
PARTIAL ORDER AND PARTIAL RELIABILITY TRANSPORT SERVICE

INNOVATIONS IN A MULTIMEDIA APPLICATION CONTEXT

In Two Volumes

Volume I
(Pages 1-175)

by

Phillip T. Conrad

A dissertation submitted to the Faculty of the University of Delaware in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in
Computer and Information Sciences.

Fall 2000

Copyright 2000 Phillip T. Conrad
All Rights Reserved

PARTIAL ORDER AND PARTIAL RELIABILITY TRANSPORT SERVICE

INNOVATIONS IN A MULTIMEDIA APPLICATION CONTEXT

by

Phillip T. Conrad

Approved: __
M. Sandra Carberry, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved: __
Conrado M. Gempesaw II, Ph.D.
Vice Provost for Academic Programs and Planning

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
Paul Amer, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
Charles Boncelet, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
Errol Lloyd, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets
the academic and professional standard required by the University as a
dissertation for the degree of Doctor of Philosophy.

Signed: __
Adarshpal Sethi, Ph.D.
Member of dissertation committee

iv

ACKNOWLEDGMENTS

This work was supported in part by grants from the US Army Research

Laboratory under the Federated Laboratory Program, Cooperative Agreement number

DAAL01-96-2-0002, and by the National Science Foundation (NCR-9314056). I am

grateful for this support.

I would like to express my deepest gratitude to the many people who have

given their time, energy, support and prayers in support of my efforts on this

dissertation. First and foremost, I would like to thank my advisor, Paul Amer, who has

been an excellent mentor, guide, teacher, colleague and friend. I thank him for his

professional, personal, and moral support, for his confidence in me, and his incredible

patience and leadership.

Next, I would like to thank the other members of my committee: Errol

Lloyd, Adarsh Sethi, and Charlie Boncelet; these folks have gone beyond the call of

duty for me on many occasions, and I am deeply grateful. I would also like to thank

my colleagues in the Protocol Engineering Lab at the University of Delaware,

especially: Greg Burch, Tom Connolly, Armando Caro, Maruisz Fecko, Ed Golden,

Sami Iren, Rahmi Marasli, Gosia Steinder and Mason Taube, for their many valuable

suggestions. In particular, I would like to thank Armando, Ed, Sami and Mason for

their software development assistance with UTL, ReMDoR, the Lossy Router, and the

experiment scripts.

I thank my colleagues in the CIS Departments at the University of

Delaware and at Temple University, for their support and confidence during the last

three years of this project, when I was teaching full-time in addition to working on the

v

research. In particular, I would like to extend my thanks to Sandee Carberry, Kathy

McCoy, Bob Caviness, Frank Friedman and Giorgio Ingargiola for their guidance and

mentoring during my first three years as a full-time faculty member. I would also like

to thank the EECIS lab staff group at the University of Delaware, particularly Mike

Davis and Ben Miller, for running the finest system administration group I have ever

encountered. I am most grateful for their assistance with the many special requests our

lab has made in connection with the network experimentation component of this work.

There are so many friends and family members who have offered their

support and encouragement that it would be impossible to name them all in the small

space alloted for these acknowledgments. However, I would like to particularly thank

my mother, Greer Conrad, my father, Roddy Conrad. I would also like to thank the

members of West Presbyterian Church, particularly Betty Crocker, for their prayers

and gentle reminders to keep on working towards the goal. I am also very grateful for

the assistance of Tom Ledbetter and Lynne Hagelin. I would also like to thank a few

folks who were directly involved with helping to produce the final product. I

particularly thank Sean Crist, who provided an incredible amount of help with

proofreading, photocopying, collating, and generally keeping me somewhat sane

through the final hours before my dissertation defense. Chris Coons, Dave Hunt, and

Jeff Krehbiel also provided invaluable proofreading help at various stages.

Finally, my deepest debt of gratitude is to my partner, Bob Nieder, who

has long suffered the pains of being a Ph.D. candidate spouse. His loyalty and

patience are far more than I deserve, and I am so grateful for his support, love,

encouragement, and faithfulness throughout the last twelve years we have been

together, and especially the last eight years of dissertating. I thank him from the

bottom of my heart, and dedicate this work to him.

vi

TABLE OF CONTENTS

LIST OF FIGURES ...xviii
ABSTRACT ..xxiv
Chapter

1 INTRODUCTION .. 1
1.1 Problem statement ... 1
1.2 Key results of this dissertation... 3
1.2 Structure of the dissertation... 5
1.3 Background.. 7
1.4 Partial order and partial reliability transport service 8

1.4.1 Problems with using TCP or UDP .. 10
1.4.2 Partially-ordered/partially-reliable transport service as an

alternative .. 12
1.5 PO/PR Transport service and multimedia document retrieval 13

1.5.1 Graceful degradation of multimedia documents 14
1.5.2 Traditional transport protocols are not satisfactory..................... 15
1.5.3 Traditional authoring systems are not satisfactory. 16

1.6 Overview of systems developed for this dissertation 17
1.6.1 Universal Transport Library (UTL)... 17
1.6.2 Overview of the Remote Multimedia Document Retrieval

system (ReMDoR)... 18
1.6.3 Publications based on these tools .. 20

1.7 Overview of performance experiments ... 22
1.8 Chapter summary... 23

2 INNOVATIONS IN TRANSPORT SERVICE ORDER AND
RELIABILITY.. 26
2.1 Introduction ... 26
2.2 Background: Partially-ordered/partially-reliable (PO/PR) transport

service.. 27
2.2.1 PO/PR transport service illustrated: the “Screen refresh”

example ... 28
2.2.2 Notation and terminology related to partial orders...................... 30
2.2.3 Previous work on designs for a PO/PR transport service............ 32
2.2.4 Introduction to Partial Order Connection version 2

(POCv2)... 33
2.2.5 Relationship of POCv2 to UTL... 33

vii

2.2.6 Overview of POCv2 transport service, and comparison
with POC ... 34

2.2.7 Service primitives of POCv2: Read(), Write(), etc. 35
2.2.8 POCv2 sequence numbers: epoch, period, objNum,

cellNum ... 37
2.3 The POCv2 stream object abstraction ... 40

2.3.1 Motivation for stream objects.. 40
2.3.2 Advantages of representing the PO at a higher level than

packets ... 41
2.3.2 POCv2 stream objects, cells, the streamEnd flag, objNums,

and cellNums... 45
2.4 Service profile management in POCv2 ... 46

2.4.1 The need for service profile negotiation and multiple
partial orders.. 46

2.4.2 POCv2 service profiles: notation, formal definition, and
representation .. 47

2.4.3 Representation of the service profile ... 48
2.4.4 Periodic partial orders in POC... 50
2.4.5 Multiple periods and epochs in POCv2....................................... 51

2.5 Multimedia synchronization: background material 53
2.5.1 Coarse-grained vs. fine-grained synchronization 54
2.5.2 Temporal scenarios for coarse-grained multimedia

synchronization.. 55
2.5.3 Object Composition Petri Nets (OCPN) 57
2.5.4 Extended OCPN (XOCPN) ... 60

2.6 Transport layer support for multimedia synchronization in POCv2........ 62
2.6.1 Motivation ... 62
2.6.2 Coarse-grained synchronization via explicit release 64
2.6.3 Formal definition of explicit release synchronization 65

Basic assumptions: ... 66
Formal Definition of Explicit Release

Synchronization:... 67
2.6.4 Comparison of explicit release synchronization with OCPN...... 68

Future work: two-color Petri net delivery
semantics. ... 71

2.6.5 Objections to explicit release (and, motivation of data
preview)... 73

2.7 Data preview (buffer access) for support of integrated layer
processing .. 74

2.8 The relationship between partial order and partial reliability.................. 78
2.8.1 Previous work.. 78
2.8.2 The PR reliability class.. 79

viii

Definition of PR reliability in POCv2 82
2.8.3 PR reliability + explicit release synchronization = graceful

degradation .. 83
2.8.4 Unresolved issues and future work for the PR reliability

class ... 85
2.9 Providing control over reliability via ADN-cancel.................................. 86
2.10 Current status of POCv2 implementation and areas for future work 89
2.11 Chapter summary... 90

3 THE UNIVERSAL TRANSPORT LIBRARY (UTL)..................................... 92
3.1 Introduction ... 92

3.1.1 Organization of this chapter .. 93
3.2 Motivation ... 94
3.3 Overview of UTL .. 95

3.3.1 Central principles of UTL ... 96
3.3.2 Common service model: connection oriented, PO/PR

message service ... 97
3.3.3 Connection-oriented implies three phase operation—

nothing more.. 97
3.3.2 Selecting transport QoS via UTL mechanisms............................ 98
3.3.3 Modifying transport QoS via UTL protocol parameters 100
3.3.4 UTL is a library providing flexible transport QoS, not a

QoS Architecture ... 104
3.3.5 Mechanisms are composed of layers ... 105
3.3.6 Rules for composing mechanisms from layers.......................... 107
3.3.7 Bottom layers: TXL, KXP, KX2, KX3 108
3.3.8 Upper layers: TOL, POL, NUL, SRL, and layer stacking

rules ... 109
Total Ordering Layer (TOL)....................................... 110
Partial Ordering Layer (POL) 110
Null Layer (NUL) ... 113
Segmentation Reassembly Layer (SRL) 114

3.3.9 User level implementation with cooperative multitasking........... 114
3.4 Formal specification of rules for composing UTL layers...................... 115

3.4.1 Definition: UTL protocol parameters vector 115
3.4.2 Definition: UTL QoS specification ... 116
3.4.3 Definition: Well-formed UTL stack.. 116
3.4.4 Definition and algorithm for function stackQoS 117

3.5 Design issues ... 117
3.5.1 User-level vs. kernel-level development 118
3.5.2 Service model .. 121
3.5.3 Why all UTL services are connection-oriented 122
3.5.4 Why all UTL services are message-oriented 123

ix

3.5.5 Minimizing data copies for faster throughput 125
3.5.6 QoS negotiation... 128
3.5.7 CPU scheduling in UTL via cooperative multitasking.............. 131

Multiple processes .. 133
Multiple threads.. 134
Signal Handlers... 134
Cooperative multitasking.. 135

3.5.8 I/O multiplexing, and the need for a RAW mechanism 139
3.5.9 Application-Transport flow control... 140

Sender and receiver application-transport flow
control... 141

Sender-only application-transport flow control. 142
Application-transport flow control is mandatory

in TCP, advisory in UTL 142
3.6 Selected service and protocol details for the KXP, KX2 and KX3

layers.. 143
3.6.1 Unordered, k-xmit reliable service .. 143
3.6.2 Flow control .. 144
3.6.3 Packet types ... 144
3.6.4 Acknowledgments ... 144
3.6.5 Sequence numbers ... 145
3.6.6 Congestion control .. 145
3.6.7 RTO calculation .. 146

3.7 UTL development, testing and debugging... 149
3.7.1 UTL development.. 149
3.7.2 UTL testing.. 150
3.7.3 Debugging macros... 152
3.7.4 Memory debugging macros ... 153

3.8 Related work.. 156
3.8.1 User-level (user-space) protocol implementations 156
3.8.3 Flexible protocol architectures .. 157

3.9 Chapter summary, and future work related to UTL............................... 158
4 THE REMOTE MULTIMEDIA DOCUMENT RETRIEVAL SYSTEM

(ReMDoR).. 161
4.1 Introduction ... 161
4.2 Overview of ReMDoR functionality ... 162
4.3 Overview of ReMDoR system components .. 163
4.4 Syntax and Semantics of PMSL .. 165
4.5 The PMTP protocol ... 168
4.6 Functions provided by the ReMDoR document compiler..................... 169
4.7 Related work.. 171

4.7.1 MEDIADOC/MEDIABASE (Rody and Karamouch, 1995)..... 172

x

4.7.2 Fiets (Rutledge et al., 1998), and HyTime, DSSSL and
SMIL.. 172

4.8 Project history.. 174
4.9 Chapter summary and suggestions for future work 175

5 RESULTS OF PERFORMANCE EXPERIMENTS...................................... 176
5.1 Introduction ... 176

5.1.1 Goals and limitations of our investigation 176
5.1.2 Organization of this chapter and overview of performance

experiments. .. 178
5.1.3 Experimental setup .. 179
5.1.4 The lossy router ... 181

Validation of the lossy router 183
5.1.5 The packet reflector ... 185

Modified leaky bucket scheme used in the packet
reflector... 186

Validation of the packet reflector 188
5.2 Experiment N1: showing the upper bound for performance gain

(U/R vs. PO/R vs. O/R Service using NETCICATS)............................ 189
Organization of Section 5.2 .. 190

5.2.1 Unordered vs. ordered service: related work............................. 190
Unordered vs. ordered service (Iren, 1999b) 191
Unordered vs. ordered service (Diot and Gagnon,

1999)... 192
5.2.2 Experiment N1: parameters... 195
5.2.3 Format of performance graphs .. 196
5.2.4 Experiment N1: observations .. 197
5.2.5 Exp. N1 analysis: delay in delivery of pixels vs. bytes 198
Exp. N1 analysis: differences in performance at 0% loss 199
5.2.7 Exp. N1 analysis: differences in performance at 10% and

20% loss .. 201
5.2.8 Caveats regarding interpretation of example ReMDoR

screen dumps ... 202
The p(t) function: pixels on the screen as a

function of time for ordered service 203
For unordered or partially-ordered service, the p(t)

function is problematic 204
Avoiding bias in the choice of screen dumps 205

5.2.9 Exp. N1 analysis: interpretation of sample screen dumps......... 206
5.2.10 Exp. N1: conclusions and summary .. 206

5.3 Experiment R1: O/R vs. PO/R for eight parallel GIF images at
9.6kbps... 212

Organization of Section 5.3 .. 213

xi

5.3.1 Related Work: other ways of providing parallel flows.............. 214
The parallel TCP connections approach has

serious drawbacks..................................... 214
The Multi-Stream Protocol... 214

5.3.2 Experiment R1: parameters ... 215
5.3.3 Why the R2E and T2E mechanisms are used for

Experiments R1–R5 .. 216
5.3.4 Experiment R1.1: observations and conclusions....................... 217
5.3.5 Experiment R1.2: observations and conclusions....................... 219
5.3.6 Experiment R1.3: observations and remarks............................. 226
5.3.7 Experiment R1.3: conclusions... 228

Why larger windows hurt performance more for
T2E, and less for R2E............................... 228

Why finding the optimal window size is a hard
problem... 230

With partially-ordered service, choosing an
oversized window is less detrimental 231

Future work: evaluating gain for dynamic
windows, correlating gain with density 231

5.3.8 Experiment R1.4: observations and conclusions....................... 237
5.3.9 Experiment R1: summary.. 237

Future Work.. 238
5.4 Experiment R2: O/R vs. PO/R for eight parallel GIF images at

128kbps.. 240
Organization of Section 5.4 .. 241

5.4.1 Experiment R2: parameters ... 241
5.4.2 Experiments R2.1 and R2.2: observations and conclusions...... 242
5.4.3 Experiment R2.3: observations and conclusions....................... 245
5.4.4 Experiment R2.4: observations and conclusions....................... 248

The optimal window size for Experiment R2.4
lies between 16 and 32.............................. 248

PO/R outperforms O/R over a range of window
sizes at 10% loss....................................... 250

5.4.5 Experiment R2: summary.. 251
5.5 Experiment R3: O/R vs. PO/R, eight parallel GIF images, various

bit rates .. 255
5.5.1 Experiment R3: motivation ... 255
5.5.2 Experiment R3: parameters ... 256
5.5.3 Experiment R3: observations and summary.............................. 256

Observations for bitrate 2.4kbps................................. 257
Observations for bitrate 9.6kbps................................. 258
Observations for bitrate 33.6kbps............................... 259

xii

Observations for bitrate 128kbps................................ 260
Experiment R3: summary... 260

5.6 Experiment R4: images in parallel with audio (O/R vs. PO/R for
images and audio from paris.pmsl) .. 266
5.6.1 Background: Three proposed metrics for audio

performance... 266
1) INT (Absolute number of interruptions) 269
2) FRACPLAY (Fraction Playing). 270
3) FRACPLAYINT... 271

5.6.2 Experiment R4: parameters and hypotheses.............................. 271
5.6.3 Experiment R4.1: observations and conclusions....................... 273

Observations and conclusions for pixels and bytes 273
Interpreting the graphs for the audio metrics.............. 275
Observations and conclusions for audio metrics 276

5.6.4 Experiment R4.2: observations and conclusions....................... 282
5.6.5 Experiment R4.3: observations and conclusions....................... 291
5.6.6 Experiment R4.4: observations and conclusions....................... 301

5.7 Experiment R5: a complete multimedia document (PO/R vs. O/R
for parisScene1.pmsl).. 310
5.7.1 Experiment R5: description of document

parisScene1.pmsl... 310
5.7.2 Experiment R5: flow control, and the use of R3 and T3

mechanisms ... 311
5.7.3 Experiment R5: parameters and hypotheses.............................. 314
5.7.4 Experiment R5: observations and conclusions for pixels

and bytes .. 315
Overall conclusions related to bytes/pixels 319

Experiment R5: observations and conclusions for audio metrics 319
Overall conclusions related to audio 321

5.8 Problems in performance measurement .. 330
5.8.1 Tannenbaum’s Pitfall #1: Insufficient sample size 331
5.8.2 Tannenbaum’s Pitfall #2: Non-representative samples 332
5.8.3 Tannenbaum’s Pitfall #3: Inaccurate time measurements 335
5.8.4 Tanenbaum’s Pitfall #4: Unexpected interference 337
5.8.5 Tanenbaum’s Pitfall #5: Artifacts of Caching........................... 337
5.8.6 Tanenbaum’s Pitfall #6: Misunderstanding what is being

measured.. 338
5.8.7 Tanenbaum’s Pitfall #7: Unwarranted extrapolation 339

5.9 Overall conclusions from our experiments.. 339
6 ALGORITHMS FOR PO/PR PROTOCOLs.. 343

6.1 Introduction ... 343
6.1.1 Organization of this chapter .. 344

xiii

6.1.2 Processing overheads in O/R and PO/PR transport
protocols .. 345

6.1.3 Packet resequencing at the transport receiver in ordered
protocols .. 346

6.1.4 The goal for resequencing in PO protocols: O(1) per
operation.. 347

6.2 Topological sort of a directed acyclic graph by incremental delete
(DAGITS).. 349
6.2.1 The TS-DAG and TS-DAG-V problems................................... 351
6.2.2 Topological sorting and PO/PR transport protocols.................. 351

Sending order validation in PO transport service
(PO-SND-VALID) 351

The PO/R receiver TSDU resequencing problem
(PO/R-RCV-RESEQ) 352

6.2.2 Incremental TS-DAG (INCR-TS-DAG) 353
6.2.3 The usual DFS-approach to TS-DAG is problematic for

INCR-TS-DAG.. 354
6.2.4 Topological sorting by incremental delete and the DAGITS

algorithm ... 355
6.2.5 The DAGITS algorithm: proof of correctness and running

time.. 356
6.2.6 Concluding Remarks ... 359

6.3 Choosing a linear extension in ReMDoR.. 359
Summary of Section 6.3 ... 362

6.4 Verifying the sending order ... 366
6.4.1 The ISOLE rule ... 366
6.4.2 Enforcement of the ISOLE rule in UTL PO/PR services 366
6.4.3 Using the DAGITS algorithm to enforce the ISOLE rule 367

Problem ISOLE: Initial Sending Order must be a
Linear Extension....................................... 367

6.5 Resequencing out-of-sequence PDUs for delivery using partial
order... 368

The matrix approach to resequencing PDUs for
PO service... 368

The matrix approach is not acceptable for PO
service... 370

Incorporating explicit release synchronization into
PO resequencing 371

6.6 Implementing the PR semantics of POCv2 ... 374
6.7 PO/PR-DEL-BASIC: Basic POCv2 delivery (no stream, no

explicit release).. 380
Overview of Section 6.7 ... 381

xiv

6.7.1 Extending the PO/R-RCV-RESEQ algorithm to
incorporate PR... 382

6.7.2 Proofs of correctness, running time for PO/PR-DEL-
BASIC pseudocode ... 391

Proofs related to maintaining the numCOURPs
values. ... 391

Proofs related to computing the L(y) set via a DFS
of the TRPOT. ... 397

6.7.3 Comparison/Contrast of PO/PR-DEL-BASIC with PO/R-
RCV-RESEQ... 401

6.7.4 PO/PR-DEL-BASIC: Section Summary 402
6.8 PO/PR-DEL-FULL: Adding streams and explicit release to POCv2.... 403

Overview of Section 6.8 ... 404
6.8.1 Integrating POCv2’s PR class with explicit release and

stream objects .. 404
Interaction of Reliability Classes with Stream

Objects .. 404
Integration of stream objects with explicit release 405
Streaming vs. Stalled objects, and the underflow

notification.. 406
What running time can be achieved when

incorporating all three features? 407
6.8.2 The main difficulty: explicit release of streaming objects 408
6.8.3 An efficient algorithm that sacrifices two desirable

properties ... 409
Sketch of algorithm PO/PR-DEL-OPTION1 409
The first property we sacrifice: no premature loss

declarations... 413
The second property we sacrifice: no deliverable

data waiting for unreliable data 414
6.8.4 A brute-force algorithm that implements the full POCv2

PR semantics ... 415
Sketch of algorithm PO/PR-DEL-OPTION2 416
Running time of algorithm PO/PR-DEL-

OPTION2.. 419
6.8.5 Future work related to the POCv2 PR reliability class.............. 421
Approaches to improving the running time of PO/PR-DEL-

OPTION2 .. 422
6.9 Representation of partial orders (encodings, data structures)................ 423
6.10 Chapter summary and suggestions for future work 429

Future work: linear extension selection...................... 430

xv

7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK................ 432
7.1 Summary of main results ... 432

7.1.1 PO/R service can provide benefits in practice........................... 432
7.1.2 Other results: transport service.. 435
7.1.3 Other results: multimedia systems... 435

7.2 Applicability of our results to other applications 436
7.2.1 Application of results in this dissertation to work on SCTP 437
7.2.2 Applying partial order to the results of SQL queries................. 438

7.3 Future Work... 439
7.3.1 Experimentation with PO/PR service.. 439
7.3.2 Further experimentation with PO/R service 440
7.3.2 Other future work .. 442

Future Directions in Multimedia Systems 442
Future Work on ReMDoR .. 442
Future Directions in Transport Protocol Design......... 443
Future work related to UTL implementation.............. 444

Appendix: EXAMPLE MULTIMEDIA DOCUMENTS ... 445
A.1 The paris.pmsl document: a travelogue of Paris.................................... 445
A.2 military.pmsl: a briefing on Gulf War weapons systems....................... 449
A.3 Listing of example PMSL source: paris.pmsl.. 451
A.4 Excerpts from sample file paris.pmff .. 464
A.5 Description of PMTP output ... 465

BIBLIOGRAPHY... 466

xvi

LIST OF TABLES

Table 1.1 Publications related to UTL and ReMDoR implementation 20

Table 1.2 Performance Experiment Groups .. 24

Table 2.1 A partial listing of POCv2 service primitives ... 36

Table 3.1 UTL mechanisms... 101

Table 3.2 UTL QoS Parameters (legend for Table 3.1)... 102

Table 3.3 UTL protocol parameters... 103

Table 3.4 Bottom layers in UTL (may also serve as top layers)............................ 111

Table 3.5 Upper layers in UTL (may be middle or top layers).............................. 112

Table 3.6 Services provided by various transport layers 126

Table 3.7 Tick sizes for RTT/RTO calculation in TCP and UTL 148

Table 3.7 Production releases of UTL (partial list) ... 154

Table 5.1 Parameters for Experiment N1 .. 196

Table 5.2 UTL Mechanisms used in Experiment N1 .. 196

Table 5.3 Parameters for Experiment R1 .. 215

Table 5.4 UTL Mechanisms used in Experiments R1 (also Exps. R2–R4) 216

Table 5.5 Parameters for Experiment R2 .. 241

Table 5.6 First pixel delivered (median) for R2.1 ... 243

Table 5.7 R2.3: Last pixel delivered (median) .. 246

Table 5.8 Parameters for Experiment R3 .. 256

Table 5.9 Parameters for Experiment R4 .. 271

xvii

Table 5.10 Parameters for Experiment R5 .. 314

Table 5.11 Number of repetitions for each experiment ... 333

Table 6.1 Audio Parameters Used for Chapter 5 performance experiments 362

Table 6.2 A partial listing of POCv2 service primitives 425

Table 6.3 Algorithms to convert between PO representations 428

Table 6.4 Time to compute transitive closure and transitive reduction in the
ReMDoR parser for various values of n on Sun Ultra 10. 429

xviii

LIST OF FIGURES

Figure 1.1 Structure of the dissertation.. 7

Figure 1.2 Experimental setup for performance experiments.................................. 25

Figure 2.1 Screen refresh example from (Amer et al., 1994) 30

Figure 2.2 Transitively reduced DAG representation of PO 31

Figure 2.3 Excerpt illustrating POCv2 sequence numbers 39

Figure 2.4 Example of epoch, period, objNum, cellNums 39

Figure 2.5 Storyboard to motivate POCv2 stream objects 44

Figure 2.6 Partial order with stream objects .. 44

Figure 2.7 Partial order without stream objects... 45

Figure 2.8 Example definition of a POCv2 service profile 48

Figure 2.9 Periodic partial orders in POC, POCv2.. 51

Figure 2.10 Hamblin’s temporal relations (left); corresponding Petri nets from
OCPN (right) (Little and Ghafoor, 1990)... 61

Figure 2.11 Example OCPN for slide presentation adapted from (Little and
Ghafoor, 1990) 61

Figure 2.12 Pseudocode for a “read and display” loop.. 62

Figure 2.13 Example: two element partial order ... 62

Figure 2.14 Example transformation from Lemma 2.1 ... 72

Figure 2.15 Indefinite intervals as a result of network delays 73

Figure 2.16 Example PO for explanation of PR reliability class............................... 83

Figure 3.1 Selecting from among different transport protocols by a menu
(left) or command line option (“-m” for “mechanism”, right). 100

Figure 3.2 UTL mechanisms composed of layers.. 106

xix

Figure 3.3 UTL layer encapsulation example: T3 over Ethernet........................... 106

Figure 4.1 User interface of ReMDoR browser... 163

Figure 4.2 Web architecture, for comparison with ReMDoR................................ 166

Figure 4.3 ReMDoR system architecture... 166

Figure 5.1 Detail of experimental environment... 181

Figure 5.2 Gilbert-Elliot loss model (two state Markov chain)............................. 183

Figure 5.3 Illustration of ncg8par.pmsl .. 195

Figure 5.4 Illustration of maximum performance gap for Exp. N1 at 0% loss...... 207

Figure 5.5 Experiment N1: Performance graphs ... 208

Figure 5.6 Screen dumps: ncg8par.pmsl, 10% loss, 38.4kbps PPP link 209

Figure 5.7 Screen dumps: ncg8par.pmsl, 10% loss, 38.4kbps PPP link 210

Figure 5.8 Screen dumps: ncg8par.pmsl, 10% loss, 38.4kbps PPP link 211

Figure 5.9 Experiment R1.1: Performance graphs .. 221

Figure 5.10 Screen dumps: R1.1, 9.6kbps PPP link at 10% loss........................... 222

Figure 5.11 Screen dumps: R1.1, 9.6kbps PPP link at 20%loss............................ 223

Figure 5.12 Experiment R1.1 performance graphs (overlay for Fig. 5.13) 224

Figure 5.13 Experiment R1.2 performance ... 225

Figure 5.14 Experiment R1.3: Performance Graphs.. 233

Figure 5.15 Exp. R1.3, Ind. Runs, T2E, win 32, bytes .. 234

Figure 5.16 Exp. R1.3, Ind. Runs, T2E, win 8, bytes .. 234

Figure 5.17 Exp. R1.3, Ind. Runs, T2E, win 16, bytes .. 235

Figure 5.18 Exp. R1.3, Ind. Runs, R2E, win 8, bytes.. 235

Figure 5.19 Exp. R1.3, Ind. Runs, R2E, win 16, bytes.. 236

xx

Figure 5.20 Exp. R1.3, Ind. Runs, R2E, win 32, bytes.. 236

Figure 5.21 Experiment R1.3 vs. R1.4: Performance Graphs 239

Figure 5.22 Exp. R2.1, R2.2, pixels, 128kbps, 4 loss rates × 2 delays.................... 244

Figure 5.23 Experiment R2.3: Four one-way delays at 0% and 20% loss............... 247

Figure 5.24 Exp. R2.4: Performance Graphs (128kbps at 0% loss) 253

Figure 5.25 Exp. R2.4: Performance Graphs (128kbps at 10% loss) 254

Figure 5.26 Experiment R3: Average Performance Graph...................................... 261

Figure 5.27 Experiment R3: Median Performance Graph....................................... 262

Figure 5.28 Experiment R3: Quartiles Performance Graph 263

Figure 5.29 Experiment R3: Quartiles Performance Graph 264

Figure 5.30 Experiment R3: Scaled Quartiles Performance Graphs 265

Figure 5.31 Exp. R4.1: bytes, pixels performance graphs 278

Figure 5.32 Experiment R4.1: audio interruptions .. 279

Figure 5.33 Experiment R4.1: FRACPLAY metric .. 280

Figure 5.34 Experiment R4.1: FRACPLAYINT metric .. 281

Figure 5.35 Experiment R4.2: bytes performance graphs 283

Figure 5.36 Experiment R4.2: pixel performance graphs.. 284

Figure 5.37 Experiment R4.2: audio interruptions at 0% loss................................. 285

Figure 5.38 Experiment R4.2: audio interruptions at 20% loss............................... 286

Figure 5.39 Experiment R4.2: FRACPLAY metric at 0% loss 287

Figure 5.40 Experiment R4.2: FRACPLAY metric at 20% loss 288

Figure 5.41 Exp. R4.2: FRACPLAYINT metric at 0% loss...................................... 289

Figure 5.42 Exp. R4.2: FRACPLAYINT metric at 20% loss.................................... 290

xxi

Figure 5.43 Experiment R4.3: bytes performance graphs 293

Figure 5.44 Experiment R4.3: pixel performance graphs.. 294

Figure 5.45 Experiment R4.3: audio interruptions at 0% loss................................. 295

Figure 5.46 Experiment R4.3: audio interruptions at 20% loss............................... 296

Figure 5.47 Experiment R4.3: FRACPLAY metric at 0% loss 297

Figure 5.48 Experiment R4.3: FRACPLAY metric at 20% loss 298

Figure 5.49 Experiment R4.3: FRACPLAYINT metric at 0% loss........................... 299

Figure 5.50 Experiment R4.3: FRACPLAYINT metric at 20% loss......................... 300

Figure 5.51 Exp. R4.4: LR 0% bytes, pixel perf. graphs... 302

Figure 5.52 Exp. R4.4: LR 10% bytes, pixel perf. graphs....................................... 303

Figure 5.53 Experiment R4.4: audio interruptions at 0% loss................................. 304

Figure 5.54 Experiment R4.4: audio interruptions at 10% loss............................... 305

Figure 5.55 Experiment R4.4: FRACPLAY metric at 0% loss 306

Figure 5.56 Experiment R4.4: FRACPLAY metric at 10% loss 307

Figure 5.57 Exp. R4.4: FRACPLAYINT metric at 0% loss...................................... 308

Figure 5.58 Exp. R4.4: FRACPLAYINT metric at 10% loss.................................... 309

Figure 5.59 Exp. R5.1: bytes, pixels perf. graphs.. 322

Figure 5.60 Exp. R5.2: bytes, pixels perf. graphs.. 323

Figure 5.61 Exp 5.1 and 5.2, plotting the advantage of R3 over T3........................ 324

Figure 5.62 Experiment R5.1: audio interruptions .. 325

Figure 5.63 Experiment R5.1: FRACPLAY metric .. 326

Figure 5.64 Experiment R5.1: FRACPLAYINT metric .. 327

Figure 5.65 Experiment R5.2: audio interruptions .. 328

xxii

Figure 5.66 Experiment R5.2: FRACPLAY metric .. 329

Figure 5.67 Experiment R5.2: FRACPLAYINT metric .. 330

Figure 5.68 Pseudocode for Experiment Loop .. 334

Figure 6.1 Topological sort via repeated delete... 355

Figure 6.2: DAGITS (DAG incremental topological sort) 355

Figure 6.3: operation next() .. 356

Figure 6.4 Algorithm ReMDoR-LESTAB inputs, output 363

Figure 6.5 Algorithm ReMDoR-LESTAB Pseudocode .. 364

Figure 6.6 ReMDoR-LESTAB, implementation of procedure finish() 365

Figure 6.7 Problem ISOLE (operations) .. 367

Figure 6.8 Algorithm PO-SENDER-ISOLE.. 369

Figure 6.9 Algorithm PO/R-RCV-RESEQ, specification 372

Figure 6.10 PO/R-RCV-RESEQ, operation processIncomingTPDU() 373

Figure 6.11 PO/R-RCV-RESEQ, operation getNextTPDU() 373

Figure 6.12 PO/R-RCV-RESEQ, operation isAnythingDeliverable()..................... 373

Figure 6.13 PO/R-RCV-RESEQ, procedure releaseSuccessors() 374

Figure 6.14 Algorithm PO/PR-DEL-BASIC, specification..................................... 385

Figure 6.15 PO/PR-DEL-BASIC, operation isAnythingDeliverable() 386

Figure 6.16 PO/PR-DEL-BASIC, operation getNextTSDU() 387

Figure 6.17 PO/PR-DEL-BASIC, operation processIncomingTPDU() 387

Figure 6.18 PO/PR-DEL-BASIC, operation init()... 388

Figure 6.19 PO/PR-DEL-BASIC, updateNumCOURPsofSuccessorNodes().......... 388

Figure 6.20 PO/PR-DEL-BASIC, procedure releaseSuccessors() 389

xxiii

Figure 6.21 PO/PR-DEL-BASIC,
fillDeliverOrDeclareLostQueueWithSortedLSet(x).............................. 390

Figure 6.22 Finite State Automata for stream states.. 411

Figure 6.23 Modified psuedocode for getNextTSDU(), option 1............................. 413

Figure 6.24 Procedure
findWaitingObjectWithNoWaitingOrStreamingProperPreds()............ 417

Figure 6.25 Modified pseudocode for isAnythingDeliverable(), option 2............... 417

Figure 6.26 Modified pseudocode for getNextTSDU(), option 2............................. 418

Figure 6.27 Brute-Force approach to PO/PR-DEL-OPTION2................................ 420

Figure 6.28 Alternate pseudocode for PO/PR-DEL-OPTION2............................... 423

Figure A.1 paris.pmsl: storyboard (part 1) ... 447

Figure A.2 paris.pmsl: storyboard (part 2) ... 448

Figure A.3 military.pmsl: partial storyboard. ... 450

xxiv

ABSTRACT

This dissertation investigates an innovation in computer communications

called Partially Ordered and Partially Reliable (PO/PR) Transport Service. PO/PR

service bridges the gap between two traditional forms of transport service:

Ordered/Reliable (O/R) service, such as the Internet's Transmission Control Protocol

(TCP), and Unordered/Unreliable (U/U) service, such as the Internet's User Datagram

Protocol (UDP). Some applications—in particular, multimedia applications—require

services that lie in between these two extremes. U/U service is insufficient for these

applications, yet O/R service is too restrictive and may cause the application to pay a

performance penalty.

Previous investigations of PO/PR transport service used analytic and

simulation modeling to investigate the performance of an abstract PO/PR transport

service called Partial Order Connection. We build on this work by first describing

several innovations in PO/PR transport service developed by the dissertation author,

including a new approach to coarse-grained multimedia synchronization based on

extending the Object-Composition Petri Net (OCPN) of Little and Ghafoor. We then

provide empirical evidence that an implementation of Partially Ordered/Reliable

(PO/R) transport service called Partial Order Connection version 2 (POCv2) can

provide better Quality of Service (QoS) tradeoffs to applications by providing a

transport service better matched to an application’s needs. In particular, we show that

for multimedia document retrieval, PO/R service provides performance benefits over

O/R transport service when the network loses packets.

xxv

Our experiments compare O/R service to PO/R service for a variety of

documents, bit rates, window sizes, and propagation delays, with packet loss rates

ranging from 0% to 30%. The results show that between 5% and 20% loss, user-

perceivable improvements in progressive display are observed for bit rates between

2.4kbps to 512kbps. These results suggest that transport services providing reliable

delivery over independent streams (such the emerging Internet protocol SCTP) can

provide important performance benefits over lossy networks (including wireless nets

or combat net radios.)

We also describe two systems developed by the dissertation author for

experimenting with transport services: (1) the Universal Transport Library (UTL), a

framework for implementation and testing of transport services, and (2) a Remote

Multimedia Document Retrieval System (ReMDoR) that uses UTL transport services.

1

Chapter 1

INTRODUCTION

1.1 Problem statement

This dissertation investigates an innovation in computer communications

called Partially Ordered and Partially Reliable (PO/PR) Transport Service. This

innovative technique includes several features that are designed to provide computer

applications with more flexibility in the way they use a packet-switched

communications network such as the Internet. In particular, PO/PR transport service

bridges the gap between two traditional forms of transport service:

• Ordered/Reliable (O/R) service, such as the Internet's
Transmission Control Protocol (TCP), and

• Unordered/Unreliable (U/U) service, such as the Internet's User
Datagram Protocol (UDP)

The premise of this work is that some applications—in particular, multimedia

applications—require services that lie in between these two extremes.

Unordered/Unreliable service is insufficient for these applications, yet

Ordered/Reliable service is too restrictive and may cause the application to pay a

performance penalty. The goal is to determine whether better Quality of Service

(QoS) tradeoffs and/or performance improvements can be obtained by using a

transport service in between these two extremes—one that is better matched to an

application’s needs.

2

Previous investigations of PO/PR transport service used analytic and

simulation modeling to investigate the performance of an abstract PO/PR transport

service called Partial Order Connection (POC) (Marasli, 1997). By contrast, the

problem statement for this dissertation is:

To determine through experimentation with real systems the extent to

which PO/PR transport service can provide performance benefits for

real applications.

Towards this end, the author designed a PO/PR transport service called

Partial Order Connection, version 2 (POCv2). POCv2 is a second version of the

abstract PO/PR transport service (POC), first proposed in (Amer et al., 1994), and then

investigated by Marasli through analysis and simulation (Marasli et al., 1996, 1997a,

1997b). POC provides a good basis for reasoning about partial order protocols and

doing simulation and analysis. However, as we shall show later in this chapter, POC

lacks certain features necessary for experimentation and/or deployment with real

applications.

To perform performance experiments comparing POCv2 and other PO/PR

transport services to traditional transport services, the author designed:

• a framework for implementation and testing of experimental
transport services (including POCv2 and others),

• an application called ReMDoR that benefits from a PO/PR service,
and

• a framework for repeating performance experiments with
ReMDoR under controlled conditions.

The author then supervised and participated in the development of these systems, and

then used them to carry out performance experiments comparing Partially

3

Ordered/Reliable (PO/R) service (a subclass of PO/PR service) to ordered/reliable

(O/R) and unordered/reliable (U/R) service.1 The remainder of this dissertation

describes the systems that were developed to conduct these experiments and the results

obtained. The next section outlines our key results.

1.2 Key results of this dissertation

In keeping with the problem statement above, our central result is the

analysis of performance experiments illustrating a range of parameters where PO/R

transport service can provide better performance than O/R service for a multimedia

document retrieval system. This result is important for at least two reasons. First,

prior to the publication of this data, all claims about the benefits of PO/PR service

have been based on either intuitive arguments, as in (Amer et al., 1994), or simulation

or analysis of abstract applications, as in (Marasli et al., 1997a, Marasli 1997b).

Putting this data in a real application context provides an important grounding for

delineating the practical benefits available from PO transport service. Second, the fact

that there is benefit from a PO/R service over an O/R service provides important

motivation for future work to extend our empirical study to an investigation of the

benefits of PO/PR service.

The experiments (described in detail in Chapter 5) compare O/R service to

PO/R service (and in one case, also to U/R service) for a variety of documents, bit

rates, window sizes, propagation delays. The experiments were carried out at loss

rates ranging from 0% to 30%, with the emphasis on loss rates between 5% and 20%.

We defer the presentation of specific numerical results until Chapter 5; nevertheless,

1 We defer experimentation with PO/PR service to future work; this is consistent with
the approach taken in a previous dissertation in this area (Marasli 1997b),

4

we can preview for the reader some of the general trends that were observed. The two

most important trends are ones that confirm the value of PO/R service:

(1) At 0% loss, there is little to no benefit or penalty for using a
PO/R service rather than an O/R service, regardless of the
values of any other parameters.

(2) At loss rates higher than 0%, PO/R service provides a clear
performance advantage over O/R service under some
conditions, for some documents.

In particular, we note the following about the conditions under which PO/R service

outperforms O/R service, and the nature of the advantages:

(3) In general, PO/R service provides faster progressive display of
information than O/R service when the loss rate is larger than
0%. As the loss rate increases, the advantage of PO/R service
steadily increases. Thus PO/R service can make an application
more robust to a certain amount of packet loss, up to a certain
point. As the loss rate increases, after a certain loss rate is
reached, the gain may be moot since both PO/R and O/R
services are unacceptably bad.

(4) The size of the gain due to partial order is sensitive to changes
in the flow control and/or congestion control schemes, including
the sender and/or receiver window sizes, and whether or not
TCP-friendly mechanisms such as slow start and congestion
avoidance are used. However, we can show gains both when
TCP-friendly mechanisms are used, and when they are not.

(5) PO/R service provides benefits for several different kinds of
documents, including: small documents with no temporal
dimension (similar to web pages with multiple GIF or JPEG
images), simple multimedia documents with images and audio
in parallel, and larger documents with complex synchronization
relationships among multiple data streams.

In addition to this central result, we also present several other key results:

• We describe two experimental systems that were designed and
developed as part of this dissertation work:

5

– a Universal Transport Library (UTL) providing a framework for
development and testing of experimental transport services, and

– a Remote Multimedia Document Retrieval System (ReMDoR) that can
operate over multiple transport services.

While these systems were originally developed for the author's
dissertation work, they proved useful for other research as well—
particularly research into network-conscious image compression
(explained further in Section 1.6.3). In addition to this author’s four
ReMDoR/UTL related publications, five other authors have
published a total of eight other journal articles, conference papers,
and/or PhD, MS or BS honors theses that either: (1) included
experimental results derived using ReMDoR and/or UTL, and/or (2)
described design, architecture and implementation issues related to
the development of ReMDoR and/or UTL.

• We describe several innovations in PO/PR transport service
developed by the dissertation author, thus extending the previous
work on PO/PR service. Some of the innovations described here
were actually implemented as part of this dissertation, as they were
necessary for the completion of the performance experiments.
Others have not been implemented to date; for these we provide
intuitive arguments why they should provide performance benefits.
The latter set of innovations provides a number of opportunities for
future study (see Chapter 7).

1.2 Structure of the dissertation

The dissertation is divided into seven chapters, as shown in Figure 1.1.

Chapter 1 provides an introduction to the dissertation, including the problem

statement, an overview of the motivation for studying partially ordered and partially

reliable transport services, and an overview of the motivation for studying the

performance of these services in the context of multimedia applications. Chapter 2

provides a more in-depth look at some of the innovations in PO/PR transport service

proposed in this dissertation. Chapters 3 and 4, respectively, describe the design and

implementation of the Universal Transport Library (UTL), a framework for the

6

development and testing of experimental transport services, and the Remote

Multimedia Document Retrieval System (ReMDoR) that can operate over multiple

transport services.

Chapter 5 presents the core of this dissertation: performance results from

experiments designed to evaluate PO/PR service. This chapter includes an overview

of the experimental methods used, and results from experiments designed to validate

the experimental framework. This is followed by a complete discussion of

experiments comparing ordered/reliable (O/R) service, partially ordered/reliable

(PO/R) and unordered/reliable (U/R) service. We present results obtained by

measuring a specific application: remote multimedia document retrieval via ReMDoR.

In Chapter 6 we turn to a different question: the communications and

processing overhead of PO/PR service. Two algorithmic questions are considered:

how to encode a partial order for effective transmission and processing, and how to

design efficient algorithms for the extra processing that sending and receiving

transport entities must perform to provide PO/PR service. Finally, Chapter 7 provides

a summary of the key results from this dissertation, and suggestions for future work.

The appendix describes two sample multimedia documents (named

“paris.pmsl” and “military.pmsl”) that are used throughout this dissertation as

examples to illustrate ideas, and as the basis of the performance experiments.

7

Dissertation

3. UTL 4. Remdor1. Intro:
PO/PR

 Service

6. PO/PR
Algorithms

7.Summary,
Fut. Wrk.

Experimental
Systems

5. Experiments
and Results

2. Innovative
Transport

Service
Features

Figure 1.1 Structure of the dissertation

1.3 Background

It is assumed that the reader is familiar with concepts of computer

networking, and with the transport layer in particular. For example, the reader is

assumed to be familiar with:

• the OSI model reference model; in particular, the transport layer of
that model

• terms such as Protocol Data Unit (PDU) and Service Data Unit
(SDU)

• the concepts of service, protocol, implementation and peer entities

• basic concepts of the TCP/IP protocol suite, such as the role of
TCP, UDP and IP

• the concept of Quality of Service (QoS)

• what an Internet Request for Comments (RFC) document is

The dissertation author is a co-author of (Iren et al., 1999a) which provides a tutorial

and survey on the transport layer; the tutorial section in particular provides a good

summary for readers not familiar with the terminology above.

8

1.4 Partial order and partial reliability transport service

A distinction can be made between qualitative QoS parameters and

quantitative QoS parameters. Examples of qualitative QoS parameters include:

• order: Is the sending order preserved; that is, are messages received
out-of-order resequenced before delivery?

• reliability: Are lost messages recovered through re-transmission or
forward error correction?

• duplication: It is possible for a message to be delivered more than
once?

• flow-control: Are mechanisms in place to prevent a fast sender
from overwhelming a slow receiver, resulting in either data loss or
waste of network resources?

Examples of quantitative QoS parameters include:

• delay: How long does it take for messages to travel from sender to
receiver?

• throughput: How many messages are delivered per unit of time?

• jitter (or burstiness): Do messages arrive in a predictable steady
flow, or in huge bursts with long quiet periods in between? More
formally, what is the variance of packet interarrival times?

One fundamental transport layer design problem is making appropriate

tradeoffs between qualitative and quantitative QoS parameters. Choosing an

appropriate tradeoff is important, because while transport services are often called

upon to provide a QoS that is an enhancement of the underlying network, improving

the performance as measured by one QoS parameter usually involves degrading the

performance of another QoS parameter. For example, TCP provides a reliable service

on top of the unreliable IP network protocol by means of retransmissions, but does so

at the expense of introducing additional end-to-end delay. The selection of which

9

transport mechanisms are appropriate for a given application is often a matter of

considerable debate. For example, while the prevailing view is that retransmission is

inappropriate for multimedia data because of its real-time nature, (Little and Ghafoor,

1991), some authors describe circumstances in which retransmission is appropriate

(Dempsey et al., 1996.)

Commonly, transport protocol selection is a choice between extremes. For

example, in the Internet protocol suite we note that the service provided by TCP

(RFC793) is ordered, reliable, no-duplicates and flow-controlled, while the service

provided by the User Datagram Protocol (UDP, RFC768) is unordered, unreliable,

may duplicate messages, and is not flow-controlled. The fact that these protocols

provide service at the extremes of each of these four QoS axes creates a dilemma for

the designer of an application whose needs reside in the middle. When designing an

application that will run over Internet protocols, today's implementer typically has

three choices: (1) use TCP, (2) use UDP as is, or (3) implement a custom transport

protocol on top of UDP (a considerable software development effort.)

As explained below, choosing either TCP or UDP when neither is

appropriate has negative consequences. Thus, many applications utilize the third

choice: building the needed transport functionalities from scratch, as an application

specific transport protocol layered on top of UDP, for example, see (Jacobs and

Eleftheriadis, 1997; RealNetworks, 1997.) Implementing a custom protocol allows the

application designer to choose exactly what features to implement based on the

requirements of the application. However, implementing transport protocol features at

the user-level of the operating system is non-trivial. Two issues are particularly

difficult: (1) managing the context switching between asynchronous protocol events,

10

such as timer expiration and packet arrival, and the rest of the application code, and (2)

getting flow-control/congestion-avoidance to operate correctly. In the latter case, to

truly test the correctness of the design and implementation requires simulation and/or

implementation on a wide scale. The complexity of designing and testing the

operation of retransmission timers, resequencing of data, buffers, round-trip-delay

estimation, and flow-control/congestion avoidance may exceed the complexity of the

application itself!

We argue that given a reasonable alternative, application designers would

prefer to avoid programming transport layer functionality. Therefore we present an

alternative: a standardized transport service providing the flexibility to specify

reliability, ordering, flow-control, and duplication at a finer granularity than either

TCP or UDP. This flexibility allows application designers to focus their efforts on

their application rather than on transport layer details.

1.4.1 Problems with using TCP or UDP

In a protocol environment where only the extremes of transport service are

provided, some applications cannot find a perfect home. Consider the retrieval of

objects that are part of a multimedia presentation. For some objects, no loss is

permissible (e.g., text, some still images, control information) while for other objects

some loss may be permissible (e.g., audio and video streams, images that are merely

decorative). Also, the order of presentation of objects may be defined by a partial

order rather than a total order, as is the case for document synchronization

requirements described by an Object Composition Petri Net (OCPN) (Little and

Ghafoor, 1991.) We describe the service required by such an application as partially-

ordered/partially-reliable. Partially-reliable refers to the notion that some objects

11

must be delivered reliably, while others may be lost if necessary. Partially-ordered

refers to the fact that data sequencing requirements are expressed as a partial order

rather than as a linear order.

For such an application, TCP provides more reliability and resequencing

than is necessary at the expense of extra delay and reduced throughput. Extra delay

may result in annoying discontinuities in the playback of continuous media such as

audio or video data. However, TCP has the advantage of providing flow control and

congestion control algorithms that have been tested for nearly two decades, and scale

well to a global internet.

UDP, on the other hand, provides a “best effort” service with no

guarantees whatsoever. On a lightly loaded LAN where the underlying network is

inherently reliable (at least, for most practical purposes, i.e., packet loss probabilities

of 10-9 or less), a best-effort service may be perfectly acceptable. Over longer Internet

distances, where packet loss probabilities routinely range anywhere from negligible to

over 50%, UDP may be fine one day and completely unacceptable the next. Our

anecdotal experience with the MBONE tools for Internet video-conferencing (i.e., nv,

vat) suggests that sustained packet drop rates between 7-15% are common, and that

drop rates as high as 50% do occasionally occur. There are several studies that support

our anecdotal experience. (Diot and Gagnon, 1999) cite similar experiences with

packet loss in the Internet. (Bolot, 1993) observed packet loss rates around 10% on

connections between INRIA, Sophia-Antipolis, France, and the Univ. of Maryland,

College Park MD, USA. While (Paxson, 1996) does not directly measure packet

losses, the high frequency of routing anomalies he cites lends support to the notion that

12

the Internet provides a highly variable quality of service with a significant rate of

failure.

Some argue that since loss in the Internet is commonly due to buffer

overflows, bandwidth reservation and improved congestion control methods are

needed, and if implemented, will eliminate packet loss as a significant problem. RSVP

(Zhang et al.,1993) and YESSIR (Pan and Schulzrinne, 1998) are two examples of

such reservations schemes. Our sense is that in spite of excellent research efforts

related to guaranteed QoS through reservations, there will always be environments

where reservation mechanisms are infeasible to implement, or fail to provide the

necessary QoS (e.g., a disaster situation or battlefield scenario involving intermittent

jamming). In these cases the loss rate of the underlying network may be higher than an

application's tolerance for loss. Furthermore, because UDP is not flow-controlled,

unless the application implements its own flow-control mechanism, an application

using UDP may flood the network and/or the receiver with packets at a rate faster than

either can handle, thus creating another source of packet loss.

1.4.2 Partially-ordered/partially-reliable transport service as an alternative

What is desirable is a standardized transport service, or a library of

functions, modules, or objects, that applications can utilize to gain flexible control

over the ordering and reliability of individual objects. Such a service or library would

allow applications to achieve an appropriate balance among various QoS parameters

without having to “reinvent the transport-layer wheel” with every application. Such an

approach is consistent with Application Level Framing (ALF) as proposed in (Clark

and Tennenhouse, 1990). This dissertation presents two technologies to address the

need for additional flexibility at the transport layer. The first is the POCv2 protocol,

13

which provides a partially-ordered/partially-reliable (PO/PR) transport service.

Chapter 2 includes an overview of partially-order/partially reliable transport services,

including a summary of previous and related work. The second is a more general

mechanism: the Universal Transport Library (UTL), which provides a framework for

the development of transport services that provide flexible QoS tradeoffs. UTL is

described in more detail in Section 1.7.1, and Chapter 3.

In addition to allowing an application to request the precise level of

reliability and ordering required, POCv2 and the UTL provide an additional benefit

that neither TCP nor UDP provides: a mechanism that facilitates coarse-grained

synchronization of multimedia objects. This synchronization feature is described in

more detail in Chapter 2.

1.5 PO/PR Transport service and multimedia document retrieval

Previous work on partially-ordered service has produced quantitative

results for delay and throughput gains for PO/PR transport service. (Marasli et al.

1996, Marasli et al., 1997a, Marasli 1997b). However, these quantitative results were

derived for an abstract PO/PR service, and not directly related to any concrete

application. A goal of this dissertation is to put such quantitative measures into an

application context so that such results can be interpreted in terms of their impact on

an end user. The application chosen for this purpose was remote multimedia

document retrieval; that is, retrieving a multimedia document from a server on the

Internet, and presenting this document as it is retrieved from the server. The

remainder of this section explains why this application is particularly suited to a study

of PO/PR services. It also introduces two key themes of our work: (1) the benefits of

providing graceful degradation of multimedia documents, and (2) the benefits of

14

integrating the transport order and reliability features with the coarse grained

synchronization mechanism of the multimedia application.

1.5.1 Graceful degradation of multimedia documents

Many systems now exist that allow authors to construct pre-orchestrated

multimedia documents. One of the most popular commercial systems is Macromedia

Director. The proceedings of the IEEE and ACM Multimedia conferences contain

examples of research systems; a survey of such systems appears in Chapter 4.

Multimedia documents consist of objects such as still images, text, audio

clips and video clips, which are pre-arranged according to a temporal scenario.

Various schemes exist for expressing temporal scenarios (Pérez-Luque and Little,

1995). During the playback of such a document, object presentation proceeds

according to this temporal scenario until some event occurs which stops or resets it--

for example, a user interaction point is reached, or a user presses a pause button.

Typically, a multimedia workstation with sufficient CPU, memory, and I/O

capabilities can present a document in compliance with its temporal scenario, provided

that the channel delivering the information is ordered and error-free.

However, suppose the document is stored on a remote file server, and the

channel delivering this information is the Internet. In this case, network errors and

delays may wreak havoc with attempts to present the document correctly.

We propose that in such situations, it is appropriate to provide for

graceful degradation of the multimedia document presentation. Graceful degradation

is helpful in multimedia documents where not all objects have equal importance, or the

same quality-of-service requirements; that is, some objects are essential to document

content, while others are nice to have, but optional.

15

Graceful degradation is also helpful when some objects must be presented

in a specific order, while other objects can be presented in an order different from their

transmission order, with no loss of quality. For example, in a document describing a

simple repair to a piece of equipment, “step 1” should be presented before “step 2”.

Now, suppose the same document also contains three images that should be presented

roughly simultaneously. If two of them show up, and one has to be retransmitted, in

many cases it is desirable to go ahead and present the images that arrived while

waiting for the retransmission of the missing image.

1.5.2 Traditional transport protocols are not satisfactory

Given that we want to provide for graceful degradation, what transport

protocol should be used for multimedia objects? We argue that classic transport

services such as TCP and UDP are ill suited to this application, and investigate PO/PR

service as an alternative. The ReMDoR system developed for this dissertation provides

users with the capability to author multimedia documents and place them on a server

for remote retrieval and display via the Internet. The purposes of the ReMDoR system

are:

• to show how a PO/PR transport service facilitates coarse-grained
synchronization of multimedia objects and graceful degradation
during times of network stress,

• to demonstrate the mechanisms needed to implement a PO/PR
transport protocol in practice, and

• to demonstrate and quantify performance improvements when a
PO/PR transport service is used instead of an ordered/reliable
service (e.g., TCP) or an unordered/unreliable service (e.g., UDP).

16

1.5.3 Traditional authoring systems are not satisfactory.

Note that the manner in which a document should be gracefully degraded

is largely dependent on the intentions of the document author; it cannot be deduced

solely from structural aspects of the document such as the type of objects (graphics,

sound, text, etc.) For example, consider a sound clip. In one document, a sound clip

may be only a sound effect to draw attention to a certain visual image on the screen. If

this image is also highlighted in other ways (e.g., with color), then the sound effect

may be helpful, but non-essential. It would be acceptable, for example, to allow for

small gaps in the sound object (say, gaps of up to 20 ms); these might create small

cracks or pops in the sound, but the sound would still serve its intended purpose. On

the other hand, if the document were intended as a tutorial for peacekeeping troops to

teach useful phrases in the local language, a sound clip might be the most important

content in the document. In this case, even a small amount of infidelity in the sound

could render the document useless for its intended purpose.

Current commercial authoring systems (e.g., Macromedia Director and

Authorware) generally assume either

• a perfect, high-bandwidth channel (e.g., from a local CD-ROM or
DVD device), or

• transmission over the Internet (i.e., the Web) using a reliable
ordered channel (that is, TCP), with a medium-to-high bitrate (i.e.,
33.6–56kbps to 1.544 Mbps or higher).

In general, current systems do not provide the capability to author for graceful

degradation; that is, authors cannot specify the relative importance of objects in a

document, or specify multiple orders for object presentation.

Some systems for Web authoring do provide the capability to make

multiple versions of a document available: for example, a graphics intensive version

17

for those connecting via a high-speed connection to the Internet, and a text-only

version for those with a slow connection. There are new features that make this easier

in the newest version (v1.1) of the Hypertext Transfer Protocol (HTTP) used for

retrieving Web documents. In these systems, the user (or the user’s browser) must

choose in advance to retrieve a lower-quality version of the document content.

It is certainly useful for a user or a browser to be able to convey to the

server that the user already knows network conditions are less than ideal, and that the

user will accept a lower quality version of the document. However, providing multiple

documents for users to choose under different network conditions is fundamentally

different from the kind of graceful degradation we address. We address the case where

network conditions are either unknown a priori, or suddenly become worse in the

middle of a transmission. Our vision of graceful degradation is that when

performance is (perhaps) unexpectedly bad, the application and the transport protocol

should have already marked the most important information and sequence constraints

for preservation. The application and transport entities can then immediately take

steps to preserve the most important document elements and relationships, even while

discarding or disregarding others. It is this kind of graceful degradation that we

explore in the ReMDoR system as we consider how PO/PR transport may be of

benefit.

1.6 Overview of systems developed for this dissertation

1.6.1 Universal Transport Library (UTL)

The central goal of this dissertation is to investigate whether PO/PR

transport service provides a measurable benefit for some application. To show a

18

measurable benefit, we need an application that can be demonstrated over more than

one transport service. The ReMDoR application described in Chapter 4 was

developed for exactly this purpose.

However, early in the development of ReMDoR, we recognized that

designing an application that can run over multiple transport protocols presents certain

difficulties (as we explain in Section 3.1.) To overcome these difficulties, we

developed the Universal Transport Library (UTL). UTL is a library of transport layer

software that can be linked in with an application, to provide a range of transport

services through a single API. The transport services provided in UTL include simple

wrappers for TCP and UDP, as well as a range of PO/PR transport services. The

transport layer functionality in UTL is implemented at user-level rather than in the

kernel, and sits in between the application and the regular UDP and TCP services

provided by the operating system.

UTL provides benefits both for developers of new transport layer services,

and developers of applications that want to take advantage of various kinds of

transport layer service. For developers of transport layer services and protocols, UTL

provides a framework for rapid prototyping of transport layer implementations. For

application writers, UTL provides a library of various transport services that can be

accessed through a single API.

1.6.2 Overview of the Remote Multimedia Document Retrieval system
(ReMDoR)

ReMDoR is a multimedia document retrieval system that allows authors to

specify synchronization requirements and varying degrees of reliability for multimedia

elements (Conrad et al., 1996, Conrad et al., 1998). The key motivation for ReMDoR

19

was the investigation of partial order and partial reliability transport protocols in the

context of multimedia document retrieval. Because it was infeasible to incorporate

partial order and partial reliability into existing multimedia document retrieval

systems, it was necessary to develop a simple multimedia document retrieval system in

order to carry out this research.

The basic model is similar to that of the World Wide Web; documents are

available on a server and are retrieved via a browser. The ReMDoR browser has a look

and feel that is similar to traditional web browsers, making experimentation

convenient, and helping to demonstrate the idea of multimedia document retrieval in a

familiar context. However, unlike Web documents, ReMDoR documents are

temporal—they have a time dimension requiring synchronization of multimedia

elements. ReMDoR has capabilities that support experimentation with innovative

protocols and data compression techniques, such as:

• the ability to select from a wide range of transport services and
transport service features (via UTL),

• the ability to record statistics about performance on an object-by-
object basis

• features to support the automation of repeated performance
experiments, and

• the ability to easily incorporate new image formats, such as the
formats required for research into network-conscious image
compression: Network Conscious GIF (Amer et al., 1999)., the
SPIHT Wavelet format (Said and Pearlman, 1996; Iren, 1999):),
and the Network Conscious Wavelet format. (Iren et al., 1998;
Iren and Amer, 2000).

20

1.6.3 Publications based on these tools

UTL and ReMDoR have proven useful in research beyond this

dissertation, chiefly, in the NETCICATS project (Iren et al.,

1998a,1998b,1998c,1999b; Amer et al. 1999). In addition, the implementation work

has provided opportunities for one MS Thesis, and one undergraduate Honors thesis.

Table 1.1 provides a summary of the various publications, theses, and dissertations

based on research that uses UTL and ReMDoR. The remainder of this section

summarizes highlights of this related work.

Table 1.1 Publications related to UTL and ReMDoR implementation

1st Author Publications Citations
Caro Undergraduate Honors Thesis CIS Dept., U. Del. (Caro, 1998)
Conrad Two Conference Papers

Two Workshop Papers

MMCN’96 (Conrad et al., 1996)
MILCOM’98 (Conrad et al., 1998)
IWQoS’97 (Conrad et al., 1997)
Sync’95 (Conrad et al. 1995)

Golden MS Thesis CIS Dept., U. Del (Golden, 1997)

The Network Conscious Image Compression and Transmission System

(NETCICATS) project, which is the Ph.D. dissertation work of Sami Iren (Iren, 1999b)

uses UTL and ReMDoR as the central tools for conducting performance experiments.

Network-conscious image compression is an approach to image compression that

seeks not solely to maximize compression, but rather to optimize overall performance

when compressed images are transmitted over a lossy packet-switched network such as

a battlefield network. Using an Application Level Framing philosophy, an image is

compressed into path-MTU sized Application Data Units (ADUs) at the application

layer.

21

Performance experiments in NETCICATS typically involve comparison of

a traditional image compression scheme requiring a more restrictive transport protocol

(e.g., Ordered/Reliable service) against an image compression scheme that may require

more bits per pixel, but which allows a less restrictive transport protocol. The key idea

is to find the loss rates at which the best trade-off is made; that is, the loss rates above

which the penalty of more bits per pixel is outweighed by:

• the benefit of being able to deliver information out-of-order (thus
providing better progressive display), and/or

• the benefit of being able to tolerate a certain degree of loss while
still maintaining acceptable image quality.

Thus, for evaluations of NETCICATS, three things are essential:

(1) The ability to easily put a single application on top of various
transport services (an ability provided by UTL)

(2) The ability to retrieve and display different image formats over
various transport services, and add new image formats easily (an
ability provided by ReMDoR.)

(3) Facilities for the automation of repeated performance
experiments, and the gathering of performance statistics (also
provided by ReMDoR).

Thus, in addition to providing a platform for the evaluation of PO/R transport service

vs. O/R transport service, ReMDoR and UTL have been critical to the network-

conscious image research of Iren.

UTL and ReMDoR have also provided an opportunity for significant

participation by MS and undergraduate students in research, and holds the promise of

continuing to do so for future students of the dissertation author. For his MS thesis,

(Golden 1997), described the first implementation of the KXP mechanism of UTL (see

Sections 3.3.7, 3.6), and introduced a new transport protocol, the Timed Reliability

22

Unordered Message Protocol (TRUMP). In this protocol, messages can be given

timestamps after which their reliability expires. TRUMP is particularly appropriate for

military applications such as the Fact Exchange Protocol, where the value of a

particular message becomes less valuable with time (Chamberlain, 1994). UTL

provides a suitable environment for experimenting with this technique;

implementation of TRUMP is among the projects suggested for future work. As an

undergraduate honors thesis, (Caro, 1998) did most of the programming work for the

second major version of ReMDoR, including the addition of several key features we

describe in Chapter 4; he is currently working on a Java interface for UTL. The

dissertation author plans to involve students in several UTL and ReMDoR projects

following the completion of this dissertation; including porting UTL and ReMDoR to

Linux, and building a Java version of ReMDoR over Caro’s Java interface to UTL.

1.7 Overview of performance experiments

The performance experiments presented in this dissertation are divided

into two major groups, labeled N for NETCICATS, and R for ReMDoR. The

NETCICATS group of experiments compares O/R protocols with PO/R and U/R

protocols. NETCICATS is built on top of ReMDoR, but concentrates on fixed images

with no temporal dimension, and thus uses only a subset of ReMDoR’s full

functionality. The ReMDoR group of experiments focuses on the difference in

performance between O/R and PO/R service. The ReMDoR group incorporates

experiments with temporal documents that cover a range of complexity in terms of

multimedia content and synchronization requirements. Chapter 5 provides details

concerning these experiments. All use the basic setup illustrated in Figure 1.2. This

architecture consists of a server and client, with an unreliable network in between.

23

Two experimental tools developed for this dissertation provide control over the

properties of this network: a lossy router for simulating packet loss, and a packet

reflector for simulating various bitrates and propagation delays. Section 5.3 provides

more details concerning these tools.

1.8 Chapter summary

We have presented the problem statement for this dissertation, which is to

determine through experimentation with real systems the extent to which partially-

ordered/partially-reliable (PO/PR) transport service can provide performance benefits

for real applications. The motivation for PO/PR service is to provide applications with

more flexibility in making tradeoffs between QoS parameters such as order and

 reliability, and quantitative QoS parameters such as throughput, delay, and

buffer utilization. Previous work in this area used analytic modeling and simulation to

predict the performance benefits of PO/PR service, while this work focuses on putting

these benefits into a concrete application context so that the impact on the end user can

be assessed. Multimedia document retrieval is used as an example application that can

benefit from PO/PR service.

We have described two experimental systems designed to conduct

experiments comparing the performance of a remote multimedia document retrieval

system over PO/PR transport service: (1) UTL and (2) ReMDoR. We provided an

overview of the design and results of performance experiments conducted for this

dissertation using these tools. We also noted that while the author designed UTL and

ReMDoR for his own purposes, they have proven useful beyond the scope of the

author’s work.

24

The next chapter (Chapter 2) focuses on transport protocol ideas. This is

followed by two chapters (Chapters 3 and 4) focusing on experimental systems,

covering UTL and ReMDoR, respectively. This is followed by a chapter on

performance results (Chapter 5), a chapter on algorithms for PO/PR protocols

(Chapter 6), and a summary and description of future work (Chapter 7).

Table 1.2 Performance Experiment Groups

Grp Explanation Evaluation of
number of
experiments

described
in
sections

N1 NETCICATS as motivation for
unordered service, limiting case for
gains from partial order

U/R vs. PO/R vs.
O/R

1 5.2

R1 ReMDoR application, 8 parallel
images, slow PPP link, combat net
radio speeds.

PO/R vs. O/R 4 5.3

R2 ReMDoR application, 8 parallel
images, Narrowband ISDN speed
(128kbps)

PO/R vs. O/R 4 5.4

R3 ReMDoR application, 8 parallel
images, Narrowband ISDN speed
(128kbps), effect of various bitrates

PO/R vs. O/R 1 5.5

R4 ReMDoR application, audio in parallel
with images.

PO/R vs. O/R 4 5.6

R5 Excerpt from a complete document
with audio, parallel images streams,
complex synchronization relationships

PO/R vs. O/R 2 5.7

Total 16

25

Client Server

UTLUTL

Unreliable network

Reflector:
Control over bitrate,
propagation delay

Lossy Router
Control over
packet loss

Figure 1.2 Experimental setup for performance experiments

