Chapter 2

INNOVATIONSIN TRANSPORT SERVICE ORDER AND RELIABILITY

2.1 Introduction

In this chapter, we present an overview of several innovations related to
the handling of order and reliability in transport layer services, and the integration of
these features with multimedia synchronization.

This chapter is organized asfollows. Section 2.2 reviews the origins of
PO/PR service, including an overview of Partial Order Connection (POC), areview of
related work, and a summary of the innovationsin PO/PR service introduced by the
dissertation author in POCv2. Thisisfollowed by several sections that focus on each

of these innovationsin turn:

» Section 2.3 describes the addition of a stream abstraction to partial
order service.

* Section 2.4 describes the extension of the POC concept from a
single periodic partial order per connection to multiple partial
orders per connection.

* Section 2.5 surveys some important ideas and previous work
related to multimedia synchronization? and provides a motivation
for the coarse-grained synchronization support in POCv2, which is
described in Section 2.6

2 We place this section in the middle of the chapter rather than with the other
background material because this sequence of presentation provides better continuity
to the chapter asawhole.

26

» Section 2.7 describes the design of a buffer access feature to
support integrated layer processing (ILP).

» Section 2.8 discusses the benefits of both tighter integration vs.
de-coupling of partial order and partial reliability with respect to
each other and proposes new semantics for the PR reliability class.

* Section 2.9 discusses a new feature for unordered/partially-reliable
(U/PR) service called ADN-cancel that uses Application Data
Names (ADNS) to give applications more control over reliability of
individual messages

The design of POCv2 described in this chapter has been partially realized in the
Universal Transport Library (UTL) described in Chapter 3. Section 2.10 provides a
summary of the current status of this implementation, distinguishing between the
features of POCv2 that have been fully implemented, tested and evaluated in this
dissertation, and those which constitute directions for future research. Section 2.11

provides a chapter summary.

2.2 Background: Partially-ordered/partially-reliable (PO/PR) transport service
Partially-reliable services are those which provide something between
reliable (no-loss) service and unreliable service. There is much previous work on
partially-reliable services based a controlled number of retransmissions: for example,
(Gong and Parulkar, 1992, Dempsey 1994, Dempsey et al., 1996, Jacobs and
Eleftheriadis, 1997). Our approach to partially-reliable service combines the idea of a
controlled number of retransmissions with the notion of reliability classes: the idea
that an application designates individual objects (messages) as needing different levels
of reliability. In thiswork, we describe three reliability classes: R (Reliable), U
(Unreliable), and PR (Partially-Reliable). By specifying the reliability class Rfor a

particular object, the application indicates to the transport layer that the object should

27

be retransmitted an unlimited number of times until it gets to the receiver successfully
(or the connection is aborted). By contrast, the application can indicate viathe
reliability class U that an object should be transmitted only once and never
retransmitted, or by the reliability class PR that an object should be retransmitted, but
only up to apoint. (The class PR is described in more detail in Section 2.8)

In addition to partia reliability, (Amer et a., 1994) introduced the notion
of partially-ordered service. An application using partially-ordered service defines a
partial order, PO, over the objects to be communicated, and provides a representation
of PO to the transport layer. Objects submitted by the sending application may then be
delivered to the receiving application in any delivery order that isalinear extension,
LE, of PO. The ordered set LE isalinear extension of PO if it isalinear ordering of
the elementsin PO such that (x<y in PO 0 x<yin LE). The basic premise of
partially-ordered service is that there are applications that have some message
seguencing requirements, but can allow other messages to arrive in any of several
orders. For these applications, partially ordered delivery may provide less delay, and
use fewer memory resources than ordered delivery. The next section provides an

exampleto illustrate the idea.

221 PO/PR transport serviceillustrated: the“ Screen refresh” example
Asasimple example to illustrate the concept of partially ordered transport
service, the paper (Amer et a., 1994) describes a“ screen refresh” application, as
shown in Figure 2.1. In this application, the contents of overlapping windows on a
display must be updated from a remote server over a single transport connection. For
maximum redraw efficiency, it is desirable that each window should be repainted

before any window that appears on top of it. If we assume that the contents of each

28

window are sent as a single Transport Service Data Unit (TSDU), then the placement
of overlapping windows determines a partial order for TSDU delivery.3

Reading clockwise from the upper left, the four cases shown range from
one in which acompletely ordered serviceisrequired, to one where no delivery order
requirements exist between any two TSDUs. The more interesting casesliein
between. For example, the arrangement of windows labeled “B” (upper right) results
in apartial order where window (1) must be delivered first, followed by either (2) then
(3), or else (3) then (2), with window (4) coming last. Thus, there are two possible
delivery orders. The key ideaisthat if window (2) islost, with partial order A, we
cannot deliver window (3) until (2) is retransmitted. Thus, by providing a partially
ordered service instead of atotally ordered service, the transport layer can provide
lower delay for window (3). This example illustrates the intuition behind the notion
that partial order can be used to provide lower delay, a notion confirmed with

empirical datain Chapter 5.

3 Given the various assumptions (single packet per window, all windows on the same
server, asingle transport connection) let us stipulate that it is at best debatable whether
this problem would arise in practice, say, in asystem such as X Windows. However,
the purpose here is not to propose screen refresh as a practical application for PO
transport service. Rather, the purpose isto illustrate the partial order concept, and for
that purpose, this example serves uswell. The ReMDoR application described in
Chapter 4 provides a more concrete example of an application motivating PO transport
service.

29

1234
1234 1324
“chain”: onevalid el
—» />y . . ~a 7,
1234 ordering (like TCP) 1 3 4
1234 1243 1324 1342 1234
1423 1432 2134 2143 1324
2314 2341 2413 2431 1342
3124 3142 3214 3241 3124
3412 3421 4123 4132 3142
4213 4231 4312 4321 3412
“antichain”: n!'=24 valid — . . :
2)) 1—2 six valid orderings
orderings (like UDP) 3—+4

Figure2.1 Screen refresh examplefrom (Amer et al., 1994)

2.2.2 Notation and terminology related to partial orders

Figure 2.1 provides an opportunity to introduce some notation and
terminology that will be used throughout this dissertation.4 First, the two partial
orders representing the extreme cases have special names:. the completely ordered case
(A), that isthe linear order, is achain, while the term antichain is used to describe the
completely unordered case (D).

For each of the partial ordersin Figure 2.1, we show a representation of

the partial order as a directed graph. Throughout this dissertation, we make use of the

4 (Davey and Priestley, 1990) provides a good reference for concepts and terminology
related to partia orders.

30

fact that a directed acyclic graph (DAG) corresponds to a partial order. We thus
present diagrams of partial orders where x<y in PO impliesthat x is drawn to the | eft
of y. Sincethe partial order represents atemporal requirement for delivery, that is, x
must be delivered earlier thany, diagrams drawn in this way match our intuition that
time flows from left to right across the page. We will typically draw partial orders

using the transitively reduced form of the corresponding DAG.

B.
as Trangtively
reduced DAG
2
1 < > 4
3
two valid orderings: jaus time -

Figure2.2 Transitively reduced DAG representation of PO

If {x=<y)and("Ov)(X=<Vv=<YV},then we say that x coversy, or
equivaently, that y is covered by x. In our diagrams of partial orders, we indicate the
cover
ing relationship with adirected edge (drawn as aright pointing arrow asin Figure 2.2)
fromxtoy. Wewill also use the term predecessor to describe the covering
relationship that isimplied by the partia order: the predecessors of object k are all

objects{ i : i<k, "0j, i <) <k}. For emphasis, we sometimes use the term immediate

31

predecessors as a synonym for predecessor. The addition of the adjective immediate
does not change the meaning. It only serves to emphasize the fact that the term
predecessor is reserved for objects that immediately precede a given object in the
partial order rather than precede that object through a transitive relationship. The

(immediate) successors of object k are defined smilarly:{ i : k<i, "0j, k<j <i}.

2.2.3 Previouswork on designsfor a PO/PR transport service

In Section 1.1 we cited the introduction of POC by (Amer et al 1994), and
the simulation and analysiswork of (Maradli et a., 1996, 1997a, 1997b)). In addition,
Internet RFC1693 describes an attempt to incorporate partial order and partial
reliability into TCP (RFC1693). Modifying TCP to provide PO/PR service presents
several difficulties. First, partial order and partial reliability are defined in terms of
objects (messages), while TCP is fundamentally a byte-stream protocol. Imposing a
message framework on TCP aters one of its foundation principles and proves to be
cumbersome. Second, the flow control algorithmsin TCP are designed based on the
assumption of alinear order. Our work with models of POC leads usto believe that
using these algorithms with a partially ordered service severely restricts the potential
performance improvement that partial order and partial reliability may offer. Third,
the need for backward compatibility with TCP makes the design unnecessarily
complicated as compared to a PO/PR transport protocol built from scratch. Therefore,
for this investigation, we have pursued the development of a new version of POC
(POC version 2, or POCv2) designed to make the benefits of partial order and partia
reliability available to application devel opers.

32

2.24 Introduction to Partial Order Connection version 2 (POCv2)

Thefirst version of POC, conceived as an abstract protocol to illustrate the
concept of PO/PR service, lacked certain features needed for practical implementation,
including facilities for connection establishment and teardown, and a protocol for
negotiation of the partial order between sender and receiver—facilities that were
introduced in this dissertation work with POCv2. The overall goal in developing
POCv2 isto evaluate whether the theoretical advantages of PO/PR services claimed in

previous work can be achieved in practice.

2.2.5 Relationship of POCv2to UTL

The original goal of the software devel opment component of this
dissertation was to produce an implementation of POCv2 to serve as the basis of
performance study. The end result has been the development of the UTL framework
for the development of innovative transport protocols. Thus, although the
development of UTL was originally only ameansto an end (namely the incremental
development of POCv2), in practice, the implementation of POCv2 has been
subsumed within the development of UTL. The relationship between POCv2 and

UTL isasfollows:

 UTL isdesigned to provide a variety of services, the most general
of which is POCv2

* TheUTL API and theinterna architecture of UTL is designed to
support al the features of POCv2 as described in this dissertation

The current implementation supports the subset of those features that are
investigated in the performance experiments presented in this dissertation: most
especialy, partially-ordered/reliable (PO/R) service. The author’s future research will

include performance experiments to investigate other classes of service, and other

33

service features: in particular, partially-ordered/partialy-reliable (PO/PR) service, and
the data preview feature (Section 2.7)

2.2.6 Overview of POCv2 transport service, and comparison with POC

In this section, we summarize the key service features of POCv2. We also
outline the key differences between POCv2, and the previous design of POC from
(Amer et a., 1994) and (Maradli, 1997b).

* POCv2is connection oriented and message oriented.

 POCv2ispartialy ordered. With respect to partial order, there are
several crucia differences between POCv2 and POC.

— InPOC, the partial order had to be defined at the level of
individual PDUs. In POCv2, ahigher level abstraction called a
stream object is provided to ssimplify the specification and
processing of the partial order. (Section 2.3)

— InPOC, the partial order was assumed to negotiated in advance
by some means external to the transport service. In POCv2, the
transport service provides the means to negotiate the partial
order. (Section 2.4)

— InPOC, asingle partial order governed the entire connection.
In POCv2, multiple partial orders can be used, one at atime,
over thelife of the connection. New partial orders can be
negotiated in advance while the connection isin progress. (See
Section 2.4)

* POCv2 provides coarse-grained synchronization viathe explicit
release feature. (See Section 2.6). Synchronization was not
considered in POC.

* POCv2 provides adata preview feature to alow coarse-grained
integrated layer processing. (See Section 2.7) POC did not provide
any such feature.

 POCv2ispartiadly-reliable. Asin POC, areliability vector
providesindividual reliability classes for each message. However,

while the semantics of the R and U reliability classes have been
retained, the semantics of the PR class have been changed (See
Section 2.8).

2.2.7 Serviceprimitives of POCv2: Read(),Wite(), etc.

Rather than provide an exhaustive (but perhaps tedious) description of the
complete POCv2 AP, in this section we briefly describe the key service primitives of
POCv2. Our purposeisto explain just the essential POCv2 concepts and terms that
are needed to understand the general descriptions of the POCv2 innovationsin the
remainder of this chapter, and the POCv2 related material in the chapters that follow.

A POCv2 connection is established with the Li st en(), Connect () and
Accept () service primitives, which operate exactly as they do in the Sockets API.
Once a POCv2 connection is established, a service profile of ordered/reliable serviceis
in effect by default; either application entity may request a change in this service
profile through operations described in Section 2.4. The basic functions of input and
output in POCv2 are provided by the Read() and Wit e() serviceprimitives. A
sender usesthe Wi t e() serviceprimitiveto send data. Each Wit e() operation
constitutes asingle TSDU, which will result in exactly one TPDU being sent across
the network. When requested viaaRead() operation, TSDUswill be delivered as
atomic units to the receiver; that is, unlike TCP, POCv2 preserves message
boundaries.

The sending and delivery of messagesis controlled by the service profile
in effect at any given time. The exact interaction between the service profile and the
Read() and Wit e() operationsinvolves details of the stream abstraction (Section

2.3), the service profile negotiation (Section 2.4) and the explicit release mechanism

35

(Section 2.6). Therefore, adetailed discussion of thisinteraction is deferred to those

sections.

Once either side of the connection is finished with sending data, the

Cl ose() operation isused to indicate that that side has no more data to send; this

approach is the half-close concept borrowed from TCP. When both sides have done

their half-close, the connection is ended.

In addition to the service primitives discussed above, several other service

primitives will be introduced later in the chapter. For reference, Table 2.1 provides a

list of these with a brief description of each, and the section number whereit is

introduced.

Table2.1 A partial listing of POCv2 service primitives

POCv2 service Primitives _
(also called “operations’ or :Etgt‘i’gﬁd
“functions’) Description
Li sten() passive open: listen for a connection 2.2.7
Connect () active open: establish a connection 2.2.7
Accept () completion of passive open: accept a 2.2.7
specific incoming connection request
Read() receive data from the peer application | 2.2.7
Wite() send data to the peer application 2.2.7
d ose() close the connection 2.2.7
Set SendSer vPro() set the sending service profile 2.4.5
Rel easeSuccessor s() release the successors of an object for 2.6.1
delivery (used for coarse-grained
synchronization of multimedia objects)
Previ ew() preview out-of-order buffered data 2.7
(provides for coarse-grained integrated
layer processing)

36

2.2.8 POCv2 sequence numbers. epoch, period, objNum, cellNum

As background to the detailed sections on POCv2 innovations, we provide
abrief overview of key terms and concepts.

Every TSDU sent viatheW i t e() operation carries four sequence
numbers: an epoch number, a period number, an object number (henceforth: objNum)
and a cell number (henceforth: cellNum).

For example, consider an excerpt from the middle of a multimedia
document (illustrated in Figure 2.3). In this document, a single image of the Eiffel
Tower is presented in parallel with an audio clip, followed by atext box “Paris at
Night.” Thistext isfollowed by another image of the Eiffel Tower, presented in
parallel with another audio clip. Skipping over the epoch number for the moment, we
seein Figure 2.4 that in POCv2, this portion of the document can be represented as
two periods (shown as periods 7 and 8 in the figure.) Period 7 isagroup of two
objects: the audio clip (object number 0) and the image of the Eiffel Tower (numbered
1). Period 3 has three objects, the text box, the audio clip, and the nighttime image of
the Eiffel Tower (numbered O, 1 and 2 respectively.)

If we examine the figure at alower level, we see that the audio and image
objects are made up of multiple cells. In POCv2, acell isan individual TSDU that is
part of alarger object, while an object isasingle element in the partial order. If the
audio clipin period 7 is 5 seconds long, it may be sent in 125 packets, each carrying
1/25 of asecond of data (320 bytes for 8Khz p-law encoding.) Similarly, the image of
the Eiffel Tower may be segmented into multiple packets, say 25 packets of 1024
bytes each. Each of these packetsis considered asingle cell, and is assigned acel[INum

between 0 and c-1 (where c is the number of cellsin the object). Because each of the

37

audio cellsis part of the same object, each carries the same objNum (zero, in the case
of the audio object in period 7.) Similarly, the packets representing the image in
period 7 are each assigned an objNum of 1, and a cellnum between 0 and 24. This
assigning of cell numbers and object numbersis part of the stream abstraction of
POCv2 and is described in more detail in Section 2.3.

The period number pertains to the repetition of the service profile. The
partial orders used in POC and POCv2 arefinite. To alow an arbitrarily large number
of objects to be sent over a single connection, both POC and POCv2 allow a partial
order to be repeated over multiple periods. The rule for multiple periodsisthat al
objects from period i must be delivered before any object from periodi + 1. Thus, the
period number indicates how many times the service profile has been restarted from
object 0. The notion of periodic partial ordersis described in more detail in
Section 2.4.4

Finally, the epoch number isintroduced in POCv2 to alow for multiple
service profiles during asingle connection. In POCv2, an epoch is a sequence of zero
or more consecutive periods that use the same service profile. When service profiles
are negotiated between sender and receiver, they are identified with epoch numbers.
Thus, the epoch number on a TSDU or TPDU indicates which service profile should
be used to interpret the objNum. Section 2.4.5 provides more detail about the epoch

number.

38

Figure2.3

epoch 3
period 7
objNum O

cellNum O

(3,7,0,0) (3,7,0,1) (3,7,0,2)

e

Paris after
dark

epoch 3
period 7
objNum 1
cellNum 2

(3,7,0,123)(3,7,0,124

(3,7,1,0) (3,7,1,1) (3,7,1,2) (3,7,1,24)
* Y
[i]
— __
period 6 period 7
epoch 3
Figure2.4

39

Excerpt illustrating POCv2 sequence numbers

epoch 4
period 8
objNum O
cellNum O

(4,81,0) (481,1)
B e

(4,8,0,0)

Paris after
dark

(482,00 (4821)

epoch 4

Example of epoch, period, objNum, cellNums

2.3 ThePOCv2 stream object abstraction

In POC, each element in the partia order is assumed to represent an
individual message, and corresponds to a single packet on the network. If an
Application Data Unit (ADU) istoo largeto fit into a single packet, it is assumed that
the ADU can be fragmented into multiple objects, and these multiple objects can be
represented separately in the partial order. However, thisisimpractical for asimple
reason: the resulting partial orders would become too large to be effectively managed
by the application, or efficiently processed by the transport protocol. In this section,
we present two examples to illustrate this point, and then explain how the stream

abstraction of POCv2 helpsto address this problem.

2.3.1 Motivation for stream objects

First, we consider asmall exampleto illustrate theidea. Figure 2.5 shows
astoryboard for an excerpt fromthepari s. prsl (see appendix.) while Figures 2.6
and 2.7 show two representations of the partial order for this document. Hereis an

explanation of the excerpt, and the purpose of each of the partial order constraints:
* First, amap of Parisis placed on the screen.

 Thenanaudio clip (labeled “welcome.au” in Figures 2.6 and 2.7)
is played with a narrator saying “Welcome to Paris.”

 Thisisfollowed by an audio clip (“intro.au”) that playsin parale
with three images that are placed overlaying the map. Thisaudio
clip says “Asyou can see on the map, there are many sitesin Paris
to visit, some of which are more popular than others. On this brief
tour, we will see three of the most popular sites.” Next, there are
three additional audio clips played in sequence, describing each of
the three sites.

What makes this document excerpt an ided illustration of partial order isthat

40

» thenarration and the three small images can be presented in
parallel, while at the same time,

» thereisaconstraint that each small image appears completely on
the screen before the site portrayed in the image is described by the
narrator.

Note this crucial detail in the storyboard. While the Louvre Pyramid is being
described, the images of Notre Dame and the Eiffel Tower are not necessarily yet
complete. However, each of the three images is necessarily complete beforeit is
described by the narrator.®

Figures 2.6 and 2.7 show two ways that we might represent this partial
order. Figure 2.6 represents the partial order at the object level, which iswhat the
stream abstraction of POCv2 provides for,. By contrast, Figure 2.7 represents the
partial order at the level of ADUs— that is, at the level of individual packets that
would be transmitted across the network as atomic units, as would be necessary using

POC. Inthe next section, we explain why the POCv2 approach is preferable.

2.3.2 Advantages of representing the PO at a higher level than packets

We claim that the partial order in Figure 2.6 is superior for three reasons.
The first, and most compelling argument is that when the partial order is represented at
the level of TPDUs, the size of the partial order becomes much larger, resulting in
unacceptable processing times. For example, in this rather small multimedia
document, the size of the PO (n = |POJ) grows from n=9 to n=630. For the full

paris. pnmsl document described in the appendix, the PO would grow from n=168 to

SInthefull paris. pnsl document, there are arrows that highlight each location as it
is described and indicate its |ocation on the map; these details are omitted in this
example.

41

n=5113. Sincethe partial order is represented as the adjacency list of atransitively
reduced precedence graph, it is often necessary for the application to compute a
transitive reduction prior to using POCv2.6 The fact that the transitive reduction of a
DAG is of the same order as matrix multiplication (Aho et al., 1972) presents another
important motivation for keeping the a partial order’s size as small as possible. the
best known algorithms for matrix multiplication are strictly harder? than O(n?), and
the algorithm commonly used in practice8 for transitive reduction is O(n®). Thus an
increase from 168 to 5113 potentially represents an increase in the processing time by
afactor of (5113/168)°=28190. The time to compute the transitive reduction and/or
the transitive closure for 168 elements is already between 500 and 1000 ms on alightly
loaded Sun Ultra 10. We can therefore expect that the time to compute this value for a
partial order of size 5113 would be between 4 and 8 hours (8 to 16 if both
computations are done!) Although faster machines would obviously help, and
Moore's Law is still with us, regardiess of the power of any future hardware, the O(n°)
nature of the algorithm will always provide an incentive to keep the size of the partial

order as small as possible.

6 POC uses atransitively closed matrix representation, which presents the same
difficulties—more in fact, since the size of the representation of the partial order is
O(n?) for amatrix, vs. O(n+e€) for an adjacency list, where e isthe number of edgesin
the DAG.

7 O(n(2.36))

8 In practice, rather than apply the detailed reduction from transitive reduction to
Matrix Multiplication, it is more feasible to reduce transitive reduction to transitive
closure, and apply Warshall’s algorithm, yielding a running time of O(n®) (Aho et d.,
1972; Cormen et al., 1990.)

42

Furthermore, consider the representation of the partial order for
transmission over the network. POCv2 uses the adjacency list of the transitively
reduced precedence graph to send the PO over the network. Granted, a graph such as
that portrayed in Figure 2.7 is sparse in terms of edges. Nevertheless, it still has 630
elements; even if it were an antichain, which has the minimum size adjacency list
representation, it would require 630 zeros to represent (indicating the zero length of
each adjacency list).9 The graph in Figure 2.6 has only nine elements; because it is
transitively reduced, it could have at most (n(n-1)/2) = 36 edges, resulting in a
maximum size adjacency list representation of size 9 + 36 = 47; which is more than 13
times smaller.10

Finally, we argue that representing the partial order at the level of ADUs s
amore natural way to represent the partial order for the application. For multimedia
documents, it is more natural to think in terms of entire media objects. Whilethisis
admittedly speculative, we expect that this would be true as well for other hypothetical
applications for partially-ordered transport service. Nevertheless, even if this
speculation turns out to be wrong, the arguments related to the algorithms and
transmission length would provide sufficient motivation to put some effort into

minimizing the PO’ s size.

9 The total size of the service profile for an antichain of 630 elements would be 1262 if
the reliability vector and service profile header were also included.

10 The total size of the service profile for the maximum size PO over 9 elements (a
chain) would be 58 if the reliability vector and service profile were added. Thusthe
total service profile for amaximum size service profile over 9 elementsis actually
over 21 times smaller than a minimum size service profile over 630 elements.

43

| PéumT-pENIs | PéamT-DEnis

La 0

2
& ST/

Welcome to Paris! As you can see on the map,

there are many sites...

On this brief tour, we we will

see three of the most popular sites.

A
" MowTRoUGE

e a
MonTROUGE

We will begin with the then we will move on to

, and finally see the Eiffel Tower.
Louvre pyramid, Notre Dame Catherdral

Figure2.5 Storyboard to motivate POCv2 stream objects

Louvre _siubi? (CTR - i)

NotreDame

Figure 2.6 Partial order with stream objects

€]

LR
272 objects

¢ 4] &
hoan_xitedll s [T P T)
64 objects 72 objects 66 objects
oo oo Y il

22 objects
L]

TP
52 objects NotreDame

‘J, Sl ... |
pkna 23 obje.cts

total: 630 objects

L]
14 (fcts

Eiffel

Figure2.7 Partial order without stream objects

2.3.2 POCv2 stream objects, cells, the streamEnd flag, objNums, and celINums
The stream abstraction in POCv2 provides the means to use the partial
order representation of Figure 2.6, while still getting the semantics of Figure 2.7. For
an application using POCv2, every object in the partial order is considered to be a
stream of cells, each of which is a single packet—more precisely, asingle TSDU and
single TPDU. The Application Level Framing principle states that the application
itself is the best judge of where to segment packets for maximum application
efficiency. Therefore, by this principle, it is the application’s responsibility to
segment an ADU into multiple cells and submit each cell to POCv2 separately.
However, for each Wi t e() , the application indicates to which object in the partial
order the cell belongs, as well asindicating the end of each object. Objects consisting
of asingle packet (cell) are considered just a special case of stream objects, where the

first element in the stream is also the last. POCv2 will then enforce total order

45

delivery over al cellsin the stream of a particular object, but will enforce partial order
delivery among cells from separate objects, according the partial order specified at the
object level.

Two POCv2 parameters are used to provide the stream object abstraction:
these are the streamEnd and currObjNum parameters. The application can get or set
the current value of these parameters at any time. The currObjNum parameter is an
unsigned integer indicating the object number in the partial order of the object to
whichthenext Wi t e() operation will append acell. The streamEnd parameter isa

Boolean value: if true, thenthe next Wi t e() operation ends the object being written.

24 Service profile management in POCv2

This section describes the features added to POCv2 for management of the
service profile, which is the means by which an application using POCv2 specifiesits
particular order and reliability requirements. Section 2.4.1 describes the limitations of
POC in this regard, and motivates the additional service profile management
capabilities of POCv2. Sections 2.4.2 through 2.4.5 provide detail s concerning these
additional capabilities.

24.1 Theneed for service profile negotiation and multiple partial orders

In POC, there was only one partia order governing a connection. To
change the partial order, a new connection had to be established. In addition, with the
exception of RFC1693, in the POC scenarios described or modeled in previous
literature, no service primitives or protocol for negotiating the partial order were
defined. The partial order was assumed to be known by both sender and receiver in

advance.

46

We claim that this limits the usefulness of POC in practical terms. First,
there must be some way for the application to communicate the partia order to both
the sending and receiving transport entities. Second, consider the case of using POC
for multimedia document retrieval: experience with HTTP 1.0 on the World Wide
Web has established that opening a new connection for each document is a bad
practice: the case for so-called persistent connections to a document server is
described in detail in (Mogul, 1995), and has been incorporated into the design of
HTTP 1.1 (RFC2068; Fielding et al., 1998).

Thus, two things are needed beyond what is provided in POC: (1) away
for an application to specify a partial order, and (2) a provision for multiple partial
orders over the lifetime of the connection. In the sections which follow, we describe

how each of theseis provided in POCv2.

24.2 POCv2 service profiles: notation, formal definition, and representation

In this section, we introduce a notation and formal definition for a POCv2
service profile based on the notation for service profilesintroduced in (RFC1693).
We then discuss the problem of representing a service profile in abit string for
communication over the network.

Asshown in Figure 2.8, aPOCv2 service profile isformally defined as a
tuple SP=[h, PO, RV[]where:

. N is a non-negative integer, representing the cardinality of aset E
of objects (elements) to be communicated from sender to receiver,
i.e, n=IE|

 POisapartia order over theset {0, 1, 2.. n-1}. Thispartially
ordered set is mapped one-to-one and onto the set E, and
constitutes the object numbers of the elements of set E.

a7

* RVisalength n reliability vector over the set of reliability classes

n
RC={U,R PR},i.e, RVO{RC} ;

RV=[icy, rcy, rey, ...rep-1Lwhere rcj represents the reliability
class of object i.

n=>5,
1
P = PO = o< >3—>4,
2

RV =R U, U, R RO

Figure2.8 Exampledefinition of a POCv2 service profile

24.3 Representation of the service profile

For purposes of transmission over the network, or storage on adisk file, a
POCv2 service profileis represented as an array of unsigned integers that encode the
reliability vector, and the transitively reduced adjacency list of the partial order. For
example, the partial order and reliability vector shown in Figure 2.8 would have the

following array representationll:

11 The line breaks in the example above are inserted only to assist with human
interpretation; the integers would be stored consecutively in an array.

48

(@ Ne i =N ==
ORRREN
AWWPE

The interpretation of this array is shown in the following diagram:

where;

/ n
re, numSuccrs0 {successor, successor ... successor}

rc, NUMSLCCESSOrs, {SUCCESSOr, SUCCESSOr ... SUCCeSSOr}

rc,.1 numSuccrsn_l {S.,ICCI’, SUCCEeSsOr ... SUCCI’}

¢ isthelength of service profile (the total number of integersin
the encoding, including ¢ itself.)

n isthe number of elements

rcj is thereliability class of element i, where:
0: R reliable
1: U, unreliable

2: PR, partialy reliable

numSuccessors; is count of successors that follow (may be 0)

{successor, successor, ... ,successor} isalist of successors of
element i in the partial order. Thetotal length of thislist should

equal numSuccessors;.

49

24.4 Periodic partial ordersin POC

POCv2 builds on the notion of periodic partial orders that we previously
defined in POC; therefore in this section we review this concept. As explained above,
in POC, only one partial order is permitted per connection. One might therefore be
led to believe that only n=|PO| objects could be sent over a given connection. To
allow for alarger number of objects, POC allows the partial order to be repeated in
periods. Thetop half of Figure 2.9 illustrates thisidea. The figure showsasingle
partial order with 6 objects numbered 0 through 5, that repeats through multiple
periods (the first five periods, numbered O through 4 are shown.) Thus each TSDU
(and hence each TPDU) actually carries two sequence numbers: the object number
(henceforth referred to as the objNum) and the period number.

The semantics of the resulting periodic partial order are as follows:

o foralli<O0,all objectsfrom period p; must be delivered before
any object from period p;+1, and

* within aperiod, all object delivery respects the partial order; that
is, all objects g < g must be delivered before object g

While we focus here on the partial order, in fact the entire service profile

(including the reliability vector) repeats in the same fashion.

50

Periodic partia ordersin POC, with asingle partial order
per connection (Amer et al., 1994, RFC1693)
period 0 1 2 3 4
Q. @ Q @ Q. ® Q. @ Q. @
@ 1 o B o @ o @ G B ees
. .
numbers in circles are object numbers (objNums)
Multiple partial orders per connection in POCv2
d
Pelo% 4 5 6 7 g 9 10 11 12 1314
olo|o|o|o M,M,@
(1] v v (1]
O} NON NO) O N©) 0 9 0 e Pl @[®
y
N AN AN J
epoch v v b —
7 .8 _ 9 10 11
numbers in circles are object numbers (objNums)

Figure2.9 Periodic partial ordersin POC, POCv2

245 Multiple periodsand epochsin POCv2

In POCv2, we extend the concept of periodic partial orders. In POC, each
TSDU/TPDU carries only two sequence numbers (period, objNum). In POCv2, we
add the epoch numbers and the cell number (cellNum). The cel[Num was described
previously in Sections 2.2.8 and 2.3.2. In this section, we describe the use of the
epoch number.

As shown in the bottom half of Figure 2.9, in POCv2, an epoch isaseries
of zero or more consecutive periods that all have the same service profile. For
example, inthe Figure 2.9, epochs 7, 8, 9, 10 and 11, contain 5, 2, 3, 0, and 2 periods,

respectively. The first epoch in a connection is always numbered epoch 0, and by

51

default is defined to have the default POCv2 service profile, which consists of asingle
reliable object per period. The array representation for this default POCv2 service

profile is shown below:

4 1
00

When the connection is first established, this default service profileisin effect for
each side of the connection. For each direction of the full-duplex POCv2 connection,
the sending side manages the service profile. To change the service profile for agiven
direction, the sending application for that direction issues the Set SendSer vPr o()
operation. This operation adds a new epoch to the list of epochs that may be used for
the data flow from service user issuing the Set SendSer vPr o(') operation, to the peer
service user. Thefirst Set SendSer vPro() operation defines the service profile for
epoch 1, the next call defines epoch 2, and so forth.

Each time a new epoch is created in this manner, the service profileis
communicated via POCv2 control TPDUs from the POCv2 sender to the POCv2
receiver. These TPDUs are sent reliably, and retransmitted if necessary. Thus, the
POCv2 transport entities on both sides of the connection eventually learn the service
profile for every epoch defined by the sending application for a given direction of data
flow.

Note that while object numbers start from O with each new period, thisis
not the case for period numbers. That is, period numbers do not start over from O with
each new epoch. A period isbound to a given epoch when the first data TPDU arrives
containing both a period number and an epoch number.

The sender moves from one epoch to another anytime the sequence of

Wite() operationsleavesthe connection at aperiod boundary. The connectionisat

52

a period boundary at connection establishment time, and again at anytime when every
object in the current partial order has been finished. (That is, the last cell in each
object has been written via a Write operation with the streamknd flag set to true, as
described previoudly in Section 2.3.2).

Any time the connection is at a period boundary, the sending application
can perform the | ncr Epoch() operation to increment the epoch. This operation
leaves the connection still at a period boundary, but with a new partial order in effect.

For example, if an application wants to override the default service profile
of ordered/reliable service in effect by default for epoch 0, the application issues the
following sequence of operations: first, aSet SendSer vPro() operation to set the
service profile for epoch 1, thenan | ncr Epoch() operation to move to epoch 1
before thefirst cell iswritten. Similarly, aseries of two | ncr Epoch() operations
withnoW it e() operationsin between skips over an epoch entirely; for example,

thisis how period 10 in Figure 2.9 ended up with zero periods.

2.5 Multimedia synchronization: background material

One of the key proposals of this dissertation is that there are benefits to
integrating coarse-grained synchronization with PO/PR transport service. Thus, some
brief background information concerning multimedia synchronization will be helpful.
First, we distinguish between coarse and fine-grained synchronization. Second, we
provide a brief synopsis of Pérez-Lugue and Little's Temporal Reference Framework
for Multimedia Synchronization (Pérez-Luque and Little, 1995), which provides a
unified theoretical foundation for various methods of specifying temporal scenarios.
Finally, we focus on one such method: namely, the Object Composition Petri Net

(OCPN) of Little and Ghafoor (Little and Ghafoor, 1990). OCPN is of particular

53

interest, because it provided the initial motivation for applying the Partial Order

transport concept to multimedia applications (see Amer et a., 1994).

251 Coarse-grained vs. fine-grained synchronization

Discussions of multimedia synchronization often distinguish between two
levels of synchronization: coarse-grained synchronization and fine-grained

synchronization (Wynblatt, 1995; Schnepf et al., 1995.)

Coarse-grained synchronization (also called temporal alignment) refers to
synchronizing the start and end of objects with respect to one another. For example,
consider adocument describing atravelogue of Paris (pari s. pnsl in the appendix),
containing (among other things) a map of the city, pictures of several attractions, and
audio describing these attractions. The requirement that the map be on the screen
before the audio begins would be an example of a coarse-grained synchronization
regquirement. Other examples might be the requirement the pictures of the attractions
appear at some point during the audio description, and/or that arrows pointing to

specific attractions occur at specific points during the audio description.

Coarse-grained synchronization can be distinguished from fine-grained
synchronization (also called stream synchronization) which refers to keeping parallel
streams synchronized with one other (asin lip-sync, for example) (Wynblatt, 1995;
Schnepf et al., 1995.) Fine-grained synchronization would come into play in our Paris
document if there were a so-called talking head—that is, a video of a human
announcer describing the Paris attractions. In terms of transport layer design, and the

design of transport/application layer interactions, fine-grained synchronization is of

little interest, because there is precious little that the transport layer can do to assist.
Fine-grained synchronization mostly pertains to issues of operating system scheduling
of threads that control the video and audio hardware on the end system. From the
networking perspective, the best we can do is to ensure that the video data and audio
datathat need to be presented simultaneously should be encapsulated in the same
TPDU. Indeed, even when audio and video data are coming from alocal disk,
synchronized audio and video are generally treated as a single interleaved data stream
(Szabo and Wallace, 1991). This approach is used, for example in MPEG-1 (Le Gall,
1991).

On the other hand, where coarse-grained synchronization is concerned,
networking issues—particularly, transport layer issues—definitely come into play.
Indeed, one of the key proposals of this dissertation is that there are benefits to
integrating coarse-grained synchronization with PO/PR transport service. Thus, some

brief background information concerning coarse-grained synchronization is warranted.

25.2 Temporal scenariosfor coarse-grained multimedia synchronization
(Pérez-Luqgue and Little, 1995) provides a survey and taxonomy of various methods of
specifying and enforcing temporal scenarios for coarse-grained synchronization. One
crucia distinction is between determinate and indeter minate scenarios. Determinate
scenarios are those in which events occur at specific times, such as “ 35 seconds after
the beginning of the document”, or “06/11/99 at 03:45:17 hoursUTC.” These
scenarios have the advantage of simplicity, are most useful for situations where there
islittle to no probability that an object will be unavailable at its scheduled time of
presentation. However, they do not allow for variations introduced by human

interaction with the document, nor do they allow for variation in network QoS.

55

More useful for a networked application are schemes for specifying
indeterminate scenarios. In these schemes, instead of specifying specific times at
which events occur, relationships among various events are expressed, allowing for
possibly many different realizations of the event timeline, any of which would be
acceptable to the document author.

Another distinction is made between the unit of expressing time in the

temporal scenario. There are three possibilities:

» dates, which are specific determinate pointsin time, such as
00:35.14 seconds,

* instants, which are indeterminate pointsin time, such as “the
instant that the audio starts playing”, and

e intervals, which are sets of instants lying between an start and end
instant, such as “the interval during which the audio is playing’

Finally, (Pérez-Luque and Little, 1994) distinguishes between quantitative
and qualitative specifications. Quantitative information is “temporal information that
can be expressed in time units (e.g., t1 = 6PM, or the length of the interval [a, b] is3
hours.)”. Qualitative information, on the other hand is “temporal information that is
not quantifiable”, such astotal and partial orderings of instants and/or intervals. For
example, given any two instants or dates a and b, one of three relationships holds:
either aoccurs before b, after b, or at-the-same-time-asb. Of particular interest for
this dissertation are the thirteen possible binary temporal relationships between

intervals.12 Figure 2.10 illustrates seven of the thirteen relations; the other six are the

12 Most authors credit (Hamblin, 1971) asthe first reference for the thirteen binary
relationships between time intervals. Asthis paper may not be widely available, some
more useful references on this topic may be (Allen, 1983) and (Little and Ghafoor,
1990).

56

inverses of the seven shown (e.g., before™, meets™, etc.), with the exception of the
equalsrelation, which hasno inverse. Theseintervals are often used as abasis for
proving that a given temporal specification scheme has sufficient power to represent
all possible relationships among atomic processes, for example, see (Little and

Ghafoor, 1990; Hoepner 1991).

2.5.3 Object Composition Petri Nets (OCPN)

With these definitions, Pérez-Luqgue and Little then categorize several
important multimedia systems from the research literature according to this taxonomy.
One system of particular interest is the Object Composition Petri Net (OCPN) (Little
and Ghafoor, 1990). OCPN is a scheme for multimedia synchronization based on
Timed Petri Nets. In this dissertation, OCPN serves as the basis for characterizing
both the power and limitations of the explicit release synchronization feature of
POCv2, therefore this section summarizes the key definitions, notations and
properties of the OCPN model necessary for that purpose.

Figure 2.11 illustrates the idea of OCPN, using a dlide presentation as an
example. A basicl3 Petri net N=(T, P, A) consists of a set of transitions (indicated by
vertical bars), a set of places (illustrated by circles), and a set of directed arcs. Inthe
OCPN, each place in P represents a media object to be presented, such an audio clip,

or adtill image. Inan OCPN: C= (T, P, A, D, R, M):

. T, P and A are defined as in the basic Petri net.

13 A more common formulation of the basic Petri Net is C=(P,T,I,0), where Pisthe
set of places, T isthe set of transitions, and | and O represent functions mapping
transitions to sets of input and output places respectively (Peterson, 1977). We instead
follow the lead of (Little and Ghafoor, 1990) and use the N=(T,P,A) formulation found
in (Agerwala, 1979).

57

* D mapseach place to aduration (e.g., the time it takes to present a
certain object)

* R maps each place to aresource (e.g., the hardware resource
needed to present the media, such as the speaker, or certain portion
of the display),

e M indicates amarking of tokens (dots) to each place.
OCPNs are composed using subnet replacement based on Petri nets representing
Hamblin's thirteen binary relations between intervals (shown in the right half of Figure
2.10). A key consequence of this construction is that each place in an OCPN has
exactly one incoming and one outgoing arc—a property we will make use of in
Section 2.5.4.

As an exampleto illustrate the connection between the OCPN and
multimedia documents, Figure 2.11 shows a document where a series of slides (still
images) is presented in parallel with a series of audio clips. After each slide, apoint is
reached when the audio and image must be synchronized before moving on to the next
dlide. Inan OCPN, thisis modeled by the following sequence of events. Initialy the
first transition isfired to start the presentation. The transition rules are then

summarized in (Little and Ghafoor, 1990) as follows:

“(1) A transition firesimmediately when each of itsinput places [the
places from which an incoming arc is directed to the transition]
contains an unlocked token.

(2) Upon firing, the transition ... removes a token from each of its
input places, and adds a token to each of its output places [that
is, each place to which there is an outgoing arc from the
transition.]

(3) Upon receiving atoken, a place remainsin the active state for the
interval specified by the duration t; [determined by the duration
mapping D: P- [J]. During thistime, the token islocked. [and
the media object is playing]. When the place becomes inactive

58

[i.e, the object isfinished playing], or on the expiration of the
duration Tj, the token becomes unlocked.” 14

Thus, the notion of locking and unlocking of the token based on object durationsis key
to the OCPN model of synchronization. We will revisit this locking/unlocking idea
when we discuss the benefits and limitations of integrating a PO/PR transport service
with coarse-grained multimedia synchronization via POCv2, UTL and ReMDoR.

(Little and Ghafoor, 1990) includes the result that an arbitrarily complex
process model composed of Hamblin's thirteen temporal relations can be constructed
with OCPNs by choosing pairwise, temporal relationships between process entities.
Theright half of Figure 2.10 captures the main idea of this proof, asit illustrates the
OCPN constructions that are used to model each of Hamblin’sintervals. OCPNs are
thus shown to be a powerful tool for specifying temporal scenarios for multimedia
synchronization. (In Section 2.6.4, we show how this result can be extended to
explicit release synchronization in POCv2 under the ideal conditions of a perfect
channel. We then describe the impact of network delays on explicit release -
synchronization.)

On the other hand, OCPNSs have limitations. (Pérez-Luque and Little,
1995) explains that OCPN cannot express indeterminate temporal scenarios, in spite of
the fact that OCPNs are based on qualitative, rather than quantitative, relationships
between intervals. Thislimitation is a consequence of the fact that the locking and

unlocking of tokensis based on fixed (i.e., deterministic) object durations. (Little and

14 For completeness, we note that while placei is active, the place makes uses of the
resource specified by the resource mapping R: P { resource;, resourcey, ...,
resourceg}. However thisis not an issue we will address further in this dissertation.

59

Ghafoor, 1990) acknowledges that OCPNs cannot capture user interaction, or VCR-

like-features such as rewind.

2.54 Extended OCPN (XOCPN)

Later work by (Woo et a., 1994) on the Extended OCPN (XOCPN)
describes atechnique for sending OCPN data over an ATM network. The authors
describe how the durationsin an XOCPN can be used to back-cal cul ate the necessary
sending times to ensure timely delivery of document objects. The goal isto have
objects that are to be presented at the same instant arrive at the destination host at the
same instant. However, Woo et al.’swork addresses a fundamentally different
problem from that addressed in the current dissertation: Woo et al. assumes a high-
bandwidth, low loss ATM network with QoS guarantees at the network level, and asks
how one can best make use of this network. By contrast, in this dissertation, we are
interested in providing the best service possible when the network provides no QoS
guarantees whatsoever, or where we have to make do even when the network layer
“breaksits promises’. Thuswe now turn to adiscussion of the first innovation
introduced in this chapter: the integration of multimedia synchronization with PO/PR

transport service.

60

a before b a b b

ameetsb a b %@—>

a overlaps b - @
TR o
(o)

a during b —>

astartsb

4

a finishes b —> @
b (po)
a
aequalsh . \@/I—»

!

Figure2.10 Hamblin’stemporal relations (left); corresponding
Petri netsfrom OCPN (right) (Little and Ghafoor, 1990)

slideimage slide image slideimage slide image slide image
SRR I@
@y T ey ey @j
audio audio audio audio audio

Figure2.11 Example OCPN for dlide presentation
adapted from (Little and Ghafoor, 1990)

61

2.6 Transport layer support for multimedia synchronization in POCv2

POCv2 provides support for coarse-grained synchronization via a feature
called explicit release. In this section, we outline the operations of this feature, and
the advantages and disadvantages of implementing coarse-grained object

synchronization in this manner.

whil e (not end of docunent)

{
read data fromthe transport |ayer
di splay that data

}

Figure2.12 Pseudocodefor a“read and display” loop

o O

ekt ..k — i

Figure2.13 Example: two element partial order

26.1 Motivation

To motivate the need for coarse-grained synchronization, consider what
would happen if we ignored synchronization concerns atogether. For example,
consider a naive multimedia application that simply uses a“read and display” loop,
with pseudocode as shown in Figure 2.12. Now suppose that our document contains
an image that is to appear immediately following the completion of an audio clip.

Thus, the image immediately follows the audio clip in the partial order as represented

62

by the graph in Figure 2.13. Further, assume that the audio clip consists of several
packets (alikely assumption, since every second of audio typically requires 8000 bytes
at normal encoding rates.) As soon as each packet arrives, the application will end up
writing each packet to the audio device for playback.

It turns out that most audio devices keep a playout buffer to store packets
in the event that they arrive faster than the playout rate. If thereisabacklogin the
audio output buffer, then when the last byte of audio iswritten to the device, it may yet
be several seconds before the audio datais finished playing.

Without a synchronization mechanism, the image becomes deliverable
immediately upon delivery of the audio clip. The receiving application may then read
the image and present it before the playback of the audio is complete, in spite of the
fact that the image was intended to follow the audio clip in the presentation order.
Note that the application cannot simply wait until the audio clip is complete to read the
next object from the transport layer, since the next object might be something that is to
be presented in parallel with the audio clip.

Thus, unless the client application is aware of the partial order and
implements its own functionality to preserve synchronization relationships, such
relationships may be violated. The client cannot simply read objects from the
transport layer and display them as they become available. Presenting the image as
soon asit is deliverable may result in its being placed on the screen before the audio is
finished, thus violating the temporal scenario specified by the document author.

Therefore, we can see that some form of synchronization mechanismis
needed. The question then becomes: “where should this synchronization be

implemented, and how?’ As atransport layer designer, the first clear answer seemsto

63

be: “Put this functionality into the application. The transport layer’sjob isto just get
data to the application as soon as possible, and then let the application work out any

synchronization concerns.” Indeed, early work on POC was very clear on this point:
“It is assumed that synchronization concerns in presenting the object after delivery is
[sic.] aservice provided on top of the proposed partial order service.” (Amer

etal., 1994).

However, the suggestion to disregard synchronization at the transport layer
misses an opportunity that becomes clear when one considers the actions that a partial
order protocol takesto ensure that object delivery respects the partial order. It turns
out that a minor modification of the transport service API can provide helpful support

for multimedia synchronization.

2.6.2 Coarse-grained synchronization via explicit release

The explicit release feature of POCv2 involves a small change to the
semantics of partial order delivery. Under normal partial order delivery rules, an
object is considered deliverable when all of its predecessors have been delivered. By
contrast, when explicit release is used, the rule is that an object is deliverable when all
of its predecessor objects have been delivered, and completely displayed by the
application.

To make this change in semantics, all that is necessary isto provide the
application away to explicitly signal the transport layer each time the processing of a
delivered object is completed, thereby releasing the successors of the delivered object.
The POCv2 service primitive Rel easeSuccessor s() isused for this purpose. If the
application chooses to enable explicit releases for a given connection, then for each

object that the application reads from the transport layer, the application has the

responsibility to perform aRel easeSuccessor s() operation when all the cells for
that object have been processed.

In the case of the previous example of an audio clip followed by an image
(Figure 2.13), the client simply waits until the audio clip isfinished to explicitly signal
the release of the audio clip's successors in the partial order. Thus, the application can
be assured that the transport layer will not deliver these successors until the time that
they should be presented. Section 2.6.3 provides a more formal definition of an
explicit release mechanism, while Section 2.6.4 compares its power to other temporal
scenarios.

Being ableto rely on the explicit release feature for coarse-grained object
synchronization removes this burden from the application programmer. The code for a
multimedia client can be made simpler if the client can rely on the transport layer to
provide basic synchronization support. The exchange of the partial order between
sender and recelver happens entirely within the transport layer.

The remarkable consequence is that a multimedia document retrieval
client using POCv2 can present a document in compliance with a given temporal
scenario for synchronization without ever having to process that specification at all.
Instead, the server simply reads the partial order as part of the document specification,
and requests that the transport layer use it for object delivery. The client's only

responsibility isto signal explicit release when the playback of each object is complete

2.6.3 Formal definition of explicit release synchronization
Our formal definition of explicit release synchronization begins with an
outline of our basic assumptions. These assumptions are expressed in terms that

generalize the problem beyond multimedia synchronization, to any computation where

65

synchronization is necessary, while parenthetically noting the connection to

multimedia documents.

Basic assumptions:

* Afinite set E consists of objects that are to be transmitted from
sender to receiver. (E may represent a set of multimedia objects,
e.g., each element of E may be aaudio clip, agraphic image, an
explicit pause, or an interaction point).

* Associated with each object is some finite amount of processing
time, possibly zero15. The processing time may be known a priori,
or may be indeterminate (e.g., in the case of an interaction point in
a multimedia document.)

» For simplicity, we assume that all other processing time at the
application is negligible, and that each object has a dedicated
processor.16 Asaresult, the application is always ready to receive
objects that the transport layer is ready to deliver, and the
processing of each object startsimmediately upon delivery of the
object.

* Thereceiving application requires that the processing of each
object takes place in specific synchronization relationships with
the processing of other objects. The required relationships may be
expressed as determinate binary temporal intervals between objects
in the manner of (Hamblin, 1971), or as indeterminate binary
temporal intervals, asin (Pérez-Lugue and Little, 1996) (See
Section 2.4.2, Figure 2.10)

Notation and Definitions. For object g

* del(i) istheinstant of delivery of g by the POCv2 entity

15 Zero indicates negligible processing time. In reality, all objects have some non-zero
processing time.

16 This assumption is not altogether unredistic if one considers that the most

significant processing of audio and video (the actual real-time playout or display) is
often performed by dedicated hardware devices.

66

rel(i) isthe instant of the Rel easeSuccessor s() operation on
object g

The activeinterval of g isthetimeinterval [del(i),rel(i)].

Formal Definition of Explicit Release Synchronization:

A partial order PO is defined over the set of objects E

Associated with each object g in E is acounter ¢;, which counts
the number of unreleased predecessors of object g . Thevalueis
initialized thus: ¢; — [{g: g coverse}|. (That is, ¢ isinitialized to
the number of immediate predecessors of g, or equivalently, the
in-degree of g in the transitively reduced DAG corresponding to
the PO.)

For each g in E, the delivery instant del(g) isthe earliest time at
which both the following are true: (1) ¢; equals zero, and (2) g is
available at the POCv2 receiver (i.e., e has been successfully
transmitted across the network).

The application performs the Rel easeSuccessor s() operation
at the conclusion of the processing time for each object e.

The Rel easeSuccessor s() operation is defined as follows:
foreach (g: g coversg) do

decrement c;;

In the next section, we use this formal definition to compare explicit release

synchronization with Little and Ghafoor’s OCPN.

67

2.6.4 Comparison of explicit release synchronization with OCPN

First we show that under the assumption of a perfect channel, explicit
rel ease has as much expressive power as OCPN—that is, for any temporal scenario
expressed in OCPN, there exists an equivalent scenario using explicit release. We
show this result by following the outline of the proofs from (Little and Ghafoor, 1990)

that illustrate the expressive power of the OCPN.

Theorem 2.1 Under the assumption of a perfect channel (no loss, sufficiently small
delay that no object arrives later than the time it is needed), an arbitrarily
complex process model composed of temporal relations can be
constructed with an explicit release temporal scenario.

Our Theorem 2.1 is patterned after Theorem 2 of (Little and Ghafoor, 1990), which
shows the same result for OCPN instead of explicit release. Our proof piggybacks off
theirs: wefirst prove alemmathat under the perfect channel assumption, we can go
from an OCPN to an equivalent explicit release temporal scenario. An abbreviated
version of thislemmawas given in (Conrad et al., 1996), however thisisthe first
publication of the full proof. We can then use the Theorem 2 result from (Little and
Ghafoor, 1990) and the proof of Theorem 2.1 isimmediate. Later, we explore what

happens when the perfect channel assumption is relaxed.

Lemma2.2: Givenatempora scenario for aset of multimedia elements E expressed
by an OCPN C=(T,P,A,D,R,M), we can construct a temporal scenario
using explicit release that will provide equivaent semantics, assuming a
perfect channel (no loss, and sufficiently small delay that no object arrives
at the receiver later than the time it is needed in the temporal scenario.)

Proof: We prove Lemma 2.2 by first providing an agorithm to construct the

POCv2 service profile that is equivalent to the OCPN, then explaining
why the two are equivalent.

68

Notation: Since P, the set of placesin the OCPN, maps one-to-one and
onto the set E of multimedia documents elements, we will use the
notation: g [E to indicate the element corresponding to place p; O P.

1) Define a service profile SP=[h, PO, L[by defining
* n=|E|, or equivaently, n=|P|
* POisapartia order over the objectsin E, (for example,
representing the elements of the multimedia document), initially an
anti-chain.
» Lisarbitrary reliability vector (the reliability class of objects does
not matter given the perfect channel assumption)

2) Add additional pairs (g < &) to the partial order as follows:
for each placet; [0 T do
for each arc (p; ,ti)) Ado
for each arc (t;, px) J Ado
{
add g < e to PO

}

This construction results in modeling each transition with a set of partial
order constraints we informally call a*“shoelace” for reasons that should
be clear from Figure 2.14.

To demonstrate that the explicit release scenario is equivalent to the
OCPN scenario, it now suffices to show that interval during which each
place pi O P isactive in the OCPN corresponds exactly to the active
interval of each g in the resulting explicit release scenario.

In the OCPN, the active interval of any place p; can be defined as
[f(t),f(ti+Ti))], where f(t;) represents the firing time of the transition t; that
preceeds p; .(Recall that in an OCPN each place has only asingle
incoming arc, thus t; is unique, and that 1; represents the duration of the
process modeled by p;).

In the corresponding service profile, each transition is modeled by a

shoelace of constraints. The active interval of theelement g is
[del(e), del(e + T1;)]. Since a perfect channel is assumed, del(g) occurs at

69

the instant when the number of unreleased predecessors ¢; becomes zero.
But, by virtue of the construction in step 2, ¢; represents at all times the
number of places with incoming arcsto transition t; that have not yet
provided an unlocked token enabling transition t; to fire. Thus ¢; will
become zero precisely at the instant that transition t; fires.

Therefore, since f(tj) =del(e), we have:
the active interval of p; [f(t;), f(t+T))]
[del(e), del(e+T)]
= theactiveinterval of g
and the equivalence of the temporal scenarios is demonstrated. [

So given a perfect network we can model all of the determinate temporal scenarios
modeled by the OCPN. The situation is different if network delays due to propagation,
gueuing, insufficient bandwidth, or the necessity of retransmission cause one object in
abinary relation to be arbitrarily delayed. Using the framework of (Perez-Luque and
Little, 1996), we can characterize the effect of network delays as a replacement of a
basic binary relation with an indefinite binary relation.1’ Figure 2.15 shows that only
the before and before™ relations can be precisely preserved. The meets and meets™
relations are approximated by the indeterminate rel ations (meets-or-before) and
(meets™-or-before™). The rest devolve into disjunctions of relations so long asthey in
essence constitute no temporal constraint at all: these relations exclude only the basic
relations that would be prohibited by inconsistent durations (for example, equals can
never become starts.) It should be noted that OCPN fares no better at modeling

temporal relations when burdened with unpredictable network delays.

17 The set of indefinite binary relations is defined in (Perez-Luque and Little 1996) as
the set of all possible digunctions of the determinate binary relations; for example,
“meets-or —before, “equals-or-finishes-or-during”. Thus, there are 2'2 indefinite
binary relations on temporal intervals.

70

Thus, when loss is introduced, explicit release can preserve (or
approximate) only the meets and before relations, and their inverses. While perhaps
disappointing, this result should not come as too much of a surprise; after all, the

meets and befor e relations constitute the essence of partial order delivery semantics.

Futurework: two-color Petri net delivery semantics.

To extend the range of the explicit release approach, we propose as future
work, the investigation of amodified two-color Petri net delivery semantics that
would supplement partial order delivery. We propose a modified form of Petri net
where there are two colors of tokens, say red and green. Red tokens function precisely
asin OCPN, and green tokens represent the arrival of PDUs on the network. For a
transition to fire, it is be necessary not only for each of the places with incoming arcs
to contain an unlocked red token, but it is also necessary for each place connected to
the transition by outgoing arcs to contain a green token. We expect that such a
semantics would allow the preservation of temporal relations such as starts, which is
not possible in the current explicit release semantics except in a perfect network. On
the other hand, such an extension to PO/PR service would constitute a major shift; for
example, it is unclear how the POCv2 stream abstraction would integrate with such a

semantics of delivery.

71

Transition in original OCPN...

...modeled as “shoelace” of constraints in corresponding partial order

oo @
e @4 @
- "

Figure2.14 Exampletransformation from Lemma 2.1

72

These definite temporal relations: become these indefinite temporal relations
when network delays are introduced:

a before b a 5 b a beforeb

ameetsh a b a meets-or-before b

a before-or-before1-or-meets-or-meets?-or-
overlaps-or-overlapst-or-during-or-

b during®-or-starts-or-starts®-or -

— ¥ finishes-or- finishes1-or-equals b

aoverlapsh

a starts-or-finishes-or-overlaps-or-
aduring b overlaps?-or-before-or-beforel-
b or-meets b

a starts-or-finishes-or-overlaps-or-
during-or-before-or-before1-or-
astartsh meets-or-meets?! b

a a starts-or-finishes-or-overlaps-or-
afinishesb during-or-before-or-before1-or-meets-
b or-meetsth

a a equals-or-before-or-before1-
aegualsh or-meets-or-meets?-or-
b overlaps-or-overlaps?® b

Figure2.15 Indefiniteintervalsasaresult of network delays

2.6.5 Objectionsto explicit release (and, motivation of data preview)

There is an objection to the explicit release feature. Consider again the
example of a multimedia document in Figure 2.13 in which an image immediately
follows an audio clip in the partial order. If the transport layer does not make data for
successor objects available until after their predecessors are finished playing, the
application may miss an opportunity to do some presentation layer processing on these
objects. Here, werefer to presentation layer processing in the broadest sense, as any
processing that is necessary to decode the transfer syntax of the APDUS, including, for
example, decompression, parsing of acommand, or decoding of image or audio data.

The ALF principle suggests that presentation layer processing is likely to be a

73

bottleneck for such applications, thus anything that causes this processing to starve for
dataisto be avoided. (Clark and Tennenhouse, 1990)

How is this problem to be addressed? Most ALF-inspired work suggests
that the transport layer simply provide only unordered service, and put al the burden
of proper packet sequencing and/or synchronization on the application. In this
dissertation, the author proposes a different approach that tries to provide the best of
both worlds. We call this feature the data preview, or buffer access feature. With this
feature, the transport layer still provides ordering (and with explicit release,
synchronization) services. That is, it enforces the required delivery order. However, it
also allows the application to do presentation layer processing out-of-order if and

when idle time exists.

2.7 Datapreview (buffer access) for support of integrated layer processing
One of the key architectural principles set forth in (Clark and
Tennenhouse, 1990) is the notion that inessential sequencing constraints on protocol
operations should be eliminated or at least reduced. For example, if it ismore
efficient to perform a particular data format conversion (a presentation layer function)
before resequencing out-of -order messages (a transport layer function), the architecture
should not create barriers that make this awkward. The traditiona layered
architecture does not permit such a resequencing of protocol operations: data cannot
reach the presentation layer unless that transport layer completely relinquishes any
ability to further process that data. What is desirable is a means by which
resequencing can be done by the transport layer, and data format conversion can be
done by the presentation layer, and these two functions can be done in either order.

That is, depending on what is most convenient at a particular moment, the transport

74

and application entities can do either resequencing first, and presentation layer
conversion second, or presentation layer conversion first, and resequencing second.

(Clark and Tennenhouse, 1990) introduce the term Integrated Layer
Processing (ILP) to describe architectures that eliminate or reduce inessential
seguencing constraints on protocol operations in multiple layers. Most approaches to
ILP focus on integrating operations on afine-grained level: for example, combining
the checksum and data copy functions into a single loop so as to avoid touching each
byte of data more than once. To distinguish thislow-level approach from the
approach which we introduce in this dissertation, we suggest the term fine-grained
ILP. Fine-grained ILP operates at the level of bytes and instructions to perform as
many operations as possible while each byte of dataisin main memory. Fine-grained
ILP has been studied, for example, in (Braun and Diot, 1995).

By contrast, we focus on away to provide ILP at amessage level. We call
this coarse-grained ILP because it focuses on eliminating or reducing inessential
ordering constraints among operations on entire messages. In particular, we propose a
feature called data preview!8 to provide application, presentation and session layer
functions to access and operate on messages that may still be buffered in the transport
layer due to delivery order constraints.

Theidea of data preview is simple; data preview provides the application
layer access to datathat is buffered in the transport layer due to delivery order
requirements. Without a data preview feature, all processing on incoming ADUs

must take place after data has crossed the transport service access point (TSAP)

18 Programmers Note: Inside the UTL source code (in comments and variables names),
the data preview function goes by the name buffer access.

75

boundary. In thissituation, for an application is to take advantage of the benefits of
out-of -sequence processing for presentation layer conversions, it must use an
unordered transport service. Thisthen impliesthat if there is any sequencing
requirement in the subsequent processing of data—for example, ordering audio frames
or video frames for playback, or providing a partial ordering or coarse-grained
synchronization of document elements—such processing must necessarily be
implemented in the application layer for each application, because after data delivery,
the transport layer is unable to assist.

By contrast, with data preview, the application architect can consider two
kinds of operations on data: (1) those that can take place on ADUs independent of
sequencing (e.g., presentation layer conversions), and (2) those for which atotal or
partial processing order must be respected. Then, each time the application has time
to process incoming data, it can ask the transport layer two questions instead of one.
In the old architecture, the application simply asks: “ Are there messages ready for
delivery?’. If the answer is“yes’, the application can ask for delivery of these
message(s) by issuing Read() requests. With data preview, the application may
also ask: “ Are there any messages buffered that have not yet been previewed?’ If the
answer to this second question is“yes’, the application can request preview of these
messages by issuing Pr evi ew() requests.

A preview request provides a pointer to the data, and the length of the data
at that pointer. It isunderstood that the application is not allowed to modify any data
outside thisregion. If the transport serviceis provided by the kernel, it isfeasible that
virtual memory mechanisms might be used to enforce thisrestriction. However, for

the convenience of the application, asingle read/write (voi d *) pointer value

76

(initialized to null) is also associated with the message. This value, called the
application data pointer (appDat aPt r) alows the application to associate some data
with the ADU prior to delivery, and can be used in any way that the application
designer seesfit. The transport layer does nothing with the value other than initializing
it to NULL, and providing the application layer access to set and get its value. Some

suggested uses for this pointer are as follows:

* TheappDat aPt r can be used as a pointer to an object or structure
containing converted data for a presentation layer conversion
where the local syntax consumes more space than is available
inside the ADUs data area (i.e., the transfer syntax). The
application may allocate an object or structure that will contain the
converted data, and set the appDat aPt r to point to this new
object or structure. When the datais ultimately delivered, the
application can check this pointer; if theappDat aPt r isSNULL,
the application knows that the presentation layer conversion has
not yet been done. If theappDat aPt r isnon-NULL, the
application knows that the conversion has already been done, and
the converted datais available.

* TheappDat aPt r can betreated as a Boolean flag indicating
whether presentation layer conversion has been done or not. For
example, for a presentation layer conversion that can be donein
place (e.g., converting from big-endian to little-endian byte order),
the value NULL can represent false, i.e., the presentation layer
conversion has not been done, and the ADU isin network byte
order, and 1 can represent true, i.e., the presentation layer
conversion has been done and the ADU isin host byte order.

Data preview was incorporated into the design and architecture of UTL;
but has not been fully implemented or evaluated; a complete evaluation of data

preview is asubject for future work.

77

2.8 Thereationship between partial order and partial reliability

The research on POC has been quite varied in terms of the relationship
between partial order and partial reliability. In this section, we trace the history of this
relationship in the research on POC, showing that the trend has been towards a
separation of the partial order and partial reliability features. We then describe one
innovation that actually proposes to move towards a tighter integration of the two—
indeed, an integration between order, reliability and synchronization: namely the PR
reliability class. Thisreliability classis designed to use the partial order and
synchronization information to detect and take advantage of opportunities for extra

retransmissions that would not ordinarily be feasible.

2.8.1 Previouswork

Early papers such as (Amer et al., 1994) and (RFC1693) treat partial order and partial
reliability as two equally important aspects of a single unified protocol, while still
maintaining a separation between the semantics. That is, while partial order and
partial reliability are considered together in nearly all discussions of POC,
determination of whether or note a packet was to be declared lost was entirely
orthogonal to considerations of delivery order. Inthe early designs and specifications
of POC (for example, in the Estelle specification included in (Amer et al., 1994), the
determination as to whether or not a packet should be declared |ost was made by the
application. The application provided the transport layer with a callback predicate
function, i sObj ect Sti | | Usef ul (). Thetransport layer would simply call this
function any time it needed to make a determination as to whether to persist in trying

to recover from the loss of a certain packet.

78

In later stages of the project, the trend has been to separate partial order
from partial reliability. For example the anaytic and simulation work of Maradli
considers them separately, looking first at PO/R service, and then at U/PR service.
Treatment of partial order and partial reliability in combination was deferred by
Maradli to future work. At the earliest stages of implementation for POCv2, partial
order and partial reliability were split into an upper ordering sublayer, and a lower
reliability sublayer. Astime progressed, the split become larger as the usefulness of an
unordered reliable and unordered/partial reliable service become more apparent—
particularly for the NETCICATS work.

The architecture that has emerged, with a clear split between the partial
order and partial reliability functions, has certain advantages and certain disadvantages
both from a protocol and an implementation perspective. However, we will defer a
further discussion of those issues to Chapter 3, in the context of discussing the design
and implementation of UTL. Instead, we turn now to adiscussion of the PR reliability

class.

2.8.2 ThePR rédiability class

POC introduced the notion of reliability classes. Thereliability classesR
for reliable objects and U for unreliable objects are motivated by the fact that some
objects are absolutely essential to document content, while others are nice to have but
strictly unnecessary. (Amer et al., 1994) proposes that thereis athird useful reliability
class, called PR, for objects that have usefulness during some period of time, but
which later become useless. The example givenin (Amer et al., 1994) is a caption or
subtitle on amovie, where the caption is useful during the scene with which it

corresponds, but after the dialogue has moved on, the caption becomes useless;

79

presenting it late would only be distracting, and it is not important enough to halt the
progress of the document. The concept of the PR reliability classis that the transport
layer will try to retransmit PR objects for some limited period of time, and then will
declare themlost.

POCV2 retains the notion of the PR reliability class. However, on three

crucia design decisions, POCv2 diverges from POC. These design decisions are:

* What component in the architecture makes the determination that
an object should be declared lost?

* How isthe determination made?

* Whenitismade?
In the case of POC, the answers to these questions are as follows. The POC receiver
polls the application receiver (on the basis of atimer) to inquire about the status of
each outstanding object in the partia order. The application makes a callback function
i sCbj ect Still Useful (obj ect Num availableto thetransport layer. Each time
thisfunction is called, the application must make a determination as to whether the
given object is still useful, or whether it should inform the transport layer to give up on
this object.

For POCv2, we propose an entirely different way of making this
determination. We base our proposal on the following observations.

First, reviewing the usefulness of every outstanding object in the partial
order iswasteful. The only objects that should be considered as candidates for being
declared lost are those objects which, if they were declared lost, would allow for the
earlier delivery of some other object. The transport layer has enough information to

determine which objects these are.

80

For example, consider the example partial order from Figure 2.16. For
sake of argument, assume that all objects are in the PR reliability class. The figure
shows that at some point in the connection, objects 0,1 and 3 have been received, but
object 2 has not been—presumably, it was lost, and will have to be retransmitted. At
this point, it is reasonable to consider declaring 2 lost. However, it would be pointless
to consider the “losability” of objects4 and 5. Since these objects cannot be delivered
until after object 3 isdelivered, there is no reason to consider declaring 4 or 5 lost until
object 3 has been delivered. Furthermore, even then there is no reason to consider
declaring 4 or 5 lost unless and until some later object in the partia order (say, object
6) arrives at the receiver. Then, and only then, would it be helpful in some way to
consider sacrificing the delivery of 4 and/or 5 for the sake of earlier delivery of
object 6.

Second, even if the transport layer were to make a determination as to
which objects are reasonabl e candidates for review of their losability, and call the
i sCbj ectStill Useful () function on these objects only, it is unreasonable to
declare an object (say, object 2 in Figure 2.16) lost until the moment that the
application actually requests some dataviaaRead() operation. Note that the
application may not be in a constant state of consuming data. The structure of many
applicationsisto read some data from the transport layer, and then perform some
processing on that data before requesting additional data. During that time, additional
objects may show up at the transport layer. Declaring them lost prematurely would be
counterproductive.

Thus, rather than periodically reviewing the usefulness of every

outstanding PR object, POCv2 instead provides the following semantics for PR

81

delivery. Note that while the reliability classes are defined at the object level, the

operation of declaring datalost occurs at the cell level in POCv2:

Definition of PR reliability in POCv2

A POCv2 PR cell is declared lost when and only when all three of the
following conditions become true:

(1) nodatais currently deliverable without declaring one or
more PR cellslost,

(2) somedatawill become deliverable if aPR cell is declared
lost, and

(3) the application has requested data via a pending Read()
operation.

Thus, in POCv2, cells of objects with the PR reliability class are declared lost as a
side-effect of the Read() operation, and the transport receiver is the sole determiner
of when to declare acell lost. Chapter 6 describes the algorithm and data structures
used by the POCv2 receiver to make this determination efficiently.

From the perspective of the sender, PR cells are treated as reliable by the
sender for purposes of retransmission, except that the POCv2 receiver may send a
special acknowledgment indicating that the object has been declared lost. This ack
cancels any pending retransmission of these cells. While the usual semantics of an ack
is " object successfully received”, an acknowledgment for a PR object has the

semantics “no further transmission needed” .

82

Legend

@ object has not yet been received at user receiver
@ object has been received, but had not yet been delivered

0 object has been received at transport receiver and delivered to user receiver

Figure2.16 Example PO for explanation of PR reliability class

2.8.3 PR réeiability + explicit release synchronization = graceful degradation

In this section, we describe how the combination of PR reliability and
explicit release synchronization can provide for graceful degradation of multimedia
documents when the network loses or reorders packets. We first describe a
phenomenon we refer to as slack time in the playout of a multimedia document. We
then describe how the PR reliability class and explicit rel ease can be used to take
advantage of slack timeto allow extra retransmissions (and therefore, increased
reliability) with no increase in delay.

Slack time occurs in the presentation of a multimedia document when the
playout of a document reaches a point where there is nothing for the application to do

but wait for some packet to become deliverable. Slack time may occur in a document

83

for severa reasons. The most obviousis when explicit pauses are included in the

document. For example, consider a portion of a document consisting of:

» asingleimage, accompanied by some text (perhaps ariddle or
joke)

» followed by an explicit pause of 5 seconds,

» followed by apiece of text (the riddle' s answer or the joke' s punch
line).

As soon as the document browser has retrieved and displayed the image, the browser
rel eases the successor of that image, which is the pause element. The pause element
does not release its successor, the answer or punch line, for 5 seconds. During this
time, the browser has absolutely nothing to do.

The key ideaisthat during this time, the transport layer can be
accumulating packets in the buffer that may follow the punch line in the partial order,
so that when playout of the document proceeds, a substantial portion of the document
has already been received, and is waiting in the transport layer’ s buffers. If the
underlying network is experiencing high loss, this extra pause time can alow for more
retransmissions. Because the pause is anatural part of the document, these extra
retransmissions add no delay to the playout of the document as a whole.

Explicit pauses generally have a specific length. More interesting are
document elements resulting in slack time that may be unpredictable in length, since
thisis where we can take advantage of the PR reliability class. Theideaisthat we
specify the PR reliability class for objects that we might otherwise treat as unreliable
(audio, for example). Then, if the slack time allows for retransmission of missing
cells, we gain in terms of reliability. If it does not, we cancel the retransmissions; the

only price paid is the processing cost of declaring the cellslost, and bandwidth cost of

sending the acknowledgments canceling the retransmissions. In Chapter 6 we
establish that this processing cost is reasonable. Asfor the acknowledgments, we
observe that algorithms that provide for TCP-friendly congestion avoidance may send
acknowledgments (or negative acknowledgements) for best-effort traffic anyway, even
if no retransmission takes place. (see, for example, Jacobs and Eleftheriadis, 1997).
Both continue buttons and audio elements can produce varying amounts of
dack time. A continue button is an areain the document that the user must click to
allow the document to proceed. A continue button provides for a pause of indefinite
length. Another less obvious cause of slack timeisthe draining of audio buffers. To
create smoother audio playout, the application may build up asmall playout buffer of
audio data before it begins playing the audio samples through the output device; this
enables the application to compensate for jitter. Many audio devices also have their
own internal buffers, either on the audio hardware, or in the device drivers. Thus, itis
reasonabl e to expect that the application may have some slack time at the end of a
particular audio clip whereit is simply waiting for the audio device to drain the
remaining audio samples before continuing. This slack time provides another
opportunity for extra retransmissions of the portions of the document that follow the

audio clip.

2.8.4 Unresolved issues and futurework for the PR reliability class

The central focus of this dissertation is a performance evaluation of PO/R
service. Thus, the implementation of the U and PR reliability classesin POCv2 is
incomplete. Future work will include completion of an implementation of the U and
PR reliability classes, and an evaluation of the tradeoffs between reliability and delay.

Of particular interest will be evaluating the extent to which pausesin a multimedia

85

document can alow for extraretransmissions of PR objects—particularly audio—as
described in Section 2.8.3.

One areafor future development is the notion of separate reliability classes
for individual cells. For example, it may be useful to consider an MPEG video clip to
be a single object in the partial order, but to be able to define separate reliability
classesfor I, B and P frames. While the basic agorithm could still be used, the
challenge would be to efficiently transmit to the POCv2 receiver the reliability classes
of individual cellsin astream. |If thereisa specific periodic repeating pattern (asin
MPEG?), this would be fairly straightforward. Arbitrary reliability vectors at the cell
level would present a more difficult challenge in terms of balancing the overhead of

sending the reliability vector vs. the benefit of providing PR delivery.

2.9 Providing control over reliability via ADN-cancel

The ADN-cancel feature allows cancellation of messages that have already
been submitted to the transport layer. The application specifies an Application Data
Name (ADN) for each message and can request that the transport layer cancel the
3transmission of any message (or group of messages) by specifying its (their) ADN.
To motivate this feature, consider a system for transmitting images, where a human or
automated decision system has to make a critical decision based on the image

received, such as:

* inatelemedicine application, whether or not a patient should be
transported to a field hospital.

* inabattlefield situational awareness application, whether a given
image represents friend or foe, non-target vs. target.

86

At some point, the human receiving the image may determine that she/he
has received sufficient datato make adecision. At this point, the receiver would like
to cancel the transmission of al additional packets carrying an ADN for theimagein
guestion, without severing the connection. Keeping unnecessary traffic off the air may
be particularly useful in situations where multi-access communication makes
bandwidth a scarce commodity, or where radio transmissions may help an enemy
locate a target.

While afacility for canceling messages may seem like an obvious
transport service feature, surprisingly it isnot availablein TCP. True, the receiving
application can signal to the sending application that no more data should be submitted
to the transport layer for agiven image. However, neither the receiving application
nor the sending application can do anything to cancel the sending of datathat is
already in the transport layer “pipe’, short of aborting the connection.

The closest one could come with TCP is to use the urgent data feature to
mark the position in the byte stream where the data for the cancelled image ends.
Thisiswhat is done, for example, in FTP or Telnet, when the flow of datais
interrupted (for example, by CTRL/C.) The receiving application is then notified
immediately of the position in the data stream where the cancelled image ends.
Because this notification occurs immediately, it is sometimes called “ out-of-band
data’, however thisis amisnomer. The only thing sent out-of-band is the sequence
number in the data stream where the cancelled image ends. The sending and receiving
TCP entities still must process every byte of this now unnecessary data, and the

receiving application must read every byte of it aswell. The ADN-cancel feature adds

87

the ability for the sending transport entity to simply flush the now unnecessary packets
out of the transport layer altogether.

ADN-cancel isimplemented in version 0.90 of UTL, however it has not
been extensively tested or evaluated in practice. In particular, it has not been
incorporated into any applications other than a brief test in the regression routines
described in Section 3.7.2. Future work will include the incorporation of ADN-cancel
into the ReMDoR browser, and evaluation of this feature.

One of the key difficulties with implementing ADN-cancel is the overhead
of maintaining a dictionary of ADN names. It is crucial that the add, delete, and find
operations in this dictionary be efficient. The current version usesthet sear ch
routines that are part of the Unix system library. According to the Unix man page,
these routines are based on the binary tree search from “Knuth (6.2.2) Algorithms T
and D.” Hashing might be a preferable alternative, but because it is difficult to predict
how ADN-cancel might be used in practice (in particular, what programmers might
choose to use as the ADN values), it is difficult to know what the distribution of keys
might be. Evaluating each of these approaches is another topic for future work.

The ADN-cancel feature has currently been implemented only for
unordered/partially-reliable (U/PR) service. Future work includes considering how
this feature can be integrated into a partial order/partial reliability service. Along the
same lines, it may be useful to add features into POCv2 to allow canceling the
remainder of a period or epoch, particularly if a period or epoch correspondsto a
particular multimedia document, or portion thereof. For example, one might imagine a
situation where clicking on a hyperlink would cancel the remainder of the current

period, while setting up a new epoch with the service profile of the document

88

referenced by the hyperlink. On a philosophical note, the ability to cancel an entire
class of messages or an entire activity (such as a period corresponding to asingle
document) has the flavor of a session-layer service or protocol. In spite of the fact
that session layer functionality could be useful, TCP/IP lacks any standardized session
layer functions. Recent work has proposed adding some session-like features into

HTTP (Stevens, 1996), so this may an idea whose time has come (again).

2.10 Current status of POCv2 implementation and areas for future work

The design of POCv2 described in this chapter has been partially realized
in the Universal Transport Library (UTL) described in Chapter 3. In particular, the
following features of POCv2 are fully implemented in UTL. Each has been extensively
tested and evaluated as part of the UTL regression testing described in Section 3.7.2,

and the performance experiments in Chapter 5:

o partially-ordered /reliablel® service, with periodic partia orders as
in POC

e the stream abstraction

e provision for adefault service profile for epoch 0, and negotiation
of an alternate service profile for epoch 1

* explicit-release synchronization
The following features are included in the design of the data structures and
AP, but are either only partially implemented, or unimplemented in the current
version; completion and evaluation of these features constitutes an area for future

work:

19 As an interim measure, all objects are currently treated as if they were assigned
reliability class R, regardless of the reliability class passed in the service profile.

89

e partia order/partially reliable service, including the U and PR
reliability classes.

* negotiation of the service profile for epochs beyond epoch 1
(implemented, but not fully tested or debugged.)

» thedatapreview feature (provided for in the API, but
unimplemented)

* ADN-cancd for partialy-ordered/partially-reliable service (ADN-
cancel isimplemented for unordered service.)

2.11 Chapter summary

We described the innovations in transport layer service developed and
investigated by the author as part of this dissertation. Specifically, we described key
ways in which the author’ s protocol, Partial Order Connection version 2 (POCv2)
differs from the Partial Order Connection (POC) specified in (Amer et al., 1994). The
main theme underlying these new featuresis to make POC a useful protocol for
multimedia applications, which has been the key example motivating PO/PR transport
service since first proposed in (Amer et a., 1994). The innovations includes features
for more natural and efficient specification of the partial order and reliability
requirements of the document, provision for multiple partial orders (enabling
persistent connections), and integration of coarse-grained synchronization support.

We also propose two additional features that have broader applicability to

transport protocolsin general:

(1) adatapreview feature enabling coarse-grained integrated layer
processing, which can apply to any protocol providing ordered
or partially-ordered service, and

(2) an ADN-cancel feature which can be applied to any protocol
providing reliability.

90

In the next chapter (Chapter 3), we describe the Universal Transport Library: a
software system designed for rapid prototyping and performance eval uation of

transport layer protocol innovations such as the ones just presented.

91

