documents exists—not yet, in any case.

Thus, our goal is to find some specific circumstances under which PO/PR

service provides benefits for some specific documents, and then to investigate these

circumstances fully, examining the effect of varying network parameters on the gain in

178

performance. By understanding these effects, we can better evaluate the potential of

PO/PR service as a useful addition to the range of services provided by the transport

layer.

5.1.2 Organization of this chapter and overview of performance experiments.

This section describes the organization of this chapter. It also provides an

overview of the performance experiments included in this dissertation, with a brief

description of the role that each plays in our investigation of PO/PR transport

protocols. (The reader may wish to review the introduction in Section 1.7 and the

notation in Table 1.3 before proceeding.)

Section 5.1 provides background information about the performance

experiments in general. It includes:

• a description of the overall experimental framework (Section 5.1.3),
and

• specific sections on the lossy router and the packet reflector
(Sections 5.1.4 and 5.1.5), including a discussion of how the correct
operation of these components was verified.

The core of the chapter, Sections 5.2 through 5.7, describes the results of our

experiments. In each case, the ReMDoR system is used to retrieve a document using

two or more transport protocols. We present a comparison of the performance

statistics for each protocol to see if one protocol outperforms the other(s). Depending

on the experiment, we investigate the effect of packet loss rate, bitrate, propagation

delay, and/or window size.

• Section 5.2 describes Experiment N1, comparing ordered/reliable
service with unordered/reliable service using network-conscious images
produced with NETCICATS (Iren,1999b). The improvement of an
unordered/reliable service over an ordered/reliable service represents

179

the limiting case for gains from any partially ordered/reliable transport
service.

• Sections 5.3, 5.4 and 5.5 describe Experiments R1, R2 and R3, which
use the ReMDoR application to compare ordered/reliable service to
partially-ordered/reliable service for retrieval of a document with eight
images presented in parallel. The main difference between these
experiments and Experiment N1 is that for R1, R2 and R3, images are
compressed using the traditional GIF file format. GIF requires
ordered/reliable delivery for each image, so unordered service cannot
be used. However, partially-ordered service can be used because the
data for each image can be interleaved in eight parallel streams.

• Section 5.6 describes Experiment R4, which compares ordered/reliable
service to partially-ordered/reliable service for retrieval of a document
with three images in parallel with a single audio clip. We consider
performance statistics related both to the display of the images and the
smoothness of the audio presentation.

• Section 5.7 describes Experiment R5, which compares ordered/reliable
service to partially-ordered/reliable service for retrieval of entire
documents. Where R1, R2 and R3 focus on small documents, here, we
look at a full document in its entirety.

Following the experiment results, Section 5.8 surveys common problems that can arise

in measuring system performance and how we dealt with these. Section 5.9 concludes

the chapter, with some overall conclusions, an assessment of the significance of our

results.

5.1.3 Experimental setup

Section 1.7 provided a high-level view of the experimental framework

developed as part of this dissertation. In this section, we provide a more detailed view

of this setup. Figure 1.2 showed a server and a client with a cloud abstracting the

unreliable network connecting them. Figure 5.1 illustrates the details of that cloud.

180

The network always includes a 100Mbps Ethernet at the client side. In addition, it may

include combinations of the following components:

(1) a lossy router (described in Section 5.1.4): an IP router that can,
on request, purposely drop certain packets according to one of
several loss models.50

(2) a packet reflector (described in Section 5.1.5): a traffic shaping
program to simulate packet transmission delays, propagation
delays, and queuing delays for a two-way UDP packet flow

(3) a PPP link: a serial connection using the Point-to-Point
Protocol (RFC1661) over an RS–232 null modem cable

(4) A wide-area Internet path. Although not used in any of the
experiments described in this dissertation, the experimental
framework includes provisions to do experiments between UD
and other locations on the Internet. This capability was used in
(Iren 1999b) to do experiments between UD and the Middle
East Technical University in Ankara, Turkey. Planned future
work involves using this capability for experiments between UD
and Temple University, which although a short distance in
geographical terms, is actually thirteen hops away in Internet
distance.

50 The initial implementation of the lossy router was completed by Golden as part of
(Golden, 1997). The author of this dissertation designed the SLRP control protocol
(described later in this section), and implemented a GUI client. The Bernoulli loss
model was implemented by Golden; the deterministic and Gilbert loss models were
added by Iren (Iren, 1999b).

181

Client
(buzet.cis.udel.edu)

Server
(medoc.cis.udel.edu)

UTLLossy Router
(alsace.cis.udel.edu)

Router for PPP link
(sauterne.cis.udel.edu)

UTL

1200 to 38400 bps
PPP-link over
RS-232 Null
Modem Cable

100 Mbps Ethernet

Server
(elsewhere on the net)

UTL

Wide area
Intenet Connection

Reflector

Figure 5.1 Detail of experimental environment

5.1.4 The lossy router

To simulate delay and loss, we use a lossy router, developed at the UD

Protocol Engineering Lab (PEL). While the hosts used in our experiments have only

one Ethernet interface, attached to a single 100Mbps Ethernet hub, each host is

assigned two distinct IP addresses: one for normal traffic, and one for experimental

traffic on the so-called loss network. The loss network (domain name:

loss.udel.edu) is a virtual network that runs in parallel with the regular network

(cis.udel.edu) over the same Ethernet hardware. The router for this network is a

machine called alsace.loss.udel.edu. When a host on the loss network (say,

182

buzet.loss)51 has a packet destined for another host on the loss network (say,

medoc.loss), rather than placing the packet on the Ethernet with the destination

host’s Ethernet address, the host instead sends the packet to the lossy router

(alsace.loss). Although alsace.loss acts as a router for the loss network, the

normal IP forwarding mechanisms on alsace are disabled. Instead, a user-level

program developed at UD intercepts incoming packets and performs the routing

function, deliberately introducing packet loss according to one of three available

models:

(1) Bernoulli: a uniformly distributed pseudo-random number is
generated, and the packet is either forwarded or dropped, based
on the outcome (parameter: packet loss probability p)

(2) Deterministic: every kth packet is dropped (parameter: k)

(3) Gilbert-Elliot: loss is modeled by a Markov chain with 2 states:
bad (packets are dropped) and good (packets are forwarded).
(parameters: p and q, as in Figure 5.2)(Gilbert, 1960; Elliot,
1963; Ebert and Willig, 1999)

To enable automated experimentation, a control protocol was developed called the

Simple Lossy Router control Protocol (SLRP). This protocol is an ASCII protocol

similar in structure to FTP, NNTP or SMTP:

• request PDUs begin with four character command codes, and

• response PDUs begin with three digit response codes indicating the
success or failure of the command, and in some cases returning
statistics.

51 Henceforth, we drop the .udel.edu suffix; for example, buzet.cis refers to
buzet.cis.udel.edu, and buzet.loss refers to buzet.loss.udel.edu

183

Commands allow experimenters to change the loss model and parameters either

interactively via a telnet or GUI client, indirectly from a Perl or Tcl/Tk script, or from

a program using TCP sockets.

good bad

p

q

1-p 1-q

Figure 5.2 Gilbert-Elliot loss model (two state Markov chain)

The experiments described in this chapter use only the Bernoulli loss

model. Future work includes performing experiments based on the Gilbert-Elliot loss

model to study the effect of burst losses, such as might be caused by queue overflows,

momentary power outage in a router, or noise bursts on a wireless channel.

Validation of the lossy router

We took several steps to ensure that the lossy router operates correctly for

the Bernoulli loss model. First, we tested the lossy router using the standard Unix

ping utility at a variety of loss rates ranging from 0% to 100%. Second, we

performed a code review involving several members of the PEL staff, in which we

reviewed the source code line-by-line to increase our confidence in its correctness.

Third, we measured the actual packet loss obtained in each of our experiments by

analyzing a packet trace. The remainder of this section provides more information

184

about how we took this measurement, and some sample data to back up the claim that

the lossy router operates correctly.

Unless otherwise noted, every experiment reported in this dissertation

involves repeating an experiment many times, and taking the average and standard

deviation across many repetitions of the experiment. The lossy router maintains

counters of packets forwarded and dropped that can be reset and inquired against.

Before each repetition of every experiment, we reset these counters, and following

every repetition, we retrieved the values of these counters. Therefore, we know the

actual number of packets forwarded and dropped in each experiment, as reported by

the lossy router. Based on the evidence in these logs, we conclude that the mean and

standard deviation of the actual loss rate for traffic through the lossy router is

reasonably close to the values predicted by the formulas for the mean and standard

deviation of a Bernoulli distribution.

Of course, the conclusion in the previous sentence is predicated on the

assumption that the lossy router is providing accurate reports of its own behavior. To

validate that the counters reported by the lossy router are accurate, we also take a

packet trace of every experiment, and use a Perl script to analyze this output. The

script counts the number of packets sent from client-to-server and server-to-client in

each experiment, and the number of packets dropped by the lossy router, dividing to

get the actual loss rate for each direction. We can then cross check this against the

report by the lossy router. Our analysis of the packet traces for the experiments leads

us to conclude that the lossy router’s reporting about itself is accurate.

185

5.1.5 The packet reflector

To simulate various bandwidths we used the UDP packet reflector

developed at the UD Protocol Engineering Lab. The packet reflector is a user-level

process that forwards UDP packets between a client and a server, simulating the

effects of queuing delays at a slow PPP link, and propagation (speed of light) delays

for long-haul transmission.

The traffic shaping done by the reflector has characteristics of both the

classic leaky bucket and token bucket methods (Tanenbaum, 1996). The goal of both

of the classic schemes is to limit traffic to a maximum bit rate of b. The difference

between the schemes is that:

• In the leaky bucket scheme, the upper bound on the bit rate is enforced
on a packet-by-packet basis. When the queue is non-empty, packets
leave the queue at a steady rate of b bits per second, similar to the flow
of water through a hole in the bottom of a bucket. Bursts of
transmission higher than bitrate b are disallowed.

• In the token bucket scheme, tokens are added to a bucket at a steady
rate, and are used to bound the long-term average bitrate. Bursts of
packets may be sent at a bitrate higher than b to make up for past
underutilization of the allocated bandwidth.

As the remainder of this section explains, the model for the PEL reflector is the leaky

bucket scheme. However, due to context switching, the reflector may occasionally fall

behind in sending out packets according to the transmission times calculated for the

leaky bucket model. In this case, bursts of packets may be sent out to allow the

reflector to catch up; this is more akin to the token bucket scheme.

The remainder of this section is in two parts: we first provide details of the

modified leaky bucket scheme, and then describe how the reflector was validated.

186

Modified leaky bucket scheme used in the packet reflector

Each direction of the link is modeled independently. When each packet

arrives, it is placed in the outgoing packet queue. The current time (noted as now in

the equations below) is measured. Then three timestamps are calculated and

associated with the arriving packet:

• tstart: first bit of the packet begins transmission

• tend: last bit of the packet ends transmission

• tarr: last bit of the packet arrives at the receiver, given the propagation
delay tprop that is being modeled by the reflector.

These values are calculated as follows. We start by calculating the value

totalLengthInBytes, which is the sum of:

• the bytes of UDP data in the arriving packet, including the application
layer data, and all UTL headers,

• 8 bytes for the UDP header,

• 20 bytes for the IP header, and

• 8 bytes for the PPP header.

This calculation is valid only assuming that IP fragmentation does not take place;

which is a valid assumption for the experiments in this dissertation. We then

calculate the timestamps for the arriving packet as follows:

187

if queue.isEmpty()

arrivingPacket.tstart ← now
else

arrivingPacket.tstart ← queue.tail.tend:

arrivingPacket. tend ← arrivingPacket.tstart + (8 * totalLengthInBytes /
b)

arrivingPacket. tarr ← arrivingPacket.tend + arrivingPacket.tprop

The reflector then operates on the assumption that the actual transmission and

propagation delay is negligible on the 100Mbps Ethernet to which all the machines in

the experimental setup are attached, and transmits each packet in the outgoing packet

queue over the network at time packet. tarr.

To ensure timely delivery, the reflector implements an infinite loop that

blocks on a select() system call (see Section 3.5.7) with a delay value d calculated

as follows:

• if both queues are non-empty, d is the earlier of tarr values for the
head packets

• if only one queue is non-empty, d is the tarr value for the head of that
queue

• if both queues are empty, d is NULL indicating that select() should
block waiting for incoming data.

Provided that a context switch does not occur in the middle of the loop,

and provided the select() system call does not return late, this algorithm correctly

implements a leaky bucket model. On the other hand, if the select() system call

returns late, the reflector may find that one or more packets have missed their

deadlines for transmission. In this case all of these packets will be sent out in a burst

as in the token bucket model, to allow the reflector to catch up.

188

Validation of the packet reflector

To verify that the packet reflector correctly models propagation delays and

queuing delays, we performed tests at various bitrates and propagation delays, and

took tcpdumps of the resulting traffic. We then calculated the correct sending times

by hand, using a spreadsheet, and compared these with those shown on the tcpdump,

to verify that the sending times were calculated and carried out correctly. Based on

these results, we have confidence that the packet reflector correctly models bitrate,

propagation delay, and queuing delay.

189

5.2 Experiment N1: showing the upper bound for performance gain
(U/R vs. PO/R vs. O/R Service using NETCICATS)

This section describes Experiment N1, which compares unordered service

with partially ordered service and ordered service using a document produced with the

aid of the Network-Conscious Image Compression and Transmission System

(NETCICATS) of (Iren, 1999b). This experiment is designed to investigate the

following hypotheses:

Hypothesis 5.2.1: At 0% loss, the progressive display of a
document containing eight parallel network-conscious images will not
change significantly, regardless of whether unordered, partially-ordered,
or totally-ordered service is used.

Hypothesis 5.2.2: As the loss rate increases from 0% to 10% to
20%, there will be increasing benefits to using unordered service over
partially ordered service, and partially-ordered service over totally
ordered service.

Hypothesis 5.2.3: At the bitrates, propagation delays and loss rates
tested, variations in processing and packet header overhead among the
UTL mechanisms X2E, R2E, S2E and T2E will be measurable, but
small in terms of end user impact.

The NETCICATS system allows us to produce image files where every

ADU of the image can be decoded and displayed out of sequence, regardless of the

reception of other ADUs. Therefore, using NETCICATS we can produce a document

that allows us to compare the performance of ordered service vs. unordered service.

The significance of this comparison is that the improvement provided by unordered

service over ordered service represents the upper bound on any improvement that

partially ordered service could ever provide.

This experiment uses the document ncg8par.pmsl, which contains

eight images from the military.pmsl document (described in the appendix), all

190

sent in parallel. This simple document, illustrated in Figure 5.3, has no temporal

aspects; it is similar to a static web page consisting of multiple images. Each of the

eight images is compressed using the Network-Conscious Graphics Interchange

Format (NCGif) format defined in (Amer et al., 1998).

Organization of Section 5.2

• Section 5.2.1 describes previous and concurrent work related to this
experiment, specifically (Diot and Gagnon, 1999) and (Iren 1999).

• Section 5.2.2 describes the parameters for Exp. N1.

• Section 5.2.3 describes the format of the performance graphs we use to
present our data for this experiment, and those throughout the chapter.

• Section 5.2.4 describes our observations for Exp. N1 while Sections
5.2.5 through 5.2.7 explain the conclusions we draw based on these
observations.

• Section 5.2.8 explains the significance of sample screen dumps of the
ReMDoR performance experiments that we use throughout the chapter
to illustrate the end-user impact of the numerical performance gains we
report.

• Section 5.2.9 interprets a set of sample screen dumps for Exp. N1 at
10% loss.

• Section 5.2.10 summarizes our conclusions for Exp. N1.

5.2.1 Unordered vs. ordered service: related work

In addition to looking at partially-ordered service, the experiments in this

section also consider the benefits of unordered service. Our interest in unordered

service is chiefly the upper bound on any gain that may be obtainable from partially-

ordered service. However, the comparison of unordered vs. ordered service is also an

interesting question in its own right (Iren, 1999b; Diot and Gagnon, 1999).

191

Unordered vs. ordered service (Iren, 1999b)

(Iren 1999b) considers the performance benefits of using an unordered

transport service with network-conscious image compression techniques vs. using an

ordered service with traditional image compression techniques. The central focus of

Iren’s work is the tradeoff between using:

• better compression (fewer bits per pixel) at the expense of having to use
an ordered/reliable transport service which may experience increased
delay when there is significant packet loss, vs.

• a more flexible transport service (unordered/reliable) which provides
reduced delay and progressive display, at the expense of worse
compression (more bits per pixel.)

Thus, each of Iren’s experiments involves comparing

• the transmission over an ordered/reliable transport service (e.g., S2E) of
a single image in a format requiring ordered/reliable delivery (e.g., GIF
or SPIHT), with

• the transmission of the same image over unordered/reliable service
(e.g.,X2E) in a network-conscious format (e.g., NCGif, or network-
conscious SPIHT), that is, one that provides slightly worse
compression, but allows ADUs to be processed and displayed out of
sequence.

Thus, in the experiments comparing ordered and unordered service in Iren’s work, an

unequal number of bytes is transmitted over the two protocols, because the focus is on

the progressive display of an equal number of pixels. Experiment N1 differs from

Iren’s experiments with network-conscious image compression in that, since our focus

is on studying the transport layer, per se, rather than the tradeoffs involved in various

compression techniques, we desire equal numbers of both bytes and pixels in our

experiments.

192

Unordered vs. ordered service (Diot and Gagnon, 1999)

 (Diot and Gagnon, 1999) presents a more abstract comparison of

unordered vs. ordered service in general. A serious limitation of this work is that it

considers the benefits of unordered delivery only in terms of improvements in

throughput, buffer utilization, and jitter, with the main emphasis decidedly on

throughput. This viewpoint overlooks a key benefit of out-of-sequence delivery,

namely the progressive display (or in the general case, the progressive processing) of

information.

Nevertheless, (Diot and Gagnon, 1999) does contain several useful

observations. A major theme of their work is that a crucial factor in determining the

throughput benefit of out-of-sequence delivery is the relationship among the round-trip

delay, the bitrate, and the application’s ADU processing time. This relationship can be

best understood by considering what happens when there is a packet loss with an

ordered service. A packet loss results in a gap in the sequence number space of bytes

or packets. Until this gap is filled, data delivery is suspended, and packets that follow

the gap must be buffered. The impact of this gap on throughput depends on the

relationship between application processing time, and round-trip delay. There are

three cases:

Case 1: If the application processing time is small compared to the round-

trip delay, then there is little benefit to out-of-sequence delivery. In this case, if

ordered delivery is used, when a retransmission fills a gap, the resulting burst of

packets will be processed very quickly. Thus, overall throughput does not suffer

significantly.

On other hand, this argument ignores the benefit of progressive display.

Even if the application processing time is arbitrarily small, out-of-sequence delivery is

193

useful if the elapsed time needed to fill a gap is sufficiently large to produce noticeable

delays for the end user in access to information. For many applications, such as web

browsing, it does not matter if the application can decode 60MB of information in a

microsecond; the end user would rather be presented with 1MB of information each

second for 60 seconds, than to receive nothing for 59.999999 seconds, and then

receive all 60MB in the final microsecond. This is where the throughput-centric

argument breaks down.

Case 2: If the application processing time is large compared to the round-

trip time, then there is little benefit to out-of-sequence delivery. By the time the

application is finished with a particular ADU, enough time has elapsed that any gap

that may have existed can be filled by retransmission.

Unlike the previous argument, this argument also pertains to progressive

display. No progressive display is obtained from delivering packets out-of-sequence

if the transport layer can fill gaps more quickly than the application can process

successive packets.

Case 3: If the application processing time, the round-trip time, and the

interpacket arrival time are of the same order of magnitude, out-of-sequence delivery

can improve throughput. In this case, when a gap occurs, the application may be

blocked waiting for a retransmission. If the application processing time is only

slightly smaller than the interpacket arrival time, when the retransmission fills the gap

resulting in a burst delivery of buffered data, the application processing may be too

slow to compensate for the time that was lost while waiting for the retransmission.

Any lost time increases the delay of the final packet, thus reducing throughput. By

194

keeping the application pipeline flowing when there is a gap, this extra delay is

avoided, and throughput is increased.

One useful application of Diot and Gagnon’s principles is to point the way

towards where we can expect to find benefits from partially-ordered service, and

where those benefits are unlikely to be found. In particular, from Diot and Gagnon’s

work, we can derive the hypotheses that we are more likely to find gains from

partially-ordered service:

• at low bit rates (because of the large round trip times),

• at high bit rates only where there is a significant propagation delay
(again, resulting in a significant round-trip time), and

• when the application processing time is not large as compared to the
round-trip-time.

On the other hand:

• we are unlikely to find any benefit from partial order on networks
where the bit rate is high and the propagation delay is small, such as
local area networks.

These hypotheses are developed more formally in the experiments throughout the

remainder of this chapter.

195

Figure 5.3 Illustration of ncg8par.pmsl

5.2.2 Experiment N1: parameters

Tables 5.1 and 5.2 shows the parameters and UTL mechanisms (i.e., the

transport protocols) used for experiment N1.

196

Table 5.1 Parameters for Experiment N1

Parameter Values
Mechanisms X2E,R2E,S2E,T2E
Loss Rates 0,10,20
Network PPP
Bitrate 38.4kbps
Propagation Delay negligible: distance is less

than 5 meters
Document img8par.pmsl

Window Size 32
Bold indicates the parameters that are the focus of the experiment.

Table 5.2 UTL Mechanisms used in Experiment N1

Mechanism52 Service Layers
TPDU header
size

X2E unordered/reliable53 KX2 20 bytes
R2E partially-ordered/reliable KX2,NUL,POL 52 bytes
S2E ordered/reliable KX2,TOL 24 bytes
T2E ordered/reliable KX2,TOL,POL 52 bytes

Note: Congestion control disabled for all four mechanisms (See Section 5.11.2)

5.2.3 Format of performance graphs

A consistent format will be used for performance graphs throughout this

dissertation; in this section, we explain this format by referencing Figure 5.5, showing

the first set of graphs from Experiment N1.

52 See Table 3.1, 3.1a for more details about the entries in this table.

53 X2E normally provides U/PRk service (see Table 3.1, 3.1a); for R1 and R2 the
default value of k=0 is left unchanged by the application, resulting in U/R service.

197

The graphs in the left hand column show the average progressive delivery

of bytes for mechanisms X2E, R2E, S2E and T2E, while the right hand column shows

the average progressive display of pixels for mechanisms X2E, R2E, S2E and T2E.

The main independent variable in this experiment is the loss rate. The top

row shows results for 0% loss, while the subsequent rows show results for 10% and

20% loss. In general, except where specifically noted, this layout of:

• multiple protocols on each graph,

• BYTES on the left, PIXELS on the right

• values of the independent variable in rows down the page

will be used throughout for the presentation of performance graphs. Except where

there is a deviation from this layout, we will not repeat this explanation in subsequent

sections.

Note that both the bytes and pixels metrics have significant implications.

The pixels metric allows us to assess the impact on the human end user for this

particular application. The bytes figure allows us to understand the advantage of out-

of-sequence delivery from a transport layer viewpoint, and may allow us to predict the

impact of out-of-sequence delivery on other applications.

5.2.4 Experiment N1: observations

We would like to highlight three observations concerning the graphs for

Experiment N1:

(1) Each of the bytes graphs begins an upward curve from time zero,
while the pixels graphs all have a delay of around 3 seconds before
any delivery begins.

198

(2) There is a noticeable performance difference among the protocols at
0% loss, with X2E and S2E providing the best performance, R2E
and T2E providing slightly worse performance.

(3) There are larger performance differences at 10% and 20% loss:

• T2E provides the worst performance,

• S2E provides slightly better performance than T2E,

• R2E provides considerably better performance than S2E, and

• X2E provides the best performance of all.

The next three sections interpret these observations in light of our hypotheses.

5.2.5 Exp. N1 analysis: delay in delivery of pixels vs. bytes

Our first observation is to note an interesting difference between the bytes

graph and the pixels graph. The bytes graph shows that we begin receiving bytes

nearly from time 0, while in the case of the pixels graph, there is a delay of about

3 seconds before we start recording any progressive display of pixels. This delay

reflects the fact that the first two ADUs of each GIF image contain a GIF header and

the color table for the image. For the 0% loss case, the GIF header and color table

ADUs for each of the eight parallel images are guaranteed to be the first sixteen ADUs

to arrive. Thus we will not see any progressive display of pixels until the seventeenth

ADU arrives. In the case of the img8par.pmsl document, the first sixteen ADUs

contain a total of 6,918 bytes of data. Therefore, we expect that the bytes graph would

reach 6,918 at about the same time (actually one ADU time sooner) as the first rise of

the pixels graph from zero—and indeed, as we compare the two graphs, this is the

case.

199

Exp. N1 analysis: differences in performance at 0% loss

Next, we find evidence to support Hypotheses 5.2.1 and 5.2.3. For the

network conditions tested, with 0% loss, the progressive display of the images is

almost the same, regardless of the delivery order enforced by the transport service, but

there is a measurable difference among the four services. The green and red lines,

representing simple unordered (X2E) and ordered service (S2E), are nearly identical to

one another, and show that the entire document is presented in approximately 22

seconds on average. The red and purple lines, representing partial order service

(R2E), and total order service (T2E) with explicit release and identical overheads, are

nearly identical to one another, with the red and purple lines reflecting an overhead

that results in approximately 2 seconds of extra delay. The difference in performance

is due to the processing requirements and TPDU headers that differentiate X2E and

S2E from R2E and T2E, as shown in Table5.2.2:

• X2E has the smallest amount of processing overhead (1 layer) and the
smallest TPDU header (20 bytes). Thus, when there is no loss, X2E
provides the best performance.

• S2E has the next smallest amount of processing overhead (2 layers) and
the next smallest TPDU header (24 bytes). Therefore, S2E performs
next best, with nearly identical, but slightly worse performance than
X2E for 0% loss.

• R2E and T2E have the largest processing and TPDU header overheads,
and thus perform the worst at 0% loss. Because the overhead for R2E
and T2E is nearly identical, so is their performance at 0% loss.

However, note that for this document, at this bitrate, the performance gap among all

four protocols is small. We make the following observations:

(1) All four protocols start delivering bytes and/or pixels at virtually
the same instant.

200

(2) All four provide smooth data delivery, with no noticeable
interruptions in the flow.

(3) The maximum gap between the average performance of the
X2E and R2E protocols occurs at 22.1 seconds after the
document request. At this point, X2E is, on average, finished
with the entire document, while R2E still has on average 56,833
pixels remaining (about 8.7% of the total pixels). R2E does not
complete the document until, on average, time 24.1 seconds.
We can make a similar observation about any comparison of
either X2E or S2E with either R2E or T2E.

The left hand side of Figure 5.4 shows the completed document, representing the view

the user would have at 22.1 seconds with X2E. The right hand side of this figure

shows the document with 56,831 pixels, which is close to the average of 56,833 that

would be on the screen at time at time 22.1 seconds for R2E. As the reader can see,

there is a significant difference in appearance between the two screen dumps.

However, both protocols deliver pixels at a steady rate, and two seconds after this

picture, the entire document is finished for both protocols. The main difference is the

slope of the line, which would probably not be noticed by most users. We can draw

the following conclusions from these results:

(1) The TPDU and processing overhead of R2E and T2E as
compared to X2E and S2E is significant enough to be measured,
but probably not significant enough to cause a noticeable
performance penalty for ncg8par.pmsl at 38.4kbps.

(2) We believe that we can safely extrapolate this result to
documents that are smaller than or equal in size to
ncg8par.pmsl, and bit rates equal to or larger than 38.4kbps;
we should not draw any particular conclusions about larger
documents or slower bitrates, since the “lines” that appear in the
first row of Figure 5.5 may not be lines at all, but may be a flat-
appearing region of a non-linear function.

(3) Most importantly, we can conclude therefore that the TPDU and
processing difference between R2E and T2E is much smaller

201

than the difference between the R2E,T2E mechanisms and the
X2E,S2E mechanisms. It is important to the significance of
results later in the chapter that R2E and T2E have virtually
identical processing overheads. This experiment provides the
first indication that R2E and T2E do have virtually identical
processing overheads, at least for this document at bitrates ≥
38.4kbps.

5.2.7 Exp. N1 analysis: differences in performance at 10% and 20% loss

Next, we see evidence for Hypothesis 5.2.2 in the second and third rows of

Figure 5.5. When the loss rate is increased to 10% and 20%, we make the following

observations:

(1) In terms of progressive display of pixels, unordered service (the
green line) is the clear winner over partially-ordered service (the
blue line) or either of the ordered services (red and purple)

(2) In terms of both bytes and pixels, partially-ordered service
(blue) is better than ordered service (red and purple)

A question that arises, however, is: what is the significance of these gains to the end

user? In Section 5.2.9, we address this question by relating the graphs to the example

screen dumps in Figures 5.6 through 5.8. These illustrations provide tangible proof

that in this experiment, there are significant performance gains for unordered service

vs. partially-ordered service, and partially-ordered service vs. ordered service. We will

rely on illustrations such as these throughout the chapter. Nevertheless, as helpful as

these illustrations are, some important caveats are involved in their interpretation.

202

5.2.8 Caveats regarding interpretation of example ReMDoR screen dumps

Throughout this chapter, we present screen dumps54 from the ReMDoR

browser for comparison purposes. For example, Figures 5.6 through 5.8 show the

ncg8par.pmsl document at various stages in its progressive display over three

different protocols. As the figures’ captions show, each screen dump illustrates, for a

given experiment with a given document:
• an image close to that with the average number of pixels on the

screen, (momentarily, we explain what we mean by “close to”)

• across all repetitions of that experiment,

• at a particular point in time,

• using a particular protocol,

• at a given loss rate.

In this section we explain what we mean by “close to.”

As an example, consider the screen dump in the lower left-hand corner of

Figure 5.6. The text under screen dump reads “avg. 1151 (1169 pixels shown)”. This

label “avg. 1151” indicates that when protocol S2E is used to retrieve the

ncg8par.pmsl document at 10% loss, five seconds after the document is requested,

there are, on average, 1151 pixels on the screen. However, the phrase “(1169 pixels

shown)” indicates that the screen dump that appears in Figure 5.6 actually shows 1169

pixels, not 1151. The rest of this section explains why this is the case, and indeed,

why this discrepancy is necessary if these illustrations are to be used to make a fair

evaluation of the benefits of unordered and partially ordered transport service.

54 The term screen dump refers to a graphic representation of the entire ReMDoR
display at a given moment in the display of the document. This term avoids any
ambiguity that might result if we called these screen dumps images; we reserve the
term image for single image elements in a PMSL document.

203

The p(t) function: pixels on the screen as a function of time for ordered service

For any given experiment, let p(t) as a function represent the number of

pixels on the screen at time t. Because all pixels from each ADU are placed on the

screen instantaneously by a single operation, p(t) is a step function that can only take

on a finite number of discrete values. For ordered protocols, given the arrival time of

each ADU, arri we can characterize this step function precisely by the following

formula:

{ }

 exists. such no if 0or , such that }{1,2,..., maximum)(
:packet arrivedrecently most theofindex theis , where

packet in pixels ofnumber

,,2,1 allfor given protocols, orderedFor
)(

1

itarrnitk
k(t)

ip(t)

niarr

i

tk

j

i

≤∈=

=

∈

∑
=

K

On the other hand, in our experimental results, we report an average number of pixels

present on the screen at some point in time. For a given number of experiments, say,

30, there are again a finite number of values that the average of 30 instances of this

step function (as determined by the particular set of arri values) can take on.

However, it is likely that few, if any of these average values will correspond exactly to

any of the possible pixel values in the range of the function p(t):

() UU
n

i

i

j
itp

1 1
packet in pixels ofnumber }0{ ofset range

= =






= ∑

Therefore, the images we will show as representative images are ones with pixels that

come from the range set and are close to the average number of pixels reported.

Returning to our example, for protocol S2E, Figure 5.6 shows that, on

average, after 5 seconds, 1151 pixels are displayed. However, in the actual runs it

never occurs that exactly 1151 pixels are displayed. Therefore, to represent the value

204

1151 with a screen dump, we use a screen dump with 1169 pixels, which is a value

close to 1151 representing an actual screen dump that can occur in practice.

For unordered or partially-ordered service, the p(t) function is problematic

In the case of totally ordered service, since the delivery order is fixed,

there is a direct mapping from a given number of pixels to a unique screen dump, with

a specific number of pixels allocated to each of the eight parallel images. However,

for unordered, or partially ordered service, there is a finite, but astronomically huge set

of possible delivery orders for the given ADUs. In particular, the ncg8par.pmff file

contains 119 ADUs, therefore there are (119! ≈ 5.57×10196) possible delivery orders

for the unordered case. Therefore, as a practical matter, we cannot compute the most

likely delivery order for any given number of pixels; and we consequently cannot

determine the most likely image to be presented on the screen.

Therefore, to produce sample screen dumps with a given number of pixels

for the unordered or partially ordered protocols, instead of trying to come up with a

most-likely screen dump with a certain number of pixels, we took the following steps:

• we ran the browser with the same document and mechanism as the
original experiment.

• we enabled a special option on the browser that causes it to freeze when
a certain number of pixels is reached.

• we chose a value as close as possible to the pixel value reported in the
table.

This produces a real screen dump with close to the same number of pixels as the

average reported in the experimental results. However, unlike the totally ordered case,

where the exact screen dump shown did actually occur in every experiment at some

point in time (on average, close to the time interval with which it is associated in the

205

picture), the screen dumps we show for the unordered and partially ordered cases may

or may not have occurred in any particular experiment, since the number of possible

screen dumps is astronomical.

Avoiding bias in the choice of screen dumps

This method of selecting images close to a particular average number of

pixels for the unordered or partially-ordered case risks introducing bias. For each

protocol and time instant, it is usually the case that an image must be chosen that is

either higher or lower than the actual average number of pixels. The choice of the

higher or the lower value could tend to exaggerate or minimize the benefit of partially-

ordered transport service. Therefore, to guard against bias we have chosen always to

err on the side that would reduce, rather than exaggerate, the benefits of partial order.

In essence, then, the benefit seen in the images, is a lower bound on the actual benefit

represented by the averages reported for the experiments.

For example, in comparing R2E and S2E at 10% loss, our claim is that

R2E provides better progressive display than S2E. Whenever we had to choose

images to represent S2E, we always chose the image with the next higher number of

pixels, rather than the image with the closest number of pixels. Similarly, for R2E, we

always chose the image with the next lower number of pixels rather than the one with

the closest number of pixels. The labels under the screen dumps in Figures 5.6

through 5.8 show this avoidance of bias.

In summary:

• The actual number of pixels shown in a screen dump for ordered
service (S2E) is always more than the corresponding average
number of pixels for the given loss rate and time.

206

• Conversely, the actual number of pixels shown in a screen dump
for unordered or partially-ordered service (X2E, and R2E,
respectively) is always less than the corresponding average.

5.2.9 Exp. N1 analysis: interpretation of sample screen dumps

Figures 5.6 through 5.8 shows representative images of the R2E and S2E

graphs at 10% loss. Starting with Figure 5.6, we see that after 5 seconds, the partially-

ordered protocol, R2E has started placing portions of four images on the screen, while

the ordered protocol, S2E has only begun to place one image on the screen. By 10

seconds, R2E is working on all eight images, while S2E still has only two. By 15

seconds, R2E has slightly obscured images of all six weapons systems, and has started

to unveil the Army and Air Force seals, while S2E still has only obscured images of all

the equipment and has not yet begun to unveil the seals. At 20 seconds, R2E has

entirely finished two of the images, while S2E has not yet completely finished any of

the images. By 25 seconds, R2E has finished five images, to S2E’s three images

complete. Finally, after 30 seconds S2E essentially catches up with R2E, and the

protocols provided essentially equivalent performance for the final 1-3% of the pixels

that remain.

5.2.10 Exp. N1: conclusions and summary

The results of Experiment N1 support Hypotheses 5.2.1, 5.2.2 and 5.2.3.

The results indicate that for a document with parallel images being sent over a PPP

link at 38.4kbps, when there is significant55 packet loss (10% or 20%), unordered

service provides noticeable improvements in progressive display over partially ordered

55 See Section 1.4.1 for a motivation of various rates of packet loss.

207

service, which in turn provides noticeable improvements in progressive display over

ordered service.

X2E at time 22.09 seconds, 66266 Pixels (100%) R2E at time 22.09 seconds, 5683 Pixels (91.2%)

Figure 5.4 Illustration of maximum performance gap for Exp. N1 at 0% loss

208

bytes pixels

0%
lo

ss
10

%
lo

ss
20

%
 lo

ss

Figure 5.5 Experiment N1: Performance graphs

209

5 Seconds 10 seconds

U
no

rd
er

ed
 se

rv
ic

e
(X

2E
)

avg. 10079 (9656 pixels shown) avg. 39808 (39770 pixels shown)

Pa
rti

al
ly

-o
rd

er
ed

 se
rv

ic
e

(R
2E

)

avg. 4910 (4561 pixels shown) avg. 21682 (20646 pixels shown)

O
rd

er
ed

 se
rv

ic
e

(S
2E

)

avg. 1151 (1169 pixels shown) avg. 2169 (2362 pixels shown)

Figure 5.6 Screen dumps: ncg8par.pmsl, 10% loss, 38.4kbps PPP link

210

15 seconds 20 seconds

U
no

rd
er

ed
 se

rv
ic

e
(X

2E
)

avg. 64978 (64068 pixels shown) avg. 93181 (92898 pixels shown)

Pa
rti

al
ly

-o
rd

er
ed

 se
rv

ic
e

(R
2E

)

avg. 44325 (43840 pixels shown) avg.: 74765 (73396 pixels shown)

O
rd

er
ed

 se
rv

ic
e

(S
2E

)

avg. 18452 (18670 pixels shown) avg. 41367 (41594 pixels shown)

Figure 5.7 Screen dumps: ncg8par.pmsl, 10% loss, 38.4kbps PPP link

211

25 seconds 30 seconds

U
no

rd
er

ed
 se

rv
ic

e
(X

2E
)

avg. 105567 (105329 pixels shown) avg. 105610 (105329 pixels shown)

Pa
rti

al
ly

-o
rd

er
ed

 se
rv

ic
e

(R
2E

)

avg.: 103315 (102400 pixels shown) avg.: 104853 (104529 pixels shown)

O
rd

er
ed

 se
rv

ic
e

(S
2E

)

avg.: 95925 (96686 pixels shown) avg.: 102929 (103587 pixels shown)

Figure 5.8 Screen dumps: ncg8par.pmsl, 10% loss, 38.4kbps PPP link

212

5.3 Experiment R1: O/R vs. PO/R for eight parallel GIF images at 9.6kbps.

This section describes Experiment R1, the first of five sets of experiments

evaluating partially-ordered/reliable transport service for remote multimedia document

retrieval.

Experiments R1, R2, and R3 all involve retrieval of the same document;

the difference among the three is the bitrates that are used. The document used in R1

through R3 is called img8par.pmsl. This document contains eight images (taken

from military.pmsl) presented in parallel. To the end user, the final appearance of

this document is identical to that of the ncg8par document used in Experiment N1

(illustrated in Figure 5.3). However, the images are coded differently, and hence result

in significantly different progressive display. In the ncg8par.pmsl document, we

used the NCGIF file format (Iren, 1999b). For the img8par.pmsl document, the

same images are compressed using the traditional GIF file format. The GIF format

requires ordered/reliable delivery for each image, because the entire block of pixels is

compressed using Lempel/Ziv compression. Therefore, since the interpretation of

every bit in every ADU depends on all the bits that precede it in the entire encoding,

we cannot use unordered/reliable service for GIF images. However, because the data

for the eight separate images can be processed in eight parallel streams (one stream per

image), we can use partially-ordered service with the stream abstraction (Section 2.3).

This idea is captured in the hypothesis for this experiment:

For all loss rates > 0%, , partially-ordered/reliable (PO/R) service
provides, on average, better progressive display for parallel GIF images
than ordered/reliable (O/R) service.

213

For practical reasons, it is necessary to refine this hypothesis somewhat. It would be

absurd to evaluate the gain at very low loss rates (<1%). For very low loss rates, the

gain will be so small as to be insignificant for all practical purposes. It would be

equally absurd to evaluate PO/R service vs O/R service at loss rates approaching

100%. At these loss rates, the performance of both services would be unacceptable.

So instead of trying to characterize the gains of partial order over the entire range of

loss rates between 0% and 100%, we focus on a few loss rates, and on the trend in

performance as the loss rate increases:

Hypothesis 5.3.1: When there is no packet loss, partially-
ordered/reliable service and ordered/reliable service should perform
identically, apart from any difference in overhead. Specifically, since
R2E and T2E have virtually identical overheads, their performance
should be nearly identical.

Hypothesis 5.3.2: For packet loss rates of 10%, 20% and 30%,
partially-ordered/reliable (PO/R) service provides better progressive
display for parallel GIF images than ordered/reliable (O/R) service.

Hypothesis 5.3.3: As the packet loss rate increases from 0% to 10%,
20% and 30%, the gain from partially-ordered service for parallel GIF
images will increase.

Organization of Section 5.3

• Section 5.3.1 provides background concerning this experiment,
including an explanation of the drawbacks of using parallel TCP
connections for this application (as is done in many current Web
browsers.)

• Section 5.3.2 describes the parameters for Experiment R1.

• Section 5.3.3 explains the choice of R2E and T2E as the best available
UTL mechanisms for comparing partially-ordered/reliable and
ordered/reliable service for multimedia documents.

214

• Sections 5.3.4 through 5.3.8 describe our results and conclusions for
Experiment R1.

• Section 5.3.9 provides an overall summary for Section 5.3.

5.3.1 Related Work: other ways of providing parallel flows

When the author and his colleagues have made presentations on partially-

ordered transport service, a frequently asked question is why a partially-ordered

service is needed at all, when opening multiple TCP connections in parallel would

provide all or most of the putative benefits of partially-ordered service. In this section,

we briefly discuss the idea of parallel TCP connections, and discuss another protocol

that provides parallel streams

The parallel TCP connections approach has serious drawbacks

Given that the document used in Experiments R1 through R3 is non-

temporal and contains parallel images, it is essentially equivalent to many web pages

having a similar structure. The popular Netscape web browser opens multiple TCP

connections to retrieve these images, in essence, implementing a crude form of

partially-ordered transport service over TCP. However, this approach has serious

disadvantages. It increases the likelihood of congestion, and requires extra round-trips

and control packet overhead for connection establishment (Mogul, 1995).

The Multi-Stream Protocol

(LaPorta and Schwartz, 1991) describes the performance analysis of a

MultiStream Protocol (MSP). This protocol provides for the transfer of up to seven

parallel streams of packets. However, in MSP, each of these streams has a particular

set of characteristics; for example, STREAM1 provides ordered/reliable/no-duplicates

215

service, STREAM2 provides ordered/unreliable/no-duplicates service, STREAM3

provides unordered/partially-reliable/no-duplicates service, and so forth. Thus while

parallel streams are provided, the number of streams and type of service provided by

each stream is fixed. This is fundamentally different from the parallel streams that can

be provided by PO/R service, where an arbitrary number of parallel, ordered-reliable

streams can be specified.

5.3.2 Experiment R1: parameters

Table 5.3 shows the parameters used for Experiment R1. Table 5.4 shows

the UTL mechanisms used in R1 (these mechanisms are also used in Experiments R2

through R4.)

Table 5.3 Parameters for Experiment R1

Values for Experiment
Parameter R1.1 R1.2 R1.3 R1.4
Mechanisms R2E,T2E
Loss Rates 0, 10, 20 0, 10, 20 10 10
Network PPP reflector PPP reflector
Bitrate 9.6kbps 7.68kbps

(=0.8×9.6kbps)
9.6kbps 7.68kbps

(=0.8×9.6kbps)
Propagation Delay negligible: distance is less than 5 meters
Document img8par.pmsl

Window Size 16 16 8, 16, 32 8, 16, 32
Bold indicates the parameters that are the focus of the experiment.

216

Table 5.4 UTL Mechanisms used in Experiments R1 (also Exps. R2–R4)

Mechanism56 Service Layers TPDU header size
R2E partially-ordered/reliable KX2,NUL,POL 52 bytes
T2E ordered/reliable KX2,TOL,POL 52 bytes

Note: Congestion control disabled for both mechanisms (See Section 5.3.3)

5.3.3 Why the R2E and T2E mechanisms are used for Experiments R1–R5

Experiments R1 through R5 compare exactly two transport services:

• UTL mechanism R2E, providing partially-ordered/reliable service, and

• UTL mechanism T2E, providing totally-ordered/reliable service.

There are several reasons these two particular services were chosen from among the

dozens available in UTL:

(1) These mechanisms provide the services we want to compare. To

evaluate PO/R service, the crucial comparison is against O/R service, since in the

absence of the provision of partial order, applications requiring partial order must use

O/R service (e.g.,TCP).

(2) This comparison is fair in terms of overhead. R2E is composed of

(KX2, NUL, POL); T2E is composed of (KX2, TOL, POL). Thus the top and bottom

layers are identical. The middle layer, in both cases, adds a four byte sequence

number; thus the total header lengths are identical. The only difference between the

two middle layers is that one of them reorders out-of-sequence packets while the other

does not. This is more fair than, for example, a comparison of P2E (KX2, POL) vs.

T2E (KX2, TOL, POL).

56 See Table 3.1, 3.1a for more details about the entries in this table.

217

(3) These mechanisms support explicit release synchronization.

Placing a partial order layer (POL) on top of a total order layer may seem superfluous

until one recognizes the need to provide explicit release synchronization for both the

PO/R and O/R cases. While explicit release synchronization is not strictly necessary

for the simple documents in Experiments R1—R4, it is essential for the paris.pmsl

document used in Experiment R5. Furthermore, Experiments R1–R4 are intended to

represent excerpts from larger documents. Therefore, it makes sense to perform all the

ReMDoR related experiments using transport services supporting explicit release. We

argue that this does not bias our results in favor of either total order or partial order

because this processing is necessary regardless of whether it is performed by the

application layer or the transport layer. The need for explicit release motivates having

POL as the top layer in both cases.

(4) These mechanisms use KX2, with the slow-start and cwnd

congestion avoidance features disabled, which is the best choice among current

options available. From a standpoint of best practice, the ideal experiment would

compare PO/R vs. O/R service using a protocol offering sender and receiver

application-transport flow control, and TCP-friendly congestion control—that is, it

would be based on KX3. However, at the time these experiments were conducted,

KX3 had not been tested and validated, while KX2 had been. The next best choice was

KX2 with congestion control totally disabled.

5.3.4 Experiment R1.1: observations and conclusions

Experiment R1.1 illustrates the performance of the PO/R service provided

by the R2E protocol, with the O/R service provided by the T2E protocol. Figure 5.3.1

218

shows the average performance graphs for Exp. R1.1. We make the following

observations concerning these graphs:

(1) As in Exp. N1, at 0% loss, R2E and T2E have virtually identical
performance.

(2) Also, as in Exp. N1, there is an initial startup delay before the
first pixels can be presented.

(3) As the loss rate increases to 10% and 20%, the performance
degrades for both R2E and T2E, as indicated by the fact that the
progressive display curves move to the right. This shift
indicates that the bytes (or pixels) are being presented to the
application (or to the user) at later points in time.

(4) While both R2E and T2E experience worse performance as the
loss rate increases, the performance of R2E degrades more
slowly than that of T2E.

(5) At nearly every point in time, on average, R2E provides more
pixels to the end-user.

From these observations, we conclude that this set of experimental data supports

Hypotheses 5.2.1, and Hypotheses 5.2.2, 5.2.3 as regards 10% and 20% loss over a

PPP link at 9.6kbps.

To provide an end-user perspective, Figures 5.9 and 5.10 show the

difference between R2E and T2E performance at a few sample points, for 10% loss

and 20% loss, respectively. As can clearly be seen, at each of these points, partially-

ordered service provides better performance than totally-ordered service. One of the

most dramatic differences is at 25 seconds for the 20% loss case, where totally-ordered

service provides no pixels at all to the user, while partially-ordered service provides

almost as many pixels, on average, at 20% loss as it did at 10% loss. While human

factors studies (which we suggest as future work) would be necessary to establish this

scientifically, we hypothesize that the initial delivery of at least a few pixels will prove

219

to be highly correlated with user satisfaction. Seeing at least some progress provides

hope to the user, while seeing a screen that does not change for a long period of time

(especially a blank one) can be discouraging.

5.3.5 Experiment R1.2: observations and conclusions

Experiment R1.2 repeats the same parameters as R1.1, except that instead

of using the PPP link, the UDP reflector is used. The parameter settings for the

reflector are intended to reproduce as accurately as possible the conditions on the PPP

link. The propagation delay on the reflector is set to zero, since the propagation delay

of a PPP cable of less than 2 meters is negligible. The bitrate is set to 7.68kbps which

is 80% of 9.6kbps, reflecting the fact that an RS-232 connection uses 1 stop and 1 start

bit to send each character; thus only 80% of the bitrate is effectively available to the

data link layer.

With this in mind, we would expect the results from the reflector to match

those of PPP. The data are similar, albeit not as close as we would like. Figures 5.12

and 5.13 show an overlay of the performance results from Experiment R1.2 on top of

the matching results for Experiment R1.1 We make the following observations:

(1) All five observations from Section 5.3.4 concerning R1.1 apply
equally to the performance graphs for R1.2.

(2) At 0% loss, both experiments product a straight line as the
average, however the slope of the line for R1.2 is steeper,
indicating that the effective bandwidth of the reflector is higher
than the effective bandwidth of the PPP link, in spite of the fact
that the reflector was set to a lower bandwidth.

(3) However, as the loss rate increases to 10% and then 20% loss,
the results for R1.2 appear to move closer to those observed in
R1.1.

220

Observation (2) was a disappointment, as we had hoped to use the PPP

link to validate the operation of the reflector. Further investigation revealed that PPP

uses byte stuffing for the flag byte (binary value 0111 1110) that marks the beginning

and end of each frame. We therefore tried to account for the difference by dumping the

raw data and IP and UDP packet headers, and counting the number of occurrences of

the flag byte, however this did not account for the difference. We then calculated,

using a spreadsheet, the time that each packet should be delivered, based on an

idealistic assumption of zero processing time. (In reality, both the PPP link and the

packet reflector actually do have to perform some processing.) We found that the

results calculated by the spreadsheet matched the reflector results exactly, while the

PPP link always provided less than the bandwidth at which it was configured. We

tried to find a model for the PPP overhead through running experiments at different

bitrates with different packet sizes, and determining by solving a set of linear

equations, values that we could add to the processing of each packet, and each byte

that would allow us to accurately model the behavior of the PPP link. In the end, we

abandoned this goal, since specifically modeling a PPP link was not central to our

work, and the spreadsheet results provided sufficient evidence of the correctness of the

reflector calculations.

Having noted the inaccuracy at 0% loss, surprisingly, at higher loss rates

the results from the reflector and the PPP link are close to one another. Moreover, the

general trends do not change from one graph to another. Therefore, while our failure

to closely model the performance of the PPP link at 0% loss was disappointing,

nevertheless the fact that the results match qualitatively increases our confidence in

conclusions drawn from experiments with the packet reflector.

221

bytes pixels

0%
lo

ss
10

%
lo

ss
20

%
 lo

ss

Figure 5.9 Experiment R1.1: Performance graphs

222

Partially-ordered service (R2E) Ordered service (T2E)

25
 se

co
nd

s

avg. 14447 (13508 pixels shown) avg. 1530 (1535 pixels shown)

50
 se

co
nd

s

avg. 53767 (53294 pixels shown) avg. 40437 (41745 pixels shown)

75
 se

co
nd

s

avg. 87345 (86446 pixels shown) avg. 75665 (76506 pixels shown)

Figure 5.10 Screen dumps: R1.1, 9.6kbps PPP link at 10% loss

223

Partially-ordered service (R2E) Ordered service (T2E)

25
 se

co
nd

s a
t 2

0%
 lo

ss

avg. 13679 (13508 pixels shown) avg. 0 (0 pixels shown)

50
 se

co
nd

s a
t 2

0%
 lo

ss

avg. 49862 (48584 pixels shown) avg. 29066 (31929 pixels shown)

75
 se

co
nd

s a
t 2

0%
lo

ss

avg. 83811 (83671 pixels shown) avg. 59615 (60359 pixels shown)

Figure 5.11 Screen dumps: R1.1, 9.6kbps PPP link at 20%loss

224

bytes pixels

0%
lo

ss

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990626.220144/img8par/utl-W.16/ BYTES vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200

A
vg

 (
R

U
N

P
IX

(0
f 1

05
75

5)
 D

is
pl

ay
ed

)

Time (sec)

exp.990626.220144/img8par/utl-W.16/ RUNPIX(0f 105755) vs. Time, LR= 00 %

R2E
T2E

10
%

lo
ss

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990626.220144/img8par/utl-W.16/ BYTES vs. Time, LR= 10 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200

A
vg

 (
R

U
N

P
IX

(0
f 1

05
75

5)
 D

is
pl

ay
ed

)

Time (sec)

exp.990626.220144/img8par/utl-W.16/ RUNPIX(0f 105755) vs. Time, LR= 10 %

R2E
T2E

20
%

 lo
ss

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990626.220144/img8par/utl-W.16/ BYTES vs. Time, LR= 20 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200

A
vg

 (
R

U
N

P
IX

(0
f 1

05
75

5)
 D

is
pl

ay
ed

)

Time (sec)

exp.990626.220144/img8par/utl-W.16/ RUNPIX(0f 105755) vs. Time, LR= 20 %

R2E
T2E

Figure 5.12 Experiment R1.1 performance graphs (overlay for Fig. 5.13)

225

bytes pixels

0%
lo

ss

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990625.130813/img8par/utl-W.16 BYTES vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200

A
vg

 (
R

U
N

P
IX

(0
f 1

05
75

5)
 D

is
pl

ay
ed

)

Time (sec)

exp.990625.130813/img8par/utl-W.16 RUNPIX(0f 105755) vs. Time, LR= 00 %

R2E
T2E

10
%

lo
ss

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990625.130813/img8par/utl-W.16 BYTES vs. Time, LR= 10 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200

A
vg

 (
R

U
N

P
IX

(0
f 1

05
75

5)
 D

is
pl

ay
ed

)

Time (sec)

exp.990625.130813/img8par/utl-W.16 RUNPIX(0f 105755) vs. Time, LR= 10 %

R2E
T2E

20
%

 lo
ss

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990625.130813/img8par/utl-W.16 BYTES vs. Time, LR= 20 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200

A
vg

 (
R

U
N

P
IX

(0
f 1

05
75

5)
 D

is
pl

ay
ed

)

Time (sec)

exp.990625.130813/img8par/utl-W.16 RUNPIX(0f 105755) vs. Time, LR= 20 %

R2E
T2E

Figure 5.13 Experiment R1.2 performance

226

5.3.6 Experiment R1.3: observations and remarks

Experiment R1.3 investigates the effect of window size on performance at

10% loss. Figure 5.14 shows the average performance graphs for Exp. R1.3. We first

make several observations concerning these graphs:

(1) As the window size increases, performance gets worse for both
protocols. However, the performance degradation is worse for
T2E than it is for R2E.

This observation seems counter-intuitive at first. We would normally expect that

providing more of a resource to a process would improve performance rather than

degrading it. Classic analysis of Automatic Repeat Request (ARQ) type protocols

(e.g., Tanenbaum 1986; Stallings 1997) indicates that larger windows (as in go-back-N

and selective repeat) provide better performance than smaller windows (as in stop-and-

wait, in the limiting case), up to a point of diminishing return. This point occurs when

the window size equals the bandwidth-delay product. Thus, while we would expect

that beyond a certain point, larger windows would not help performance, it seems

surprising at first that they would hurt performance (in Section 5.3.7 we explain why

they do).

We might also expect that the choice of window size would not be an

important factor in evaluating the benefit of partially-ordered service, provided that the

same window size is chosen for both transport services. The results here show that at

least for the document and network conditions that apply in this experiment, the

apparent benefit of partial order is highly dependent on the window size. When other

parameters are fixed, partial order provides more benefit at window size 32 than at 16,

and more benefit at 16 than at 8. (Again, in Section 5.3.7, we explain why.)

227

(2) At window size 32, for T2E, there is a gap of 12.6 seconds
between time 29.8 and time 42.4 (relative to the initial
document request) where no packets were delivered in any run
of T2E 57 at loss rate 10%, window size 32. Under the same
circumstances, R2E does not seem to have any such gap in
packet delivery.

This surprising observation motivates a closer look at the individual runs that

produced this average graph. Figure 5.15 shows graphs of bytes versus time for the 31

runs that are averaged to make up the single line for T2E in Figure 5.14, with 10 runs

in each of the four smaller graphs. These individual runs lead us to the following

observation:

(3) At window size 32 for T2E, the individual runs have gaps of
around 20 seconds in each case; the gap of 12.6 seconds in the
average graph represents the intersection of these larger gaps in
the individual runs.

We also present an individual runs graphs for the 8 and 16 window cases (Figures 5.16

and 5.17) We see in these graphs that while there is no apparent gap in the average

graph, in fact:

(4) Gaps in delivery for T2E are present at every window size, but
are smaller and more spread out in time at window sizes 8 and
16. Therefore, there is no visible gap in the average graph at the
smaller window sizes.

These results for T2E raise the question as to whether these gaps are present in the

case of R2E. Figure 5.18 through 5.20 show the performance of individual runs for

R2E. We see that gaps do occur in runs with R2E, but more rarely than with T2E.

The next section presents our interpretation of these observations.

57 Keep in mind that these graphs plot the average number of bytes or pixels delivered
across all runs, at every point at which there is a packet delivery for any run. (That is,
any run, with that protocol, at that loss rate and window size.)

228

5.3.7 Experiment R1.3: conclusions

Why does performance decrease as window size increases, and why does

this affect T2E without seeming to affect R2E? Because this is a phenomenon we

will see throughout the experiments in this chapter, we provide a thorough discussion

of it here; in later experiments, we will only reference this discussion. Following this

explanation, we provide a higher level interpretation of experiment R1.3.

Why larger windows hurt performance more for T2E, and less for R2E

Our explanation has two parts. First, we must explain why the gaps occur

more for ordered service vs. unordered service. Second, we explain why the gaps are

longer as the window size increases.

For ordered service, when any packet loss occurs, data delivery (at the

receiver) of newly arriving packets is suspended until a retransmission of the missing

packet is received. Therefore, for loss rates > 0, we would expect to see many gaps in

the data delivery for ordered service. On the other hand, for partially ordered service,

data delivery is suspended in only two cases:

(1) when the initial TPDU containing the service profile is missing,
or,

(2) when no TSDU is deliverable according to the partial order,
which in the case of this document means that within a single
round-trip time, there is a missing TSDU on each of the eight
parallel streams.

For partially-ordered service, each single TPDU loss affects only the delivery of the

stream to which it belongs, roughly one-eighth of the traffic. Thus with high

probability, at least one of the eight streams can deliver some data at all times. Total

gaps in the data delivery are therefore rare with partially-ordered service for this

document. What is more common is to see changes in the slope of the curve

229

representing the delivery of bytes; this can be seen especially reflected in the

individual runs of R2E for window size 32 (Figure 5.20).

The length of the gaps is determined by the time it takes for the sender to

detect a missing packet and successfully send a retransmission. This time is at least a

round-trip time, but in practice somewhat more. (See the discussion of RTO

calculation in Section 3.6.7). The reason the length of the gap grows with window

size is explained by queuing in the PPP link. Packets are submitted to the PPP link as

quickly as the server (host medoc) can read data from the disk file and put the packets

on the Ethernet (see Figure 5.1). PDUs are thus placed on the network by medoc

much faster than the 9.6kbps bitrate of the PPP link. PDUs travel from medoc over

the Ethernet to the lossy router (alsace), and then (unless dropped by the lossy

router) to sauterne, and are queued in sauterne’s outgoing PPP link. This

outgoing queue is the bottleneck in the system.

How large will this queue grow? If there were not flow control in place, it

would grow arbitrarily long, since the arrival rate for this queue is higher—orders of

magnitude higher, in fact—than the departure rate. However, because R2E and T2E,

both based on KX2, use window flow control, the length of this queue will be limited

by the sending window size (w). For loss rates > 0, eventually a packet is lost, and

times out. When this occurs, the retransmission may have to wait in line behind as

many as w packets.58 Thus for larger w, we see larger gaps.

58 There will tend to be a full window of packets even for the first retransmission,
because the initial retransmission timeout tends to be large. The Van Jacobson
algorithm has an initial RTO value of 6 seconds, which then goes up before it comes
down, because of the contribution of the large deviation between 6 seconds and the
first sample.

230

Why finding the optimal window size is a hard problem

One suggestion of these results is that one should avoid using a window

size that is larger than the bandwidth delay product. Using a window larger than this

cannot improve performance, and as these results show, it can hurt performance

because of queuing effects.

However, unlike at the data-link layer, where the bandwidth and delay are

typically fixed or have small variance (often negligible) due to processing times, at the

transport layer in the Internet, bandwidth and delay can be highly variable. Variation

in bandwidth available to a transport layer protocol in the Internet results from

variability in the number of packet flows using each intermediate link in the path.

Variation in delay arises from variations in queuing delays in intermediate routers.

Less often, variations in delay and bandwidth may result from routing changes that

may take place during the lifetime of a connection or flow (Paxson, 1996).

Therefore, transport layer protocols use various techniques to choose an

appropriate window size. The TCP congestion control algorithms of Jacobson (slow

start and cwnd) are one approach to this problem. While TCP does not directly

attempt to measure the bandwidth delay product, the net effect of the algorithm is to

dynamically determine a window size that balances several goals. Essentially, the

overall goal is to maximize throughput, while maintaining fairness, and avoiding

packet drops due to congestion—that is, due to excessive queuing in intermediate

routers.59 Even when such techniques are used, because the bandwidth and delay can

59 Evaluating the effectiveness of the TCP congestion control algorithm at estimating
the true bandwidth-delay product (among other goals, such as fairness) is actually a
subject of considerable controversy. Researchers have come to different conclusions
regarding three major variants of the TCP congestion control algorithms known as
Tahoe, Reno and Vegas. A full comparison of these competing approaches is beyond
the scope of this chapter; it suffices for our purposes that all three algorithms take

231

vary, sometimes the current window size will not be the best one at some particular

moment.

With partially-ordered service, choosing an oversized window is less detrimental

The results from this experiment (and later ones in this chapter involving

window size) show that one of the advantages of partially ordered service is that it can

be more robust to an incorrect choice of window size. That is, if the window size ends

up being larger than the bandwidth-delay product, then partially-ordered service

degrades less than totally-ordered service under the same circumstances. This

reduction in degradation occurs because the increased delay in receiving a

retransmission of a missing packet affects only the successors of the missing packet,

rather than necessarily affecting all packets.

Future work: evaluating gain for dynamic windows, correlating gain with density

Future work should use the KX3 TCP-friendly algorithms to evaluate the

gain from partial order when the window size is adjusted dynamically. In particular, it

would be interesting to determine what happens when there are one or more major step

changes in the underlying network (e.g., in bandwidth or delay) during the lifetime of a

connection. Such changes would have the effect that the transport layer’s estimate of

the window size would suddenly become inaccurate. In those cases, would partially-

ordered service provide benefit during the time it takes the transport layer to detect that

change and adjust the window size appropriately?

steps to dynamically adjust the window based on feedback. In particular, all three
shrink the window to varying degrees in the presence of retransmissions.

232

Also, we would expect the precise degree of benefit from partially-ordered

service to depend on the degree of parallelism in the partial order. In this experiment,

we have eight parallel chains. We would expect the gain from partial order to be less

when there are fewer chains in parallel. Simulation studies (Marasli et al., 1998;

Marasli 1999b) show that the density of the partial order correlates well with expected

performance gains from partially-ordered service. Future work can investigate

whether the correlation found in these simulation studies can be replicated with

empirical results using ReMDoR.

233

bytes pixels

w
in

8
w

in
16

w
in

32

Figure 5.14 Experiment R1.3: Performance Graphs

234

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.32 BYTES vs. Time, LR= 10%, T2E

0
1
2
3
4
5
6
7
8
9

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.32 BYTES vs. Time, LR= 10%, T2E

10
11
12
13
14
15
16
17
18
19

w
in

 3
2

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.32 BYTES vs. Time, LR= 10%, T2E

20
21
22
23
24
25
26
27
28
29

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.32 BYTES vs. Time, LR= 10%, T2E

30
31

Figure 5.15 Exp. R1.3, Ind. Runs, T2E, win 32, bytes

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.8 BYTES vs. Time, LR= 10%, T2E

0
1
2
3
4
5
6
7
8
9

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.8 BYTES vs. Time, LR= 10%, T2E

10
11
12
13
14
15
16
17
18
19

w
in

 8

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.8 BYTES vs. Time, LR= 10%, T2E

20
21
22
23
24
25
26
27
28
29

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.8 BYTES vs. Time, LR= 10%, T2E

30

Figure 5.16 Exp. R1.3, Ind. Runs, T2E, win 8, bytes

235

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

exp.990617.182050/img8par/utl-W.16 BYTES vs. Time, LR= 10%, T2E

0
1
2
3
4
5
6
7
8
9

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

exp.990617.182050/img8par/utl-W.16 BYTES vs. Time, LR= 10%, T2E

10
11
12
13
14
15
16
17
18
19

w
in

 1
6

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

exp.990617.182050/img8par/utl-W.16 BYTES vs. Time, LR= 10%, T2E

20
21
22
23
24
25
26
27
28
29

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

exp.990617.182050/img8par/utl-W.16 BYTES vs. Time, LR= 10%, T2E

30
31
32
33

Figure 5.17 Exp. R1.3, Ind. Runs, T2E, win 16, bytes

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.8 BYTES vs. Time, LR= 10%, R2E

0
1
2
3
4
5
6
7
8
9

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.8 BYTES vs. Time, LR= 10%, R2E

10
11
12
13
14
15
16
17
18
19

w
in

 8

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.8 BYTES vs. Time, LR= 10%, R2E

20
21
22
23
24
25
26
27
28

Figure 5.18 Exp. R1.3, Ind. Runs, R2E, win 8, bytes

236

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

exp.990617.182050/img8par/utl-W.16 BYTES vs. Time, LR= 10%, R2E

0
1
2
3
4
5
6
7
8
9

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

exp.990617.182050/img8par/utl-W.16 BYTES vs. Time, LR= 10%, R2E

10
11
12
13
14
15
16
17
18
19

w
in

 1
6

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175 200

exp.990617.182050/img8par/utl-W.16 BYTES vs. Time, LR= 10%, R2E

20
21
22
23
24
25
26

Figure 5.19 Exp. R1.3, Ind. Runs, R2E, win 16, bytes

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.32 BYTES vs. Time, LR= 10%, R2E

0
1
2
3
4
5
6
7
8
9

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.32 BYTES vs. Time, LR= 10%, R2E

10
11
12
13
14
15
16
17
18
19

w
in

 3
2

0

10000

20000

30000

40000

50000

60000

0 25 50 75 100 125 150 175

exp.990617.182050/img8par/utl-W.32 BYTES vs. Time, LR= 10%, R2E

20
21
22
23
24

Figure 5.20 Exp. R1.3, Ind. Runs, R2E, win 32, bytes

237

5.3.8 Experiment R1.4: observations and conclusions

Experiment R1.4 repeats Experiment R1.3 using the reflector instead of

the PPP link. Figure 5.3.x shows the bytes results for R1.3 and R1.4 side by side,

plotted at the same scale. We omit the pixels results for this experiment, since for the

observations we make in this section, they would add little additional information to

the discussion.

Our experience here is similar to that of comparing R1.2 with R1.1. We

find that the results do not match quantitatively, which we attribute to overheads in the

PPP implementation that the reflector does not model. Nevertheless, we find that the

results do match qualitatively, in that all the observations we applied to the results

from R1.3 apply equally to R1.4. Again, this increases our confidence in interpreting

results based on the packet reflector.

5.3.9 Experiment R1: summary

In Section 5.3 describing Experiment R1, we have shown the existence of

a set of network conditions (9.6kbps, window size 16, loss rate 10 or 20%) where

partially-ordered/reliable transport service provides significant benefits in progressive

display over ordered/reliable service. We have shown that window size is an

important parameter in determining system performance, and windows that are too

large can be detrimental because queuing at the bottleneck link delays retransmissions.

Moreover, we have shown that partially-ordered service can ameliorate the negative

effects of a window size that is inappropriately large, providing better performance

overall because it is less susceptible to delays in retransmissions.

238

Future Work

The fact that partially ordered service can provide performance benefits

over ordered service for parallel images has significant implications for work on

network-conscious image compression. The idea of network-consciousness is to

replace image encodings that require ordered/reliable service with encodings that

allow out-of-sequence delivery (for example, unordered/reliable service). As (Iren,

1999b) shows, network-conscious image formats can improve progressive display at

higher loss rates, at the expense of a modest penalty in compression, and hence a

modest penalty in performance at 0% loss. Our results show that for documents with

parallel images, some gains in performance from out-of-sequence delivery (partially-

ordered delivery, in this case) are possible without paying any penalty in compression.

Further study of network consciousness and partial order in tandem is therefore

indicated. Future work can also investigate the correlation between performance

gains and the density of the partial order, by performing experiments with documents

that have various densities.

239

bytes from Exp. R1.3
(PPP at 9.6kbps)

bytes from Exp. R1.4
(reflector at 9.6kbps × 80%)

w
in

8

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990617.182050/img8par/utl-W.8 BYTES vs. Time, LR= 10 %

R2E
T2E

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990625.020525/img8par/utl-W.8 BYTES vs. Time, LR= 10 %

R2E
T2E

w
in

16

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990617.182050/img8par/utl-W.16 BYTES vs. Time, LR= 10 %

R2E
T2E

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990625.020525/img8par/utl-W.16 BYTES vs. Time, LR= 10 %

R2E
T2E

w
in

32

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990617.182050/img8par/utl-W.32 BYTES vs. Time, LR= 10 %

R2E
T2E

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990625.020525/img8par/utl-W.32 BYTES vs. Time, LR= 10 %

R2E
T2E

Figure 5.21 Experiment R1.3 vs. R1.4: Performance Graphs

240

5.4 Experiment R2: O/R vs. PO/R for eight parallel GIF images at 128kbps

As in Experiment R1, Experiment R2 involves the retrieval of the

img8par.pmsl document, a document containing eight images presented in parallel.

However, in this experiment, we investigate the performance of PO/R service vs. O/R

service at a single bit rate of 128kbps, using the reflector. There are several real-

world scenarios that can motivate this bit rate:

• narrowband ISDN service,

• xDSL service, or

• the effective throughput available to some particular connection over a
wide-area network such as the Internet.

We investigate the following hypotheses in Experiment R2:

Hypothesis 5.4.1 For img8par, at 128kbps, there will be more gain
from PO/R service vs. O/R service at higher round-trip delays than at
lower round-trip delays.

Hypothesis 5.4.2 For img8par, at 128kbps, there will be neither a
significant gain nor a significant penalty for using PO/R service vs. O/R
service at 0% loss.

Hypothesis 5.4.3 For img8par, at 128kbps, there will be increasing
gains from using PO/R service vs. O/R service at 10%, 20% and 30%
loss.

Hypothesis 5.4.4 For img8par, at 128kbps, as the window size is
increased from a value below the bandwidth-delay product to values
near the bandwidth-delay product, performance will increasingly
improve for both PO/R service and O/R service.

Hypothesis 5.4.5 For img8par, at 128kbps, as the window size is
increased from values near the bandwidth-delay product to values
above the bandwidth-delay product, performance will (a) degrade for
both PO/R and O/R service, but it will (b) degrade more, and (c)
degrade faster for O/R service than for PO/R service.

241

Organization of Section 5.4

• Section 5.4.1 describes the parameters for the experiments that
comprise R2.

• Sections 5.3.2 through 5.4.4 describe our observations and conclusions
for R2.

• Section 5.4.5 provides an overall summary for Section 5.4.

5.4.1 Experiment R2: parameters

As Table 5.5 shows the parameters that all the R2 Experiments have in

common is a bit rate of 128kbps, the img8par.pmsl document, and the comparison

of R2E and T2E. Experiments R2.1 and R2.2 focus on the effects of loss rate for two

different one-way delays, 250ms and 500ms. Experiment R2.3 focuses specifically on

the effect of delay, adding the values 0ms and 125 ms to the values 250ms and 500ms

already studied in the previous two experiments. Finally, Experiment R2.4 examines

the effect of seven different window sizes on performance.

Table 5.5 Parameters for Experiment R2

Values for Experiment:
Parameter R2.1 R2.2 R2.3 R2.4

Mechanisms R2E,T2E
Loss Rates (%) 0,10,20,30 0,10,20,30 0,20 10

Network reflector
Bit rate (kbps) 128

One-way delay (ms) 250 500 0, 125,
250, 500

250

Document img8par.pmsl

Window Size (pkts) 32 4, 8, 16,
32, 64, 128

Bold indicates the parameters that are the focus of the experiment

242

5.4.2 Experiments R2.1 and R2.2: observations and conclusions

Experiments R2.1 and R2.2 investigate the effect of loss rate on

progressive display at 128kbps, with a one-way delay of 250ms and 500ms,

respectively. These represent realistic delays that might occur if a satellite link is in

place between two endpoints, or if a connection involves communication across

multiple continents. Figure 5.22 shows the average number of pixels that are

displayed at every point in time where there is a change in the number of pixels for any

run, with R2.1 on the left, and R2.2 on the right. We also provide data about the

median case for progressive display of pixels in Table 5.6. We make the following

observations from this data:

(1) When the loss rate is zero, the entire document takes roughly 5
seconds to display—slightly less when the one-way delay is
250ms, and slightly more when the one-way delay is 500ms.

Observations (1) stands in contrast to our observations of Experiment R1, where the

document took over a minute to display at 0% loss. This difference affects our

interpretation of the impact of performance gains on end-user satisfaction. When the

entire document takes over a minute to download, one might expect that the user’s

attention will wander. When the entire download takes only 5 seconds, we can expect

that the user will remain focused on the progressive display. We also note that while

there is a measurable impact of increasing the one-way delay from 250ms to 500ms,

the impact is negligible at 0% loss in terms of end-user perception.

(2) As the loss rate increases from 0% to 10%, 20% and 30%, the
performance of both PO/R and O/R service degrades. However,
the performance of O/R degrades more severely than that of
PO/R.

(3) As the loss rate increases, both documents tend to finish at the
same time. However, for the non-zero loss rates, from 1-2

243

seconds after the document is requested until the end, PO/R
provides more pixels than O/R at every instant in time (in the
average case.)

(4) For R2.1, at each loss rate, in the median case for PO/R service,
pixels begin appearing in less than 1.2 seconds. In the median
case for O/R service, no pixels appear until after:

3.3 seconds for 10% loss,

5.0 seconds for 20% loss, and

7.1 seconds for 30% loss.

The results for R2.2 are similar.

(5) There does seem to be an increase in the delay of pixel delivery
for the experiments at 500ms vs. the corresponding ones at
250ms, however it is unclear whether this increase is a direct
result of the differing one-way delays, or is due to experimental
variance.

Observation (4) is particularly significant result in terms of user satisfaction. Human

factors studies summarized in (Mogul 1995) suggest that response times of two to four

seconds are preferred to those exceeding four seconds, for reasons related to attention

spans. In conclusion, we note that the data from Experiments R2.1 and R2.2 provide

evidence to support Hypotheses 5.4.2 and 5.4.3. There is somewhat less evidence to

support Hypothesis 5.4.1.

Table 5.6 First pixel delivered (median) for R2.1

loss rate R2E T2E
0% 1.1 1.2
10% 1.2 3.3
20% 1.3 5.0
30% 1.5 7.2

Table 5.6 shows the earliest time (measured in elapsed seconds from the
document request) at which the median over all experiments of the statistic
“pixels delivered” is non-zero.

244

R2.1 pixels, 250ms one-way delay R2.2 pixels, 500 ms one-way delay

0%
 lo

ss
10

 %
 lo

ss
20

%
 lo

ss
30

%
 lo

ss

Figure 5.22 Exp. R2.1, R2.2, pixels, 128kbps, 4 loss rates ×××× 2 delays

245

5.4.3 Experiment R2.3: observations and conclusions

Experiment R2.3 examines the effect of round-trip delay on performance,

and on the gap between PO/R and O/R service. We model round-trip delay by

changing the propagation delay parameter of the reflector. The actual round-trip delay

encountered by the PDUs in the experiment includes not only this propagation delay

(times two) but also any queuing delay at the reflector.

Figure 5.23 illustrates the progressive delivery of pixels for both PO/R and

O/R service at 0% and 20% loss for four different one-way round-trip delays. We first

consider the left column of Figure 5.23, showing results for 0% loss. As predicted in

Hypothesis 5.4.2, there is no difference between the average case for PO/R and O/R

service at any delay. The difference among the delays is visible by a shifting of the

entire graph to the right as the delays increase. Also as expected, the amount of the

shift corresponds precisely to the double the increase in the one-way round-trip delay

introduced in each experiment; for example, the 250ms case is shifted 500ms to the

right as compared to the 0ms case, and the 500ms case is shifted another 500ms to the

right as compared to the 250ms case. The fact that these results come out precisely as

we expect increases our confidence in the accuracy of the experimental framework.

We now consider the results in the right column, showing the effect of

increased network delay at 20% loss. The first observation is that at every network

delay, there is a significant improvement in the progressive display for PO/R service

vs. O/R service. Consider the points at which each graph crosses the line y=80% for

both PO/R and O/R service. For PO/R service at each of the four network delays, the

80% line is crossed at times (5.4, 5.9, 6.0, 7.2) respectively. By contrast, for O/R

service, the corresponding figures are (10.1, 10.3, 10.6, 10.6). The clear advantage in

terms of providing early response belongs to PO/R service. At the time that PO/R has

246

80% of the pixels for each of the respective network delays, the corresponding O/R

cases have only (13%, 30%, 27%, 27%) respectively.

As a final observation, we provide throughput figures based on the median

case for progressive display. For each network delay at 20% loss, Table 5.7 shows the

time at which the median number of pixels delivered was 100%. PO/R service

provides an improvement in throughput at each network delay. This observation is

consistent with the general observation made in (Diot and Gagnon, 1999) that modest

throughput gains may be obtained from out-of-sequence delivery. We suggest that

more significant benefits can be illustrated by focusing on progressive display, a

benefit not considered by Diot and Gagnon.

Table 5.7 R2.3: Last pixel delivered (median)

delay R2E T2E
0ms 11.5 13.3

125ms 11.1 11.7
250ms 11.1 12.8
500ms 12.6 13.7

Table 5.7 shows the earliest time (measured in elapsed seconds from the
document request) at which the median over all experiments of the statistic
“pixels delivered” is non-zero.

247

pixels at 0%loss pixels at 20% loss

0m
s

12
5

m
s

25
0

m
s

50
0

m
s

Figure 5.23 Experiment R2.3: Four one-way delays at 0% and 20% loss

248

5.4.4 Experiment R2.4: observations and conclusions

Experiment R2.4 examines the effect of window size on performance, and

on the gap between PO/R and O/R service. Figure 5.24 shows the average cases for

progressive display of pixels for six different window sizes. Unlike other similar

figures in this dissertation, Figures 5.24 and 5.25 show results for six different window

sizes all on the same page, for 0% and 10% loss, respectively. There are two

observations to make about the results of this experiment.

(1) The optimal sending window size for this transmission lies
somewhere between 16 and 32.

(2) PO/R service provides better progressive display then O/R
service over a range of window sizes, including those closest to
the optimum window size.

We now explain both of these observations in more detail.

The optimal window size for Experiment R2.4 lies between 16 and 32

Suppose that we fix the transport service, and compare, say, just the PO/R

results for each window size, or alternatively, compare just the O/R results for each

window size. Looking first at the results for 0% loss in Figure 5.24, we notice that as

the window size moves from 4 up to 128 (exponentially by powers of 2), that the

performance improves as we move from 4 to 8 to 16 to 32, then stays about the same

as we move from 32 to 64 and 128.

These results are exactly those that are predicted by the usual analytic

model of sliding window protocols (Tanenbaum, 1996; Stallings 1998). As the

window size of such protocols increase—for example, as one moves from the classic

stop-and-wait, to go-back-n, and finally to selective-repeat schemes—performance

249

improves. However, there is a limit on the potential improvement; when the window

size reaches 1+2a, where a is the ratio of one-way network delay to packet

transmission time, no further improvement is feasible. At this point, the pipeline stays

full of packets continuously, and the usable window is limited to 1+2a.

In the classic textbook analysis of sliding window schemes, the

performance simply levels off after the window size is increased to the 1+2a level.

Our results for 0% loss correspond exactly to this model. However, our results for

10% loss, shown in Figure 5.25, differ from what the classic analysis predicts, in that

after the 1+2a level is surpassed, performance then begins to degrade. Observe that

just as with the 0% loss case, performance improves as the window size is increased

from 4 to 8 to 16, but then degrades as the window size is moved from 16 to 32, and

continues to degrade as the window size is increased from that point. This is

counterintuitive in the sense that one generally expects computer system performance

to stay the same or improve when available resources (in this case, memory) are

increased.

To understand why performance degrades as the window size is increased

beyond the optimum point, it is necessary to review the experimental design, and in

particular, the topic of flow control. Recall that the experimental environment (see

Figure 5.1) consists of a fast link between the server and the packet reflector (the

loopback interface of the machine medoc) which feeds a simulated slow link (the

packet reflector, operating at 128Kbps), which then empties into fast links (100Mbps

Ethernet) to the lossy router (alsace) and ultimately, the client (buzet). Since the

TCP slow-start mechanism is not used in these experiments, as soon as the server

starts to transmit the multimedia document, the server fills up the input buffer of the

250

packet reflector with an entire window’s worth of packets at 100Mbps. This initial

burst of w packets (where w is the sending window size in packets) creates a queuing

delay that affects the retransmission of any subsequent packets in two ways. First, for

the O/R case, the first missing packet, pi will have to wait behind this initial burst,

which delays not only pi but also all packets from pi up to pw. Second, in both the

O/R and PO/R cases, the adaptive retransmission timers will be tuned based on RTT

measurements that include this queuing delay. Thus, as the window size increases,

the RTO value of the transport sender also increases, causing the recovery from errors

to take longer, thus decreasing throughput when the loss rate is non-zero.

We conclude that that the observed performance degradation for the 10%

loss case as the window size is increased is an artifact of two aspects of the

experimental environment: (1) having a single bottleneck link with no traffic other

than our own, and (2) not employing slow-start. However, from the standpoint of

evaluating the usefulness of PO transport service, the observation we explain next is

more significant.

PO/R outperforms O/R over a range of window sizes at 10% loss

We now turn to an explanation of observation (2). Note that for 10% loss,

with the exception of window size 4 (which is clearly too small to provide reasonable

performance) PO/R service outperforms O/R service. This result is important because:

(1) it is often difficult for a transport protocol to determine the optimal window size,

and (2) this result indicates that PO/R service can outperform O/R service at a wide

range of window sizes, including those near the optimal value. In fact, the optimal

window size is a function of the round-trip delay, which is essentially a random

variable, or more precisely, a stochastic process: a random variable which is a function

251

of time. Therefore, the best the transport layer can do is to estimate the optimal

window size, and constantly refine its estimate based on measurements of the delay,

loss rate, and effective throughput. The results of Experiment 2.4 indicate that PO/R

service has the potential to improve progressive display as long as the transport layer is

reasonably close to the optimal value, which we would hope to be the normal case.

As a final observation about the run where the window size is 4, we

observe that PO/R service at least does no harm when the transport services window

size estimate is much too small. The situation of a “much too small window size”

occurs frequently during the slow-start phase of normal TCP congestion avoidance.

Since TCP’s congestion avoidance mechanisms dynamically change the window size

as a response to congestion, an interesting topic for future work would be to

investigate the effect of these window size changes on the performance difference

between PO/R and O/R service. Such an investigation might plot measured RTT,

effective window size, and the performance differential as a function of time.

5.4.5 Experiment R2: summary

Overall, the results for Experiment R2 have shown a variety of conditions

under which a PO/R service can provide better progressive display than O/R service

for a particular kind of document: specifically, a document with parallel streams of

data containing pixels, where each stream can be independently decoded and

displayed. Specifically, with respect to our five hypotheses:

• The results of experiment R2.3 provide little support for
Hypothesis 5.4.1. At 0% loss, there is no gain or loss for PO/R
service vs. O/R service, while at 20% loss, the benefit of PO/R
service vs. O/R service seems to be fairly constant regardless of the
round-trip delay.

252

• Hypothesis 5.4.2, on the other hand, is supported by the results of
Experiments R2.1, R2.2 and R2.3.

• Hypothesis 5.4.3 is supported by the results of Experiments R2.1
and R2.2.

• Finally, Hypotheses 5.4.4 and 5.4.5 are supported by the results of
Experiment R2.4.

253

win 4 win 32

win 8 win 64

win 16 win 128

Figure 5.24 Exp. R2.4: Performance Graphs (128kbps at 0% loss)

254

win 4 win 32

win 8 win 64

win 16 win 128

Figure 5.25 Exp. R2.4: Performance Graphs (128kbps at 10% loss)

255

5.5 Experiment R3: O/R vs. PO/R, eight parallel GIF images, various bit rates

5.5.1 Experiment R3: motivation

In R3, we vary the bit rate to put the advantage of PO/R service over O/R

service into context. In contrast to R1 and R2, where we chose two fixed bit rates and

varied the loss rate, propagation delay, and window size, in R3 we choose fixed values

for loss rate, propagation delay and window size, and vary the bit rate. We have one

hypothesis:

Hypothesis 5.5.1: At lower bit rates, the absolute gain (measured in
seconds) of PO/R service over O/R service will be larger than the gain
at faster bit rates.

In addition, we expect to find evidence to support the following conjecture:

Conjecture 5.5.2: For any fixed values of {loss rate, propagation delay,
window size}:

a) there is a range of bit rates where the gain in progressive display has a
significant impact on end-user perceived performance, and conversely,

b) when the bit rate is below some threshold b1, or above some higher threshold
b2, the impact of the gain on end-user perceived performance is negligible.

The basis of Conjecture 5.5.2 is that for any given application context, there exists

some lower bound, perhaps different for each individual user, below which the

performance of both O/R and PO/R service would be considered unacceptable,

therefore the end-user is unlikely to care about any qualitative difference. Conversely,

above a certain bit rate, the gain is so small as to be imperceptible. We cannot

rigorously prove or disprove this conjecture without human subject experimentation,

however we can offer results to illustrate that this conjecture is reasonable.

256

5.5.2 Experiment R3: parameters

Table 5.8 shows the parameters for Experiment R3. The 2.4kbps bit rate

is motivated by SINCGARS combat net radios; these radios provide a low bit-rate

data channel as a side-feature to their main function as radios for voice

communication. (Estimates of effective bit rates for SINCGARS vary considerably;

2.4kbps is a reasonable target value for that domain.) The 33.6kbps bit rate is

motivated by dial-up modem service (V.34, 1998). The 128kbps bit rate is motivated

by residential or small business ISDN or DSL service, or by the available throughput

for a particular connection on a best-effort WAN such as the Internet.

Table 5.8 Parameters for Experiment R3

Parameter Values for Experiment R3:
Mechanisms R2E,T2E

Loss Rates (%) 0,20
Network reflector

Bit rate (kbps) 2.4, 9.6, 33.6, 128
One-way delay (ms) 0

Document img8par.pmsl

Window Size (pkts) 8

Bold indicates the parameters that are the focus of the experiment.

5.5.3 Experiment R3: observations and summary

For R3, we provide a more detailed analysis than that given in the

previous experiments: for R3, we compare not only averages, but also several rank

statistics: min, 25th percentile, median, 75th percentile, and maximum (these can also

be described as the quartile boundaries of the data.) Comparing these rank statistics

adds additional insight into the implication of the results for end-user perceived

performance. Specifically, we provide the following graphs:

257

• Figure 5.26 shows the average results for the progressive display of
pixels at these four bit rates, for both 0% loss and 20% loss.

• Figure 5.27 shows the median results for progressive display of
pixels at 20% loss only.

• Figures 5.28 and 5.29 shows the quartile boundaries for
progressive display of pixels at 20% loss.

Referring to Figure 5.26, we first note that at 0% loss, as in previous

experiments, there is no significant difference between the average performance of

R2E vs. T2E at 0% loss; the median graphs (omitted) show the same results.

Therefore, the remainder of our analysis will focus on the 20% loss case.

Referring to Figures 5.26 and 5.27, overall, we note that at each bit rate,

there is a significant improvement in the progressive display of R2E (PO/R service)

over T2E (O/R service.) We now make some more detailed observations about these

graphs for each bit rate.

Observations for bitrate 2.4kbps

Both the average case graph (upper right, Figure 5.26) and median case

graph (Figure 5.27, upper left as viewed in landscape) show an advantage for PO/R

over O/R service. In the median case, pixels begin appearing on the screen at 39.2

seconds for PO/R service. By the time, in the median case, that O/R service is

presenting the first pixel (32 seconds later, at 71.2 seconds), PO/R service has

delivered 13% of the pixels in the median case. The PO/R median case crosses the

50% mark (that is, at least 50% of the pixels have been delivered) at time 156.0, while

the O/R median case requires 8.1 seconds longer to reach this point in the document.

Similar figures could be cited for the average case graph. An even more interesting

observation is that when one looks at the quartile boundaries (top left of Figure 5.28),

258

the advantage of PO/R service of O/R service tends to increase as one moves from the

maximum towards the minimum rank statistic. The lines representing the maximum

number of pixels displayed at each point in time (best case performance) for O/R vs.

PO/R service are not significantly different from one another. However, as one

examines the respective quartile boundaries in sequence—that is, the 25th, 50th, 75th,

and 100th percentile of pixels displayed at each point in time—one observes that the

advantage of O/R vs. PO/R service increases at each boundary. Examination of the

worst cases for both O/R and PO/R service at various loss rates revealed long runs of

successive losses of the same packet early in the run. PO/R service is able to recover

sooner than O/R service in these cases. We can make the general observation that

“the worse things get, the more advantage out-of-sequence delivery can offer.”

Observations for bitrate 9.6kbps

The results for 9.6kbps are similar to those for 2.4kbps. Both the average

case graph (right column, 2nd from top, Figure 5.26) and median case graph

(Figure 5.27, lower left when viewed in landscape) show curves that are shaped very

much like those for 2.4kbps—the likeness is particularly striking in Figure 5.27, where

the two graphs have been scaled to allow a fair comparison between the bitrates.

Because the shape is similar, we will not provide detailed analysis of points on the

median graphs, but will point out only that the advantages at this bitrate are 25% of the

duration of the advantages for the 2.4kbps case. This makes the advantages less

significant in terms of end-user perceived performance, although relative to the entire

size of the document, they are essentially equivalent. The trend regarding the quartile

boundaries that was observed at the 2.4kbps loss rate holds here as well, with the

exception of the minimum lines; we can expect that there will be more variance in the

259

maximum lines, since these represent an extreme point in the data set. Nevertheless,

there is an increasing advantage for PO/R service as one moves from the 75th to the

50th and 25th percentiles.

Observations for bitrate 33.6kbps

While for 2.4kbps and 9.6kbps, we could reach roughly the same

conclusions regardless of whether we considered the average or the median graphs, for

the higher bitrates in Experiment R3, the shape of the average and median graphs do

not agree. Consider, in particular, the average graph for 33.6kbps (Figure 5.26, right

column, 3rd from top.) We might conclude from this graph that the key advantage of

PO/R service is experienced during the delivery of the final 5% of the pixels.

However, when we examine the median and quartile boundaries, a different picture

emerges. In particular, consider the top row of Figure 5.29, and the top row of

Figure 5.30, where the same graph is presented at four different scales. We observe

that at all of the quartile boundaries except the minimum, the graphs show a 2-4

second advantage for PO/R service. When the worst case performance is compared,

PO/R service shows what appears to be a dramatic advantage, with an improvement in

progressive display of more than 30 seconds. However, it should be borne in mind

that the extreme case is more subject to variance, so we should be careful about

claiming this as an advantage for partial order. Instead, we highlight it to illustrate

how the average was affected by an extreme case. We will therefore sometimes use

the median rather than the average to summarize datasets in the remainder of this

chapter, because of the greater robustness of the median statistic.

260

Observations for bitrate 128kbps

An interesting feature of the results for 128kbps is revealed by considering

the progression of normalized graphs in Figure 5.28 and 5.29, particularly in the left

hand column, where each tick mark represents the delivery 12000 bytes of data. We

observe that while the absolute gain for PO/R service decreases, the relative gain in

terms of the document size actually increases. We also observe that at each

percentile, PO/R service outperforms O/R service, with the median case running 1 to 3

seconds ahead throughout most of the document. Another interesting feature of the

128kbps results is that, with the exception of the worst-case results, for each of the

percentiles, there is a particular shape to the gain. First, PO/R service jumps out to an

early lead. Then O/R service catches up, narrowing the gap (to zero gain, in the case

of the 100th, 75th , and 50th percentile graphs). Finally, PO/R service pulls ahead again,

restoring its earlier lead. It would be interesting to run more experiments at this

bitrate and other nearby bitrates (64kbps, 256kbps), with this document and other

documents, to determine whether this shape is feature of this dataset only, or is

consistent across many runs.

Experiment R3: summary

In summary, we conclude that for 20% loss, significant gains for PO/R

service can be shown over a range of bit rates from 2.4kbps to 128kbps.

261

average pixels at 0% loss average pixels at 20% loss

2.
4k

bp
s

9.
6k

bp
s

33
.6

kb
ps

12
8k

bp
s

Figure 5.26 Experiment R3: Average Performance Graph
Graphs in Figure 5.26 are scaled for each bitrate so that the last data point (last PDU arrival of the run with the slowest response
time) is included. The scales are not normalized w.r.t. throughput, as they are in Figure 5.4.

262

R3, Median Pixels vs. Time, 20% loss

bi
tra

te
=3

3.
6k

bp
s

bi
tra

te
=1

28
kb

ps

bi
tra

te
 =

 2
.4

kb
ps

bi
tra

te
 =

 9
.6

kb
ps

Figure 5.27 Experiment R3: Median Performance Graph
The graphs in Figure 5.27 are normalized with respect to throughput: each of the twelve tick marks on the x-axis represents the
time it would take to send 12000 bytes at the respective bitrates.

263

R3, Quartiles of pixels vs. Time, 20% loss

bi
tra

te
=2

.4
kb

ps
, t

ic
k=

12
00

0b
yt

es

bi
tra

te
=9

.6
kb

ps
, t

ic
k=

12
00

0b
yt

es

bi
tra

te
 =

 2
.4

kb
ps

, t
ic

k
=

60
00

 b
yt

es

bi
tra

te
=9

.6
kb

ps
, t

ic
k=

60
00

by
te

s

Figure 5.28 Experiment R3: Quartiles Performance Graph
The graphs in Figure 5.28 are normalized with respect to throughput: each of the twelve tick marks on the x-axis represents the
time it would take to send 6000 bytes or 12000 bytes (see column labels) at the respective bitrates.

264

R3, Quartiles of pixels vs. Time, 20% loss

bi
tra

te
=3

3.
6k

bp
s,

tic
k=

12
00

0
by

te
s

bi
tra

te
=1

28
kb

ps
, t

ic
k=

12
00

0
by

te
s

bi
tra

te
 =

 3
3.

6k
bp

s,
tic

k
=

60
00

 b
yt

es

bi
tra

te
=1

28
kb

ps
, t

ic
k=

60
00

 b
yt

es

Figure 5.29 Experiment R3: Quartiles Performance Graph
The graphs in Figure 5.29 are normalized with respect to throughput: each of the twelve tick marks on the x-axis represents the
time it would take to send 6000 bytes or 12000 bytes (see column labels) at the respective bitrates.

265

R3, Quartiles of pixels vs. Time, 20% loss

bi
tra

te
=3

3.
6k

bp
s,

tic
k=

42
00

0b
yt

es

bi
tra

te
=1

28
kb

ps
, t

ic
k=

80
00

0b
yt

es

bi
tra

te
 =

 3
3.

6k
bp

s,
tic

k
=

24
00

0
by

te
s

bi
tra

te
=1

28
kb

ps
, t

ic
k=

24
00

0b
yt

es

Figure 5.30 Experiment R3: Scaled Quartiles Performance Graphs
The graphs in Figure 5.30 are scaled versions of the 33.6kbps and 128kbps graphs from Figure 5.29.

266

5.6 Experiment R4: images in parallel with audio
(O/R vs. PO/R for images and audio from paris.pmsl)

This section describes Experiment R4 which extends the investigation of

ReMDoR performance to documents that include audio. For this experiment, we

retrieve a document called parisMap0.pmsl, which contains three GIF images and

an audio clip (taken from paris.pmsl), all presented in parallel. In this experiment,

we measure performance statistics that capture both the progressive display of the

images and the smoothness of the audio presentation. The audio encoding used is the

standard SUN.au format (8Khz µ-law), which requires 64Kbps of throughput.

Because our PPP link provides a maximum throughput of less than 38.4Kbps, we use

the reflector to investigate bitrates ranging from 80Kbps to 256Kbps, with 128Kbps as

the nominal target bitrate.

Section 5.6.1 provides background concerning this experiment, including

a description of our metrics for audio performance. Section 5.6.2 describes the

parameters for Experiment R4, and our hypotheses about the results. Section 5.6.3

describes our results and conclusions.

5.6.1 Background: Three proposed metrics for audio performance

When audio is streamed over a network with a fully reliable service, the

goal is to ensure that the audio device never underflows, because underflows introduce

interruptions during playout. The method typically used is described in (Dempsey,

1994; Dempsey et al., 1996.). A small initial playout delay is introduced, during

which a queue is allowed to accumulate packets. Once audio playout begins, this

queue is drained at a constant rate—for example, at 64Kbps in the case of the 8Khz µ-

law encoding used in the ReMDoR system. Since the service rate is constant, we can

267

measure the queue length in seconds rather than in bits. The length of the queue in

seconds determines how much time is available for the transport layer to achieve a

retransmission of any missing packets.

If the queue length is too short, using a fully reliable service with audio

has the potential to introduce defects in the form of interruptions when the audio

queue underflows. Interruptions can be measured in two ways: the number of

interruptions that occur, and the length of each interruption.

Suppose the network delay is constant, or has relatively low variance (say,

a standard deviation of 5% of the mean value). In this case, a fixed playout delay of,

say, twice the round-trip time should provide enough time for a single retransmission

of a missing packet. However, several factors may cause a reliable service to

underflow:

• The network delay may vary, causing the playout delay to be too
small for even a single retransmission.

• The loss rate may be sufficiently high that multiple retransmissions
are required.

• Retransmissions may rob bandwidth from original transmissions,
causing the source to be unable to provide packets fast enough.

We would expect that for the case where the audio stream is transmitted in

parallel with other streams (e.g., image data) that PO/R service would result in fewer

underflows than O/R service. This is because missing packets in the non-audio

streams will impact the delivery of the audio stream for O/R service, while with PO/R

service, only missing audio packets would cause underflows. Therefore, we would

like to measure the impact of underflows on audio quality, to assess the performance

improvement offered by PO/R service.

268

There is a complicating factor, however. We can measure audio

underflows in several ways, and it is unclear which way correlates best with perceived

end-user audio quality. For example, suppose a user is listening to an excerpt from the

French National Anthem lasting approximately 120 seconds. Which scenario would

that user prefer?

(a) a single audio interruption of 3 seconds, occurring right in the
middle of the piece

(b) 9 interruptions of one-third of a second each, uniformly
distributed across the 120 seconds

(c) 3000 interruptions of 1 millisecond each, occurring every 40 ms
(that is, between every single audio packet)?

The author's anecdotal experience is that scenario (c) is perceived only as a slowing in

the tempo of the music, and for some listeners may be the least objectionable defect.

On the other hand, (a) is probably much less annoying than (b), since with (a) once the

defect has passed, it is easily forgotten, while with (b), there is a constant reminder of

noticeable problems.

This simple example illustrates that, when considered in isolation, neither

the number of interruptions, nor the total duration of the interruptions (which is the

same for all three cases above) nor the mean duration of the interruptions is necessarily

a good indicator of the impact on quality.

Further, the impact on perceived quality of various kinds of defects will

vary among listeners. The impact may also depend on the media content, and the

media purpose. A user retrieving a clip solely for entertainment purposes may be

intolerant of even slight defects, and may give up on the transmission altogether rather

than listen to less than perfect playback. On the other hand, a student replaying a

269

lecture the night before an exam, or a soldier retrieving useful intelligence information

in a hostile environment may prefer a clip with fewer defects, but may nevertheless be

grateful for any information at all.

Because of the subjective nature of perceived audio quality, a subjective

metric called the Mean Opinion Score (MOS) has often been used. The MOS metric

has frequently been applied to investigate defects in audio quality introduced by

distortion resulting from A-D or D-A conversion, quantization, and lossy compression

schemes. However, we are not aware of previous work that assigns Mean Opinion

Scores to reliable playback of audio with interruptions. Such a study would be useful

as future work, but is out-of-scope for this dissertation.

Therefore, pending the outcome of such a study, this dissertation

introduces three objective metrics for defects introduced by interruptions of reliable

audio streams: The purpose of these metrics is to compare the difference between

using O/R and PO/R service for documents containing audio.

1) INT (Absolute number of interruptions)

Zero interruptions represents perfect playback. The more interruptions

there are, the worse the performance. While this is a useful metric, it does not capture

all the information we might find useful. In particular, it would assign a much worse

metric to a playout with 10 barely perceptible (or possibly imperceptible) interruptions

of 1 millisecond, than it would to a playout with five interruptions of 3 seconds each,

which might be more annoying. This fact motivates the next metric.

270

2) FRACPLAY (Fraction Playing).

FRACPLAY is defined as the fraction of time during the playout of the

audio that the user is actually hearing the audio playing, as opposed to hearing the

silence of an interruption.

FRACPLAY =

onsinterrupti audio of durationclip of timeplaying
clip of timeplaying

+

If there are no interruptions, then FRACPLAY = 1; this

represents perfect playout. But if, for example, a 9-second clip is interrupted once for 1

second, than the metric would be 9/10, since the total playout time will now be 10

seconds.

The FRACPLAY metric makes a useful distinction between an 18 second

clip interrupted twice for one second each, and an 18 second clip interrupted 10 times

for .001 seconds each time, we assume that users will notice the former, and barely

notice (or be altogether unaware of) the latter.

However, the FRACPLAY metric also fails to capture exactly what we

might want. It does not distinguish between a 18 second clip interrupted once for 2

seconds, or the same 18 second clip interrupted 10 times for 0.2 seconds each time.

We assume60 that most users would find the second case more annoying.

The need to capture both the number of interruptions and the length of the

interruptions motivates the third metric:

60 Testing the validity of this assumption is outside the scope of this dissertation;
human subject research in this area is suggested as future work.

271

3) FRACPLAYINT

To capture both the influence of the number of interruptions as well as the

size of the interruptions, we propose the metric FRACPLAYINT (signifying

FRACPLAY raised to the INT power). The intuition behind this formula is that each

time there is an interruption, there is a cumulative effect on the degree to which the

user is annoyed; i.e., we suggest that annoyance multiplies. As with the INT and

FRACPLAY metrics, we can assert that a value 1 represents perfect performance, and

that interruptions will cause the value to tend towards zero.

5.6.2 Experiment R4: parameters and hypotheses

Table 5.9 presents our parameters for the Experiments that make up R4; as

in the previous experiments, we investigate the effects of loss rate, bit rate,

propagation delay, and window size on transmission of a single document,

parisMap0.pmsl. This document consists of three images in parallel with a short

audio stream lasting several seconds.

Table 5.9 Parameters for Experiment R4

Values for Experiment:
Parameter R4.1 R4.2 R4.3 R4.4

Mechanisms R2E,T2E
Loss Rates (%) 0,10,20 0,20 0,20 10

Network reflector
Bitrate (Kbps) 128 128 80, 96, 128,

256
128

One-way delay (ms) 250 0,125,250,
500

250 250

Document parisMap0.pmsl

Window Size (pkts) 128 128 128 64, 128, 256

Bold indicates the parameters that are the focus of the experiment

272

Our hypotheses about these experiments are as follows61

Hypothesis 5.6.1 No difference at 0% loss: There will be no
significant gain or penalty for using PO/R service vs. O/R service at 0%
loss from the standpoint of (a) progressive display of pixels,(b) or in
any of the audio metrics. (all experiments)

Hypothesis 5.6.2 Better graceful degradation of progressive
display of pixels: At loss rates greater than zero, progressive display of
pixels will be better when PO/R service used rather than O/R service.
(all experiments)

Hypothesis 5.6.3 Gain increases with loss rate: In terms of
progressive display of pixels, there will be increasing performance
gains from using PO/R service vs. O/R service at 20% loss vs 10% loss.
(Exp. R4.1)

Hypothesis 5.6.4 Better graceful degradation of audio: At loss
rates greater than zero, all three audio metrics will degrade more slowly
when PO/R service is used rather than O/R service.

Hypothesis 5.6.5 Gain increases with delay: With respect to the
improvements in progressive display of pixels, or audio performance,
there will be less gain from PO/R service vs. O/R service at lower
round-trip delays, and more gain at higher round-trip delays.
(Experiment R4.2)

Hypothesis 5.6.6 More robust when bit rate is too low. As the
bit rate is decreased from values that can support the audio stream in
the presence of loss to values that are insufficient to support the audio
stream in the presence of loss, PO/R service will degrade less rapidly
than O/R service in terms of both (a) progressive display of pixels, and
(b) audio. (Experiment R4.3)

Hypothesis 5.6.7 More robust in face of inappropriately large
windows. As the window size is increased from values near the
bandwidth-delay product to values above the bandwidth-delay product,

61 The titles in bold such as "No difference at 0%loss" refer to the benefits of PO/R
service over O/R service captured in each hypothesis.

273

performance will degrade for both PO/R and O/R service, but it will
degrade more for O/R service than for PO/R service. (Exp. R4.4)

As the next section shows, our results find clear evidence some of these hypotheses,

while the results are mixed for others. In general, the beneficial impact of PO/R

service vs. O/R service on the progressive display of pixels that was observed in

Experiments R1-R3 is maintained when audio is introduced in parallel. In some cases,

PO/R service provides better audio performance than O/R service. In other cases,

however, there is no clear evidence that PO/R service provides better quality than O/R

service for the audio portion of the document. At the same time, neither is there any

evidence that PO/R service significantly impairs the audio quality when compared to

O/R service.

 5.6.3 Experiment R4.1: observations and conclusions

In this experiment, we make observations about both pixels, and audio

performance. Figure 5.31 shows performance graphs similar to the ones that were

presented for Experiments R1–R3; each graph shows the median (across all

experiments) of the number of bytes or pixels presented at each point in time.

Figures 5.32 through 5.34 show performance graphs for audio based on the metrics

described in Section 5.6.1.

Observations and conclusions for pixels and bytes

We make the following observations concerning these graphs:

(1) At 0% loss, there is little difference between the bytes and
pixels graphs for PO/R service vs. O/R service. This offers
support for Hypothesis 5.6.1(a).

(2) The pixels graphs for the 0% loss case has a sharp bend
upwards towards the end.

274

Observation (2) is explained by the fact that at this point in the document, the

transmission of audio is finished. Audio is given preferential treatment in the linear

extension selection algorithm (see Chapter 6.)

(3) For bytes, the gain of PO/R service over O/R service is rather
modest, but when this is translated into pixels, the gain is more
impressive.

(4) The fact that there is a gain for PO/R service, and that the gain
increases for 20% vs. 10% loss provides evidence to support
Hypotheses 5.6.2 and 5.6.3

Observation (3) is worth further exploration for two reasons: (1) it is counterintuitive:

how can there be an advantage in pixels when there is no advantage in bytes? (2) We

will see this pattern in Experiments R4.2, R4.3 and R4.4 as well.

In the BYTES graph, the advantage of PO/R service appears rather

modest, with the O/R service frequently showing identical or even slightly better

progressive display. Meanwhile, on the PIXELS graph, the PO/R service seems to be

the clear winner. For example, for 10% loss, at time 11.3 seconds, PO/R service

displays 36850 pixels in the median case (80% of the total pixels) while O/R service

presents only 11962 pixels (26%). It takes O/R service 5.1 additional seconds to

deliver 80% of the pixels. The gain for 20% loss, as predicted, is larger: in this case,

PO/R service displays 36889 pixels in the median case (80%) at time 13.8 seconds,

while O/R service displays only 7967 pixels (17%) after 13.8 seconds. In the 20% loss

case, O/R service requires an additional 16.2 seconds to deliver 80% of the pixels.

The explanation for the discrepancy between the BYTES and PIXELS

results lies in the fact that the BYTES metric includes both audio and image data,

while the PIXELS metric focuses only on image data. When ordered service is used,

it is necessary to hold back the presentation of image data because of out-of-sequence

275

audio data, and vice-versa. With PO/R service, the two kinds of data can be

interleaved. As a result, when PO/R service, image data can overtake the audio data,

and get presented earlier, while with O/R service, this is impossible.

There is clear evidence in the graphs that pixels are in fact overtaking

audio when PO/R service is used, as compared to the fixed linear extension enforced

by O/R service. To see this, one can consider, for both PO/R and O/R service, the

point at which 50% of the total bytes have been displayed vs. the point at which 50%

of the total pixels have been displayed. For PO/R, the point at which 50% of the

pixels are displayed occurs before the point at which 50% of the bytes are displayed,

while for O/R service, the opposite is trued. Similar observations can be made at other

percentages.

Interpreting the graphs for the audio metrics

The meaning of the CDF graphs for the audio metrics may not be

immediately intuitively obvious. This section provides some general help in

interpreting the results in these graphs. It is generally helpful to compare the CDF for

each loss rate with the CDF for 0% loss, and ask the question: how is perfect playback

represented?

For the INT metric, the ideal case is that the CDF goes immediately to 1

when the x-axis is at 0 interruptions. As the x-axis value increases, representing an

increasing number of audio interruptions:

• If the CDF rises slowly to one, this indicates that there were a large
number of audio interruptions.

• If the CDF rises quickly to one, this indicates that there were fewer
audio interruptions.

276

Thus, for the INT metric, the transport service represented by the higher curve is the

one that provides superior audio quality.

For the FRACPLAY and FRACPLAYINT metrics, the ideal case is that the

CDF remains at zero until the x-axis reaches 1, then it jumps to 1, indicating that 100%

of the experiments had perfect playback (i.e., the entire duration of the audio consists

of audio playback.) If the CDF moves above zero any earlier than when the x-axis

reaches 1, this indicates that some portion of the experiments experiences sub-optimal

playback. Thus, the longer the CDF remains low, the better, and the transport service

represented by the lower curve is the one with the superior playback.

Observations and conclusions for audio metrics

(5) Audio performance is identical, and perfect at 0% loss. This
offers support for Hypothesis 5.6.1(b).

(6) At 10% loss, PO/R clearly experiences fewer interruptions that
O/R service. On the other hand, the fraction of time spent
playing is slightly worse for PO/R service than for O/R service.
When these results are combined using the FRACPLAYINT

metric, the combined metric assigns a higher quality score to the
performance of PO/R service.

(7) The results for 20% loss are similar to those for 10% loss, with
the exception that there is no clear winner between the two
services in terms of the FRACPLAY metric.

(8) Comparing the results for 10% and 20% loss, we observe that
the advantage of PO/R service over O/R service increases as the
loss rate goes from 0% to 10%, but then diminishes as the loss
rate goes from 10% to 20%.

Taken together, Observations (6) through (8) offer some evidence to support

Hypothesis 5.6.6. It would be interesting to investigate, in both objective and human

277

factors studies, loss rates between 0% and 10%, and between 10% and 20% to

determine the following:

• whether, as the loss rate increases from 0% to 20%, there is a trend
of an increasing gap between PO/R and O/R service followed by a
narrowing gap, and

• whether the gap is perceivable in terms of end-user quality, within
a range where the quality is still usable/acceptable for some
applications. It may be the case, for example, that above some loss
rate, the performance of both services is considered by most end
users to be equally unacceptable.

278

bytes pixels

0%
lo

ss
10

%
lo

ss
20

%
 lo

ss

Figure 5.31 Exp. R4.1: bytes, pixels performance graphs

279

number of audio interruptions
histogram of intervals (bins) of size 2,
e.g., [0,2), [2,4) … [18,20), [20,20];

[Note: total # of experiments may be unequal]
cumulative distribution function

(CDF) of observed # of interruptions
0%

lo
ss

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18 20

R2E
T2E

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

R2E
T2E

10
%

lo
ss

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18 20

R2E
T2E

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

R2E
T2E

20
%

 lo
ss

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18 20

R2E
T2E

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

R2E
T2E

Figure 5.32 Experiment R4.1: audio interruptions

280

FRACPLAY =
nsinteruptio ofduration clip of timeplaying

onsinterrupti audio ofduration
+

histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

0%
lo

ss

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

10
%

lo
ss

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

20
%

 lo
ss

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

Figure 5.33 Experiment R4.1: FRACPLAY metric

281

R4.1: FRACPLAYINT metric
histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

0%
lo

ss

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

10
%

lo
ss

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

20
%

 lo
ss

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

Figure 5.34 Experiment R4.1: FRACPLAYINT metric

282

5.6.4 Experiment R4.2: observations and conclusions

Experiment R4.2 investigates Hypothesis 5.6.5, which predicts that round-

trip delay will have an impact on the gain in performance of PO/R service over O/R

service. Round-trip delay is modeled by one-way delays in each direction through the

reflector. The hypothesis states that with respect to the improvements in progressive

display of pixels, or audio performance, there will be less gain from PO/R service vs.

O/R service at lower round-trip delays, and more gain at higher round-trip delays. We

make the following observations regarding Experiment R4.2:

(1) In general, the results are consistent with those of Experiment
R4.1 w.r.t. hypotheses 5.6.1 and 5.6.2; there is no significant
difference between PO/R and O/R service for bytes, pixels, or
audio metrics.

(2) In terms of progressive display of pixels, while at each round-
trip delay, PO/R service is identical to O/R service at 0% loss,
and outperforms O/R service at 20% loss,(further supporting
hypotheses 5.6.1 and 5.6.2.) However, there is no significant
difference among the performance graphs for bytes or pixels for
the various round-trip delays chosen. Thus, there is no evidence
to support Hypothesis 5.6.5

(3) At 20% loss, there is no clear winner between PO/R and O/R
service for audio.

It might be interesting in future work to repeat this experiment at 10% loss, where

there is more likelihood of a gap between the audio performance or PO/R and O/R

service. However, the results of this experiment, taken together with those of

Experiment R2.3, seem to provide little evidence that round-trip delay, per se, is a

significant factor in determining the degree of benefit provided by PO/R service over

O/R service (at least for the parameter ranges studied)

283

bytes 0%loss bytes 20%loss

0
m

s

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990706.222830/parisMap0/utl-P.0 BYTES vs. Time, LR= 00 %

R2E
T2E

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990706.222830/parisMap0/utl-P.0 BYTES vs. Time, LR= 20 %

R2E
T2E

12
5

m
s

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990706.222830/parisMap0/utl-P.125 BYTES vs. Time, LR= 00 %

R2E
T2E

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70 80 90 100
A

vg
 (

B
Y

T
E

S
 D

is
pl

ay
ed

)
Time (sec)

exp.990706.222830/parisMap0/utl-P.125 BYTES vs. Time, LR= 20 %

R2E
T2E

25
0

m
s

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990706.222830/parisMap0/utl-P.250 BYTES vs. Time, LR= 00 %

R2E
T2E

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990706.222830/parisMap0/utl-P.250 BYTES vs. Time, LR= 20 %

R2E
T2E

50
0

m
s

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990706.222830/parisMap0/utl-P.500 BYTES vs. Time, LR= 00 %

R2E
T2E

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
B

Y
T

E
S

 D
is

pl
ay

ed
)

Time (sec)

exp.990706.222830/parisMap0/utl-P.500 BYTES vs. Time, LR= 20 %

R2E
T2E

Figure 5.35 Experiment R4.2: bytes performance graphs

284

pixels 0%loss pixels 20%loss

0
m

s

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
R

U
N

P
IX

(0
f 4

60
22

)
D

is
pl

ay
ed

)

Time (sec)

exp.990706.222830/parisMap0/utl-P.0 RUNPIX(0f 46022) vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
R

U
N

P
IX

(0
f 4

60
22

)
D

is
pl

ay
ed

)

Time (sec)

exp.990706.222830/parisMap0/utl-P.0 RUNPIX(0f 46022) vs. Time, LR= 20 %

R2E
T2E

12
5

m
s

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
R

U
N

P
IX

(0
f 4

60
22

)
D

is
pl

ay
ed

)

Time (sec)

exp.990706.222830/parisMap0/utl-P.125 RUNPIX(0f 46022) vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
A

vg
 (

R
U

N
P

IX
(0

f 4
60

22
)

D
is

pl
ay

ed
)

Time (sec)

exp.990706.222830/parisMap0/utl-P.125 RUNPIX(0f 46022) vs. Time, LR= 20 %

R2E
T2E

25
0

m
s

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
R

U
N

P
IX

(0
f 4

60
22

)
D

is
pl

ay
ed

)

Time (sec)

exp.990706.222830/parisMap0/utl-P.250 RUNPIX(0f 46022) vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
R

U
N

P
IX

(0
f 4

60
22

)
D

is
pl

ay
ed

)

Time (sec)

exp.990706.222830/parisMap0/utl-P.250 RUNPIX(0f 46022) vs. Time, LR= 20 %

R2E
T2E

50
0

m
s

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
R

U
N

P
IX

(0
f 4

60
22

)
D

is
pl

ay
ed

)

Time (sec)

exp.990706.222830/parisMap0/utl-P.500 RUNPIX(0f 46022) vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

A
vg

 (
R

U
N

P
IX

(0
f 4

60
22

)
D

is
pl

ay
ed

)

Time (sec)

exp.990706.222830/parisMap0/utl-P.500 RUNPIX(0f 46022) vs. Time, LR= 20 %

R2E
T2E

Figure 5.36 Experiment R4.2: pixel performance graphs

285

number of audio interruptions at 0% loss for R4.2
histogram of intervals (bins) of size 2,
e.g., [0,2), [2,4) … [18,20), [20,20];

[Note: total # of experiments may be unequal]
cumulative distribution function

(CDF) of observed # of interruptions

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

R2E
T2E

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

R2E
T2E

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

R2E
T2E

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

R2E
T2E

Figure 5.37 Experiment R4.2: audio interruptions at 0% loss

286

number of audio interruptions at 20% loss for R4.2
histogram of intervals (bins) of size 2,
e.g., [0,2), [2,4) … [18,20), [20,20];

[Note: total # of experiments may be unequal]
cumulative distribution function

(CDF) of observed # of interruptions

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6

R2E
T2E

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6

R2E
T2E

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6

R2E
T2E

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6

R2E
T2E

Figure 5.38 Experiment R4.2: audio interruptions at 20% loss

287

R4.2 at 0% loss, FRACPLAY metric = nsinteruptio ofduration clip of timeplaying
onsinterrupti audio ofduration

+

histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R
T

Figure 5.39 Experiment R4.2: FRACPLAY metric at 0% loss

288

R4.2 at 20% loss, FRACPLAY metric = nsinteruptio ofduration clip of timeplaying
onsinterrupti audio ofduration

+

histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

0
1
2
3
4
5
6
7
8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

Figure 5.40 Experiment R4.2: FRACPLAY metric at 20% loss

289

R4.2 at 0% loss, FRACPLAYINT metric
histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

Figure 5.41 Exp. R4.2: FRACPLAYINT metric at 0% loss

290

R4.2 at 20% loss, FRACPLAYINT metric
histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

R2E
T2E

0

2

4

6

8

10

12

14

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

R2E
T2E

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

R2E
T2E

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

R2E
T2E

Figure 5.42 Exp. R4.2: FRACPLAYINT metric at 20% loss

291

5.6.5 Experiment R4.3: observations and conclusions

Experiment R4.3 looks at the effect of bitrate on performance of parallel

audio and image streams. In this experiment, we perform a stress test by deliberately

reducing the bit rate below that at which presentation of the document is feasible

(because of the presence of the audio stream). We investigate the difference in

robustness between PO/R service and O/R service. Hypothesis 5.6.6 predicts that as

the bit rate is decreased, PO/R service will degrade less rapidly than O/R service in

terms of both (a) progressive display of pixels, and (b) audio. We make the following

observations regarding Experiment R4.3:

(1) In general, the results are consistent with those of Experiment
R4.1 w.r.t. hypotheses 5.6.1 and 5.6.2; there is no significant
difference between PO/R and O/R service for bytes, pixels, or
audio metrics, and when the loss rate is non-zero, PO/R service
outperforms O/R service w.r.t. progressive display of pixels.

(2) At each bit rate, PO/R service provides better progressive
display than O/R service in terms of pixels, providing evidence
to support Hypothesis 5.6.6 part (a).

(3) At 128Kbps, which is the bit rate for which the document was
optimized, at 20%loss, PO/R service provides better audio
performance than O/R service for all three metrics. (This result
is consistent with Experiment R4.1, supporting Hypothesis
5.6.4).

(4) As the bitrate decreases from the value for which the document
was optimized (128Kbps), the gain of PO/R over O/R service at
20% loss vanishes.

A common sense observation about this data can be summarized by comparing PO/R

service to an umbrella. In a hurricane, an umbrella is not of much use. However, in a

light to moderate rain storm, an umbrella can be valuable indeed. Our data suggests

that PO/R service can function analogously. If network conditions are extremely bad,

292

as represented by the 80Kbps and 96Kbps bit rates, PO/R service does not help much.

Note that even at 0% loss, PO/R and O/R service are both providing far less than

optimal audio performance. However, when network conditions are less than optimal,

but not horrible, PO/R service improves performance considerably, as represented by

the 128Kbps case.

It would be useful, as future work, to investigate bit rates that are less than

128Kbps, but closer to it, such as 120, 112 and 104Kbps to determine how the audio

performance curve at 0% loss relates to the change in bandwidth. If the audio

performance curve is perfect or near perfect for any value less than 128kbps, this

might provide a more interesting value at which to further investigate

Hypothesis 5.6.4.

293

bytes 0%loss bytes 20%loss

80
K

bp
s

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.990711.014836/parisMap0/utl-B.80 BYTES vs. Time, LR= 00 %

R2E
T2E

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.990711.014836/parisMap0/utl-B.80 BYTES vs. Time, LR= 20 %

R2E
T2E

96
K

bp
s

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.990711.014836/parisMap0/utl-B.96 BYTES vs. Time, LR= 00 %

R2E
T2E

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.990711.014836/parisMap0/utl-B.96 BYTES vs. Time, LR= 20 %

R2E
T2E

12
8K

bp
s

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70 80 90

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.990711.014836/parisMap0/utl-B.128 BYTES vs. Time, LR= 00 %

R2E
T2E

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70 80 90

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.990711.014836/parisMap0/utl-B.128 BYTES vs. Time, LR= 20 %

R2E
T2E

25
6K

bp
s

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30 35 40 45

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.990711.014836/parisMap0/utl-B.256 BYTES vs. Time, LR= 00 %

R2E
T2E

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30 35 40 45

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.990711.014836/parisMap0/utl-B.256 BYTES vs. Time, LR= 20 %

R2E
T2E

Figure 5.43 Experiment R4.3: bytes performance graphs

294

pixels 0%loss pixels 20%loss

80
K

bp
s

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.990711.014836/parisMap0/utl-B.80 RUNPIX percent of 46022 vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.990711.014836/parisMap0/utl-B.80 RUNPIX percent of 46022 vs. Time, LR= 20 %

R2E
T2E

96
K

bp
s

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.990711.014836/parisMap0/utl-B.96 RUNPIX percent of 46022 vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.990711.014836/parisMap0/utl-B.96 RUNPIX percent of 46022 vs. Time, LR= 20 %

R2E
T2E

12
8K

bp
s

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.990711.014836/parisMap0/utl-B.128 RUNPIX percent of 46022 vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.990711.014836/parisMap0/utl-B.128 RUNPIX percent of 46022 vs. Time, LR= 20 %

R2E
T2E

25
6K

bp
s

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.990711.014836/parisMap0/utl-B.256 RUNPIX percent of 46022 vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.990711.014836/parisMap0/utl-B.256 RUNPIX percent of 46022 vs. Time, LR= 20 %

R2E
T2E

Figure 5.44 Experiment R4.3: pixel performance graphs

295

number of audio interruptions at 0% loss for R4.3
histogram of intervals (bins) of size 2,
e.g., [0,2), [2,4) … [18,20), [20,20];

[Note: total # of experiments may be unequal]
cumulative distribution function

(CDF) of observed # of interruptions
80

K
bp

s

0
2
4
6
8

10
12
14
16
18
20

0 20 40 60 80 100 120 140 160 180 200

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200

R2E
T2E

96
K

bp
s

0

2

4

6

8

10

12

14

16

0 4 8 12 16 20 24 28 32 36 40

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200

R2E
T2E

12
8K

bp
s

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200

R2E
T2E

25
6K

bp
s

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200

R2E
T2E

Figure 5.45 Experiment R4.3: audio interruptions at 0% loss

296

number of audio interruptions at 20% loss for R4.3
histogram of intervals (bins) of size 2,
e.g., [0,2), [2,4) … [18,20), [20,20];

[Note: total # of experiments may be unequal]
cumulative distribution function

(CDF) of observed # of interruptions
80

K
bp

s

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

R2E
T2E

96
K

bp
s

0

2

4

6

8

10

12

0 4 8 12 16 20 24 28 32 36 40

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

R2E
T2E

12
8K

bp
s

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 20

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

R2E
T2E

25
6K

bp
s

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15

R2E
T2E

Figure 5.46 Experiment R4.3: audio interruptions at 20% loss

297

R4.3 at 0% loss, FRACPLAY metric = nsinteruptio ofduration clip of timeplaying
onsinterrupti audio ofduration

+

histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

80
K

bp
s

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

96
K

bp
s

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

12
8K

bp
s

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

25
6K

bp
s

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

Figure 5.47 Experiment R4.3: FRACPLAY metric at 0% loss

298

R4.3 at 20% loss, FRACPLAY metric = nsinteruptio ofduration clip of timeplaying
onsinterrupti audio ofduration

+

histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

80
K

bp
s

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

96
K

bp
s

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

12
8K

bp
s

0

1
2

3

4
5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

25
6K

bp
s

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

Figure 5.48 Experiment R4.3: FRACPLAY metric at 20% loss

299

R4.3 at 0% loss, FRACPLAYINT metric
histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

80
K

bp
s

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

R2E
T2E

96
K

bp
s

0

2
4

6

8
10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R2E
T2E

12
8K

bp
s

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

R2E
T2E

25
6K

bp
s

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

R2E
T2E

Figure 5.49 Experiment R4.3: FRACPLAYINT metric at 0% loss

300

R4.3 at 20% loss, FRACPLAYINT metric
histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

80
K

bp
s

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5

R2E
T2E

96
K

bp
s

0
2
4
6
8

10
12
14
16
18
20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6

R2E
T2E

12
8K

bp
s

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6

R2E
T2E

25
6K

bp
s

0

1
2

3

4
5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

R2E
T2E

Figure 5.50 Experiment R4.3: FRACPLAYINT metric at 20% loss

301

5.6.6 Experiment R4.4: observations and conclusions

Experiment R4.4 explores Hypothesis 5.37, that PO/R service is more

robust than O/R service when the window size is increased. We investigate three

window sizes, 64, 128 and 256 packets, where the effect of increasing the window size

is to reduce performance (see explanation accompanying Experiment R2.4 in

Section 5.4.5). 0% loss is used to validate the results, while 20% loss is used to

investigate the effects of large window sizes in the presence of loss. Our observations:

(1) In general, the results are consistent with those of Experiment
R4.1 w.r.t. hypotheses 5.6.1; at 0% loss: (a) there is no
significant difference between PO/R and O/R service for bytes,
pixels, or audio metrics, and (b) when the loss rate is non-zero,
PO/R service outperforms O/R service w.r.t. progressive display
of pixels.

(2) For 20% loss, while at the window size of 64, the audio INT
metric and FRACPLAYINT metric both show better performance
for PO/R service, this advantage vanishes as the window size is
increased.

The fact that PO/R service shows an advantage at the window size of 64 (a suboptimal

window size), and that this advantage vanishes as the window size increases, provides

another instance of the umbrella principle described in the previous section: if the

window size is suboptimal (as may occur early in the slow-start phase of a TCP

connection, for example, or if the receiver's window is less than the bandwidth-delay

product), then PO/R offers a performance advantage over O/R service.

We also conclude that in terms of progressive display of pixels, PO/R

service offers advantages over a wide range of window sizes, even when pixels occur

in parallel with audio. However, as compared with pixels, the advantages of PO/R

service for audio are limited to a narrower range of parameter values.

302

bytes pixels

w
in

 6
4

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.64 BYTES vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.64 RUNPIX percent of 46022 vs. Time

R2E
T2E

w
in

 1
28

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.128 BYTES vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.128 RUNPIX percent of 46022 vs. Time

R2E
T2E

w
in

 2
56

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.256 BYTES vs. Time, LR= 00 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.256 RUNPIX percent of 46022 vs. Time

R2E
T2E

Figure 5.51 Exp. R4.4: LR 0% bytes, pixel perf. graphs

303

bytes pixels

w
in

 6
4

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.64 BYTES vs. Time, LR= 10 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.64 RUNPIX percent of 46022 vs. Time

R2E
T2E

w
in

 1
28

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.128 BYTES vs. Time, LR= 10 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.128 RUNPIX percent of 46022 vs. Time

R2E
T2E

w
in

 2
56

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30

M
ed

ia
n

(B
Y

T
E

S
;

di
sp

la
ye

d)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.256 BYTES vs. Time, LR= 10 %

R2E
T2E

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

M
ed

ia
n

(R
U

N
P

IX
;

pe
rc

en
t o

f 4
60

22
 d

is
pl

ay
ed

)

Time (sec)

exp.1000308.135804/parisMap0/utl-W.256 RUNPIX percent of 46022 vs. Time

R2E
T2E

Figure 5.52 Exp. R4.4: LR 10% bytes, pixel perf. graphs

304

number of audio interruptions at 0% loss for R4.4
histogram of intervals (bins) of size 1,

e.g., [0,1), [1,2) … [9,10), [10,10];
[Note: total # of experiments may be unequal]

cumulative distribution function
(CDF) of observed # of interruptions

w
in

 6
4

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2

R2E
T2E

w
in

 1
28

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2

R2E
T2E

w
in

 2
56

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2

R2E
T2E

Figure 5.53 Experiment R4.4: audio interruptions at 0% loss

305

number of audio interruptions at 10% loss for R4.4
histogram of intervals (bins) of size 1,

e.g., [0,1), [1,2) … [9,10), [10,10];
[Note: total # of experiments may be unequal]

cumulative distribution function
(CDF) of observed # of interruptions

w
in

 6
4

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4

R2E
T2E

w
in

 1
28

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5

R2E
T2E

w
in

 2
56

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4

R2E
T2E

Figure 5.54 Experiment R4.4: audio interruptions at 10% loss

306

R4.4 at 0% loss, FRACPLAY metric = nsinteruptio ofduration clip of timeplaying
onsinterrupti audio ofduration

+

histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

w
in

 6
4

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

w
in

 1
28

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

w
in

 2
56

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

Figure 5.55 Experiment R4.4: FRACPLAY metric at 0% loss

307

R4.4 at 10% loss, FRACPLAY metric = nsinteruptio ofduration clip of timeplaying
onsinterrupti audio ofduration

+

histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

w
in

 6
4

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

w
in

 1
28

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

w
in

 2
56

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

Figure 5.56 Experiment R4.4: FRACPLAY metric at 10% loss

308

R4.4 at 0% loss, FRACPLAYINT metric
histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

w
in

 6
4

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

w
in

 1
28

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

w
in

 2
56

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

Figure 5.57 Exp. R4.4: FRACPLAYINT metric at 0% loss

309

R4.4 at 10% loss, FRACPLAYINT metric
histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

w
in

 6
4

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

w
in

 1
28

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

w
in

 2
56

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R2E
T2E

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

R2E
T2E

Figure 5.58 Exp. R4.4: FRACPLAYINT metric at 10% loss

310

5.7 Experiment R5: a complete multimedia document
(PO/R vs. O/R for parisScene1.pmsl)

In this section, we describe Experiment R5, which represents the

culmination of our evaluation of ordered/reliable service vs. partially-ordered/reliable

service for multimedia document retrieval. In contrast to Experiments R1, R2, R3 and

R4, which focus on small documents and excerpts from larger documents, Experiment

R5 looks at a full document. The document parisScene1.pmsl represents the first

section of the paris.pmsl document (see appendix).

Section 5.7.1 describes the parisScene1.pmsl document. Section 5.7.2

discusses the issue of flow control. Section 5.7.3 describes the parameters and

hypotheses for Experiment R5. Section 5.7.4 describes our results and conclusions

regarding progressive display of bytes and pixels while Section 5.7.5 discusses our

results and conclusions related to audio performance.

5.7.1 Experiment R5: description of document parisScene1.pmsl

In the parisScene1.pmsl document, the entire French national anthem

is played in parallel with two image streams. The first image stream is a chain of maps

zooming in to the city of Paris. In parallel with the maps, and with the audio, a series

of eight postage-stamp sized scenes from Paris is presented. Images 1 through 4 are

presented, by default, sequentially; this ordering is accomplished by specifying each

image as a successor of a particular part of the linear audio stream. However, no

precedence relationship exists among images 1–4, which means that when partial

order service is used, if an image is delayed by a retransmission, later images can be

presented without delay. Images 5–8 follow images 1–4, with 5 following 1, 6

following 2, etc.

311

After the anthem, map sequence, and scenes have all been presented, an

audio clip proclaims "Welcome to Paris", in parallel with the presentation of the final

map of Paris. A continue button is then presented, which for purposes of the

experiment is always pressed exactly one second after it appears.62

5.7.2 Experiment R5: flow control, and the use of R3 and T3 mechanisms

Experiment R5 uses the UTL mechanisms R3 and T3, rather than R2E and

T2E, which were used in Experiments R1 through R4. R3 and T3 correspond to PO/R

and O/R service, respectively, just as R2E and T2E did. From the perspective of their

UTL implementation, there are two main differences between {R3,T3} and

{R2E,T2E}:

(1) R3 and T3 are based on the KX3 layer rather than the KX2
layer.

(2) R3 and T3 have the TCP-friendly mechanisms (slow start, etc.)
enabled.

However, of more interest are the operational and qualitative differences between

{R3,T3} and {R2E,T2E}:

• R2E and T2E use only selective acks. R3 and T3 supplement the
use of selective acks with a cumulative ack value (based on sending
order sequence numbers) on each TPDU.

• R3 and T3 provide a fast-retransmit feature, which is based on
receiving three duplicate cumulative acks, as in TCP. By contrast,
R2E and T2E provide retransmission only when an RTO timer
expires. Note that this change might be expected to actually reduce
the benefit of out-of-sequence delivery. In spite of this expectation,

62 The ReMDoR browser and experiment scripts allow the experimenter to simulate
the pressing of continue buttons by a human user after a fixed, specified delay.

312

our results show that PO/R service still provides an advantage over
O/R service.

While the differences between {R3,T3} and {R2E,T2E} cited above are useful

improvements to the transport protocol, they are not the chief reasons for choosing

{R3,T3} for Experiment R5. Rather, the reason it was necessary to use {R3,T3} for

Experiment R5 has to do with flow control.

The role of flow control in out-of-sequence delivery

Some initial test runs carried out while preparing for Experiment R5 made

it clear that flow control is an essential factor in evaluating out-of-sequence delivery.

Early test runs using R2E vs. T2E (the results of which are omitted for sake of space)

showed no significant difference between R2E and T2E performance for any set of

parameters where performance was adequate at 0% loss. Closer inspection showed

the lack of end-to-end flow control in R2E and T2E was the key factor in this

outcome. Specifically, R2E and T2E lack any means of providing feedback to the

transport sender about the level of occupancy in the buffer that lies between the

transport receiver and the receiving application. Without such a feedback mechanism,

the only way to prevent the application from underflowing is to overprovision: that is,

to make the sender send faster than the rate of playout at the receiver. Over the long

run, this overprovisioning results in the occupancy of the receiver's buffer growing

without bound.

For small documents (as in Experiments R1-R4) this unchecked growth in

the receiver buffer occupancy is not an issue, since the occupancy can be made to grow

slowly, if a proper transmission speed is chosen. However for larger documents,

eventually the occupancy of the transport receiver's buffer provided a playout buffer

such that even at relatively high loss rates, all retransmissions were completed before a

313

packet reached the front of the delivery queue. The browser was downloading most

of the document in advance; hence, the document was being pre-fetched rather than

streamed.

The dilemma regarding flow control and the benefits of out-of-sequence

delivery can be summarized as follows:

If the receiving transport entity builds up a receive buffer that, in terms
of document playout delay, is larger than the time required to do a
retransmission, than out-of-sequence delivery cannot possibly be of any
benefit to the application.

On the other hand, if the receiving transport entity's buffer is too small,
or the transmission speed is too slow to keep the buffer occupancy
strictly greater than zero, then the application may frequently
underflow regardless of whether ordered or partially-ordered service is
used.

KX3 allows mechanisms built on top of it (such as R3 and T3) to provide

full application-transport end-to-end flow control. The application can specify a strict

upper bound (in bytes) on the amount of data that may be buffered at the receiver

waiting to be delivered to the application. The sending transport entity maintains a

conservative estimate of the available buffer space at the receiver, and sends packets

only when there is buffer space available in the window. Thus, the sending rate at the

transport sender is regulated by the occupancy of the transport receiver's buffer. This

scenario is more realistic for a usable transport protocol.

As the remainder of this section shows, by using R3 and T3, and

experimenting with the receiver window size, we were able to find two sets of

parameters where PO/R service provides an advantage over O/R service for a larger

document.

314

Table 5.10 Parameters for Experiment R5

Experiment Number
Parameter R5.1 R5.2
Mechanisms R3,T3
Loss Rates (%) 0,5,10
Network reflector
Bit rate (kbps) 512
One-way delay (ms) 250
Document parisScene1.pmsl

Sender Window Size (pkts) 256
Receiver Window Size (bytes) 4096 8192

Bold indicates the parameters that are the focus of the experiment

5.7.3 Experiment R5: parameters and hypotheses

Table 5.10 presents our parameters for the experiments that make up

Experiment R5. This experiment focusses on whether the gains that were illustrated in

smaller scale experiments can be realized in the context of a larger document.

Overall, our goal in Experiment R5 is not to do a complete study of the performance of

PO/R vs. O/R service for larger documents, but rather to provide a starting point for

such a study by an example document, and a set of parameters meeting two criteria:

(1) the performance gains for PO/R service over O/R service
illustrated in the earlier experiments in this dissertation can be
extended to a larger document at these parameter values, and,

(2) the parameter values represent a realistic scenario for
multimedia document retrieval.

Together with the results of the previous experiments, such a set of parameters

provides a framework for future, more detailed study of the benefits of PO/R

protocols, perhaps within the framework of emerging multimedia document standards

such as SMIL, and emerging partial order transport protocols such as SCTP.

315

Our hypotheses for Experiment R5 are as follows:63

Hypothesis 5.7.1 No difference at 0% loss: There will be no
significant gain or penalty for using PO/R service vs. O/R service at 0%
loss from the standpoint of (a) progressive display of bytes/pixels, (b)
or in any of the audio metrics.

Hypothesis 5.7.2 Better graceful degradation of progressive
display of bytes and pixels: At loss rates greater than zero, progressive
display of bytes and pixels will be better when using PO/R service
rather than O/R service.

Hypothesis 5.7.3 Gain increases with loss rate: In terms of the
graceful degradation of the progressive display of bytes and pixels,
there will be increasing gains from using PO/R service vs. O/R service
at 10% loss vs 5% loss.

Hypothesis 5.7.4 Better graceful degradation of audio: At loss
rates greater than zero, all three audio metrics will degrade more slowly
when PO/R service is used rather than O/R service.

Hypothesis 5.7.5 Throughput will improve with larger receive
window sizes: As the window size is increased from 4096 bytes to
8192 bytes, the throughput will improve for both PO/R and O/R
service.

5.7.4 Experiment R5: observations and conclusions for pixels and bytes

Figures 5.59 through 5.61 show performance graphs for bytes and pixels

We make the following observations concerning these graphs:

(1) At 0% loss, there is little difference between the bytes and
pixels graphs for PO/R service vs. O/R service. This offers
support for Hypothesis 5.7.1(a).

Observation (1) can be seen in the top rows of Figures 5.59 and 5.60.

These figures plot the progressive display of bytes and pixels, respectively, vs. time.

63 The titles in bold such as "No difference at 0%loss” refer to the benefits of PO/R
service vs. O/R service captured in each hypothesis.

316

We see that the green and blue lines representing PO/R and O/R service, (R3 and T3,

respectively) are directly on top of one another. In fact, the blue line for T3 obscures

the green line for R3 almost entirely.

Observation (1) can also be seen in the green lines of the graphs in

Figure 5.61. Each point in Figure 5.61 shows the difference between the average

performance of R3 and the average performance of T3 at each point in time. These

points are plotted for all three loss rates, for both R3 and T3. We observe that the

green line in each graph, representing the performance at 0% loss, remains close to the

x-axis throughput the entire presentation of the document, showing that the

performance of R3 and T3 are nearly identical.

(2) The first derivative of the pixels graphs for the 0% loss case
varies over time, while the byte graph for the 0% loss case is
close to linear.

The near linear shape of the bytes graph reflects the fact that the flow control is

effectively regulating the throughput; the application is consuming data at a steady

rate, thereby opening up space for new packets to be submitted at a steady rate.

The curves in the pixels graph represent the fact that at different points in

the linear extension, the fraction of the byte stream devoted to pixels vs. other data,

most notably audio, changes over time. When present, audio is given preferential

treatment in the linear extension selection algorithm (see Chapter 6). The linear

extension used in this case was tuned so that audio would receive, on average, 50% of

the bandwidth during periods where an audio element was available for transmission.

(3) As compared to O/R service, PO/R service offers significant
gains in both the progressive display of bytes and pixels at two
different window sizes, for both 5% and 10% loss, offering
support for Hypothesis 5.7.2.

317

(4) The fact that there is a gain for PO/R service, and that the gain
increases for 10% vs. 5% loss provides evidence to support
Hypotheses 5.7.3

(5) Throughput increases with increased window size, regardless of
the loss rate, providing evidence to support Hypothesis 5.7.5

(6) The advantage of PO/R over O/R service is reduced at the
window size is increased from 4096 to 8192.

Observations (3) through (6) can be seen in the 2nd and 3rd rows of Figures 5.59

and 5.60, but are more evident in Figure 5.61, In Figures 5.59 and 5.60, the gap

between the green and blue lines representing PO/R and O/R service shows the

performance gain. The gain, relative to the entire size of the document, may appear

small on these graphs. Figure 5.61 is more useful in putting the absolute gain into

perspective. We see that the blue and red lines, representing 5% and 10% loss,

respectively, show a gain that for bytes, starts at zero and increases in a near linear

fashion, until near the end of the document. For the 8192 byte receive window, the

gain tops out at 30–35KB, while for the 4096 byte receive window, the gain is even

larger: a gain of 50–70KB. The drop in gain near the end can be explained by the fact

that with out-of-sequence delivery, the end of the transmission is marked by a dramatic

decrease in throughput, while the transport protocol retransmits the last few remaining

packets. The decrease in throughput due to packet losses for the average performance

of an ordered protocol is more evenly distributed over the entire transmission.

For pixels, the gain rises and falls with an interesting shape with three

smaller peaks followed by a fourth larger peak. This shape is consistent across all four

combinations for loss rate (5% or 10%) and window size (4096, 8192). This shape is

an artifact of the proportion of data in the document devoted to pixels vs. other data,

and can be easily understood via an analogy. Consider a race between two runners, A

318

and B, where A is faster than B on average, but both runners slow down and speed up

from time to time. During periods where A is speeding up and B is slowing down, the

distance between them will increase. During the periods where A is slowing down

and B is increasing in speed, the distance between them will decrease.

The comparison between the progressive display of pixels for PO/R and

O/R service is analogous to the distance between the runners. The "speeding up" and

"slowing down" of the runners corresponds to the fact that the proportion of the

bandwidth available to pixels is larger at certain parts of the document, and smaller at

other parts. The user accessing a document via PO/R service arrives earlier at each of

the points in the document where pixels are displayed rapidly, on average, than the

user accessing the same document via O/R service. The gain for PO/R service "shoots

up" when the PO/R user arrives at each of these points. The gain for PO/R service

then falls when the O/R user "catches up" to the point where pixels are displayed more

rapidly.

The exact shape of the curve is tied to the particular document content;

other documents would have different curved shapes, as would the same document, if

audio were scheduled with a different priority with respect to non-audio data.

Note that for 5% and 10% loss, the average gain over time is strictly

positive, and increases steadily almost to the end of the document, and once

established, for the bulk of the document, never falls below:

30,000 pixels in the case of the receive window of 4096, and

15,000 pixels in the case of the receive window of 8192.

319

Overall conclusions related to bytes/pixels

Overall, we conclude that we have found a set of parameters and a

document where partial order delivery offers user-perceivable performance benefits in

terms of progressive display of pixels and bytes. These results can provide a starting

point for future investigations aimed at establishing the limits of the parameter space

in which PO/R service can offer such perceptible improvements. Based on the

observations above, along with those of all previous experiments, we conclude that

this parameter space should be explored further along the dimensions of

• document size and structure

• round-trip delay

• bitrate

• sender and receiver window size

• loss rate

Of particular interest would be to investigate what happens to the absolute and relative

gain for PO/R service when all the parameters of R5.1 and R5.2 are repeated, and the

size of the document is increased.

Experiment R5: observations and conclusions for audio metrics64

Figures 5.62 through 5.67 show performance graphs for audio.

We make the following observations concerning these graphs:

(7) At 0% loss, there are some minor audio performance problems
at a window size of 4096, but virtually no problems at a window
size of 8192.

64 See also the discussion labeled "Interpreting the graphs for the Audio Metrics" in
Section 5.6.3.

320

(8) At 0% loss, the performance of PO/R vs. O/R service was
virtually identical, even down to the distribution of interruptions
occurring for the receiver window 4096 case, offering support
for Hypothesis 5.7.1(b).

Observations.(7) and (8) pertain to the top row of each of the Figures 5.62, 5.63

and 5.64 for Experiment R5.1 (receive window 4096) and Figures 5.65, 5.66, and 5.67

for Experiment R5.2. For R5.1, we see that the small window size resulted in at least

one audio interruption in every run, and in two audio interruptions 20% of the time.

As we would expect, the distribution of audio interruptions for R3 and T3 is virtually

identical. For Experiment R5.2 (receive window 8192), we observe that at 0% loss,

not more than 1 out of 40 experiments experienced anything less than perfect audio

performance (defined as the absence of any interruptions in playout). Again, the

distribution of the (now rare) defects is virtually identical for the two transport

services.

(9) For a receive window size of 4096, the CDFs of all three
metrics indicate that a user can expect better audio quality from
PO/R service than O/R service at both 5% and 10% loss.

(10) For a receive window size of 4096, the performance advantage
of PO/R over O/R service is higher for 10% loss than for 5%
loss.

Figures 5.62, 5.63 and 5.64 show that there is a measurable advantage to PO/R vs O/R

service for audio performance, when the receiver window is limited. The advantage is

somewhat modest at 5% loss: as Figure 5.62 shows, PO/R service nearly always

experiences only 2 interruptions, while this is only true of O/R service about 3/4 of the

time. However, at 10% loss the advantage is clearer. The average number of

interruptions is only 2.46 for PO/R service, vs. 3.41 for O/R service. However, a more

telling statistic is that for PO/R service, the number of interruptions is 3 or less, 97%

of the time. For O/R service, the number of interruptions is 3 or less only 56% of the

321

time. The other metrics (FRACPLAY and FRACPLAYINT) show similar trends: a

slight advantage for PO/R vs. O/R at 5% loss, and a larger advantage at 10% loss. As

indicated earlier in this chapter, future work is needed to correlate these metrics with

subjective opinions from human listeners.

(11) For a receive window size of 8192, the difference between
PO/R and O/R service ranges from practically nothing, to only a
slight advantage for PO/R service.

As with our results for bytes and pixels, the gains for PO/R service were

reduced when the window size was increased from 4096 to 8192. As stated before, as

the receiver window size increases, this effectively increases the playout delay that is

available for retransmission of missing audio packets. When playout delay in

increased, out-of-sequence delivery is less helpful in reducing audio interruptions.

Overall conclusions related to audio

Overall, with respect to audio, we conclude that PO/R service certainly

does no harm with respect to audio, and may offer some help. As we suggested in our

analysis of Experiment R4, it would be interesting to pursue further objective and

human factors studies to explore the parameter space further with respect to

Experiment R5. In particular, it would be interesting to investigate what subjective

score human subjects give to the audio performance at 4096 for both 5% and 10%

loss, for both PO/R and O/R service. This would be useful in determining whether

the gains seen in the metrics are perceived to be useful by end users

322

R5.1, Receive Window=4096 bytes
bytes pixels

0%
lo

ss
5%

lo
ss

10
%

 lo
ss

Figure 5.59 Exp. R5.1: bytes, pixels perf. graphs

323

R5.2, Receive Window=8192 bytes
bytes pixels

0%
lo

ss
5%

lo
ss

10
%

 lo
ss

Figure 5.60 Exp. R5.2: bytes, pixels perf. graphs

324

bytes pixels

R
5.

2R
cv

 W
in

do
w

 8
19

6
B

yt
es

R
5.

1R
cv

 W
in

do
w

 4
09

6
B

yt
es

Figure 5.61 Exp 5.1 and 5.2, plotting the advantage of R3 over T3

325

R5.1: number of audio interruptions
histogram of intervals (bins) of size 2,
e.g., [0,2), [2,4) … [18,20), [20,20];

[Note: total # of experiments may be unequal]
cumulative distribution function

(CDF) of observed # of interruptions
0%

lo
ss

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10

R3
T3

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

R3
T3

5%
lo

ss

0
5

10
15
20
25
30
35

0 1 2 3 4 5 6 7 8 9 10

R3
T3

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

R3
T3

10
%

 lo
ss

0
5

10
15
20
25
30
35

0 1 2 3 4 5 6 7 8 9 10

R3
T3

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

R3
T3

Figure 5.62 Experiment R5.1: audio interruptions

326

R5.1: FRACPLAY =
nsinteruptio ofduration clip of timeplaying

onsinterrupti audio ofduration
+

histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

0%
lo

ss

0

10

20

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

5%
lo

ss

0

10

20

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

10
%

 lo
ss

0

10

20

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

Figure 5.63 Experiment R5.1: FRACPLAY metric

327

R5.1: FRACPLAYINT metric
histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

0%
lo

ss

0
5

10
15
20
25
30
35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

5%
lo

ss

0
5

10
15
20
25
30
35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

10
%

 lo
ss

0
5

10
15
20
25
30
35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

Figure 5.64 Experiment R5.1: FRACPLAYINT metric

328

R5.2, number of audio interruptions
histogram of intervals (bins) of size 2,
e.g., [0,2), [2,4) … [18,20), [20,20];

[Note: total # of experiments may be unequal]
cumulative distribution function

(CDF) of observed # of interruptions
0%

lo
ss

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10

R3
T3

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

R3
T3

5%
lo

ss

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10

R3
T3

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

R3
T3

10
%

 lo
ss

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10

R3
T3

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

R3
T3

Figure 5.65 Experiment R5.2: audio interruptions

329

FRACPLAY =
nsinteruptio ofduration clip of timeplaying

onsinterrupti audio ofduration
+

histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

0%
lo

ss

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

5%
lo

ss

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

10
%

 lo
ss

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

Figure 5.66 Experiment R5.2: FRACPLAY metric

330

R5.2: FRACPLAYINT metric
histogram of intervals (bins) of size 0.1:
 [0,0.1), [0.1,0.2) … [0.9,1.0), [1.0,1.0]

cumulative distribution function
(CDF) of observed data

0%
lo

ss

0
5

10
15
20
25
30
35
40

0

0.
2

0.
4

0.
6

0.
8 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

5%
lo

ss

0
5

10
15
20
25
30
35
40

0

0.
2

0.
4

0.
6

0.
8 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

10
%

 lo
ss

0
5

10
15
20
25
30
35
40

0

0.
2

0.
4

0.
6

0.
8 1

R3
T3

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R3
T3

Figure 5.67 Experiment R5.2: FRACPLAYINT metric

5.8 Problems in performance measurement

Many difficulties present themselves in measuring computer system

performance in general, and the performance of distributed applications in particular.

Classic texts in this area of computer system performance measurement (in general)

include (Ferrari et al., 1983) and (Jain, 1991). There is also a helpful chapter by Mogul

in (Lynch and Rose, 1993), providing advice more specific to performance

measurements in the Internet. A useful summary of the main issues raised in these

331

primary sources is provided in (Tanenbaum, 1996), in the form of a list of seven

pitfalls that experimenters should avoid. We organize our discussion around this list,

describing each of these pitfalls, and the steps we took to avoid them.

5.8.1 Tannenbaum’s Pitfall #1: Insufficient sample size

Tanenbaum advises: “Make sure that the sample size is large enough”.

For each of the performance statistics we report, we took many independent

measurements, and calculated the mean and std. deviation across these multiple runs.

The number of runs varies with each experiment, and is reported along with the

experimental data. In each case, we performed at least 30 runs.

In some cases we chose to discard some of the runs. Specifically, we

discarded runs in which there was packet loss during the initial connection

establishment. Our reason for doing is that given the initial RTO values used in most

TCP implementations (which values we also use in UTL) cause a delay of several

seconds if there is a packet timeout before the true RTT has been measured. In

experiments where the entire document retrieval lasts only a few seconds, inclusion of

these runs can distort the results in ways that are entirely unrelated to the use of

ordered vs. unordered or partially ordered transport. We claim that discarding such

runs:

(1) introduces no bias, since the initial connection establishment is
equivalent regardless of the ordering used, and we applied the
same discard criteria to all experiments regardless of the
ordering being used, and

(2) actually provides a more accurate comparison between or
among protocols, since it reduces variance that is unrelated to
the aspect of protocol performance being studied.

332

Table 5.11 shows the number of observations on which each experiment is based. In

most cases, our results are based on at least 40 repetitions. In no case do we report

any numbers based on fewer than 15 repetitions.

5.8.2 Tannenbaum’s Pitfall #2: Non-representative samples

Tanenbaum advises: “Make sure that the samples are representative,”

observing that network conditions may vary with time of day, day of week, etc., due to

fluctuations in system or network load. We performed the experiments reported in

this dissertation during a periods of time (June 1999 to May 2000) when the Protocol

Engineering Lab was used almost exclusively for the experiments in this dissertation

thus we would expect the effects of time of day and day of week to be minimal.

Nevertheless, in case there were such effects, we designed the repetition of

experiments in such a way that all observations for a given run would be uniformly

distributed over the entire time range of the experiment.

333

Table 5.11 Number of repetitions for each experiment

Experiment N1
Parameter X2E R2E S2E T2E

LR00 30 30 26 30
LR10 29 29 27 30
LR20 25 26 24 25

Exp. Parameters R2E T2E
LR00 29 28
LR10 22 22R1.1
LR20 22 22
LR00 24 25
LR10 21 21R1.2
LR20 15 18
win8 29 31
win16 27 34R1.3
win32 25 32
win8 29 24
win16 26 17R1.4
win32 29 26
LR00 61 61
LR10 56 53
LR20 45 45R2.1

LR30 34 39
LR00 61 61
LR10 52 50
LR20 51 52R2.2

LR30 45 47
prop 0, LR00 59 59
prop 0, LR20 51 48

 prop 125, LR00 59 59
 prop 125, LR00 53 50
prop 250, LR00 59 59
prop 250, LR20 51 46
prop 500, LR00 59 59

R2.3

prop 500, LR20 53 42
win 4 49 49
win 8 51 53

 win 16 50 52
win 32 51 53
win64 52 53

R2.4

win128 50 54

Exp. Parameters R2E T2E
bitrate 2.4, LR00 56 57
bitrate2.4, LR20 49 44
bitrate 9.6, LR00 57 57
bitrate 9.6, LR20 44 49
bitrate 33.6, LR00 57 57
bitrate 33.6, LR20 43 48
bitrate 128, LR00 57 57

R3

bitrate 128, LR20 45 47
LR00 50 50
LR10 46 50R4.1
LR20 42 50

prop 0, LR00 35 35
prop 0, LR20 32 28

 prop 125, LR00 35 35
 prop 125, LR00 29 26
prop 250, LR00 35 35
prop 250, LR20 25 27
prop 500, LR00 35 35

R4.2

prop 500, LR20 27 26
bitrate 80, LR00 31 31
bitrate80, LR20 25 25
bitrate 96, LR00 30 30
bitrate 96, LR20 27 22
bitrate 128, LR00 30 30
bitrate 128, LR20 23 25
bitrate 256, LR00 30 30

R4.3

bitrate 256, LR20 25 25
win 64 34 31
win 128 33 38R4.4
win 256 32 35

Exp. Parameters R3 T3
LR00 40 40
LR05 39 37R5.1
LR10 37 32
LR00 40 40
LR05 34 36R5.2
LR10 34 26

334

To ensure this, we designed the loop to automate experiments in a

particular way. Our experiments were designed test the effect on the performance of

two more transport protocols/services (i.e., UTL mechanisms) at one or more loss

rates. In some experiments, we also varied one or more other parameters such as

bitrate, round-trip delay, or window size. The scripts to repeat these experiments

followed the pseudocode shown in Figure 5.68.

for (i = 1; i < numberOfExperiments; i++) do
foreach lossrate (listOfLossRates) do

foreach value (listOfValuesForTheVaryingParameter) do
foreach utlMechanism (listOfUtlMechanisms) do

{ perform the i’th iteration of the experiment for
(lossrate, value, utlMechanism); }

Figure 5.68 Pseudocode for Experiment Loop

To understand why this design is advantageous, consider that the pitfall to be avoided

is to compare, for example, results gathered for partial order in the morning, with

results for total order gathered in the afternoon. Thus, the more importance or

significance we intend to attach to a particular comparison of two experiments, the

more deeply nested the varying of that parameter should be.

For example, since the main purpose of the experiment is to find the

performance advantage or disadvantage of one protocol with respect to another, we

should place experiments with two different protocols at the same set of parameters as

close to each other in time as possible. Similarly, for experiments where we vary a

parameter other than loss rate—say, window size—we will be comparing experiments

335

that have the same loss rate, but two different window sizes. Therefore, we want to

vary the window size more quickly than the loss rate, so that two experiments that will

be compared are close to each other in time.

The outermost loop is the experiment iteration. Because of this structure,

our experiment framework is robust against changes in background network

conditions. For example, suppose, for sake of argument, that background network

conditions change dramatically over the period of some experiment. Provided the

change is gradual enough that on average, an entire period of the outermost loop is

affected in roughly equal proportion, the comparisons of different protocols, different

parameter settings, or different loss rates should still be a fair comparison.

In addition to this design, we also plotted the statistics of each individual

run, in addition to the averages and standard deviations of the values shown in this

chapter. We do not show all of these individual runs for reasons of space, however we

did examine them for each experiment. In each experiment, we ran a case at 0% loss,

even when we do not report results for 0% loss; this allowed us to detect anomalies

more easily. In rare cases we found outliers; we were able to correlate these with

periods where the operator was backing up the hard disks of our experimental systems

over the network. We therefore added lines to our scripts to detect when backups were

running, and we threw out all such runs. Other than the period backups, we observed

no obvious artifacts of time-of-day or day–or-week on system performance across

individual runs at the same loss rate.

5.8.3 Tannenbaum’s Pitfall #3: Inaccurate time measurements

Tanenbaum advises: “Be careful when using a coarse-grained clock.” The

timer measurements in this dissertation are taken using the gettimeofday() Unix

336

system call. While this system call reports results at a microsecond level, it is noted in

the documentation that only the millisecond level is considered accurate. Fortunately,

most of our experiments are generally concerned with the impact of performance on

the human user of the system, so we are generally not concerned with differences in

times of less than 50-100ms. Thus the millisecond accuracy of the gettimeofday()

call should be sufficient for our purposes.

There are three other concerns related to time measurement. The first is

the cost of the gettimeofday() call itself: how much time does it take to call

gettimeofday() and take a time measurement? We found through repeating the

gettimeofday() system call in a loop, that the call itself takes, on average, one

microsecond or less to complete and thus does not add significantly to the overall time

for the experiment.

The second concern pertains to context switches: while the effect of a

single gettimeofday() system call may be at the microsecond level, it is possible

that a context switch may occur either just before, or just after a gettimeofday()

system call. This can result in over or underreporting the actual elapsed time for some

sequence of instructions by tens of milliseconds. In practice, this event does occur,

but rarely enough that we can consider it as noise in the system, the effect of which is

eliminated by taking the average of repeated measurements.

The third concern pertains to taking time measurements in a distributed

system, where clocks may not be synchronized among hosts. Our solution to this

problem was simple: we never compare time measurements taken on different

systems. Since our focus is on performance improvements as perceived by the end

user, we make all time measurements on the end users system (the client) relative to

337

the instant at which the document is requested. Thus, “time zero” is always the instant

at which a user of the ReMDoR system clicks a button or hits the enter key to indicate

a request for a particular document; all subsequent times are recorded only on the

client host.

5.8.4 Tanenbaum’s Pitfall #4: Unexpected interference

During early testing with ReMDoR, we occasionally noticed that

performance problems we had solved the week before would suddenly seem to

reappear when we had, we thought, made no changes to the source code (it turns out

we were correct.) After some investigation (and loss of hair) we discovered that a

particular version of a popular web browser had a bad habit of leaving runaway

background processes in a CPU bound loop, eating up all available CPU cycles on a

given machine. After this discovery, we added instrumentation to our experiment

scripts to record statistics on the top CPU time processes between each iteration of the

experiment loop. This instrumentation allowed us to check for any rogue processes

that might interfere with the experiments. To the extent possible, we also kept other

use of the machines involved in the experiments to a minimum while the experiments

were being conducted.

5.8.5 Tanenbaum’s Pitfall #5: Artifacts of Caching

Tanenbaum also mentions the artifacts of caching as a pitfall of

performance experimentation. Caching is a concern, for example, in measuring the

performance of the World Wide Web, where repeated retrieval of a particular web

page may result in only one transfer, and many subsequent consistency checks on a

cached copy that complete much more quickly. Other caching concerns might include

338

loading of files from an NFS server, loading of instructions into memory, Domain

Name Service lookups, or Address Resolution Protocol (ARP) lookups.

In some experiments, we noted that the very first run of set of experiments

experienced extra delays, ranging from 200ms to 4s. We were unable to determine the

exact cause of this phenomenon, but it is reasonable to suggest that it may be cache-

related. In some cases we compensated for this by, in some cases, throwing out the

entire first iteration (the outermost loop referred to in Section 5.8.2.) In other cases,

based on the hypothesis that the artifact in the first run was cache-related, we tried

doing a single “priming run” at 0% loss for an arbitrarily chosen parameter set prior to

the running the actual experiment. In practice, this eliminated the artifact in question.

5.8.6 Tanenbaum’s Pitfall #6: Misunderstanding what is being measured

Tanenbaum notes that it is important to understand that performance is

affected by many factors. When one wishes to compare the performance of one or

more transport protocols, it is crucial that there not be any unrelated bottlenecks in, for

example, inefficient application level code, poorly designed Ethernet or PPP drivers,

etc., that would obscure the main subject of study. In early tests with ReMDoR, we

found that performance was noticeably affected by several such unrelated factors.

Here is a partial list of these, and the steps we took to work around them:

• To plot performance graphs of progressive display, it is necessary
to record the delivery time and number of pixels or audio samples
in each packet. Writing this out to disk while the experiment is in
progress could significantly affect the performance of the system.
Therefore, in the ReMDoR browser, we pre-allocate a large static
memory buffer into which all statistics are written while the
experiment is in progress; only after it is complete is this buffer
dumped to a file on disk.

339

• Originally the client and server software was stored on a single file
server and retrieved via the Sun Network File System (RFC1094,
RFC1813). This retrieval sometimes created a noticeable artifact
in system performance. For the performance experiments reported
in this chapter, we took steps to avoid NFS related interference. All
software was placed on the local disks of the client and server,
respectively, as were all log files for recording data.

• Our local X-Windows environment is setup, by default, to do
encryption of remote X-Windows sessions via the Secure Shell
protocol (Metzger et al., 1999). We found that this extra layer of
data copying significantly slowed down the performance of the
ReMDoR client. Therefore, for the experiments, we used “setenv
DISPLAY unix:0.0” to avoid this extra overhead.

5.8.7 Tanenbaum’s Pitfall #7: Unwarranted extrapolation

Tanenbaum warns against the dangers of extrapolating performance data

for one range to input parameters to values outside this range. In the interpretation of

the experiments in this chapter, we are careful to limit our claims only to the particular

ranges of parameters that we have studied.

5.9 Overall conclusions from our experiments

Our goal in conducting the experiments presented in this chapter was to

investigate the extent to which PO/R service could provide tangible performance

benefits for some application: in particular, multimedia document retrieval, and to

show some parameter values for which this gain is possible. We have accomplished

this goal, and have determined that, indeed, PO/R service can provide measurable

performance benefits over O/R service. We will not reiterate the specific numbers

have been presented in the chapter already, but will instead provide our interpretation

of the larger significance of these results, and what future directions they may suggest

for work in transport protocol and multimedia system development.

340

Let us recognize that the analysis of PO/R service presented in this

dissertation represents a starting point, rather than a destination. We have investigated

only PO/R service; the incorporation of partial reliability with partial order, PO/PR

service, remains to be studied empirically. We have shown benefits for PO/R for a

handful of documents that we believe are representative of typical multimedia

documents. Further study will be needed to validate this claim in some reasonable

scientific manner. We have shown a range of parameter values over which there is

measurable benefit. Future study is needed both to determine over what range these

performance benefits are perceptible, and to assess (and continually reassess, as the

Internet and other network infrastructures undergo constant change) the extent to

which these parameter ranges are realistic for various environments. Thus, there

remains much work to be done.

Nevertheless, the results of this chapter are significant, and timely for at

least three reasons. First, the protocol SCTP (discussed further in Chapter 7) is

currently under review by the IETF, and represents an important step in the direction

of PO/PR transport protocols within the official Internet standards track. While SCTP

is primarily intended as a protocol for signaling of infrastructure devices within the

Public Switched Telephone Network (PSTN), the authors of the related Internet Drafts

recognize that SCTP may have other uses. The results of the Experiments N1, N2, and

R1 through R3 suggest that SCTP may indeed be useful for transport of Web

documents (static in time) containing multiple GIF or JPEG images over a modified

HTTP protocol.

Second, the W3C consortium has standardized a multimedia document

specification language known as SMIL (W3C 1998), which contains many (though not

341

all) of the same capabilities as ReMDoR. Again, the results of this chapter suggest

that it is worthwhile to incorporate features into SMIL that would allow SMIL

document retreival systems to take advantage of PO/PR protocols such as POCv2, or

perhaps SCTP.

Third, the study of TCP-friendly congestion control is currently a topic of

considerable interest and importance to the Internet community. While flow control

and the related topic of TCP-friendly congestion control can be isolated from the study

of out-of-sequence processing, our results clearly indicate that the converse is not true.

We have seen that the details of particular flow/congestion control mechanisms, and

indeed, other related details such as retransmission and acknowledgment schemes,

RTO estimation, etc., can have a significant impact on the measured benefits of out-of-

sequence delivery (i.e., partial order or unordered delivery.) We can conclude that it is

unwise to extrapolate either positive or negative results about the benefits of out-of-

sequence delivery from one flow-control and retransmission scenario to another. This

suggests a need to reevaluate results such as those reported in (Diot and Gagnon,

1999) in the context of more precise simulations of TCP-friendly flow and congestion

control, to either scientifically reproduce and confirm them, or report the impact of

TCP-friendly mechanism on their conclusions, if any.

Chapter 7 provides an overall discussion of the six chief contributions of

this dissertation, however to end Chapter 5, we recap three of these, which can be

summarized as means, methods, and results:

• We have provided a means to carry out PO/PR experiments, namely
the Universal Transport Library, taking PO/PR service from the
conceptual, theoretical and simulation realm into the experimental
realm.

342

• We have provided methods by which to carry out experiments with
PO/PR transport protocols, by providing an experimental
framework, including an application for PO/PR service, and a set of
experimental tools, parameters and metrics to evaluate PO/PR
service.

• We have provided the results of enough experiments to
(1) demonstrate that PO/PR service is useful and worthy of further
study and (2) provide a starting point for a number of future
investigations.

Suggestions made throughout the chapter concerning possible directions

for these future investigations will be summarized in the “Future Work” section of

Chapter 7.

