Chapter 6

ALGORITHMSFOR PO/PR PROTOCOLS

6.1 Introduction
In this chapter, we present the design and analysis of algorithms and data
structures for the implementation of a Partially-Ordered/Partially-Reliable (PO/PR)

Transport Protocol. Specifically, we present algorithms for:

» verifying that the sending application submits TSDUs in avalid
sending order (alinear extension of the partial order specified by
the application),

* resequencing out-of-order packets at the PO/PR receiver, and

» declaring objects lost according to the semantics of the PR
reliability class defined in Section 2.8.2.

We also discuss how these algorithms can be extended to support the
stream abstraction® and explicit releaseb. Finally, we present the linear extension
algorithm that is currently implemented in the ReMDoR parser, and discuss whether

this algorithm might be better placed in the PO/PR transport sender.

65 See Section 2.3 for a description of the stream abstraction.

66 See Section 2.6 for a description of explicit release.

343

6.1.1 Organization of this chapter

This chapter is organized as follows. Section 6.1 provides a context for
our discussion by defining the problems listed above more formally, and comparing
these problems with the corresponding ones in the standard ordered/reliable transport
protocol TCP. We briefly outline how the corresponding problems are addressed in
the de-facto reference implementation of TCP, namely BSD Unix67. Section 6.2
describes a basic algorithm for topologically sorting a directed acyclic graph (DAG-
TS); this basic algorithm forms the basis of most of the other algorithms described in
this chapter.

Sections 6.3-6.5, in asense, “tell the story” from beginning to end of how

aReMDoR document makes its way through the PO/PR transport protocol:

. Section 6.3 describes the modified (DAG-TS) algorithm used by
the ReMDoR parser to compute alinear extension of the partial order
for transmission of the document. The algorithm is modified in two
ways: (1) it must take into account the stream abstraction, and (2) it
must take into account the fact that transmission of audio packets
requires a certain minimum bandwidth guarantee.

. Section 6.4 describes the modified (DAG-TS) algorithm used by
the PO/PR sender to verify that the sending order used by the
application isavalid linear extension of the partial order. We aso
explain why verification must be done to prevent protocol deadlocks.

. Section 6.5 describes the algorithm used by the transport receiver
to resequence arriving PDUs for delivery; that is, an algorithm to
topologically sort arriving PDUs according to the partial order. We
describe both the basic algorithm, and how it is modified to support
explicit release. We aso compare this approach with a matrix-based

67 As our source for the reference implementation for TCP/IP, we use the annotated
source code for 4.4BSD-Lite as it appearsin (Wright and Stevens, 1995), sinceitis
widely available and, due to Wright and Stevens' efforts, excruciatingly

well documented.

344

algorithm, and with the algorithm used for resequencing in the
reference implementation of TCP.

Sections 6.6—6.8 describe how the DAGITS algorithm can be modified to
support the PR reliability class8 of POCv2.

. Section 6.6 describes the challenges involved in implementing the
PR reliability class, and integrating it with the explicit release and
stream abstraction features.

. Section 6.7 describes how to adapt the DAGITS algorithm to
support PR without explicit release, without changing its worst-case
running time.

. Section 6.8 describes an algorithm to support PR with explicit

release, with aworst-case running time that is slightly worse, but still
acceptable (i.e., it isno worse than that of TCP.)

Section 6.9 surveys the advantages and disadvantages of various ways a
partial order can be represented for processing and for transmission across the

network. Section 6.10 provides a chapter summary.

6.1.2 Processing overheadsin O/R and PO/PR transport protocols

Processing overheads in transport layer protocols have been studied
previously in (Clark et a., 1989). The main conclusion of thiswork isto recommend
atwo-path design: a highly optimized fast path for packet processing that optimizes
the normal case, with aslower path that takes care of the unusual cases.

The underlying concern of al work in this areais to keep the per-packet
processing small, so that the transport layer keeps up with arriving PDUs. Therefore,
any lengthy processing associated with asingle PDU isto be avoided. Avoiding

lengthy processing times associated with a single packet operation is also crucial when

68 See Section 2.8.2

345

a user-space implementation with cooperative multitasking is used, asis the case for
UTL (see Chapter 3.)

The author raised this concern in the context of early specifications of
POC, which represented the partial order as the transitively-closed adjacency matrix.
While thisis an efficient representation in terms of bits (upper triangular form can be
used by renumbering elements such that 0,1,2,...,n-1 isalinear extension), it requires
an O(n) computation for each Read() or Wit e() operationto perform operations
such as checking the deliverability status of messages. As part of thisresearch,
therefore, the author investigated more efficient algorithms for performing the

computations necessary for PO/PR service.

6.1.3 Packet resequencing at the transport receiver in ordered protocols

One of the most time consuming parts of the processing for an ordered
protocol is the resequencing of out-of-order packets. Essentially, the problem is one of
implementing a priority queue. The standard data structure for this purpose, amin
heap, provides O(log k) running time, where k is the current number of outstanding
packets. However, due to some practical considerations, resequencing is seldom
implemented using amin-heap. First, when a packet arrives, it is necessary to
determine whether or not that packet is a duplicate, which involves searching the
buffer. Since a heap does not provide an efficient search mechanism, aheap aloneis
an inappropriate choice.

One might therefore consider a binary search tree. However, it turns out
that in practice, an ordered linked list is the most appropriate data structure. There are
two reasons why thisis so. First, an essential principle of efficient transport protocol

design is to optimize the common case. The common case for most transport protocol

346

implementations is that the next packet to arrive is the one expected. If the buffer of
out-of-order packets is maintained as a simple sorted linked list, adding the expected
packet to that buffer is an O(1) operation; indeed it involves only a handful of
instructions.

Second, the length of thislist can be bounded by a constant: namely, the
window size. Intheinitial design of TCP, the maximum window size was 64K, and
the common packet size was 512 bytes. With these parameters, at most, 128 packets
could be outstanding for any given connection. Until quite recently, afar more
common window size was between 4-24K, that is, between 8 and 48 packets. An O(K)
search asthe “rare”’ caseis not very objectionable when k is this small, and thus the
overhead and complexity of abinary search treeis not attractive. Indeed, a careful
reading of the annotated TCP source code in (Wright and Stevens, 1995) shows that a
linear search is used.

We conclude from the preceding arguments that any packet processing
that is of similar magnitude (that is, O(k), where k is the number of outstanding

packets) should be considered good enough for practical purposes.

6.1.4 Thegoal for resequencing in PO protocols. O(1) per operation

In terms of packet resequencing in the transport receiver for partially
ordered service, the Holy Grail would be to make the processing of each packet O(1).
However, given that we need to ensure that every constraint in the partial order is
satisfied, the lower bound for n packet operations is O(e/n) per operation (amortized).
This precludes the possibility of finding an O(1) algorithm for the general class of all

partial orders.

347

Note however, that if we restrict the class of partial orders, we can find a
tighter worst-case bound. Note, for example, that for achain partial order, O(e/n)
reducesto O(1). We now define amore general class of partial orders for which we
find an O(1) agorithm:

Definition 6.1.1: A partial order has bounded-out-degree d if and only if

every vertex in the corresponding transitively reduced precedence graph has

out-degree < d.
We will show that for bounded-out-degree partia orders, in addition to bounding the
overall running time as O(n+e) amortized, we can also bound the worst-case running
time of each single protocol operation by O(d), not amortized. For ReMDoR, d
corresponds to the number of successors of any element in a PMSL document.

One might ask whether it is useful to distinguish between O(n) and O(d),
sincein theworst case, O(d) = O(n). Consider, for example, a partial order consisting
of an antichain of [M/2]elements, all of which precede al of theremaining /2]
elements. However, we conjecture that for multimedia documents, most human
authors would limit the number of successors for any given element to a reasonably
small value; usually no more than 10, and rarely more than 30, which may in practice
be much smaller than n. Thus, for multimedia document retrieval, it is useful to
distinguish between aworst case of O(d) vs. aworst case of O(n).

More significantly, the distinction between O(n) and O(d) provides a
yardstick for measuring whether the PO/PR algorithms developed in thiswork are
practical for applications other than multimedia document retrieval. For instance,
suppose that it is suggested that PO/PR protocols are useful for some application X.

We can then compare the expected sizes of n and d in the partial ordersthat arisein

348

application X, with those that arise in multimedia documents. used in the experiments
of Chapter 5, or any future experiments that are carried out using ReMDoR.
Comparing these sizes alows us to develop hypotheses about whether the algorithms

developed in thiswork will be practical in the context of application X.

6.2 Topological sort of adirected acyclic graph by incremental delete (DAGITS)

Nearly al of the algorithms described in this chapter are variants of a
specific agorithm for the problem of topologically sorting of a directed acyclic graph
(TS-DAG). Wecall thisbasic algorithm DAGITS: (directed acyclic graph incremental
topological sort). The main feature of DAGITS that distinguishes it from other
approaches to topological sort isthat the linear ordering is produced incrementally,
and we can bound the worst-case running time of each incrementa step. We assume
that the underlying algorithm of DAGITS iswell known, since (Cormen et al., 1990)
assigns the description and analysis of this algorithm as an exercise®®. Our

contribution is therefore not the DAGITS algorithm itself, but rather

. the characterization of this algorithm as an incremental process,
along with

. the analysis of the individual steps, and

. the application of our incremental characterization of this

algorithm to the efficient solution of problems arising in the provision
of PO/PR transport service.

e Theremainder of Section 6.2 proceeds as follows.

. Section 6.2.1 outlines the basic TS-DAG problem, and a variant
that determinesif the input graph is acyclic or not (TS-DAG-V).

69 Exercise 23-4.5, p. 488. The name “DAGITS’, however, is our suggestion.

349

. Section 6.2.2 describes how the TS-DAG and TS-DAG-V relateto
PO/PR transport protocols processing.

. Section 6.2.3 motivates an incrementa version of the TS-DAG
problem (INCR-TS-DAG) based on the requirements of PO/PR
transport protocols.

. Section 6.2.4 shows how a simple and efficient algorithm for TS-
DAG (reverse finishing time of a depth-first search, one of the most
commonly presented approaches to this problem in introductory
algorithms texts) is not suitable as abasis for INCR-TS-DAG.

. Section 6.2.5 presents pseudocode for the DAGITS agorithm for
TS-DAG and TS-DAG-V as suggested by (Cormen et ., 1990). In
this algorithm, vertices with in-degree zero and their outgoing edges are
successively added to the linear ordering, and incrementally deleted
from G.

» Section 6.2.6 provides aworst-case running time analysis of the DAGITS
agorithm for TS-DAG and TS-DAG-V.

. Section 6.2.7 shows how to adapt the DAGITS algorithm to the
INCR-TS-DAG problem, and then presents the most important result of
this section:

We show that for DAGITS the wor st-case running time for
incrementally computing each vertex in the linear orderingis
bounded by the out-degree of the vertex returned.

As explained in Sections 6.2.4 through 6.2.7 below, it isthis property the DAGITS
a gorithm—the bound on each step in the incremental computation—that makes it

suitable as the basis for processing algorithms in PO/PR transport protocols.

350

6.2.1 TheTSDAG and TS-DAG-V problems
Problem TS-DAG: Topological sort of a directed acyclic graph

I nput: adirected acyclic graph G=(V,E)

Output: alinear ordering of the vertex set V such that if edge
(u,v) O E then u appears before v in the ordering
(Cormen et al., 1990.)

We often will relax the assumption that the input is acyclic, and include determination

of thisin the problem itself:
Problem TS-DAG-V: TS-DAG with validation of input

I nput: adirected graph G=(V,E)

Output: if Gisacyclic, alinear ordering of V asin TS-DAG;
otherwise, an error indicating that the graph contains a
cycle.

Equivaently, we can characterize any algorithm for topologically sorting a DAG as an
algorithm to produce alinear extension of the partia order induced by the DAG (see

Section 2.2).

6.2.2 Topological sorting and PO/PR transport protocols

To motivate our discussion of topological sorting, this section briefly
describes two problems related to topological sorting which arisein the
implementation of PO/PR transport protocols: (1) sending order validation, and (2)
resequencing TPDUsfor delivery. We discuss these and severa other problemsin

more detail in Sections 6.3 through 6.6.

Sending order validation in PO transport service (PO-SND-VALID)
For partially-ordered transport service (regardless of reliability), the

transport sender must determine whether the sequence of objects submitted via

351

W ite() operations constitutes alegal sending order—that is, avalid linear extension
of the partial order. This problem is equivalent to determining whether a given
permutation of the elements of avertex set Visavalid topologica sort of aDAG

G=(V,E).

The PO/R receiver TSDU resequencing problem (PO/R-RCV-RESEQ)
For partially ordered/reliable (PO/R) transport service, the transport

receiver must be able to efficiently:

@ resequence arriving TPDUs for delivery as TSDUs according to the
partial order,

(b) suspend delivery when the partial order constraints would prevent
the delivery of any of the TSDUs that have already been received, and

(c) efficiently detect whether the arrival of a particular TSDU permits
delivery to resume.

This processing is essentially aform of incremental topological sorting. However,
unlike the general TS-DAG problem where the algorithm may freely choose from
among multiple linear orderings of the input graph if such exist, PO/R-RCV-RESEQ
imposes an extra constraint. Suppose that at some step in an ordinary TS-DAG
algorithm, a particular vertex u is chosen as the next one to add to the linear ordering.
In the PO/R-RCV-RESEQ problem, vertex u may be as yet unavailable—that is, it
may correspond to a TSDU for which the TPDU has not yet been communicated to the
transport receiver. The PO/R-RCV-RESEQ problem requires that in this case, if any
other vertex visalegal next vertex, it must be selected immediately rather than
suspending the topological sort until vertex u becomes available. Thus, the linear

extension that emerges from an algorithm to solve the PO/R-RCV-RESEQ is not an

352

arbitrary choice from among al the linear extensions of that PO; rather, the selection is

constrained by the arrival times of the TPDUs.

6.2.2 Incremental TS-DAG (INCR-TS-DAG)

As stated previoudly, the transport receiver must keep up with arriving
PDUs, and avoid creating application bottlenecks. Therefore, it is crucial to establish
an upper bound for the worst-case running time of each atomic operation in a transport
protocol implementation. The running time of the TS-DAG algorithm can be divided

into atomic operations as follows:
Problem INCR-TS-DAG: Incremental topological sort of a DAG

Operations:

init(G)initialize data structures representing a directed acyclic graph
G=(V,E) supplied by the caller.

v=next() returnsthe next element in alinear ordering of V, or nil
when the entire set of vertices has been exhausted.

The TS-DAG program is thus broken down into a sequence of (n+1)
operations starting with acall init(G) followed by n callsto next(). This
INCR-TS-DAG version of the problem allows us to pose two questions about any

algorithm proposed to solveit:
» what is the worst-case running time of the entire sequence of operations?

* what isthe worst-case running time for a particular operation in the
sequence?

The second question is the crucial one for PO/PR transport protocol processing. To

provide for efficient scheduling between the application and transport layer processes,

353

we must bound the wor st-case running time for individual init(G) and next()

operations.

6.2.3 Theusual DFS-approach to TS-DAG isproblematic for INCR-TS-DAG

A widely-used algorithm for TS-DAG appearing in many algorithms
textbooks computes a linear ordering in time O(n+e) (where n=|V|, e=|E|) based on the
reverse finishing times of a depth-first search of G (Cormen et al., 1990). While this
algorithm is simple and efficient, it has a property that makes it unattractive for our
purposes: the entire set of vertices and edges must be processed before the first
element in the ordering can be produced. If we nonetheless do solve INCR-TS-DAG
using the reverse finishing time approach, the overall running time for a sequence of
(n+1) operations starting with acal init(G) followed by n calls to next() will be
O(n+€). However, in this solution, we cannot bound, in the worst case, the cost of any
particular cal to the next() operation. If a straightforward implementation of the
reverse finishing time DFS algorithm is used, either thefirst cal to init(G) or thefirst
call to next() will require the entire O(n+e) running time, while the successive calls
require only O(1) time. The O(n+e) running time is required because it is necessary to
run the algorithm to determine the first element in the sorted list from the input as
given, storing all the sorted vertices on a stack as they are finished. Successive calls to
next() are then implemented as pop() operations. We can try to improve the average
case by using an approach where we apply the algorithmto G', reversing edges only
as we encounter them rather than in a pre-processing step. The startup cost is O(n+e),
just as before. However, the worst-case running time of the initial operation would be
unaffected: consider, for example, the operation of this algorithm on the DAG

corresponding to alinear order.

354

6.2.4 Topological sorting by incremental delete and the DAGITS algorithm
The basis for what we refer to asthe DAGITS algorithm is the repeated
delete approach to topological sorting outlined in (Cormen et al., 1990), exercise 23.4-

5, asshown in Figure 6.1.

while (there exist verticesin the graph)
{
find avertex v with in-degree O;
output v;
remove Vv and all of V' s outgoing edges from the graph;

Figure6.1 Topological sort viarepeated delete

(Cormen at al., 1990) poses the problem of implementing the algorithm in Figure 6.1
in O(n+e) time, and asks what happens if the input contains cycles. The DAGITS
algorithm is an application of the algorithm in Figure 6.1 to the INCR-TS-DAG

problem posed earlier. The DAGITS algorithm requires the data structures shown in

Figure 6.2
DAGI TS Algorithm: Data Structures:
int: in-degred|i] /[current in-degree of vertex [i]
list of vertices: adj-list[i] /1 list of outgoing edges from vertex [i]
gueue of vertices: front /I queue of vertices with in-degree O.

Figure6.2: DAGITS (DAG incremental topological sort)

355

We ignore the cost of initialization because our purposeis to highlight the
time required by each successive invocation of the next() operation, which is

implemented as shown in Figure 6.3.

DAGITS Algorithm:
oper ation next():
if (front.isEmpty())
return nil; // indicates that sort has finished successfully
vertex u = front.dequeue();
foreach vin adj-listfu] //(u,v)is anedgein G
{
if (in-degreelv] ==0)
halt-with-error; // input was inconsistent, or graph contains a
cycle
decrement in-degree[V]; // logically, removes (u,v) from G;
/[optionally, we can also remove v from adj-list[x], but this is
unnecessary
if in-degreg{v] == 0// v can now be added to the sorted list
front.enqueue(v);
}
return u;

Figure6.3: operation next()

6.25 TheDAGITSalgorithm: proof of correctnessand runningtime
Theorem 6.2.1: The values returned by successive calls to the next() operation

constitute a topological sort of graph G.

356

Proof: The items that are initially in the front list will be the first values returned
by next() operations. Since these items have no predecessors in the DAG, any
permutation of these valuesis by definition alegal prefix for the topological sort. It
now sufficesto prove the following three lemmas, which we do below.
Lemma6.22 The order in which the remaining vertices are enqueued onto the
front queue is an order consistent with atopological sort.
Lemma6.2.3 Every vertex will be added to the list; that is, we cannot return
nil without having first output every vertex in the graph.
Lemma6.24 Thevaue nil will be returned on the (n+1)th call to next().
Proof of Lemma 6.2.2 At the step in the algorithm where each vertex is
enqueued, itslogical in-degree at that step iszero. Thisimpliesthat every
incoming edge to this vertex has been logically removed from the graph. Since an
edge (u,v) isremoved only at the step where u is returned as the result of a next()
operation, thisimplies that before any v can reach the head of the front queue, all
vertices u, such that there exists an edge (u,v), have already been returned as the
result of a next() operation (which matches the definition of atopological sort)
Therefore, the order of values returned is alegal topological sort of graph G. [
Proof of Lemma 6.2.3 (By contradiction.) Suppose there were some vertex xin
a connected component that had not been output by this algorithm before nil was
returned. Since all vertices with zero predecessors are added to the front queue
initially, it must be the case that x has at |east one predecessor. Furthermore, if x
IS never output, thisimplies that at least one of X' s predecessorsis never output,
sinceif al of X's predecessors were output, in-degree[x] would be decremented to

zero, and x would be output. We can now make the same argument concerning

357

the predecessor of Xx. However, this cannot repeat indefinitely: since G is acyclic
and the number of possible edgesisfinite, thisimplies that there must be some
ancestor of x that has no predecessor, but was never output. Since this contradicts
the fact that all vertices with zero predecessors are output, we conclude that every
vertex is output before nil isreturned. [

Proof of Lemma6.2.4 Since every vertex isreturned at least once, to show that
nil isreturned after exactly n vertices are returned, it sufficesto show that each
vertex can be added to the front queue at most once. A vertex wisonly a
candidate to be placed in the front queue when the algorithm is processing an
incoming edge incident on that vertex. Given that we have already established in
(1) above that the order of verticesreturned is alegal topological sort at the step
where the vertex w is added, it isimpossible for the algorithm to process any more
edges (v,w). If (v,w) were to be processed at this point, it would imply that vertex
v was about to be added to the front queue following w, which would violate the
topological sort property. Therefore, once a vertex has been added to the front
gueue, it is not possible for it to be added a second time. [J

Theorem 6.2.2: The worst-case running time for a sequence of n callsto the
next() operation for agiven graph G is O(n+e).

Proof: There are n calls to the next() operation; which gives us the O(n) term. All
operations within each call to next() take O(1) time except for the loop on the
adjacency list of each vertex asit is encountered. Since every vertex in the graph
is processed exactly once, every edgeis processed by thisloop exactly once,
which explains the O(e) term. [J

Theorem 6.2.3 The running time of the next() operation is:

358

e O(d) for thefirst n next() operations returning an element, where d
isthe out-degree() of the vertex returned by the next() operation.

* O(1) for thefina next() operation.
Proof: The proof is by trivia inspection of the agorithm: all operations take O(1)
time except for the loop over the adjacency list of each vertex. Since every step in this
loop takes constant time, the entire loop takes time proportional to the out-degree d of

the vertex returned. O

6.2.6 Concluding Remarks

In Section 6.2 we introduced a particular way of doing topological sort and
called it the DAGITS algorithm. The key property of this algorithm is the incremental
nature of the algorithm; we can divide the total processing time of O(n+e) into discrete
steps, each of which takes time O(d) whered is the out-degree of the vertex returned
at each step. In the remainder of the chapter, we will see several adaptations of this
algorithm to problems that arise in the implementation and use of PO/PR transport

protocols.

6.3 Choosing alinear extension in ReMDoR

Thefirst problem we consider is the application layer processing that must
be performed before a PO/PR transport service can be used. The POCv2
implementation (as represented in this case, by the prototype in the POL layer of UTL)
expects the partial order part of the service profile to be provided in transitively
reduced form. Since the techniques to transitively reduce a directed graph can be
found in any algorithms text (e.g.,Cormen et a., 1990), we will not address thisissue

further.

359

Of greater interest is the problem of selecting alinear extension. If all
linear extensions of the partial order are equally acceptable in terms of performance,
then finding a suitable linear extension constitutes nothing more than performing aa
topological sort over the elements of the partial order, and outputting the sorted list.
However, there are several complicating factors.

First, the topological sort algorithm must be adapted to handle the stream
abstraction (see Chapter 2) For the most part, this is an inconsequential change. More
difficult than extending the algorithm to handle the stream abstraction is dealing with
the fact that the choice of linear extension cannot be made in an arbitrary fashion, asit
can in the general case of topological sorting. In the usua formulation of the
topological sort problem, the algorithm may choose freely from among equally valid
topological sorts, or, in partial order terms, linear extensions. (From here on, we will
abuse the notation somewhat by freely interchanging the terms topological sort and
linear extension). However, for several reasons, we need atopological sorting

algorithm with a bit more intelligence:

(1) (Maradi et al., 1996b) showed that strategic selection from
among several linear extensions may provide improvementsin
performance.

(2) According to the semantics of partial order delivery, all linear
extensions may be acceptable; however, from an end-user
perspective, not all are equally desirable. For example, in the
i mg8par . pnsl document used in Chapter 5, it would be legal
to send the entire first image, then all of the second image, etc.
However, the partial order indicates that the author intends the
eight images to be interleaved rather than sent sequentially in
what would constitute alinear order.

(3) Most importantly, when audio isincluded, it is essentia to
ensure that the linear extension provides a sufficient fraction of
the available bandwidth to the audio stream so that underflows

360

do not occur. Specifically, as data are interleaved, the overall
fraction of the bandwidth for audio must not drop below
64K bps for any sustained length of time.

A full exploration of linear extension selection would form the basis of another
complete dissertation. Initsfull generality, optimal linear extension selection for pre-
fetching multimedia documents over constrained bandwidth lengths becomes an NP-
complete scheduling problem as illustrated by work on the DEMON project at
Bellcore (Rosenberg et al., 1992a, 1992b; New et a., 1992). However, for purposes
of evaluating the performance of partially-ordered transport service, a ssimple heuristic
suffices. Therefore, in thiswork, we address only items (2) and (3) above, and defer
item (1) to future work.

The ReMDoR parser uses a variation of the DAGITS algorithm called
ReMDoR-LESTAB (Linear Extension Selection w/Target Audio Bandwidth), shown
in Figures 6.4 through 6.6) to produce a linear extension of the underlying partial order
over individual TSDUs (cells) which isimplied by the partial order at the stream
object level. Thislinear extension also guarantees a minimum bandwidth allocation
for audio designed to avoid underflow. As shown in Figure 6.6, the finish(u) procedure
decrements the successors of u, in the same manner asin the DAGITS algorithm. If
any successor of u ends up with an in-degree of zero as aresult, the finish(u) procedure
also either adds that successor to the front queue, or makes it the
currentAudioElement, as appropriate.

Regarding the parameter targetAudioBandwidth, note that the nominal
value for this parameter should be 64kbps, which is the bandwidth requirement for the
8Khz p-law audio encoding used by ReMDoR. In practice, we use a higher value to
provide amargin of safety, since the actual bandwidth provided will oscillate around

thistarget value. Table 6.1 shows the parameters used for the performance

361

experiments involving audio cited in this dissertation (see Chapter 5). Note that the
actual targetAudioBandwidth values used are larger than 64kbps. The practical effect
of aparticular value isto reserve either a particular fraction of the true available
bandwidth, for example, 62.5% in R4, and 50% in R5. Future work might incorporate
amore sophisticated approach to this scheduling; however, this simple heuristic

suffices for our purposes.

Summary of Section 6.3

In this section we have described how the DAGITS agorithm can be
adapted to select an appropriate linear extension for transmission of PDUs via
ReMDOoR, incorporating the stream abstraction, and the need to provide a minimum
bandwidth for audio. Future work in this area may incorporate the linear extension

optimization techniques described by (Maradi et al., 1996b) to improve performance.

Table6.1 Audio ParametersUsed for Chapter 5 performance experiments

Experiments | targetAudioBandwidth | totalBandwidth fraction reserved
for audio

R4.1, R4.2, 80kbps 128kbps 80/128=0.625

R4.3, R4.4

R5.1,R5.2 128Kkbps 256kbps 128/256=0.5

362

Algorithm ReMDoR-LESTAB:
I nputs:

» aDAG G=(V,E), represented as for the DAGITS agorithm
(Figures Algorithm 6.2.2, Algorithm 6.x), where each vertex
IS associated with:

— type: adatatype (audio or non-audio)

— APDUIigt: alist of APDUSs, each of which islabeled with the
size of the application data contained within (in bytes)

» targetAudioBandwidth: atarget bandwidth for audio in kbps

» pktHeaderLen: the total amount of overhead present in each
packet for headers at the transport, network and data link
layers (above and beyond the actual data portion) in bytes.

» totalBandwidth: the available bandwidth for transmitting PDUs.
Output:

e aseguence of PDUs, representing alinear extension of the
partial order over the PDUs implied by G, as per the stream
abstraction defined in Section 2.3, with the following
properties

(1) When there are paralléel stream objects with deliverable
cells, and none of these stream objectsis an audio
element, cells are added to the linear extension by visiting
the objects in round-robin order.

(2) When one of the stream objectsis an audio element?©, the
audio element is given priority any time the total effective
bandwidth for audio PDUs (counting only the application
level bytes) falls below the targetAudioBandwidth.

Figure6.4 Algorithm ReMDoR-LESTAB inputs, output

70 Currently, ReMDoR does not permit multiple audio elements to be played
simultaneously. Future work on ReMDoR may add audio mixing, to permit, for
example, an audio track of background sounds (music, crowd noise, etc.) in parale
with an audio track of narration. Thisfeatureisinteresting for evaluating PO/PR
service since it motivates multiple priorities and/or levels of reliability for multiple
audio streams.

363

Algorithm ReMDoOR-LESTAB:
Pseudocode:
while not (front.isEmpty())
{
vertex u = front.dequeue();
vertex currentAudioElement = nil;
while (u #nil) or (currentAudioElement # nil)

{

if (currentAudioElement # nil) and the average bandwidth
provided to audio up to this point < targetAudioBandwidth)

{
output the next PDU from currentAudioElement
if (it the last PDU for currentAudioElement){ finish(audio);

else

{
output the next PDU from the vertex u.
if (that was the last PDU for u)

{
finish(u)

Figure6.5 Algorithm ReMDoR-LESTAB Pseudocode

364

procedur e finish(u)
foreach vin adj-listfu] //(u,v)is anedgein G
{
if (u== currentAudioElement)
{ currentAudioElement = nil;} // this audio element is finished
if (in-degreelv] ==0)
halt-with-error;
/ input was inconsistent, or graph contains a cycle

decrement in-degre€|V]; // logically, removes (u,v) from G;

/[optionally, we can also remove v from adj-list[x], but this is
Il unnecessary

if in-degreg[v] == 0// v can now be added to the sorted list
{
if (visan audio element)
currentAudioElement = v;
else
front.enqueue(v);

Figure6.6 ReMDoOR-LESTAB, implementation of procedur e finish()

365

6.4 Verifying the sending order

In any realistic implementation of a PO/PR transport protocol, the
available memory for buffering and resequencing out-of-order TPDUs at the partial
order receiver isfinite. If the PO receiver’ s buffers become full of packetsthat are
undeliverable because their predecessors have not yet been received, aresequencing
deadlock can occur. The resequencing deadlock problem for PO/PR protocols was first
recognized in (Amer et al., 1994). That paper proposed the rule that POC users should
submit TSDUs to the PO sender in a sequence that isavalid linear extension of the
partial order. This section describes how the DAGITS algorithm is applied to enforce
thisinitial sending order. We also present a more complete argument than the onein
(Amer et a., 1994) justifying the need for enforcing thisinitial sending order in light

of application-transport end-to-end flow control.

6.41 ThelSOLE rule

As notation, we define the ISOLE rule as the rule that the initial sending
order for objects must be a linear extension of the partial order. The ISOLE ruleis
enforced both for the submission of objects (TSDUSs) by the application to the PO
sender, and for the order of theinitial transmission of TPDUs from the PO sender to

the PO recaiver.

6.4.2 Enforcement of the | SOLE rulein UTL PO/PR services
The following notes indicate how PO/PR services provided by UTL

enforce the ISOLE rule;

* The POL layer implements a modification of the DAGITS agorithm (as
explained below) to enforce the ISOLE rule for the order in which TSDUs
are submitted viaut | _Wite() cdls.

366

* AIll UTL middlelayers (NUL, TOL, POL) enforce arule that the order in
which TSDUs are submitted by the layer above is the same order in which
the corresponding TPDUSs are submitted to the layer below. Thisenforces
the ISOLE rule at the Service Access Point (SAP) between POL and the
layer below.

* All UTL bottom layers (TXL, KXP, KX2, KX3) enforce arule that the
order in which TPDUs are placed in the sending window corresponds to the
order in which the corresponding TSDUs were submitted by the layer
above.

6.4.3 Usingthe DAGITSalgorithm to enforcethe | SOLE rule
To enforce the ISOLE rule for submitted TSDUS, a PO sender must

comply with three constraints:

(1) Within each period, the order in which TSDUs are submitted
must be avalid linear extension.

(2) No TSDU may be sumitted twice.

(3 All TSDUsof period i are submitted before any TSDUSs of
period i+1 are submitted.

Formally, we call thisthe ISOLE (Initial Sending Order must be a Linear Extension)

problem, and formulate it as shown in Figure 6.7.

Problem ISOLE: Initial Sending Order must bea Linear Extension
Operations:

init(G) initialize data structures representing a directed acyclic
graph G=(V,E) supplied by the caller.

returnCode = submitTSDU(TSDU, objnum) submit the TSDU with
objnum as its object number; return success if TSDU was
submitted, or failure to indicate that sending the TSDU
would violate the ISOLE rule.

Figure6.7 Problem ISOLE (operations)

367

The Algorithm PO-SENDER-ISOLE (PO Sender enforcement of ISOLE
rule) enforces the above constraints by maintaining an adjacency list representation of
the partial order, and a count of the number of submitted objects within the current
period. Figure 6.8 shows a simplified version of the agorithm that assumesthereisa
single period. Extending thisto multiple periods adds extra bookkeeping to the code,
but does not change its running time.

In this algorithm, each object isinitially marked as “not submitted yet”.
When a TSDU is submitted, a check is made to ensure al of the corresponding
object’ s predecessors have already been submitted. Thisisdonein O(1) time by
simply examining the in-degree of the object. Assuming that submission of the object
islegal, the in-degree of the object's successors are then decremented, which takes
O(d) time, where d is the out-degree of the object. Thus the running time for each

Wite() operationisO(d), and overall, the algorithm takes time O(n+e).

6.5 Resequencing out-of-sequence PDUsfor delivery using partial order
At the PO receiver, out-of-order PDUs must be resequenced for delivery.
Early specifications of POC accomplished this using a matrix representation of the

partial order, where A[i,j] indicated i<j in the partial order.

The matrix approach to resequencing PDUsfor PO service
Using the matrix approach, each time a packet [i] was delivered, all
elements in column i would be cleared, thus removing the constraint on the successor

objects. The operation that delivers objects would simply scan the buffered objects to

368

Algorithm PO-SENDER-I SOLE

Data Structures:
boolean: submitted[i]
int: in-degre€|i]
list of vertices: adj-list[i]

oper ation submitTSDU(objNum):
if (submitted(objNum))

if (in-degree(objNum)>0)

{

}

return true;

// has TSDU [i] been submitted
Il yet? Initialized to false

/I current in-degree of vertex [i]

/1 list of outgoing edges from
vertex [i]

oper ation init(G); // initialize submitted, in-degree and adj-list from G.
boolean submit_TSDU (unsigned int objNum); // called from utl_Write()
/I objNum is the object number of the submitted TSDU
Il return value is true on success, and false if an error occurs.

return false; // this object was already submitted

return false; // sending this object would violate the partial order
/I now we know that sending this object will be legal
send the TSDU over the network asa TPDU,
foreach vin adj-listfobjNum] // (u,v) is an edge in G

decrement in-degreg[Vv]; // logically, removes (u,v) from G;

Figure6.8 Algorithm PO-SENDER-ISOLE

369

seeif any had arow that was entirely filled with zeros; these objects were deliverable.
This algorithm requires at least’1 time Q(n) for each packet delivery, and thus time

Q(n?) for the entire algorithm. This analysis raises two questions:

(1) Canwedo better using an adjacency list representation? (asin
the DAGITS agorithm)

(2) Doesitrealy matter? What is considered a reasonable amount
of processing in atransport layer protocol ?

The matrix approach is not acceptable for PO service
Given that TCP uses alinear search for packet resequencing, one might

be tempted to conclude that the matrix-based approach to processing a partial order is
perfectly reasonable. After all, if TCP can resequence packets using alinear search,
why go to the trouble to eliminate an O(n) operation on each packet arrival or delivery
in POC? However, this reasoning has several flaws.

First, in comparing the resequencing algorithms for a PO protocol to those
of an ordered protocol (e.g., TCP), one must distinguish between alinear search of k
elements (the number of out-of-sequence elements currently buffered) vs. alinear
search of a data structure containing n elements, where n is the number of elementsin
the partial order.

Second, the O(k) operation in TCP is the wor st-case upper bound of the
uncommon case, while the O(n) Read() and Wi t e() operationsin the matrix-based
version of POC arein fact ©(n); that is, every invocation of these operations requires

no more—and no less—than alinear amount of time.”2

71 Big-Omega of n (Q(n)) isused here to indicate that thisis alower-bound, not an
upper bound on the running time.

72 ©(n) indicates that the running time is bounded above by O(n) and below by Q(n).

370

Finally, it is quite reasonable for values of n to reach into the hundreds for
the size of a partial order (see the example documents in the appendix.) Meanwhile the
number of outstanding out-of-order packets in a TCP connection is limited not only by
the maximum window size, but also by the congestion window. It istrue that higher
bandwidths, and longer delay paths are leading to larger window sizes (see, for
example, RFC1323). We have no hard data regarding the actual distribution of
effective window sizesin the Internet, however, our anecdotal evidence suggestions
that TCP congestion window sizes <<50 packets are still the norm. (A more scientific
measurement of what is“normal” here would be a good subject for future
investigation, perhaps by measuring window sizes seen on a busy web/mail/tel net/ftp
server.) Therefore, to avoid having to do ©(n) work to resequence out-of-order PDUs
on each PDU arrival, we propose as an alternative to the matrix approach, an
adaptation of the DAGITS algorithm shown in Figures 6.9 through 6.13. We call this
algorithm PO/R-RCV-RESEQ (PO/R receiver resequencing).

I ncor por ating explicit release synchronization into PO resequencing

The structure of the pseudocode for Algorithm PO/R-RCV-RESEQ
justifies the claim that explicit release synchronization adds little complication to
PO/R resequencing. In fact, all that is necessary to implement explicit releaseis (1)
remove the call to the releaseSuccessors() procedure from the implementation of
getNextTSDU(), and (2) make the local procedure releaseSuccessors() an operation
that can be invoked directly by the transport service user. (Incorporating explicit
release into the PO/PR agorithm is more difficult, but still feasible, as Section 6.8 will

illustrate.)

371

Algorithm PO/R-RCV-RESEQ:
Data Structures:
int: n /[number of elements in PO
int: count // number of TSDUs delivered so far
boolean: received[i] // has TSDU [i] been submitted yet? Initialized to false
TPDU pointer: datali] /[pointer to data; initialized to nil
int: in-degreg[i] // current in-degree of vertex [i]
list of vertices: adj-list[i] // list of outgoing edges from vertex [i]

queue of vertices: output // queue of vertices with in-degree 0, and
/I data pointer not equal to nil.

Operations:
operation init(G); /[initialize values from graph G.
operation processincomingTPDU(TPDU, objnum); // arrival from network

operation getNextTSDU() returns TSDU; // returns next TSDU in PO
I/ blocks until one can be delivered; returns nil on EOF

operation isAnythingDeliverable() retur ns boolean;
Il true if something can be delivered, or if we
Il have reached EOF. Signifies that a call to
Il getNextTSDU() will not block if called.

Local Procedures.
local procedur e releaseSuccessors(u); // release successors of object u

Figure6.9 Algorithm PO/R-RCV-RESEQ, specification

Algorithm PO/R-RCV-RESEQ:
oper ation processincomingTPDU(TPDU, objNum):
if (received(objNum))
discard TPDU; // this object is a duplicate (perhaps a retransmission)
else
{
data[objNum] = TPDU;
if (in-degree(objNum) == 0)

372

output.enqueue(V); // queue this object for delivery.

}

return;

Figure6.10 PO/R-RCV-RESEQ, operation processlncomingTPDU()

operation getNextTSDU() returns TSDU:
local variable TPDU pointer tpdu;
if (count == n) return nil; // all objects have been delivered
wait (not output.empty());// wait until something is added to output queue.
tpdu = output.dequeue;

releaseSuccessor § tpdu.objnum ;
// remove this line to provide explicit release

return encapsulated TSDU from inside tpdu

Figure6.11 PO/R-RCV-RESEQ, operation getNextTPDU()

oper ation isAnythingDeliverable() returns boolean:
return (count == nor not output.empty());

Figure6.12 PO/R-RCV-RESEQ, operation isAnythingDeliverable()

local procedur e releaseSuccessors (u):
foreach vin adj-list[u] // (u,v)is an edge in G
{
decrement in-degree[V]; // logically, removes (u,v) from G;
if (in-degreelv] == 0 and received[V]) // v is now deliverable
output.enqueue(V);

373

Figure6.13 PO/R-RCV-RESEQ, procedur e releaseSuccessors()

6.6 Implementingthe PR semantics of POCv2
Modifying Algorithm PO/R-RCV-RESEQ to implement the PR reliability
class of POCv2 presents a particularly interesting challenge. Recall that the semantics

of U and PR objects in POCv2 allow the application to say about a particular object:

* AnobjectinclassU or class PR is useful but not essential, and the
delivery of other objects (regardless of their reliability class)
should not be delayed by its absence.

* A class U object should never be retransmitted.

* A class PR object isimportant enough that it should be
retransmitted if extratimeis available.

To implement these semantics, any time the application invokes the transport service's
Read() operation, if thereisno data currently deliverable, the transport layer must be
ableto efficiently answer the question: “Is there some object x that would become
deliverable if anon-empty set of undelivered PR and/or U objects were declared |ost?’
If the answer is yes, then we say that object x is waiting, and that the undelivered U
and PR predecessors of x are loss candidates. The remainder of this section presents
formal definitions for these notions; these definitions are used in Sections 6.7 and 6.8

to develop agorithms for PO/PR service.

374

Definition 6.6.1: An object x isresolved if either:
X hasbeen ddlivered and its successors have been released, or

» X hasbeen declared lost and its successors have been rel eased.

(Object xisunresolved if it isnot resolved.) [

The terms resolved and unresolved allow usto avoid the awkward phrase
“delivered or declared lost”. The term resolved also encapsulates the
releaseSuccessors() operation together with that of delivering an object or declaring it
lost; this encapsulation will be particularly useful when moving from the basic
algorithm without explicit release to the more advanced algorithm that incorporates
explicit release.

The semantics of POCv2 require that the receiver does not declare

anything lost until both of the following are true:
(1) theserviceuser iscurrently issuing aread request,

(2) nothing is currently deliverable, but something would become
deliverable if one or more objects were declared | ost.

These two conditions motivate the definition of a waiting object:
Definition 6.6.2: An object x iswaiting if and only if all of the following are true:
(1) xisbuffered
(2) xhasat least one unresolved immediate predecessor, and
(3 xhasno unresolved reliable proper predecessors. [
The concept of awaiting object is useful because the presence of one or more waiting
objects triggers the POCv2 receiver's getNextTSDU() operation to declare objects | ost.

However, it is not enough to simply define the concept of awaiting object; we also

375

require an efficient algorithm to determine which objects are waiting at any point in
time.

To accomplish this, one suggestion would be to maintain in each object x,
acount of the number of unresolved reliable predecessors of object x. Thiswould
allow usto evaluate condition (3) of the definition of waiting in constant time.

Conditions (1) and (2) can already be evaluated in constant time:

e Condition (1) requires a per-object boolean variable called
buffered(i) to indicate whether or not the object is buffered. This
boolean variableisinitialized to false during the init(G) operation,
and is modified whenever an object is placed in or removed from
the buffer.

e Condition (2) requires usto check the in-degree of the object. The
in-degree(i) variableisinitialized from the service profile, and is
decremented each time a covered object releases its successors.

Thus both the evaluation of conditions (1) and (2), and the maintenance of the
necessary state (the variables buffered(i) and in-degree(i)) requires only constant time
per protocol operation.

Being able to evaluate all three conditions in constant time alows usto
maintain alist of all objects that meet the three conditions by simply checking al three
conditions whenever any operation is performed on an object that could change any of
the three conditions. Since the previous agorithm aready keeps the state necessary to
check conditions (1) and (2) in constant time, the only additional processing needed is
the maintenance in each object of the number of unresolved reliable predecessors.

However, keeping track of the number of unresolved reliable predecessors
is more information than we need, and would likely require too much work. Setting
aside for the moment the issue of how such avaue would beinitialized, consider just

the problem of maintaining the value. Suppose that the partial order is an antichain of

376

n/2 reliable objects followed by a chain of n/2 unreliable objects. Each time areliable
object is resolved, this action could affect the number of unresolved reliable
predecessors of ©(n) objects, and there are ©(n) such reliable objects. Therefore this
example will require O(n?) processing (which is especially poignant, sincein this
gpecial case, O(n+e) [1O(n).) However, aswe explain below, we can do better.

What we would prefer is amethod that allows us to keep track of just
enough information to determine in constant time whether an object meets condition
(3) of the definition of waiting, and we would like to be able to determine this with
processing that adds no more than O(n+€) to our running time for processing an entire
period of n objects. Evenif thistimeis distributed unevenly among the operations, if
we can bound the total time, we can use an amortized analysis to argue that the total
running timeis not increased. It would also be particularly convenient if the
expensive operations did not take place during the routine that handles incoming
packets. The real-time performance of the incoming packet processing iscrucial, since
slow processing can lead to overflows in the incoming packet queue, and consequently
to packet loss.

A key observation is that condition (3) of the definition of waiting requires
only abinary decision: either the number of unresolved reliable predecessors of an
object x is greater than zero, or itisnot. One way to determine thisis to keep track of
how many of the immediate predecessors of x (also known as the covered objects of x)
have unresolved reliable predecessors. If none of the immediate predecessors of object
x have unresolved reliable predecessors, then by a simple argument (made formally in
Theorem 6.6.5 below), neither does object x. This observation motivates the

following definitions:

377

Definition 6.6.3: COURPS(y) isthe set of Covered Objects with Unresolved Reliable

Predecessors, and consists of all objects x such that

 Xiscoveredbyy (i.e,ycoversx, or equivaently, xisan
immediate predecessor of y; see definition of coversin Chapter 2)
and,

* xhasat least one reliable predecessor that is unresolved. (Note
that this predecessor need not be a proper predecessor. Just asthe
notions of ancestor and descendent are often treated as reflexive
binary relations over the nodes in atree, with node x being both an
“ancestor” and a“ descendant” of itself, the predecessor relation is
also defined asreflexive. Anelement y of apartial order PO isa

predecessor of x if and only if y <=xw.r.t PO. Thusif x has
reliability class R, it may be considered a reliable predecessor of
itself.) O

Definition 6.6.4: numCOURPS(y) = |[COURPS(y)|, that is, the number of objects
covered by y that have at least one unresolved reliable predecessor. [

The advantage of tracking numCOURPS(X) rather than the number of
unresolved reliable predecessors is this: tracking numCOURPS(X) requires the
algorithm to keep only local information in each node, which isless expensive than
maintaining global information in each node. Essentially, the algorithm exploits the
trangitivity of the partia order to save computation cost.

The following Theorem about numCOURPs will be useful, since it shows
that the predicate (humCOURPS(x) == 0) is equivalent to one part of the definition of a
waiting object (Definition 6.6.2).

Theorem 6.6.5: For any object x:
(NnumCOURPs(xX) == 0) « (x has no unresolved reliable proper predecessors)
Proof: (O, by contradiction.) Let a be an unresolved reliable proper predecessor of

X, and let coveredBYy(X) be the set of all objects covered by x (X's immediate

378

proper predecessors). Since object a is a proper predecessor of x, it must be a
predecessor (not necessarily proper) of some element w in the set coveredBy(X).
However, thiswould imply that w is a covered object of x with an unreleased

reliable predecessor, namely a, contradicting the assumption that numCOURPS(x)

(O) (By contradiction) Suppose that x has no unresolved reliable proper predecessors,
but that, nevertheless, numCOURPS(x) > 0. Thiswould imply that there exists
some w [coveredBy(x) such that w has an unresolved reliable predecessor.
However, since w < X, any unresolved reliable predecessor of w would necessarily
be an unresolved reliable proper predecessor of x, contradicting our premise.
Therefore, no such w exists, and consequently (numCOURPSs(x) == 0). [

In the case where the POCv2 receiver has no deliverable data, but has at
least one waiting item that could be delivered if its|oseable predecessors were
declared lost, the receiver will need an algorithm to actually find all of these
unresolved unreliable predecessors. Furthermore, to preserve the partial order, these
objects will need to be resolved in some linear extension of that partial order, which
will require atopological sort. Therefore, the discussion of POCv2-style partia
reliability in Section 6.7 includes an algorithm to find these unresolved unreliable
predecessors and resolve them in linear extension order. The following definition is
useful in the discussion of that algorithm:

Definition 6.6.6: Given that y isawaiting object, the set L(y) consistsof al of y's
undelivered unreliable predecessors. The elements of L(y) are referred to asloss

candidates. [

379

The capital letter “L” in the notation L(y) stands for “loss candidates’, but
it can also serve as areminder that al objectsin the set L(y) are loseable objects
(objects with reliability class U or PR); indeed, these are exactly the set of objects that
must be resolved before y may be delivered. It is useful to note, however, that not all
of the objectsin L(y) are necessarily onesthat will be declared logt; it is possible
within the constraints of the definition that some or perhaps even all of the elements of
L(y) may have actually arrived, and will be delivered rather than being declared lost.

With this framework in place, we can now proceed to the devel opment of

algorithms for the PO/PR receiver

6.7 PO/PR-DEL-BASIC: Basic POCv2 ddlivery (no stream, no explicit release)
If the PR semantics of POCv2 are to be feasible, we need an agorithm

that can either:

(1) determinethat no waiting objects currently exist, or

(2) identify at least one waiting object x, and the set of loss
candidate objects L(x) that must be resolved before that object x
can be delivered.

Furthermore, we need to be able to invoke this algorithm efficiently at any time the
application performsaRead() operation on an empty input queue. Our strategy isto
do enough bookkeeping with every packet arrival event, delivery event, and release
successors event, such that the total running timeis still O(n+e) for the processing of
an entire period of objects.

In this section, we develop and present a basic agorithm for PO/PR

delivery (PO/PR-DEL-BASIC) that follows the PR semantics of POCv2. The PO/PR-

380

DEL-BASIC agorithm provides the reader with a clear explanation of the extra
processing necessary to support the POCv2 PR semantics without the clutter
introduced by supporting explicit release and the stream abstraction. PO/PR-DEL -
BASIC then serves as the basis for Algorithm PO/PR-DEL-FULL, which implements
the full specification of POCv2, including the explicit release mechanism and stream

abstractions

Overview of Section 6.7

Section 6.7.1 devel ops the PO/PR-DEL-BASIC algorithm by presenting
pseudocode for the basic operations and local procedures. In each case, we take the
corresponding operations from the PO/R agorithm PO/R-RCV-RESEQ and explain
what changes are necessary to incorporate the U and PR classes of POCv2.
Section 6.7.2 then provides proofs of correctness and running time for this
pseudocode, and elaborates some of the details omitted in the pseudocode version.
Section 6.7.3 provides a comparison and contrast between the PO/R-RCV-RESEQ and
PO/PR-DEL-BASIC agorithms. Section 6.7.4 concludes with a summary of the main
points related to the PO/PR-DEL-BASIC algorithm.

381

6.7.1 Extendingthe PO/R-RCV-RESEQ algorithm to incorporate PR

We begin our presentation of PO/PR-DEL-BASIC with an outline of the
basic operations and local procedures (Figures 6.14 through 6.21).

Comparing Figure 6.14 with Figure 6.9, we see that the basic operationsin
PO/PR-DEL-BASIC are exactly the same as those in PO/R-RCV-RESEQ. Weretain
the local procedure releaseSuccessors() (Figure 6.16), and in addition, we have added
two new local procedures that compute the numCOURPs and L(x) values defined
previousy (Section 6.6). We now show how the pseudocode for each of these four
operations is extended to incorporate partial reliability.

Compare the implementation of the isAnythingDeliverable() operation for
the PO/R-RCV-RESEQ algorithm (Figure 6.12) with the implementation of the
isAnythingDeliverable operation for PO/PR-DEL-BASIC shown in Figure 6.15. For
PO/R service, thisalgorithm is O(1), and trivial to implement. However, in PO/PR,
the processing is more complex. Figure 6.15 shows a partially specified pseudocode
for isAnythingDeliverable()—partially specified, in the sense that at this stage, the
pseudocode does not explain how to compute the value of the boolean expressionsin
the second and third if-tests; later sections explain how this can be done in constant
time.

Figure 6.16 provides an outline of the pseudocode for the getNextTSDU()
operation for PO/PR service. If we compare this pseudocode to that of the
getNextTSDU() operation for PO/R service, we first note that the if-block following
the wait statement is exactly equivaent to the implementation of the getNextTSDU()
operation for PO/R service. Therefore, it isthefirst else-block that is of interest. In
Section 6.7.2, we will prove that whenever we reach this block, there will always be at

least one waiting item, and that we can find one of these waiting itemsin O(1) time

382

(given some prior O(n+e) processing; this prior processing gets amortized in with the
O(n+e) processing of Algorithm PO/R-RCV-RESEQ). We will then show how the
procedure fill Deliver Or Declar el ostQueueWithSortedL Set(y) can find al the loseable
items that need to be declared lost (or delivered, if by chance they arrivein time) so
that the waiting item becomes deliverable. This procedure not only finds these items,
but also topologically sorts them, and places them into a queue called the
deliverOrDeclarelLost queue. We will show that all of the processing that takes place
in this procedure over the lifetime of the connection cannot exceed O(n+e), by a
simple accounting argument that no node or edge can be processed by this algorithm
more than once. We will also show that once this queue has been constructed for any
given waiting item, we can march through this queue declaring items lost until the
waiting item comes to the front of the queue, at which point it can be delivered as the
next TSDU.

The processincomingTSDU() operation is virtually unchanged; the only
difference is that we may have to remove an item from the deliver OrDeclarelost
gueueif it becomes deliverable whileit is sitting in that queue. (Note that because of
this processing, the deliverOrDeclarelost queueis not strictly a queue, since a
deliverable item that is removed from the deliver Or Declarelost queue by the
processincomingTPDU() procedure may in fact be found somewhere other than the
head of this queue.)

Finally, we turn to the init(G) operation. We did not show pseudocode for
this operation in the case of the PO/R-RCV-RESEQ agorithm (6.5.1) because it was
trivial to implement; however for the PO/PR-DEL-BASIC agorithm, thereisan

additional step: the updating of the numsCOURPs values for each node. This updating

383

is done by atruncated DFS operation called updateNumCOURPsof Successor Nodes(x)
that starts from each element that has no predecessorsin the graph, and stops when a
reliable element is encountered, or an element is encountered that already has
nNUMCOURPs==0. The DFSisresumed each time areliable node is delivered; in this
manner, over the course of the algorithm, each node's numCOURPs is updated, and
each edge in the graph istraversed at most once. Section 6.7.2 will explore further
how this processing works, and will prove that the total running time for this

processing does not exceed O(n+e) over the course of the algorithm.

384

Algorithm PO/PR-DELBASIC:
Data Structures:
int: n /[number of elements in PO
int: count /I number of TSDUs delivered so far
boolean: arrived[i] //has TSDU [i] arrived yet? Initialized to false
boolean: resolved[i] //has TSDU [i] been resolved yet? Initialized to false
enum: color[i]: {white, gray, black} /l marks nodes in DFS
TPDU pointer:
data[i] // pointer to data; initialized to nil
int: in-degreefi] // current in-degree of vertex [i]
list of vertices: adj-list[i] // list of outgoing edges from vertex [i]
list of vertices: trpot-adj-list[i] // adjacency list in transpose of partial order
gueue of vertices: output // queue of vertices with in-degree 0.
list of vertices: deliverOrDeclarelost /I loss candidates to be resolved

Operations:
oper ation init(G); /[initialize values from graph G.
oper ation processlncomingTPDU(TPDU, objnum); // arrival from network
oper ation getNextTSDU() returns TSDU; // returns next TSDU in PO
/I blocks until one can be delivered; returns nil on EOF
oper ation isAnythingDeliverable() returns boolean;
Il true if something can be delivered, or if we
I have reached EOF. Signifies that a call to
Il getNextTSDU() will not block if called.
Local Procedures:
local procedurereleaseSuccessors (u); // release successors of object u
local procedur e updateNumCOU RPsofSuccessor Nodes(X);
I called whenever we deliver a reliable object; this procedure and its
Il recursive calls on loseable successors help to find waiting objects
local procedur e fillDeliver Or Declar el ostQueueWithSortedL Set (X);
I called on a waiting object to find the set L(x); recursive calls
/] constitute a DFS of the transpose of the PO, which is a topological sort.

Figure6.14 Algorithm PO/PR-DEL-BASIC, specification

oper ation isAnythingDeliverable() returns boolean:
{

if (not output.empty() or count == n) return (true);
elseif (there are no buffered items)

385

{return false} // there’s no data at all

elseif (there exist no waiting items) // see defn 6.6.2; thm 6.7.1
{return false} // there’s data, but each object is waiting on a least one
I reliable predecessor, so declaring things lost won't help

else{return true} // there is at least one item we could deliver if we declared
Il'its predecessors lost; see theorem 6.7.8

Figure6.15 PO/PR-DEL-BASIC, operation isAnythingDeliverable()

operation getNextTSDU() returns TSDU:
local variable TPDU pointer tpdu;
if (count == n) return nil; // all objects have been delivered
wait(isAnythingDeliverable);
/1'if false, sleep; recheck condition after each processincomingTPDU() call;
Il'in practice, the sleep can be avoided by never calling getNextTSDU()
Il without first checking isAnythingDeliverable().
if (not output.isEmpty())
{
tpdu = output.dequeue;
rel easeSuccessor s(tpdu.objnumy;
return encapsulated TSDU from inside tpdu

else// deliver a waiting item (after possibly declaring some items lost)

{
if (deliverOrDeclarelost.isEmpty())

{
choosey = an arbitrary waiting item // see Thm. 6.7.9
fillDeliver Or Declarel ostQueueWithSortedL Set(y);
Il find the set L(y), consisting of all of y's undelivered unreliable
Il predecessors, and topologically sort them according to the
Il partial order, and place these items on the
Il deliverOrDeclareLost queue.

}

while (true)

{

if (not output.isEmpty()) // if a waiting object become deliverable
{

X = output.remove;

releaseSuccessor s(x.objnum);

return encapsulated TSDU from inside x

386

}

else

x = deliver OrDeclareLost.remove();
declarelLost(x);
rel easeSuccessor s(x.objnum);

}

assert(false); // by theorem 6.7.9, we should never reach this statement

Figure6.16 PO/PR-DEL-BASIC, operation getNextTSDU()

operation processincomingTPDU(TPDU, objNum):
if (received(objNum))
discard TPDU; // this object is a duplicate (perhaps a retransmission)
datalobjNum] = TPDU;
if (in-degree(objNum) == 0)

{
if (objNumisin the deliverOrDeclarelLost queue)
{
deliver OrDeclarel ost.removeByObj Num(objnum);
}
Il because of the preceding line, deliverOrDeclareLost is not strictly a
Il queue
output.enqueue(objNum); // queue this object for delivery.
}
return;

Figure6.17 PO/PR-DEL-BASIC, operation processlncomingTPDU()

operation init(G):
foreach (node xin G)

387

initialize numCOURPS(X) to in-degree(X);
Il G' is initially a copy of G
initialize color(x) to white; // used in DFS algorithm; see Fig. 6.21
1
foreach (node x that is unreliable, and has numCOURPS(x)= = 0)
{
updateNumCOU RPsofSuccessor Nodes(X);

Il logically, remove x from the graph G

}

foreach (node xin G)

{
traverse X' s adjacency list, constructing a corresponding
adjacency list trpot-adj-list(y) for every y in the transpose of G,
i.e, TRPO'.

}

return;

Figure6.18 PO/PR-DEL-BASIC, operation init()

local procedur e updateNumCOURPsofSuccessor Nodes(x):
foreach (y in successors(x))
{
decrement numCOURPS(Y)
if (numCOURPSs(y) ==0and yisnot reliable)
updateNumCOURPsofSuccessor Nodes(y);

}

return;

Figure6.19 PO/PR-DEL-BASIC, updateNumCOURPsofSuccessor Nodes()

388

local procedur e releaseSuccessors (u):
foreach vin adj-list[u] // (u,v)is an edge in G

{
decrement in-degree[V]; // logically, removes (u,v) from G;
if (in-degreelv] == 0 and received[V]) // v is now deliverable
{
if (object objNumisin the deliverOrDeclarelost queue)
{
deliver OrDeclar el ost.removeByObj Num(objnum);
} 1/ deliverOrDeclareLost is not strictly a queue
output.enqueue(V);
}
if (object uisreliable)
{
decrement numCOURPS(V); // u was a covered object with an
I unresolved reliable (not proper) predecessor.
if (numCOURPY[V] == 0)
updateNumCOU RPsofSuccessor Nodes(v);
Il propagate the effect
}
}

Figure6.20 PO/PR-DEL-BASIC, procedure releaseSuccessors()

local procedur e fill Deliver Or Declar el ostQueueWithSortedL Set (X):

I compare with DFS of CLR, p. 478. Asin CLR’s version, colors indicate

I discovery/finishing times:

Il white=undiscovered, gray=discovered, not finished; black=finished
color[X] = gray; // asin DFS of CLR (p. 478),.

if (in-degree[x]= =0) // can only be true on recursive call; original call is
Il always on a waiting object, which cannot have in-degree= =0.

{

color[x] = black; // finished with x

389

assert (not buffered(x)); // if it were, we shouldn't be here; this routine
/' would not be invoked if a deliverable object existed.

deliver OrDeclarelost.enqueue(X);
return;
}
Il note: the check on in-degree= =0 is not redundant, since we do not
Il actually remove the edges from trpot-adj-list as in-degree is decremented.
foreach v in trpot-adj-list[w]
I/ (v,w) is an edge in G, (w,v) is an edge in G,

{
if (resolved[V])
{continue};
/I resolved elements treated as black, already finished;
elseif (color[v]= =white)
{ fillDeliver Or DeclarelLostQueueWithSortedL Set (V); }
Il finished with v
}

color[w] = black;
deliver Or Declarelost.enqueug(x);
return;

Figure6.21 PO/PR-DEL-BASIC, fillDeliverOrDeclarel ostQueueWithSortedL Set(x)

390

6.7.2 Proofs of correctness, running time for PO/PR-DEL-BASI C pseudocode
Our series of proofsisdivided into two parts. Inthe first part, we
concentrate on the correctness of the isAnythingDeliverable() routine, which is
dependent on the maintenance of the list of waiting items, which in turn depends on
maintai ning the numCOURPSs values for each object. In the second part, we focus on
the running time of the DFS of the TRPOT to compute the L(y) set and the correctness
of the getNextTSDU() operation. We omit formal proofs of the correctness and
running time of the remaining routines, since they are either self-evident, or follow

directly from the remaining material; their inclusion would not shed any extralight.

Proofsrelated to maintaining the numCOURPSs values.

Theorem 6.7.1: The PO/PR receiver can maintain alist of all waiting objects by
adding extra processing to the init(), getNextTSDU(), and
processincomingTPDU() operations of Algorithm PO/R-RCV-RESEQ), without
increasing the total running time of O(n+e) for the processing of an entire period
of n objects.

Proof: We divide the proof into three parts:

(1) Wecaninitialize the correct value of numCOURPS for each
object by adding code to the init() operation.

(2) We can maintain the correct value for numCOURPSs, and
maintain alist of waiting items by adding code to the
getNextTSDU() operation.

(3 Therunning time of the added code is O(n+€) over a sequence
of n getNextTSDU() and n processincomingTPDU() operations.

Part (1) of proof: Our clam isthat after theinitial call to init(G), the numCOURPSs
value for each xis correct. Consider the set min(G) consisting of all elementsin G

that have in-degree O; that is, the minimum elementsin the partial order. By

391

trangitivity, all elements of G contain at least one (not necessarily proper) predecessor
in the set min(G). The operation updateNumCOURPsofSuccessorNodesis called on
every element of min(G), essentially simulating the resolution and removal from G of
all unreliable objects with no unresolved proper predecessors. Let G bethe graph
consisting of G minus al elementsthat are “removed” by the operation
updateNumCOURPsofSuccessorNodes. After the removal of al the unreliable
dementsfrom G that have no reliable predecessors, the in-degree of the remaining
graph (which corresponds to the value of numCOURPS) will indicate only the number
of covered objects of each xin G that were not able to be removed because they have
at least onereliable predecessor. Therefore, after the init(G) operation, the values of
nUMCOURPSs are correct.

Part (2) of proof: Our claim isthat the correctness of the value numCOURPSis
maintained throughout the algorithm. Note that the only action that can change the
value of numCOURPs is the resolution of areliable object. Reliable objects can only
be resolved by delivery, and in this version of the algorithm, each time an object is
delivered, the procedure releaseSuccessors() isimmediately called. For each reliable
object, releaseSuccessors(x) calls updateNumCOURPsof Successor Nodes(x), which
essentially removes element x from the graph G just asin the proof of part (1) above.
Thus the correctness of the numCOURPs value is maintained throughout the course of
the algorithm.

Part (3) of proof: Our claim is that the asymptotic worst-case running time of the
extra processing added by the invocations of updateNumCOURPsofSuccessor Nodes()
in both the init() and releaseSuccessors() operationsis O(n+e). This property follows
immediately from the observation that the updateNumCOURPsofSuccessor Nodes()

392

calls are essentially nothing more than a shadow version of the basic algorithm used
for resequencing and delivering objects. Since this processing is equivalent to the
processing that is done when each object is either delivered or declared lost—
foreshadowing this processing for unreliable objects, and executing in parallel to this
processing for reliable objects—the asymptotic running timeis the same. We can
amortize the extra processing of updateNumCOURPsofSuccessorNodes() by charging
the time consumed to the actual resolution of each object when it is delivered or
declared lost. Therefore, from an amortized sense, the total running time for a period
of n objects with e edges is not increased by the extra processing needed to maintain
the value numCOURPs. .
Lemma 6.7.2: Given the index of any waiting object b, atopological sorting of the set
L(b) can be produced by the reverse finishing times of a DFS of the unresolved
elements of the TRPO

<X1' Xz""’)ﬂl_(b)\—1’b>

where the last element in the topological sorting of L(b) isthe element b itself.

Proof of Lemma 6.7.2: Consider a DFS that follows the TRPOT from element b, but
prunes the DFS search-tree whenever an element is found that has zero unresolved
predecessors. The lemma makes three clams:

(1) that al unresolved predecessors of b will be located by this method,
(2) that the DFS can put them in topologically sorted order, and
(3) that the element b will end up at the end of thelist.

To prove claim (1) by contradiction, assume that some object x isan

unresolved predecessor of b that is not located in the DFS search tree described

393

above. Thisassumption implies that there are two possible cases for object x,

both of which lead to a contradiction:

e Case(i): Object x cannot be reached by traversing the edges of
TRPO' from b to x, which would imply that it cannot be reached
by traversing the edges of TRPO from x to b, contradicting the
assumption that x is a predecessor of b.

e Case(ii): Object x can be reached by traversing the edges of

TRPOT from b to x, but some element y with zero unresolved
predecessors lies on the path between b and x, and consequently,
the DFS search treeis pruned before reaching x. However, if
element y lies on the path in TRPO' from b to X, then x isan
unresolved predecessor of y. Hence, no such y can exist.

With respect to claim (2), it iswell known that atopological sort of a directed
graph can be obtained from the reverse finishing times of a DFS; see for example,
Theorem 23.11 of (Cormen, Leiserson and Rivest, 1990; hereafter referred to as
CLR.) Equivalently, the unreversed finishing times of a DFS of TRPO' will also
give us atopological sort (if v< uin TRPO, thenu< vin TRPOT, thus by
Theorem 23.11 of CLR, finishingTime[Vv]<finishingTime[u] in the DFS.).
Therefore, by adding the nodes in the DFS to alist asthey are finished, the
topological sorting can be computed without additional expense. Claim (3)
follows immediately from the proof of claim (2), since object b would be the last
to be finished in the DFS search tree. [J

Lemma 6.7.3: The procedure fill Deliver Or Declar el ostQueueWithSortedL Set of
Figure 6.21 carries out the topological sort described in Lemma6.7.3.

Proof of Lemma 6.7.3: Followsimmediately from comparison of code with DFS-

VISIT(u) of CLR, p. 478.

394

Lemma 6.7.4: The first element x1 in atopological sorting of L(b)
<x1, Xz""%ub)\—l’b>
is guaranteed to have no unresolved predecessors, and therefore can be resolved
immediately.

Proof of Lemma 6.7.4: The DFS used to construct this sequence bottoms out only
when an element is encountered that has no unresolved predecessors. Therefore,
the first element to finish is guaranteed to have no unresolved predecessors. If it
has no unresolved predecessors, it can be declared lost or delivered
immediately.]

Lemma6.7.5: For each item x; in the topological sorting of L(b), all elements
X L L(X),] #1i, will precede x; in the sequence.

Proof of Lemma 6.7.5: Since L(b) consists of all unresolved predecessors of b, and

since xj U L(b), al elementsx; L1 L(xj) must also bein L(b). If some element

X L L(X),] #1i, then x; precedes; in the partial order. Therefore xj must also

precede x; in any topological sorting based on that partial order. [

Theorem 6.7.6: Let b beawaiting object. The following pseudocode will

correctly resolve all elementsin L(b), ultimately resulting in the delivery of object b:

construct the sequence <x1 xz,---,ﬁub)‘_l,b> asper Lemma6.7.2
for (i=1; i<=|L(b)|; i++)

{resolve (x))};

Proof of Theorem 6.7.6: By Lemma 6.7.4, the first element x; of this topological

sorting can be resolved immediately. By Lemma 6.7.5, al the unresolved predecessors
of each element x; precede element x;; therefore, after each element X; isresolved,

element xj+1 will have no unresolved predecessors. By induction, therefore, we can

395

resolve all elements of L(b) by proceeding through the topological sorting of L(b),
ending with the resolution of object b. Since object b is buffered, this resolution will
consist of the delivery of object b. [

Theorem 6.7.7: The PO/PR receiver pseudocode shown in Figure 6.15 correctly

implements the isAnythingDeliverable() operation.

Proof of Theorem 6.7.7: We will assert that the correctness of the first two if-tests
and their respective return values is self-evident, and focus on the remainder of
the code. If control reaches the third if-test, the algorithm has established that
there is some data that is buffered, but none of that datais currently deliverable.
S0 at this point there are only two cases: either there does or does not exist any
buffered object b that is also waiting.

Case 1: There does exist some such object b that is waiting. The definition of
waiting tells us that object b can be delivered, and Theorem 6.7.6 gives us an
algorithm for accomplishing this. Therefore, we should return true. [

Case 2: If there does not exist some such object b that is waiting then each of the
buffered objects has as |east one reliable predecessor. Thus declaring things lost
would not help in any way, and we should return false; thus the then-clause of the
third if-test is correct.

Theorem 6.7.8 The isAnythingDeliverable() operation can be implemented in constant
time.

Proof of Theorem 6.7.8: Thefirst if-test can be calculated in O(1) time.

The second if-test can be calculated in O(1) time as follows: the PO/PR
receiver maintains a count of how many items are buffered. The counter is

incremented when a TPDU arrives, and decremented when aTSDU is

396

delivered.” If there are no buffered items at all, then the return value of
isAnythingDeliverable() should be false.

The third if-test can be calculated in constant time, by simply checking
whether the list of waiting objectsis empty. Therefore the entire operation can be
implemented in constant time. [J

So far, we have shown that the pseudocode for the
isAnythingDeliverable() operation for the basic PO/PR algorithm (Figure 6.15) is
correct, and that this operation can be performed in constant time. We have also
shown that the processing that was added to the getNextTSDU() operation that keeps
track of the numCOURPs values can be amortized in such a way that we do not exceed

our O(n+e) upper bound for a period.

Proofsrelated to computing the L(y) set viaa DFS of the TRPOT.

We now proceed to the other two operations. First Theorem 6.7.9 shows
that the extra processing added to find the L(y) set of awaiting item does not exceed
O(n+e) per period. Finally, we establish the correctness of the getNextTSDU()
operation by showing that it will always deliver exactly one object per invocation.
Theorem 6.7.9: The total worst-case cost of computing DFS search trees from the

TRPOT is bounded by O(n+e), and can be amortized over the cost of the
getNextTSDU() operations.

Proof of Theorem 6.7.9: It is sufficient to show that the adjacency list of each node

) T) . .
inthe TRPO can never be traversed more than once, since this would limit the

73 Note that TPDUs and TSDUs are in a one-to-one relationship in POCv2, in contrast
with TCP, where thisis not always the case.)

397

total processing to O(n+e), a quantity that can be amortized over the
getNextTSDU() operations. Note that the computation of the DFS search tree
based on the TRPOT isinvoked only when the getNextTSDU() operation is
invoked at atime when some waiting element b must be delivered. When thisis
done, no further calculations of DFS search trees over the TRPOT can be made
until after the queue deliverOrDeclarelost is empty, which ensures that all the
elements of L(b) have already been resolved (i.e., the predecessors of b, including
bitself). Thus, if any future DFS of the TRPOT visits some element xin L(b),
element x is guaranteed to be already resolved, and its adjacency list will not be
traversed. U

As aside-comment on Theorem 6.7.9, we note that unlessthereisa
getNextTSDU() operation at atime when no datais deliverable, the computation of
DFStrees over the TRPOT never takes place at al, so we are truly computing a worst-
case running time.

Note that the object we end up delivering first may or may not be the one
that we chose at the step “choose y = an arbitrary waiting item”. Suppose object x and
object y are both objects with zero unresolved reliable predecessors, and x < y in the
PO. If y arrives before x, then y may be the arbitrary waiting item that is chosen.
Object x will be part of the sorted L(y) set, notwithstanding the fact that it has arrived.
Since objects are then resolved in the order in which they were topologically sorted,
object x will get delivered before object y, and the getNextTSDU() operation will
return before object y isdelivered. On a subsequent invocation of the getNextTSDU()
operation, if deliverable objects have arrived in the meantime, they will have been

placed on the output queue. Any objects still sitting in the deliver OrDeclarel ost

398

gueue will either have been transferred to the output queue as they arrive, or will just

stay on the deliverOrDeclarelLost queue until the next timethat it is necessary to begin

resolving loseable items. In any case, as Theorem 6.7.10shows, some object x will
aways be delivered. This object x will be one that was waiting at the time when the set

L(y) was computed. Before that object x is delivered, al of X's predecessors will have

been previoudly either delivered or declared lost.

Theorem 6.7.10: The operation getNextTSDU() will always deliver at least one object;
that is, after the “wait” for isAnythingDeliverable to be true, either (1) there will
be adeliverable object aready on the output queue, or (2) there will be awaiting
object y, and some object x will subsequently be delivered. As aconsequence, the
final “assert(false)” statement of the pseudocode in Figure 6.2 should never be
reached.

Proof of Theorem 6.7.10: Theorem 6.7.6 aready established the basic soundness of
the approach of computing L(y) and resolving all elementsinthat list. All that is
needed to establish the claims in this theorem is to fill in the details.

We wait until the isAnythingDeliverable() routine returnstrue. Inspection
of thisroutine indicates that once it returns tr ue, there will either be a buffered or
awaiting item. If thereis abuffered item, we deliver it, so the only part of the
claim still in question is whether it is possible, when the code enters the
“while (true)” loop, for the “assert(false)” statement to be reached before some
object x can be delivered. Since all items on thislist are unreliable, and can be
declared lost if necessary, the only way that we can reach the “ assert(false)”
statement isif, when the loop is entered, no element on the deliver OrDeclarelost

gueue is a buffered object. If there were some buffered object x, on the

399

deliverOrDeclarelLost list, by Lemma 6.7.5, at the time that x was placed on the
list, all elements of the set L(x) would have been placed on the list in a position
preceding x. Asaresult, any unresolved predecessors of x would have been
resolved before x reached the front of the list, and x would have been transferred
to the output queue, and delivered.

However, by Theorem 6.7.6, the elements placed on thislist constitute a
topological sorting of al the predecessors of some buffered object, and then the
buffered object itself. Therefore, the last element on thislist is always guaranteed
to be a buffered object at the time the initial list is constructed, and until that list is
entirely resolved, no new elements can be placed on that list. 1n addition, by
Theorem 6.7.6, the final element on that list must be the y element from which the
list was constructed, and everything that precedesy on thislist is a predecessor of
y. Theonly way for y to leave the deliverOrDeclarelLost list isif y were
transferred to the output queue (which cannot happen until all of y’'s predecessors
have been resolved) or to reach the front of the list without being so transferred.
Object y cannot reach the front of the list without being transferred to the output
queue, sincey is abuffered object, and if everything in front of y on thelist has
been resolved, y will have in-degree 0. Furthermore, anytime the getNextTSDU()
operation isinvoked, it isimpossible for the deliver OrDeclarelost queue to
contain any of the elements of L(y) unless object y is also sitting in the queue
following these elements.

Therefore, we can never enter the “while (true)” loop under any

circumstance except the one where at least one of y' s predecessors needs to be

400

declared lost before y can be delivered. Under these circumstances, at least one

object (not necessarily y) will aways be delivered before the loop terminates.[]

6.7.3 Comparison/Contrast of PO/PR-DEL-BASIC with PO/R-RCV-RESEQ

It isinstructive to compare and contrast the PO/PR-DEL-BASIC agorithm
with the PO/R-RCV-RESEQ algorithm from which it was derived, both in terms of
how the algorithm works, and in terms of running time—both actual and amortized
worst cases for each operation.

Both algorithms keep track of when objects should be placed on the output
gueue by tracking when their in-degree changes and when they arrive. In addition, the
algorithms for the PO/PR receiver also track when objects meet the definition of
waiting by tracking the numCOURRPs of each object along with each object’ s arrival.
Both of these algorithms essentially constitute an execution of the DAGITS algorithm
for topologically sorting the partial order: in the first case, we are actually resolving
each object x by delivering or declaring x lost, and releasing X’ s successors. In the
second case, we maintain a shadow of the original graph G, whichwecall G'. The
reliable objectsin G' areresolved at the same time they are resolved in G, while each
unreliable object in G' is resolved as soon asit has no unresolved reliable
predecessors.

The extra processing necessary to maintain the shadow graph G' actually
gets scheduled at two times: in the init(G) routine (which is already O(n+e), not
amortized) and in the releaseSuccessors() procedure. For the PO/R-RCV-RESEQ
algorithm, the releaseSuccessors(x) routine is O(d), where d is the out-degree of xin G

(i.e,, the TRPO). Since each successor is released only once, we add the processing

401

for each call to releaseSuccessors() together, resulting in atotal of O(n+e) for the
entire processing of a single period.

For PO/PR-DEL-BASIC, agiven releaseSuccessors() operation may
require O(n). Asan example, consider again the PO consisting of an antichain of n/2
reliable objects followed by a chain of n/2 unreliable objects. Each
releaseSuccessors() operation for the reliable objects (except for the last one) will
require only constant time to decrement the numCOURRPs of the first unreliable object,
however the last invocation of releaseSuccessors() on areliable object will take O(n)
time to traverse the chain of the n/2 remaining unreliable objects. However, note that
this processing occurs only once over the course of the algorithm, and the total amount
of processing is still O(n+e). In practice, if multimedia documents are constructed
with amix of reliable and unreliable objects, and the total number of objectsis kept
modest (n<1000), one would not expect an occasional O(n) “hit” such asthe one

described here to be a serious concern.

6.7.4 PO/PR-DEL-BASIC: Section Summary
In this section, we have provided algorithms for the POCv2 receiver that
implement partial order and partial reliability (with the POCv2 PR semantics). These
algorithms accomplish this with a running time of O(n+e) per period (amortized) by
using:
* two paralel instances of the DAGITS algorithm, and

e aninstance of DFS over the transpose of the transitively reduced
precedence graph

Aswith PO/R-RCV-RESEQ, the init() operation requires time O(n+e),

and the isAnythingDeliverable() and processincomingTPDU() operationsrunin

402

constant time (without amortization). Over the course of the algorithm, the
getNextTSDU() operation always invokes releaseSuccessor s(x) for each object in the
partial order; each call to releaseSuccessors(x) is O(d) (not amortized), where d isthe
out-degree of x, and may additionally require O(n) (not amortized) in the worst case
for the updating of the numCOURPs fields of successor objects. However, this
additional processing can be amortized to the previous O(d) running time, or O(n+e)
over the entire period. Each getNextTSDU() operation may also invoke, if needed to
declare predecessors of awaiting object lost, a DFS over the loss-candidates
associated with some waiting object. This DFS processing can aso be amortized over
the O(d) running time of the releaseSuccessors() operations.

Therefore, while in the case of PO/PR receiver processing, individual
releaseSuccessors() or getNextTSDU() operations may require as much as O(n) time,
the total amortized running time of processing a period of n objects with e edges in the
corresponding TRPO is unchanged as compared to the processing time required for the
PO/R-RCV-RESEQ algorithm.

In the next section, we extend the PO/PR-DEL-BASIC algorithm to

incorporate explicit release, and the stream abstraction.

6.8 PO/PR-DEL-FULL: Adding streamsand explicit release to POCv2

POCv2 incorporates three features that, in isolation, are relatively simple
to describe and implement, namely, (1) a particular semantics for partial reliability,
(2) explicit release synchronization, and (3) a stream abstraction for describing the
incorporation of larger objectsinto partial orders. However, the interaction of these

features presents certain problems.

403

Overview of Section 6.8

Section 6.8.1 describes some of the questions that must be resolved in
defining the interactions of these three features, and the definitions adopted for
purposes of the current investigation. Section 6.8.2 describes the main difficulty with
integrating the three features. We then describe two approaches to extending the

algorithm of Section 6.7 to include these three features..

» Section 6.8.3 describes an approach that preserves the computation
efficiency, but requires giving up two desirable properties of the
properties of the POCv2 PR semantics.

» Section 6.8.4 describes an approach that preserves the full POCv2
PR semantics but requires an inefficient brute-force computation.
Determining whether an efficient algorithm exists for the full
POCv2 PR semantics remains an open problem.

Section 6.8.5 concludes Section 6.8 with suggestions for future work, including
possible directions to pursue in finding a more efficient algorithm for implementing

the full POCv2 PR semantics.

6.8.1 Integrating POCv2'sPR classwith explicit release and stream objects
The following questions arise when we consider how to integrate the PR

reliability class with explicit release synchronization and the stream abstraction.

I nteraction of Reliability Classeswith Stream Objects

The first question that arisesis whether all cells of a stream object should
be required to have the same reliability class. It may be useful to alow the various
cells of astream to have different reliability classes. For example, in an MPEG video
stream, it may be useful to send the “1” frames (complete images) with higher

reliability than the “P” and “B” frames that represent deltas from some neighboring “1”

404

frame. However, for purposes of simplicity, in the current work we answer “yes’,
requiring that all cells of aparticular stream object carry the same reliability class, and
defer the complication of multiple classes within a stream object to future work.

Another question that arises is whether POCv2 should enforce an “all or
nothing” semantics for PR stream objects. That is, once a stream object with
reliability class PR has begun to be delivered, should it then be treated as reliable?
We clearly cannot implement such a semantics for stream objects with reliability class
U, since thereis no mechanism for retransmitting lost cells of a stream object with
classU. Therefore we allow each cell to be delivered or declared lost independent of
all other cells, although we will require that the individual cells that comprise a

particular stream object be resolved (delivered or declared lost) in linear order.

I ntegration of stream objectswith explicit release

In the context of explicit release, an object is not resolved until it has been
both delivered and its successors have been released. To clarify this further, consider
the following example:

Suppose that explicit release synchronization is being used to
synchronize the end of an audio object, x, where all of X'scellsare of classPR. The
first half of the cellsfor object x have been given to the audio device, but have not yet
finished playing. An object y follows object x in the partial order and is now waiting;
the remaining cells of object x seem to have been lost or delayed, and the application is
now requesting data.

The question is: should the transport layer declare the remainder of the
cellsof x lost and deliver y, or should the transport layer wait for asignal from the

application that the first half of the cells have been resolved? If we proceed to declare

405

the second half of the cells of x lost and release the successors of X, including y, then
we may deliver y before the cells of x that were delivered have finished playing. This
violates the synchronization semantics of the document, and cannot be allowed.
Therefore, there must be a requirement that within an object, any cells that
were delivered must be explicitly released before successor cells of the same object
can be declared lost. If implemented naively as an explicit release operation per cell,
this could be rather costly in terms of increasing the interaction between the
application and the transport layer, but fortunately, there is an efficient solution aswe

now explain.

Streaming vs. Stalled objects, and the underflow notification

Consider the case of an audio stream where each cell contains 20ms of
audio. Requiring the application to explicitly release each cell might require 50 extra
operations across the TSAP every second, effectively doubling the number of TSAP
operations required for an audio stream.

Instead, we impose alesser burden on the application that desires
synchronization of U or PR stream objects; the application must notify the transport
layer anytime the playout of the stream object underflows. For example, in the case of
an audio object, the object underflows if the queue of data flowing to the audio device
emptiesout. With this extrainformation from the application, we can now make a
determination as to whether a stream object is streaming (i.e. currently the process of
playing out content) or when it is stalled (a stream object that is ready to play, but is
waiting for cellsto arrive.)’4 The synchronization relationships can then be preserved

with the following rule:

74 Formal definitions of streaming and stalled appear in Section 6.8.3

406

* unreliable cells or objects that have predecessorsin the streaming
state may not be declared lost,

* unreliable or partialy reliable cells from a stalled object can be
declared lost.

Essentially, an underflow notification serves as an explicit release for all
outstanding cells. The underflow notification provides the transport layer with
sufficient information to preserve the synchronization relationships, becauseit is only
at underflow points that an explicit release is needed at a finer granularity than that of
complete objectsin the partial order. A cell-level explicit release serves only to
determine when to declare successor cells within a stream object lost. Until an
underflow actually occurs, thereis still the hope that the next undelivered cell in the
stream may yet show up and be delivered, preventing—or at least, postponing—an

impending underflow.

What running time can be achieved when incorporating all three featur es?

First, we should recognize that when incorporating the stream abstraction,
it is necessary to add the number of cells, ¢, to our notation. Therefore, instead of
seeking an O(n+e) running time, we may seek an O(n+e+c) running time. Whether or
not this goal is achievableis currently an open problem. In this section, we will
describe both the running time that is currently acheivable, as well asthe barriersto
reaching the goal of O(n+etc).

First, we note that re-sequencing the cells within a stream object is
equivalent to the problem of reordering TCP segments. For reasons that were
explained earlier in Section 6.1.3, asimple linear search of the out-of-sequence
packets is the preferred technique to solve this problem; clearly this technique cannot

guarantee an O(n+e+c) running time.

407

However, since our focusisthe analysis of the processing that pertains
directly to the implementation of partial reliability, partial order and explicit release,
we will account for the resequencing of cells within a stream object separately from

the remainder of the processing; if we do this, O(n+e+c) is at least a conceivable goal.

6.8.2 Themain difficulty: explicit release of streaming objects

The problem that arisesis with streaming objects. The correctness of the
O(n+e) algorithm presented in Section 6.7 depends on the following property: if an
object is determined to be waiting, meaning that al of its unresolved predecessors are
unreliable, then if al of the unresolved predecessors of that object are visited in the
order of atopological sort (determined by a DFS of the TRPOT), then some object will
become deliverable. However, when we admit the possibility that one or more of
these unresolved predecessors may include a streaming object, then this property is
violated. The next two sections describe two options to resolve this problem.

The first option, described in Section 6.8.3 is to relax two requirements of

the POCv2 PR semantics, namely

(1) that an object should never be declared lost unless such
declaration will result in the immediate delivery of some data

(2) thatif an object iswaiting and has no unconstrained
predecessors, then it will always be deliverable.

We considered this approach undesirable, however it has the advantage that when this
approach is taken, the running time for the algorithms presented in Section 6.7 is

preserved.

408

The second option, described in Section 6.8.3, isto maintain al of the
requirements of the POCv2 PR semantics, regardless of the computation time

required. Implementing this option efficiently is currently an open problem.

6.8.3 An efficient algorithm that sacrificestwo desirable properties

In this section, we sketch an algorithm called PO/PR-DEL-OPTIONL,
which is amodification of the PO/PR-DEL-BASIC algorithm from Section 6.7. In
this agorithm, we add linear-time resequencing of cells within stream objects (asin
the standard practice for TCP), and additional constant time operations per protocol
operation. Therefore, the algorithm can be considered efficient. However, we also
sacrifice two desirable properties of the POCv2 PR reliability semantics. In this
section, we first sketch the algorithm, and then explain two properties of the definition

of the POCv2 PR class that are violated.

Sketch of algorithm PO/PR-DEL-OPTION1

To develop Algorithm PO/PR-DEL-OPTION1, we start with PO/PR-
DEL-BASIC agorithm from Section 6.7. Certain modifications are necessary to
implement the stream abstraction, and to provide the necessary bookkeeping so that
the current stream state of each object can be determined in constant time. These
modifications are straightforward, and they add little insight; we therefore omit

them.’> Instead, we focus on three specific modifications that illustrate the problems

7> The actual code for the POCv2 implementation used in the ReMDoR experiments
contains the modifications for explicit release and the stream abstraction (but not the
PR semantics) and is available on-line. Therefore, we concentrate only on the PR
semanticsin this section.

409

involved in modifying the PO/PR-DEL-BASIC agorithm to provide the features
necessary for the full POCv2 specification.

The first modification is to add an operation reportUnder flow(objNum)
that supports explicit release synchronization for unreliable and partially reliable
stream objects. Let x be the object referred to by the integer objNum. The application
may—and in some cases, must—call this operation any time that object x is starving
for additional cells; that is, all cells that the application has read from object x have
been completely presented. This operation signals the POCv2 receiver that no
synchronization relationships would be violated by declaring lost the next cell (or
chain of consecutive cells) from this stream object.

Whether the application may invoke the reportUnder flow(obj Num)
operation or must invoke this operation depends on the reliability class of the object x

referred to by objNum:

* If object xisunreliable, then invocation of this operation is
necessary anytime object x contains more than one cell, and the
network islossy. Thisinvocation is necessary because unreliable
objects are not retransmitted, and if a cell other than thefirst cell is
lost, without a call to this operation, the transport protocol will
deadlock waiting for an object that will never arrive.

* If object x is partially-reliable, than this operation is optional;
calling it allows the PO receiver more flexibility in trading off
reliability for delay.

» If object xisreliable, than this operation is meaningless, and is
ignored

The next two modifications take place in the implementation of the

getNextTSDU() operation. We require the following definition:

410

Definition 6.8.1: The function currentObjectState(x) maps each object x in the
current period at the PO Receiver to one of the following stream
states:{ unstarted, streaming, stalled, ready, resolved}. The stream state of each

object x is defined by the finite state automata shown in Figure 6.22.

hen (unresolvedPredecessors == 0) &&
start (nextCellToDeliver) is not available

\ when (x reaches front of
fhen cellArrival(nextCellToDeliver); deliverOrDeclareLost queue)
&& cellQueue.isEmpty()
{ declareLost (remaining cells of x);
releaseSuccessors(x); }

when (x reaches front of deliverOrDeclareLost queue
&& not (cellQueue.isEmpty()))
{ declareLost(all cells between
nextCellToDeliver and cellQueue.front.cellNum - 1);
assert(nextCellToDeliver is available); }

when (reportUnderflow(x)) &&

(nextCellToDeliver is available); when (reortunderflow(x)) &&

(nextCellToDeliver is not available);

when deliver ‘ esolved ‘
(nextCellToDeliver); \

when releaseSuccessors(x);

when (unresolvedPredecessors == 0) &&

(nextCellToDeliver is available)

when deliver(nextCellToDeliver);

Figure6.22 Finite State Automata for stream states
For sake of space, we make two claims about the Finite State Automatain

Figure 6.22 without formal argument. Claim 1: We can add bookkeeping operations

to the pseudocode for the algorithm in Section 6.7 to keep track of the current stream

411

state of each object. Claim 2: This extra bookkeeping does not increase the asymptotic
running time per operation beyond the analysis presented in Section 6.7.

We can now describe the remaining two modifications, both of which take
place in the getNextTSDU() operation as shown in Figure 6.23. The bulletsin this
figure indicate the lines that have been modified as compared to the previous version
from Figure 6.2. To implement explicit release, we remove the line of code that
implicitly released the succesors of each object after it was delivered, and instead
make the releaseSuccessors() and reportUnderflow() operations directly available to
the transport service user (the receiving application).

Finally, we must prevent cells from being delivered or declared lost
whenever predecessor cells from the same object are currently streaming. Recall from
Section 6.7 that the deliver OrDeclarelost queue contains alist of topologically sorted
objects, with the property that one or more of the objectsin thelist (at least, the fina
object) has deliverable data. The second section of added code in Figure 6.23
specifiesthat if an object comes to the front of this queue whileit is streaming, then
the PO receiver must suspend declaring objects lost until that object is no longer
streaming.

This latter modification prevents synchronization violations that would
result if streaming objects could be declared lost while still streaming. Furthermore,
this modification will not cause a deadlock provided that either the application
eventually either reports an underflow, or releases the successors of the object; nor will
it prevent or unnecessarily delay the delivery of any objects that do arrive. However,
this algorithm fails to implement two desirable properties of an algorithm for the

POCV2 PR class, aswe explain below.

412

operation getNextTSDU() returns TSDU:

ﬁ'his section of code exactly asin Figure 6.2]

while (true)
if (not output.isEmpty()) // if a waiting object become deliverable

{
X = output.remove;
. // Note: do not release successors here;
Il wait for explicit release
return encapsulated TSDU from inside x

}
else
{
] x = deliver OrDeclarelLost.peek();
] if (xis streaming)
" return null;
x = deliver OrDeclarelLost.remove();
declarelLost(x);
rel easeSuccessor s(x.objnum);
}

assert(false); // by theorem 6.7.9, we should never reach this statement

Figure6.23 Modified psuedocode for getNextTSDU(), option 1
The « symbol indicates changes from the psuedocode presented in Section 6.7

Thefirst property we sacrifice: no premature loss declar ations
PO/PR-DEL-OPTIONL violates the requirement that no cell of any object
will be declared lost unless and until this action directly results in the delivery of some
other cell. Asan example, consider the following scenario: unreliable objects x and y
both precede z, which has data available. Object x isaone-cell object, whileyisa
multiple-cell object that is currently streaming. The DFS of the TRPOT that locates
the predecessors of z places x on the deliverOrDeclarelLost queue in an earlier position

thany. Asaresult, x isdeclared lost beforey is determined to be streaming. Object x

413

has now been “sacrificed” earlier than was necessary. It is possible that x could arrive
beforey is finished streaming; in this case, x would have been able to be delivered if
only the PO/PR receiver had not been hasty to declareit lost. It isundesirable for an
algorithm providing PR delivery to declare an object lost unless that declaration results

in a specific tangible benefit, viz., areduction in delay for some other specific object.

The second property we sacrifice: no deliverable data waiting for unreliable data

The second property we sacrifice is the one that the delivery of data should
never be delayed by unreliable predecessor data. This property isviolated in the
modified algorithm. Given that the delivery of TSDUs s prevented any time the head
object of the deliverOrDeclarelost queue is streaming, the delivery of a TSDU by the
getNextTSDU() operation can no longer be guaranteed whenever there is waiting data.

To see how the property is violated, first review how the property is shown
to be maintained by the PO/PR-DEL-BASIC algorithm. Theorems 6.7.7 and 6.7.10
proved the correctness of the isAnythingDeliverable() and getNextTSDU() operations,
respectively. The argument isthat if thereis any waiting data, isAnythingDeliverable()
will return true, and if the operation getNextTSDU() isinvoked at atime when
isAnythingDeliverable() would return true, at least one cell will be delivered. The
operation getNextTSDU() chooses an arbitrary waiting item y as the basis for the DFS
of the TRPO' that fills the deliverOrDeclarel ost queue.

In the modified algorithm, this arbitrary choiceisinvalid. Suppose there
are severa waiting objects (here we assume that the definition of “waiting” is not
modified to exclude objects with streaming predecessors.) Partition the waiting
objects according to whether or not each object has a streaming predecessor.

Choosing any of the objects that lacks a streaming predecessor results in the delivery

414

of some cell by the getNextTSDU() operation. However, choosing any of the other objects
may or may not result in delivery of acell. If some predecessor of the chosen object has
deliverable data that ends up in the deliver OrDeclarel ost queue before any and all streaming
predecessors of the chosen object, then a cell is delivered. If not, then the property of “no
deliverable data waiting for unreliable data” has been violated: a waiting object that could

have been delivered exists, yet the getNextTSDU() operation returns with no cell.

6.8.4 A brute-forcealgorithm that implementsthe full POCv2 PR semantics
To develop an agorithm with the desired properties, we face severd

challenges.

* First, we must ensure that the isAnythingDeliverable() operation
can distinguish between awaiting object that has a streaming
predecessor, and one that does not.

* Second, we need to ensure that the getNextTSDU() operation
returns only the latter kind of object as the basis for the DFS over

the TRPO'.

e Third, and perhaps most challenging, we must deal with the fact
that the stream state of an object is dynamic, and can therefore
change between invocations of getNextTSDU().

To deal with thisthird challenge, we would like to ensure that the
deliverOrDeclarelost queue is completely emptied after each call to getNextTSDU(),
so that we can treat the stream state as static when reasoning about the contents of this
gueue. To ensure that the queue is emptied, we require that no waiting object with a
waiting predecessor should be chosen as the basis of the DFS over the TRPOT—
instead, the waiting predecessor should be chosen. If the chosen waiting object y has
no waiting predecessor and no streaming predecessors, then the final loop in

getNextTSDU() will always have the same outcome: a sequence of unreliable/partially

415

reliable objectsis declared lost, and then a cell from the waiting object y is delivered.
With this extra requirement, deliver OrDeclarelost becomes a true queue since it will

be filled and emptied in strict FIFO order within asingle call to getNextTSDU().

Sketch of algorithm PO/PR-DEL-OPTION2

We now sketch PO/PR-DEL-OPTIONZ2, a modification of PO/PR-DEL-
BASIC that preserves all of the properties of the proposed POCv2 semantics for the
PR reliability class, but at the expense of an inefficient running time. We do not
propose PO/PR-DEL-OPTIONZ as an agorithm to be implemented. Rather, the
purpose of PO/PR-DEL-OPTIONZ isto provide a starting point for future work
towards a more efficient algorithm, or towards lower-bound proofs showing that more
efficient algorithms cannot be found.

Aswith our sketch of PO/PR-DEL-OPTION1, we omit certain
housekeeping details, and focus only on the changes that are crucial to the running
time, and key properties of POCv2’'s PR semantics. We add just one new local
procedure, as shown in Figure 6.24. We then place calls to this new procedure into
isAnythingDeliverable() and getNextTSDU() as shown in Figures 6.25 and 6.26.

The difficulty now isto find an efficient implementation of the procedure
findwWaitingObjectWithNoWaitingOr SreamingProper Preds(). We consider this problem

in the next section.

416

local procedur e findWaitingObjectWithNoWaitingOr StreamingProper Preds()
returnspointer to object;

/I returns pointer to object meeting the necessary criteria, or

/I null if no such object exists.

Il Used in both isAnythingDelierable()and getNextTSDU() to choose object

/ that serves as basis of the DFS on TRPOT

Figure6.24 Procedur e findwaitingObjectWithNoWaitingOr StreamingProper Preds()

oper ation isAnythingDeliverable() retur ns boolean:
{
if (not output.empty() or count == n) return (true);
elseif (there are no buffered items)
{return false} // there’s no data at all
elseif (there exist no waiting items) // see defn 6.6.2; thm 6.7.1

{return false} // there’s data, but each object is waiting on a least one
I reliable predecessor, so declaring things lost won't help

else{

. y = findWaitingObjectWithNoWai tingOr StreamingProper Preds();

. if (y==null)

. return false

. else

. return true; Il there is at least one item we could deliver
if we

. Il declared its predecessors lost
}

Figure6.25 Modified pseudocode for isAnythingDeliverable(), option 2
The « symbol indicates changes from the psuedocode presented in Section 6.7

operation getNextTSDU() returns TSDU:
local variable TPDU pointer tpdu;
if (count == n) return nil; // all objects have been delivered
wait(isAnythingDeliverable);
/1'if false, sleep; recheck condition after each processincomingTPDU() call;

417

Il'in practice, the sleep can be avoided by never calling getNextTSDU()
Il without first checking isAnythingDeliverable().
if (not output.isEmpty())

{
tpdu = output.dequeue;
] /I Note: do not release successors here; wait for explicit release
return encapsulated TSDU from inside tpdu

}
else// deliver a waiting item (after possibly declaring some items lost)
{
if (deliverOrDeclarelost.isEmpty())
{

] y = findWaitingObjectWithNoWaitingOr SreamingProper Preds();
] assert(y !'= null); // implied since we waited for isAnythingDeliverable();
fillDeliver Or Declar el ostQueueWithSortedL Set(y);

Il find the set L(y), consisting of all of y's undelivered unreliable
Il predecessors, and topologically sort them according to the
Il partial order, and place these items on the
Il deliverOrDeclareLost queue.
}
while (true)
{
if (not output.isEmpty()) // if a waiting object become deliverable
{
X = output.remove;
] /I Note: do not release successors here; wait for explicit release
] assert(x == y); // if no object predecessor of y was waiting, first object
] Il to become deliverable will be y
return encapsulated TSDU from inside x
}
else
{
x = deliver OrDeclarelLost.remove();
declarelLost(x);
rel easeSuccessor s(x.objnum);
}

massert(false); // we should never reach this statement

Figure6.26 Modified pseudocode for getNextTSDU(), option 2
The « symbol indicates changes from the pseudocode presented in Section 6.7

418

Running time of algorithm PO/PR-DEL-OPTION2

The key to the running time of PO/PR-DEL-OPTION2 is to implement the
procedure findwaitingObjectWithNoWaitingOr SreamingProper Preds() efficiently. The
corresponding problem in the PO/PR-DEL-BASIC agorithm was to find any waiting
object; this could be done in O(1) time by simply keeping alist of such objects, and
returning the front element of thelist. The time necessary to maintain the list was
amortized to other operations. However, in PO/PR-DEL-OPTION2 the problem is
more difficult.

First, let us suppose that in addition to the adjacency list representation of
the TRPO, the PO receiver aso initializes a transitively closed adjacency matrix
representation denoted by TCPO. The benefit of initializing the TCPO for each epoch
isthat it subsequently permits the PO receiver to determinein O(1) time whether x <y

for arbitrary objectsx andy. The cost of thisinitiaization is either

e anadditiona O(n2I 0g n) bitsin the transmission of the service
profile, plus O(n°) initidization cost, or else

e an O(n3) computation to compute the TCPO directly from the
adjacency list representation of the TRPO sent in the service
profile.

Now, consider the problem of finding awaiting item that has no streaming
predecessors or waiting predecessors. Given the availability of TCPO, the brute force
approach to either finding such an item, or determining that no such item existsis
shown in Figure 6.27. As can be seen from the nested loop structure, this
implementation of findWaitingObjectWithNoWaitingOr Streami ngProper Preds has a worst
case running time of O(W2 +sw). Recall that our goal isto be able to amortize the
time required by each operation to O(1) per operation. Instead, since both sand w

could be O(n), we have aworst case running time that could be as much as O(nz).

419

Furthermore, there seems little hope that this time can be amortized: because the
stream states of object can change between invocations of isAnythingDeliverable() and
getNextTSDU(), it seems unlikely that an incremental data structure can be built to
avoid repeating the expensive operations. Therefore, we are less than satisfied with
this running time, afact which leads us to suggest three specific lines of future

investigation, as described in the next section.

local procedur e findWaitingObjectWithNoWaitingOr StreamingProper Preds()
returnspointer to object;
Il returns pointer to object meeting the necessary criteria, or
Il null'if not such object exists.
/' Used in both isAnythingDelierable()and getNextTSDU() to choose object
I that serves as basis of the DFS on TRPOT
{
foreach (win thelist of waiting items)
{
boolean noWaitingOr StreamingPreds = true;
foreach (sinthelist of streaming items) while (noWaitingOr StreamingPreds)
if (s<w)
noWaitingPreds = falsg;
foreach (x in thelist of waiting items) while (noWaitingOr StreamingPreds)
if (x=<w)
noWaitingOr StreamingPreds = false;
if (noWaitingOr StreamingPreds)
return w
}
return null;
}

Figure6.27 Brute-Force approach to PO/PR-DEL-OPTION2

420

6.8.5 Futurework related to the POCv2 PR reliability class

There are several unresolved questions related to the POCv2 PR reliability
class. The overarching question is whether the proposed POCv2 definition of the PR
reliability classis useful—that is, can the POCv2 definition of PR offer performance
benefits that are perceivable by an end-user? This question is best resolved by
experiments with PO/PR service similar to the ones for PO/R service presented in
Chapter 5. The fact that we do not currently have an efficient algorithm to efficiently
implement the POCv2 PR semanticsin their full specification leads to three

subproblems:

(1) Isthealgorithmin PO/PR-DEL-OPTIONL1, in fact, good
enough? It may be the case that the problems foreseen with
PO/PR-DEL-OPTIONL1 rarely arise in practice, or are mitigated
by performance gains. This case can be investigated by
implementing the PO/PR-DEL-OPTIONL1 agorithm in the
UTL/ReMDoR framework, and conducting performance
experiments.

(2) Isthereabetter algorithm for PO/PR-DEL-OPTION2?
Several potentia approaches for improving the efficiency of this
algorithm are outlined below.

(3 What do simulation resultstell usabout the overarching
guestion, asto whether PO/PR can provide benefits
per ceptible by an end user ? We can use discrete event
simulation to measure the expected performance of the
ReMDoR application using PO/PR-DEL-OPTIONZ2, assuming
that the processing timeis negligible. The outcome of such a
simulation would tell us whether an efficient algorithm for
PO/PR-DEL-OPTION2 would be a matter of practical interest
or merely theoretical interest.

421

Approachesto improving the running time of PO/PR-DEL-OPTION2

There are severa approaches to improving the performance of PO/PR-
DEL-OPTIONL1. First, note that the algorithm does not need to check all elements of
the waiting set, but only those that are minimal within the waiting set w.r.t. to the
partial order. By analogy with a min-heap (which returns the minimum element of a
totally ordered set in constant time, and allows inserts and deletes in time O(log n)),
we might pursue the implementation of a partially-ordered min-heap. This data
structure would provide an operation to iterate through the list of the minimal elements
in time O(m), where mis the number of minimal elements currently in the set. Itis
clear that acircular list of multiple min-heaps could provide this operation; what is
less clear is how efficiently inserts and deletes could be performed.

Suppose, however that such an operation could be implemented. Now the
procedure findwWaitingObj ectWithNoWaitingOr SreamingProper Preds() can be sketched as
shown in Figure 6.28. The algorithm may be able to take advantage of the fact that the
list of minimal waiting objects, /1, and the list of streaming objects, /> possess certain
known properties: (1) they are both antichains, (2) they are both digoint, and (3) no
element of /o precedes any element of /1. The fact that both lists are antichains limits
the size of each list to the maximum width of the partial order, which is aready an
improvement over the previous algorithm (discounting the as yet unknown cost of
implementing a partially-ordered heap.)

Future work may consider whether use of a k-dimensional representation
of the partial order (representing the order as an intersection of k chains) can improve
the running time of PO/PR-DEL-OPTIONZ2. Such arepresentation may allow an
efficient algorithm for k-dimensional partial orders. (Most partial orders have

dimension 1 or 2, and partia orders with dimension 5 or more are extremely rare.)

422

local procedur e findWaitingObjectWithNoWaitingOr StreamingProper Preds()
returnspointer to object;

{
let list /1 = thelist of streaming objects

let list /2 = the minima of the waiting objects.

// now the following properties hold:

/I ¢1 and ¢2 are both antichains

Il ¢1 and /2 are disjoint (defn’s of streaming and waiting are mutually exclusive)

Il no element of ¢2 precedes any element of list /1

find an element of /2 with no predecessor in /4, and return it
OR determine that no such element exists and return NULL

Figure6.28 Alternate pseudocode for PO/PR-DEL-OPTION2

6.9 Representation of partial orders (encodings, data structures)

One objection that can be raised to a PO/PR transport protocol is that there
is overhead associated with the transmission of the service profile. To make efficient
use of the bandwidth, it is desirable to represent this data structure with as few bits as
possible. On the other hand, it is sometimes desirable to tradeoff efficient processing
at sender and receiver for alarger number of bitsin the protocol header
(Chandranmenon and Varghese, 1995). In this section, we survey some of the
techniques that can be used to represent these data structures, and the tradeoffs
associated with these data structures. We then argue that the transitivel y-reduced
adjacency list isthe preferred representation for PO/PR transport protocol specification
and implementation.

The question of how to represent a partial order P arisesin at least three

contexts:

423

* Transmission: how the partial order is represented in the PDUs
exchanged between peer transport-layer entities, i.e. at connection
establishment time.

* Processing: how the transport-layer sender and receiver represent
the partial order internally during the data transfer phase.

* Application Interface: how the application represents the partial
order when it is passed to the transport protocol through the API
when the connection is requested.

Previous work on POC dealt only with the transmission of the PO and the sender and
receiver processing; the APl was not defined. ((Amer et a., 1993, 1994), (Maradli
et a., 1996a: 1996b, 1997a, 1997b, 1998), and RFC1693)). These efforts used the
transitively closed matrix representation for both transmission of the partial order
during connection establishment, and for the internal representation of the partial
order.

Table 6.2 lists various techniques that can be used to encode a partial order

P over n objects, along with the number of bits required.

424

Table6.2

A partial listing of POCv2 service primitives

Transitively-reduced
precedence graph

Representation Number of bits Class of partial orders Reference
required for which thisisvalid
Full 0-1 adjacency matrix | n° any partial order (well-known)
Upper Triangular n(n-1)/2 any partial order where | (Amer etal.,
0-1 adjacency matrix (123...n)isavadid 1993)
linear extension
Two Total Orders 2n[ipg, N Any series-parallel (Valdes,
(take intersection) partial order Tarjan and
Lawler, 1982)
One Total Order n npg, NJ any partial order where | easy extension
Wlth{1-< 2<...= n} (123n) isavalid of (Valdes,
linear extension Tarjan and
Lawler, 1982)
Adjacency List of (n+¢e)log[m+1]| any partial order (well-known)

Two of the representationsin this table require that 1..n be avalid linear

extension of the partial order. On the one hand, this may not seem like a burdensome

requirement, since the objects can simply be renumbered. However, for some

applications, it may create areal inconvenience. Consider the screen-refresh example

in Section 2.2.1. The user of the window system is free at any time to change the

orientation of the windows in such away that [1;2;3;4[0s no longer avalid linear

extension. To maintain [1;2;3;40as avalid linear extension, both sending and

receiving application would have to communicate a new mapping between the

applications numbering scheme and the one used by the PO/PR protocol. This

requirement would likely wipe out any gain realized by using an object representation

that relies on the assumption of [0;1;2;...;n-10asavalid linear extension.

The adjacency list encoding is simply the concatenation of the adjacency

listsfor objects 0,1,...,n-1 with each list preceded by its length. In the case of

ReMDoR, the overhead of transmitting the partial order is negligible when put into

context. Let p be the number of periods during which agiven partial order Pisin

425

effect. The overhead for transmitting the partial order for the (n+e)(1og n)
representation is
n+e)log, n[. :
%K)19, %}lts:(l(H e)Iog2 n)blts
np P A

when amortized. While there is no corpus of multimedia documents that can be

consulted to verify this, areasonable guess at the value of e/n suggests that somewhere
around 5 might be a reasonable upper bound, and that around 1000 is a reasonable
upper bound for n. Thus, eveniif pis1, we arelooking at PO representationsin the
range of 60 bits, or around 8 bytes per object

Finally, we must consider how quickly we can convert one representation
to another; Table 6.3 summarizes applicable results. M(n) denotes the running time of
n x n matrix multiplication. Currently, the best known time for M(n)=0(n*>®)(Cormen
et a., 1990). A more practical algorithm for transitive closure due to Warshall takes
time O(n®) (Cormen et al., 1990) and can be used to implement transitive reduction by
applying techniques from (Aho, Garey and Ullman, 1972). To put this conversionin
perspective, Table 6.4 shows some figures for the running time of thisalgorithmin
practice, from an implementation that is hardly optimized (i.e., it containsa
considerable amount of debugging code.) Even with this relatively unoptimized code,

we can:
* process POs with n<= 100 with sub-second response time

* process POs with n<= approx. 200 elementsin a couple of seconds
(what would be considered a“fast” compiletimefor a
programmer)

* process POs with n<= approx. 400 elementsin around 10-15

seconds (which might be considered a“ moderate” compile time
for a programmer)

426

* process POs with n<= approx. 800 in afew minutes; say, the time
it currently takes an average PC to complete afull virus scan on al
the files of areasonably large hard drive.

However, as n goes beyond 400, the running times moves into the realm of minutes—a
user might need to get up and get a cup of coffee, check his/her email, or run a quick
errand while the document is being compiled. Asn movesto our hypothetical upper
bound of 1000 elements, the running times are feasible, but unattractive (somewhere

in the realm of 1 to 15 minutes), and most likely impractical beyond 1000.

While using a more sophisticated algorithm based on reducing transitive
reduction and closure to matrix multiplication and applying something like Strassen’s
algorithm might help, amore practical solution might be to use the POCv2 concepts of
“epochs’ and “periods’. The strategy would be to decompose the document into
multiple partial orders, where the size of each partia order is determined by the

following tradeoff:

* keeping n below some number that, in practice, allows the
computation of transitive reduction and transitive closure within a
reasonabl e running time (say, no more than 3 seconds)

» within that constraint, making the size of each period aslarge as
possible to avoid the performance penalty imposed by the strict
sequencing requirement between periods.

Once can envision a document authoring tool that allows the author to control this
tradeoff in amanner similar to that used by compilers that can turn code optimizations
on or off with arun-time option. Just as programmers often will turn off code
optimization during the code/compil e/test sequence during development, a document
author might choose to decompose documents into smaller periods for faster
compilation during the authoring process. When the document is resolved and ready

to be placed on the server, the author could then select a higher target maximum for

427

document decomposition, and run the necessary calculation off-line (overnight, if

necessary) to provide better performance during document delivery.

In the end, we have chosen the transitively reduced adjacency list

representation chiefly because it is a convenient representation for the algorithms at

both sender and receiver, and the resulting PDU sizes are acceptable.

Table6.3 Algorithmsto convert between PO representations

We can convert this | ...tothisone... ..intime: Reference for

representation... algorithm

Adjacency matrix Adjacency list o(n%) well-known

Two Total Orders Adjacency list O(n+e) (Valdes, Tarjan
(provided P is series- and Lawler,
parallel) 1982)

Matrix (or adj. list) Transitively-reduced | M(n)=0(n**) | (Aho, Garey and

with arbitrary matrix (or adj. list) Ullman, 1972)

transitivity

Matrix (or adj. list) Transitively-closed | M(n)=0(n**) | (Aho, Garey and

with arbitrary matrix (or adj. list) Ullman, 1972)

transitivity

428

Table6.4 Timetocomputetransitive closure and transitivereduction in the
ReMDoR parser for variousvaluesof n on Sun Ultra 10.

m n Timeto compute Timeto compute
(see (# of transitive reduction transitive closure
note*) elements)
1 8 <lms <Ims
2 11 <Ilms <1lms
4 17 <100ms <100ms
8 29 <100ms <100ms
16 53 <100ms <100ms
32 101 424ms 504ms
64 197 3.0sec 2.7sec
128 389 13.5sec 10.4sec
256 773 106sec 79sec
512 1541 14min 1 sec 10min 13sec
1024 3077 1 hour 53 min 1 hour 21 min
2048 6149 15 hours 9 min 11 hours 27 min

*The documents used for this experiment were generated by a
script and were authored solely for the purpose of testing the
system with large documents. They have the following
storyboard: they present the numbers 1 through m with aone
second pause between each number. After each number is drawn,
it is erased before the next number is displayed, and the word
“DONE” isdisplayed at the end. The number of elementsin each
such document is n = 3m+5.

6.10 Chapter summary and suggestions for future work

This chapter motivated, described, and provided proofs of correctness and
running time analysis for several algorithms required for provision of a PO/R transport
service. In particular, we showed how a particular view of the Topological Sort
problem as aincremental process provides a foundation for several algorithms related

to the implementation of partial order transport.

429

The chapter also described algorithms needed to integrate a PO/R
transport service within the ReMDoR multimedia document retrieval system,
including the algorithm for explicit release synchronization.

Several problems related to the implementation of the POCv2 PR
semantics were described. Asabasis of future investigation, we provided two
algorithms: one that is efficient—O(n+e+c) per period, amortized—but does not
implement the full semantics of the POCv2 PR reliability class, and another that
implements the full semantics, but has an inefficient running time: O(nz) per
operation, not amortized.

Finally, we analyzed several possible data structures for encoding partial
orders for transmission, and representing partial orders as data structures for efficient
computation. We concluded that for PO/PR transport protocols the best PO
representation both for transmission and internal storage is an adjacency list
representation of the transitively reduced precedence graph corresponding to the partial
order.

Section 6.8 contains many suggestions for future work in the area of
algorithm development for PO/PR transport service; the reader is referred to that
section for details. In addition, we provide here some additional comments on some of

the other future work suggested in this chapter.

Futurework: linear extension selection

This dissertation uses only static selection of the initial sending order for
the ReMDoR server. The static algorithm used is a greedy agorithm that incorporates
asimple heuristic for providing priority for asingle audio stream, based on a static

prediction of the available bandwidth. Future work may investigate both more

430

sophisitcated static approaches, as well as dynamic approaches, incorporating any or

all of the following:

* resultsfrom the real-time systems area in rate-monotonic
scheduling

* provision for more than one audio stream
» timing of pause and continue objects

* previous work on dynamic linear extension selection for PO/PR
service (Maradli et al., 1996b)

Empirical Observation of Internet Metrics

Some of the arguments in this chapter and elsewhere in the dissertation
area based on anecdotal observation of what is*“normal” for the Internet. In particular,
we have made claims of various strengths about TCP Window Sizes, loss rates, and
round-trip delays. Work towards continuous sampling of these quantitiesis clearly
useful, not just for the research in this dissertation, but for the entire protocol design
field. TheIDMaps project (Jamin et al., 2000) is one example of work currently

underway along these lines.

431

