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Chapter 3

THE UNIVERSAL TRANSPORT LIBRARY (UTL)

3.1 Introduction

This chapter describes the Universal Transport Library (UTL) developed

by the author as a tool for investigating flexible Transport QoS in general, and PO/PR

transport protocols in particular.  The author designed the core architecture of this

transport layer software, and completed a substantial portion of the implementation.

Two MS students, Ed Golden and Mason Taube, provided design consultation,

programming and debugging support under the author’s supervision.

UTL is a library that can be linked in with an application, to provide a

range of transport services through a single API. The transport services provided in

UTL include simple wrappers for TCP and UDP, as well as a range of PO/PR

transport services. For developers of transport layer services and protocols, UTL

provides a framework for rapid prototyping of transport layer implementations.  For

application writers, UTL provides the ability to easily compare an application’s

performance over a wide range of transport protocols.  The implementation of UTL

used in this dissertation is for Solaris 2.6; an implementation for Linux has also been

completed.
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3.1.1 Organization of this chapter

This chapter is organized as follows.  Section 3.2 first describes the

motivation for UTL, namely certain problems that we encountered with comparing the

performance of ReMDoR over various transport protocols. Section 3.2 goes on to

describe how UTL addresses these problems. Section 3.3 provides an executive

summary of UTL; this section is an overview of the most important aspects of UTL

that should be understood before reading the performance experiment results of

Chapters 5 through 7.

Sections 3.4 through 3.7 describe UTL in detail; readers primarily

interested in performance results may wish to skip these sections on first reading:

•  Section 3.4 provides a formal specification of the rules for
composing UTL mechanism from layers, and determining the
resulting QoS.

•  Section 3.5 describes a few of the key design decisions that faced
the developers of UTL, and provides the rationale for the design
choices made.

•  Section 3.6 highlights a few protocol details for KXP, KX2 and
KX3; these protocols are basis of the key transport services
provided by UTL.

•  Section 3.7 describes the means by which UTL was tested and
debugged.

•  Section 3.8 describes related work, including work on
implementing protocols at user level, and an overview of the x-
Kernel (Hutchinson and Peterson, 1988) which provides a similar
protocol framework.

Finally, Section 3.9 summarizes the material presented in this chapter.
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3.2 Motivation

Suppose we want to compare a PO/PR transport service such as POCv2 to

traditional transport services: e.g., ordered/reliable service, and unordered/unreliable

service.   We might imagine that we could compare POCv2 to TCP and UDP.

However, it turns out that TCP and UDP differ in many ways other than order and

reliability.  Here are just three examples:

•  TCP is connection oriented, while UDP is connectionless.
Connection-oriented communication requires a different set of
system calls to set up communication, and clean up afterwards.

•  TCP is byte-stream oriented, while UDP is message-oriented.  To
achieve message-oriented communication over TCP, a
considerable amount of extra code must be added to the
application.

•  TCP provides flow control and congestion control; UDP does not.

If we want to write an application that can operate over both TCP and

UDP, as well as experimental protocols such as POCv2, we will likely have to write a

great deal of special-case code.  Special-case code that depends on specific transport

layers is unappealing for several reasons.  First it is time-consuming and error prone.

Second, writing special-case code makes experimentation with additional transport

services difficult, since with this approach, each time we want to add a new transport

service to the experiment, the application must be modified.  Finally, it opens the

experiments up to criticism that the comparison is unfair, since the application code

being executed depends significantly on the transport protocol.

Therefore, our first goal in developing UTL is to eliminate (or at least,

greatly reduce) the need for special-case code in the application.  An application

developer using UTL should only have to write the communications part of an

application one time, and the application should then work in a sensible fashion
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regardless of the transport protocol being used.  The vision is that an application

specifies the transport protocol only once.  The protocol is specified as a parameter to

the function that listens for connections (in the case of a server) or the function that

requests a connection (in the case of a client.)

Now clearly, there are times when some services are inappropriate for

some applications.  An application that inherently requires a reliable service—for

example, a banking application—cannot be expected to perform correctly over an

unreliable service.   UTL does not promise that all applications will run correctly over

all protocols. The application designer is responsible for restricting applications to a

subset of UTL services that are appropriate for the needs of that application.

What UTL does promise is that (1) the basic transport layer functions of

read, write, connect, listen, accept, and so forth, will take the same parameters

regardless of the transport service selected, (2) that each of these functions will behave

in a manner consistent with the service selected.  For example, if an application does a

write() operation over a UTL service that is reliable, UTL guarantees that either the

message is delivered, or else the application will receive a notification that the

message may not have been delivered.  If the application does a write() with a UTL

service that is unreliable, the message may or may not be delivered.

In summary, the first principle of UTL is that except when selecting the

transport service on the initial listen or connect operation, the application need never

be concerned with what transport service is being used at any given time.

3.3 Overview of UTL

This section provides the reader with a quick introduction to the most

important aspects of UTL.  It is especially appropriate for the reader who wants just
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enough understanding of UTL to be able to interpret the performance results in their

proper context. Nearly all the issues discussed in this section are covered in more

detail later in this chapter, or elsewhere in the dissertation.

3.3.1 Central principles of UTL

Several central principles guided the design and implementation of UTL.

Here, we merely list them with a brief explanation; each is covered in more detail later

in the chapter.

(1) Avoidance of protocol20 specific, special-case code in the

application.  (Explained in Section 3.2 above).

(2) Application level framing.  Following the example of (Clark

and Tennenhouse, 1990), UTL follows the philosophy that

transport and application layers should cooperate to preserve

ADUs as atomic entities, and provides appropriate reliability

and order for individual ADUs where possible.

(3) Reasonable fallbacks. This principle is a corollary of the “no-

special-case-code” principle. If an application requests an

operation that cannot be performed by the specified mechanism,

UTL will do the best it can.  For example, if a partial order is

requested when the mechanism only supports unordered service,

the protocol will still allow data transfer, albeit providing

unordered service.

                                                
20 After we define the term “mechanism” in Section 3.3.2, we will cite this principle as
“avoidance of mechanism-specific code” rather than “avoidance of protocol-specific
code.”
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(4) Minimizing Data Copies.  Minimizing data copies is crucial,

since performance is of the essence for any application using

UTL.

3.3.2 Common service model: connection oriented, PO/PR message service

UTL provides an API similar, though not identical, to the Berkeley

Sockets API.   While the purpose of UTL is to provide a diversity of transport services,

to meet the goal of providing a common API, UTL is based on a common service

model of connection-oriented, message-oriented service.  Section 3.5.2 explains the

rationale for this choice in more detail.

In addition, since PO/PR is the most general service in terms of order and

reliability, the common service model assumes PO/PR service.  Therefore, operations

to modify the service profile21 are included in the basic API of UTL.  However, based

on the reasonable-fallbacks principle, since the default service profile is for a single

reliable object per period, UTL applications are free to ignore the partial order and

partially reliability features of UTL.   If the only services required for a given

application or experiment are combinations of (ordered vs. unordered) and (reliable vs.

unreliable) service, the API functions specific to partial order and partial reliability

never need to be called.

3.3.3  Connection-oriented implies three phase operation—nothing more

While the term connection-oriented (CO) is often associated with

ordered/reliable service, it should be emphasized that CO does not imply either order

                                                
21 See Section 2.4.3 for a discussion of the term “service profile” as it pertains to a
PO/PR service.
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or reliability.  CO refers only to the fact that there are three phases of operation: (1)

connection establishment, (2) data transfer, (3) connection teardown. (A more detailed

discussion of this point can be found in (Iren et al., 1999a)). Though all the transport

services provided by UTL are CO, the levels of reliability and order range from

unordered/unreliable to ordered/reliable, with many gradations in between.

For CO transport protocols, a consequence of three-phase operation is that

state information is always maintained at both sides of the connection—at least, to

indicate the current phase of operation.  More typically, state variables are kept to

manage the provision of features such as reliability, order, flow control, and so forth.

Within UTL, this state is maintained in an abstraction called a session.  Just as in the

Berkeley Sockets API, an application references a session using a file descriptor. A

file descriptor is a positive integer that corresponds exactly to the file descriptor used

by Unix for the underlying UDP or TCP socket that provides service to the UTL

session.

3.3.2 Selecting transport QoS via UTL mechanisms

As of UTL version 0.90, there were 34 different transport services

provided, as shown in Table 3.1.  For reasons explained in Section 3.5.8, we refer to

each of these services as a mechanism.  Each mechanism has a 2 or 3 character name

consisting of letters and digits name; the names should be regarded as mnemonic

codes rather than abbreviations or acronyms.  To use a transport service provided by

UTL, an application must either passively listen for a connection (the usual case for

servers), or actively connect to a listening application (the usual case for clients).  The

utl_Listen()  and utl_Connect() functions used for this purpose require that

one of the mechanisms in Table 3.1 be specified. The mechanism specified in these
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function calls is the primary means by which the application specifies the desired

transport service, protocol, and QoS for a connection.

Typically, an application based on UTL provides either a command line

option or a menu to the application user by which a UTL mechanism can be selected,

as shown in Figure 3.1.   Because of the no-special-case-code design principle, an

application using UTL can simply

(1) take a character string representing a UTL mechanism name,

(2) convert it to a UTL mechanism number
(via the utl_StringToMech() function)

(3) pass the UTL mechanism number to the
utl_Connect()  or utl_Listen()  function.

After the utl_Connect() or utl_Listen() returns, the application uses the

connection in the same manner regardless of the mechanism being used.
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TCP
TCP
UDP
POCv2

ren[8:15pm]> server -help
Proper invocation:
   server [options]
Options:
 -help (as first option only: prints this message)
 -p <port>         (default: 2000)
 -h <host>         (default: localhost)
 -m <protocol>     (values: TCP (default), UDP, POCv2, KXP)
 -s <frame size>   (default: 1024)
 -n <no of frames> (default: 20)
ren[8:15pm]>                 

Figure 3.1 Selecting from among different transport protocols by a menu (left)
or command line option (“-m” for “mechanism”, right).

3.3.3 Modifying transport QoS via UTL protocol parameters

In addition to selecting a mechanism, the UTL service user can modify any

of several optional protocol parameters to further tailor the transport service and/or

protocol.  For example, some UTL mechanisms allow the application to:

•  modify the sending and receiving window sizes,

•  modify the initial values used for RTO estimation,

•  turn on and off various aspects of congestion avoidance features
such as slow start, and fast-retransmit.

Table 3.3 shows the protocol parameter values that are supported in UTL

version 0.90.  In keeping with the  no-special-case-code principle, any of these

protocol parameters can be set for any mechanism.  Based on the  reasonable-fallbacks

principle, if the protocol parameter is not applicable to or incompatible with the

mechanism selected, a reasonable alternative action will be taken—usually, doing

nothing.
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Table 3.1 UTL mechanisms

UTL QoS Parameters (see Table 3.2 for explanation of values)
Mech

Order Rel. Dupl. Expl.Rel
Sync.

Cong.
Avoid

App/Tr
Flow Ctrl

Layers
(bottom to top)

U PRk Y N N S KXP
TX O R N N T S TXL
UC U U Y N N S KXP
SP O R N N N S KXP,TOL
POC PO R N Y N S KXP,POL
PT O R N Y T S TXL,POL
NX U PRk Y N N S KXP,NUL
NT O R N N T S TXL,NUL
X2 U PRk Y N  2 S KX2
PTX O R N Y N S KXP,TOL,POL
NTX O PRk N N N S TX ,NUL
POS PO R N Y N S KXP,POL
PO2 PO R N Y  2 S KX2,POL
PS2 PO R N Y  2 S KX2,POL
T2 O R N Y  2 S KX2,TOL,POL
T3 O R N Y  3 SR KX3,TOL,POL
R2 PO R N Y  2 S KX2,NUL,POL
R3 PO R N Y  3 SR KX3,NUL,POL
SP2 O R N N  2 S KX2,TOL
X3 U PRk N N  3 SR KX3
PO3 PO R N Y  3 SR KX3,POL
T3 O R N Y  3 SR KX3,TOL,POL
SP3 O R N N  3 SR KX3,TOL
N2 U PRk Y N  2 S KX2,NUL
N3 U PRk N N  3 SR KX3,NUL
X2E U PRk Y N N S KX2
X3E U PRk N N N SR KX3
N2E U PRk Y N N S KX2,NUL
N3E U PRk N N N SR KX3,NUL
P2E PO R N Y N S KX2,POL
P3E PO R N Y N SR KX3,POL
S2E O R N N N S KX2,TOL
S3E O R N N N SR KX3,TOL
T2E O R N Y N S KX2,TOL,POL
T3E O R N Y N SR KX3,TOL,POL
R2E PO R N Y N S KX2,NUL,POL
R3E PO R N Y N SR KX3,NUL,POL
SR U PR Y N N S KXP,SRL

*SRL is the segmentation/reassembly layer, not yet implemented as of version 0.90.
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Table 3.2 UTL QoS Parameters (legend for Table 3.1)

To help the reader understand Tables 3.1, the codes for each QoS parameter are
positioned differently in the column, corresponding roughly to the level of service
provided:

•  entries positioned toward the left of the value column do
more work to enhance of the underlying network QoS

•  entries positioned towards the right do less work
•  entries lying between the two extremes are positioned accordingly.

UTL QoS
Parameter Values Explanation see

Section
O ordered: messages delivered in exact sequence submitted by sender

PO partially ordered: partial order governs message deliveryOrder
O ={O,PO,U}

U unordered: no resequencing of out-of-order messages is done
2.1

R reliable: all messages delivered, or connection is aborted

 PRk
 PR2

partially reliable: varying reliability guarantees for each message.
PRk: partial reliability as in KXP: individual messages may be given k values,
where k is the number of transmissions (0 indicates infinity, fully reliable)
PR2: partial reliability as in POCv2 (See Section 2.8)

 K k-xmit reliable: no delivery guarantees, msgs retransmitted k-times, where k is
fixed for the lifetime of the connection.

Reliability
R ={R,PRk,

PR2,K,U}

U unreliable: no delivery guarantees

2.1

N no-duplicates; each message delivered at most onceDuplicates
D={N,Y} Y maybe-duplicates: duplicate messages may be delivered

2.1

T TCP-congestion-avoidance: TCP actually used (not an emulation)

   3 KX3: emulation of TCP congestion avoidance, including slow start, cwnd, and fast
retransmit (work in progress.)

2 KX2: emulates only TCP slow start and cwnd; no fast retransmit

Congestion
Avoidance
C={T,3,2,N}

N none: traditional sliding window flow control only.

3.3.7

Y yes: explicit release synchronization is providedExplicit
Release
E={Y,N} N no: explicit release synchronization is not provided

2.6

1 1: streamEnd is on by default: each write produces a separate object
0 0: streamEnd is off by default: each write appends to the current object

streamEnd
Default

S={1,0,n/a} n/a n/a: not applicable; stream abstraction not supported by mechanism
2.3

SR
sender and receiver: application sender can be throttled to enforce a finite buffer
size for both (a) queued outbound data at transport sender, and (b) queued
inbound data at transport receiver.

S

sender only: application sender can be throttled to enforce a finite buffer size for
queued outbound data at transport sender, but the amount of queued inbound
data at transport receiver can arbitrarily large, limited only by available heap
space.

Application/
Transport

Flow Control
A={SR,S,N}

N none: app-tr transport flow control is not done: inbound and outbound queues at
the TSAP may grow without bound as heap space permits.

3.5.9

Layers see Table 3.4 and Table 3.5 3.3.5,
3.3.6
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Table 3.3 UTL protocol parameters

The index column one is used in the formal definition of a UTL protocol parameters
vector (Section 3.4.1).

index Protocol Parameter Data Type
(units)

Explanation

1 maxXmits unsigned
integer

Maximum number of times a packet will be
transmitted; 0 indicates infinity (reliable
service).This is the k value as in the k-xmit
reliability defined in (Marasli, 1997b).  Used in
KXP, KX2, KX3.

2 enableCongestionAvoidance Boolean Enables or disables the congestion avoidance
features of the KX2 and KX3 layers)

3 serviceProfile array of
unsigned
integers

Partial order and reliability vector for PO/PR
service.  Used only by POL. (See Section 2.4.3)

4 explicitRelease Boolean For PO service, indicates whether successors of
delivered objects should be released
immediately, or only when the application
specifically indicates to do so. (used for coarse-
grained synchronization) Used only by POL.

5 localReceiveWindow unsigned integer
(bytes)

When app-transport flow control is used at the
receiver (as in KX3), indicates the number of
bytes that may be buffered for delivery at the
receiver before the flow is halted

6 localSndWindow unsigned integer
(messages)

Size of sending window for ordinary window-
based flow control between sending and
receiving transport entity; upper bound on
number of outstanding unacknowledged
messages.  Used only in KX2, KX3.

7 RTOInitialAverage unsigned integer
(ms)

Initial value for estimate of mean RTT in Van
Jacobson’s formula for computing round-trip
times22  Used in KXP,KX2,KX3

8 RTOInitialDeviation unsigned integer
(ms)

Initial value for estimate of mean deviation of
RTT in Van Jacobson’s formula for computing
round-trip times3. Used in KXP,KX2,KX3

9 streamEnd Boolean should next object written finish a stream object,
or continue the current stream object?  use only
by POL.

10 objNum unsigned integer object number used for next Write()
operation

                                                
22 (Jacobson 1988).  For a tutorial presentation of the formula, see (Stevens, 1994).
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3.3.4 UTL is a library providing flexible transport QoS, not a QoS Architecture

QoS architectures typically include provisions for an application to request

a specific guaranteed QoS from the service provider.  When presented with a request, a

service provider assesses its own ability to provide the requested QoS, given its current

resources and current load.  The service provider then either accepts the request, or

denies the request (in some cases, this constitutes admission control), perhaps making

a counter-proposal as in a human negotiation.  A connection is only established when

the negotiating entities can agree to a QoS contract. (Aurrecoechea et al., 1998)

provides a survey of QoS architectures that fit this general model.

UTL, by contrast, makes no attempt to negotiate, or guarantee minimum

service levels if the application chooses a mechanism that is inappropriate for a given

application.  The logical consequence of the no-mechanism-specific-code and

reasonable-fallbacks principles is that with UTL, the application always gets exactly

the protocol that the application requests, even if that protocol does not meet the

application’s  qualitative needs.  Quantitative QoS guarantees are, of course,

impossible since UTL assumes an underlying unreliable network that can make no

guarantees.  Thus, the QoS provided by UTL is based only on the mechanism

selection, the protocol parameter values chosen, and the QoS of the underlying

network.

While not all protocol parameter settings are appropriate to all

applications, an application would typically not restrict the user from setting whatever

protocol parameters she or he chooses, even if such settings would have no effect.  In

some cases, UTL will return error codes to indicate that a certain protocol parameter

setting is not supported for a particular mechanism, for example, if a service profile is

offered to a mechanism that does not support partial order.  However, as we explain
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further in Section 3.5.6, UTL does not close a connection if inappropriate protocol

parameter choices are made.

3.3.5 Mechanisms are composed of layers

Table 3.1 also shows that (with the exception of the RAW mechanism,

explained in Section 3.5.8) UTL mechanisms are composed from UTL layers.

Tables 3.4 and 3.5 summarize the layers in UTL, while Figure 3.2 shows a subset of

the UTL mechanisms, illustrating the configuration of the various UTL layers of which

each is comprised.  Each UTL layer is essentially a sublayer of the transport layer, and

operates according to the usual layered architecture principles.  That is, each UTL

layer:

•  provides a service to the layer above,

•  by utilizing the services of the layer below,

•  to exchange PDUs with its peer layer.

Each layer operates according to its own protocol, and has its own protocol header.  As

per the usual practice, upper layers encapsulate their PDUs in lower layers.  For

example, we note that in Table 3.1, the T3 mechanism is composed of the KX3, TOL

and POL layers.  Figure 3.2 illustrates the positions of the various headers on a

message sent via the T3 mechanism.  Thus a clear box view of UTL is that the T3

mechanism is a transport service composed of three layers, each with its own protocol.

By contrast, a black box view of UTL would see T3 as a single protocol, where the T3

header consists of the concatenation of the headers of its constituent layers, from

bottom to top (KX3, TOL, POL).
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(null)

RAWRAW XPXP PO3PO3 PTPT TXTX
TOLTOLKX2KX2

UTL Core

UDP TCP

XPXPUCUC

KXPKXP

SP3SP3 T3T3

               TXL               TXLKX3KX3 POLPOL

Figure 3.2 UTL mechanisms composed of layers
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POL Hdr
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Data
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POL Hdr
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Data
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KX3 Hdr
20 bytes

TOL Hdr
 4 bytes

POL Hdr
24 bytes

Data
1424 bytes

IP Hdr
 20 bytes

UDP Hdr
 8 bytes

Data
1424 bytes

T3 Hdr
48 bytes

Eth. Hdr
 22 bytes

Eth. Trl.
 5 bytes

IP Hdr
 20 bytes

UDP Hdr
 8 bytes

Data
1424 bytes

UDP Hdr
 8 bytes

Data
1424 bytes

T3 Hdr
48 bytes

Data
1424 bytes

T3 Hdr
48 bytes

T3 Hdr
48 bytes

Ethernet Frame: 1527 bytes

IP Datagram
1500 bytes

UDP Datagram
1480 bytes

T3 PDU
1472 bytes

KX3 PDU
1472 bytes

TOL PDU
1452 bytes

POL PDU
1448 bytes

ADU
1424 bytes

Internal (clear box)
view of UTL 

External 
(black box)
view of UTL 

Figure 3.3 UTL layer encapsulation example: T3 over Ethernet

As explained previously in Section 3.3.1, the first principle of UTL is no mechanism-

specific code.  It turns out, that just as there is no mechanism-specific code in the

applications that run over UTL, in fact there is also no mechanism-specific code
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within the implementation of UTL. A UTL mechanism is specified only by a set of

protocol parameter values, and a stack of layers.  While each layer is implemented

with specific code, the only code in UTL that refers to specific mechanisms is the

initialization of a data structure23 that encodes Table 3.1.  All references to

mechanisms in UTL then use this data structure to execute the appropriate functions

implemented by each layer making up that mechanism.   Adding a new mechanism to

UTL is therefore a simple fifteen-minute process of adding a few table entries in the

routines that initialize this data structure   headers files, and recompiling.  (Adding a

new layer, by contrast, can be on the order of days, weeks or months.)

3.3.6 Rules for composing mechanisms from layers

Section 3.4 provides a detailed formal description of the rules for

composing mechanisms from UTL layers; in this section, we just sketch the main ideas

of this framework.

The QoS provided by a UTL mechanism is determined by the layers and

protocol parameter values of which it is composed.  Each UTL mechanism has exactly

one bottom layer to interface with the standard transport services TCP or UDP.  The

bottom layer must one of the layers listed in Table 3.4.  In addition, the mechanism

may have zero or more additional upper layers on top of the bottom layer.  The layers

that may be used as upper layers are listed in Table 3.4.  All UTL layers are required to

provide a standard set of services to the layer above and the layer below.  This

standard layer-to-layer interface allows the layers to be placed in any configuration, as

                                                
23 (programmer’s note) specifically, see the utlMechInfo array in utlDefs.h.
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long as the layer below meets the minimum service requirements of the layer above.24

The service requirements of upper layers are listed in the second column in Table 3.5.

Note that since upper layers are not required for a mechanism, any of the so-called

bottom layers may also end up being the top layer of a mechanism. For example, the

UTL mechanisms TX, XP, UC, X2 and X3 are all single layer mechanisms, where the

bottom layer is also the top layer.   The fact that the KXP, KX2 and KX3 layers may

serve as both bottom layer and top layer for a given mechanism is significant because

the top layer of a mechanism has a special responsibility: specifically, the top layer is

responsible for communication with the application.

3.3.7 Bottom layers: TXL, KXP, KX2, KX3

Certain layers are specifically designed to interface with either UDP or

TCP directly; these layers are referred to as bottom layers.   Each mechanism must

include exactly one bottom layer. UTL mechanisms are named in the same manner as

UTL layers, with three-letter codes that should be regarded as mnemonics rather than

acronyms or abbreviations.  Table 3.5 provides a list of the bottom layers in UTL

v0.90 in the order in which they were first written, and not surprisingly, in ascending

order of complexity.  Note that TXL is written on top of TCP, while KXP, KX2 and

KX3 are all written on top of UDP.   The KXx family of layers illustrates one of the

benefits of the UTL architecture: KXP, KX2 and KX3 are all iterations of the same

basic service, but with major changes to the protocol.  Because the UTL API hides the

differences among underlying services, it was easy to introduce new versions of KXP

                                                
24 From a design pattern perspective (Gamma et al., 1995), the bottom layers can be
seen as examples of the adapter design pattern since they convert the underlying UDP
and TCP transport services to the layer-to-layer interface required by UTL.
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to experiment with innovations: the applications were unaffected.  They required only

to be recompiled25 and relinked with the new version of UTL.  Furthermore, the upper

layer providing partial order and total order (POL and TOL) were entirely unaffected

by the changes to KXP as it evolved into KX2 and KX3.

Section 3.6 summarizes some of the details of the KXP, KX2 and KX3

protocols.

3.3.8 Upper layers: TOL, POL, NUL, SRL, and layer stacking rules

The upper layers of UTL are shown in Table 3.5.  The role of upper layers

in UTL is to provide services such as resequencing out-of-order packets, and

segmentation/reassembly.   Upper layers can function at the top or in the middle of a

mechanism’s stack, but may never appear at the bottom.  A bottom layer is always

required as an adapter between the UDP or TCP interface provided by the operating

system, and the UTL layer-to-layer interface.  Similarly, since a bottom layer

implements UTL’s layer-to-layer interface only at its upper Service Access Point

(SAP), a bottom layer can never appear anywhere except the bottom of a mechanism.

                                                
25 Recompilation picks up the header files containing the new protocol definitions; no
change to the application source code is required.
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Total Ordering Layer (TOL)

The TOL layer (total ordering layer) assumes that the underlying layer is

reliable. Typically, the layer below TOL is KXP, KX2 or KX3, with an immutable

maxXmits value of 0 (representing reliable service.)  The TOL layer simply adds a 40-

byte sequence number and uses  it to resequence out-of-order packets.

Partial Ordering Layer (POL)

The POL layer (partial ordering layer) provides partial order service with

explicit release synchronization.  Future versions will also implement the PR

reliability class as defined in Chapter 2.   A full implementation of POCv2 will consist

of the combination of POL (with the addition of support for PR reliability class) plus

KX3.
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Table 3.4 Bottom layers in UTL (may also serve as top layers)

The functions referred to in the table and defined beneath it are used in the
formal specifications of Section 3.4.

QoS provided (see Table 3.2 for explanation of values)

Layer Explanation
of Mnemonic

Built
over

Enhances underlying
service by adding: Order Reliability Duplicates Explicit

Release
Cong
Avoid

App/Tr
Flow
Ctrl

TXL
TCP-xmission

layer26,
TCP Message orientation  O   R   N T

KXP
k-xmit
protocol27

Connection-orientation,
partial reliability N

KX2 k-xmit protocol
version two

Connection-orientation,
partial-reliability, and

optional slow start/cwnd
congestion avoidance

Y
f2

S

KX3 k-xmit protocol
version three

UDP
Connection-orientation,

partial-reliability, and
optional slow start/cwnd

congestion avoidance with
fast retransmit, application-
transport flow control at the

receiver.

U f1

  N

N

f3 SR

Definitions for QoS functions referenced in Table 3.4:
f1: if mutable(pv.maxXmits) use PRk
else
{

if maxXmits is 0, use R
 if maxXmits is 1, use U
 otherwise use K
}
f2: if pv.enableCongestionAvoidance is true, use 2

otherwise use N

f3: if pv.enableCongestionAvoidance is true, use 3
otherwise use N

                                                
26 “xmission” is pronounced “transmission”.

27 “k-xmit” is pronounced “k-transmit”, and is defined in (Marasli et al.,  1996) as
partial reliability where a packet is transmitted at most k times, and then dropped.
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Table 3.5 Upper layers in UTL (may be middle or top layers)

A blank entry indicates a QoS parameter not affected by the layer.
QoS provided

(see Table 3.2 for explanation of values)Layer
Explanation

of
Mnemonic

Built over
(minimum service
requirements for
underlying stack)

Enhances underlying
service by adding: Order Reliability Duplicates Explicit

Release

NUL null layer any well-formed
stack

nothing; a null layer
for testing purposes

only
N

TOL total order
layer any reliable28 stack totally ordered service O R N N

POL partial order
layer

any partially-
reliable29 stack

partial order, and
partial reliability as in

POCv2
PO  PR30 N Y

SRL
segmentation/
reassembly
layer

any partially-reliable
stack

segmentation/reasse
mbly

(not yet implemented)
U N N

                                                
28 The KXP, KX2 or KX3 layers can be made reliable, for purposes of this
requirement, by setting an immutable k value of zero at the mechanism level.

29 The current implementation of the POL layer requires the underlying stack to be
reliable; future work includes a new version of the POL layer that can be placed over a
partially-reliable stack so that the full specification of POCv2 can be realized in the
UTL framework.

30 The POL layer does not add reliability in the sense of providing for retransmissions
or forward error correction.  However, if the underlying layer supports cancellation of
reliability for individual messages, POL adds a PR reliability class that integrates
reliability with partial order and explicit release synchronization.
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Null Layer (NUL)

The NUL (null) layer adds no functionality but does serve three purposes:

(1) It provides a means to add four bytes of dummy header so that a
comparison of partial order to total order is more fair (we
explain this point further in Section 5.1)

(2) It provides a means of evaluating the overhead of having
multiple layers in a UTL mechanism e.g., by comparing the
performance of

•  P2=KX2,POL vs. R2=KX2,NUL,POL, or

•  X3=KX3 vs. N3=KX3,NUL.

(3) It provides a tool for helping to isolate bugs in UTL. For
example, suppose a certain bug occurs in SP2. Checking
whether the same bug occurs in X2 and/or N2 can help the
investigator better determine the nature of the bug:

•  A bug occurring only with SP2 indicates a TOL problem.

•  A bug occurring with SP2, N2 and X2 indicates a KX2 problem.

•  A bug occurring with N2 and SP2, but not X2, indicates a problem

related to KX2’s interface to a layer above.
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Segmentation Reassembly Layer (SRL)

The SRL layer is a segmentation/reassembly layer.  The original design of

POCv2 and UTL called for such a layer to implemented, and the internal data

structures of UTL were designed to support segmentation/reassembly.   As it turned

out, by the time we were ready to begin implementing, the increasing emphasis on

Application Level Framing in our project made the notion of segmentation/reassembly

somewhat of an anathema.  ALF design suggests that all data units should be divided

into ADUs that are less than or equal to the Path MTU size, thus avoiding the need to

segment/reassemble at the transport layer or below.  Thus for the performance

investigations in this dissertation and in (Iren, 1999c), the need never arose for a

segmentation/reassembly layer in practice.  Finishing an SRL layer is part of the future

work for UTL.

3.3.9 User level implementation with cooperative multitasking

The transport layer functionality in UTL is implemented at user level31

rather than in the kernel.  UTL lies between the application and the UDP and TCP

services provided by the operating system.   (Section 3.5.1 highlights the benefits of

this approach.) The UTL code is actually linked in with the application itself.  All

transport layer processing apart from the message framing and demultiplexing

provided by UDP—e.g., acknowledgments, retransmission, reordering, duplicate

detection, flow-control, and congestion control—is done within the same process as

the application.  In the current version, cooperative multitasking is used to share the

                                                
31 Some references in the literature use the term “user-space”, emphasizing the
division of virtual memory between user application memory, and memory reserved
for the operating system kernel; see for example (Edwards and Muir, 1995).
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CPU between the application and the background transport layer functions (for

example, acknowledgment processing, and managing retransmission timeouts) within

the application process.  Section 3.5.7 discusses the pros and cons of this approach vs.

a multiple process or multiple thread implementation, while  Section 3.8 surveys

related work on user-level protocol implementations.

3.4 Formal specification of rules for composing UTL layers

In this section we provide formal definitions for the rules for composing

mechanisms from UTL layers and protocol parameter specifications.

3.4.1 Definition: UTL protocol parameters vector

A UTL protocol parameters vector  is a n-tuple consisting of
ordered pairs, (vi, mi ), (1 ≤i≤n), where:

•  n is the number of UTL protocol parameters listed in Table 3.3

•  Each vi, (1 ≤ i ≤ n) is either ε, representing the empty value, or it is
a specific value that should be used for the ith parameter from
Table 3.3

•  Each mi, (1 ≤ i ≤ n) is a Boolean value indicating whether the

value vi is mutable.  mi = true indicates that the value vi may be
changed, while
mi = false indicates that the value may not be changed.

We also use the following notations for UTL protocol parameter specifications:

•  pv.x indicates the vi value for the protocol parameter from
Table 3.3 named “x”; for example, pv.maxXmits is equivalent to
the notation v1.

•  mutable(pv.x) refers to corresponding mi value. ❑
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3.4.2 Definition: UTL QoS specification

A UTL QoS specification is a tuple Q = 〈o, r , d, c, a, s, e〉 ,
Q ∈ {O ∪ {ε}}×{R ∪ {ε}}×{D  ∪ {ε}}×{C ∪ {ε}}×{A  ∪ {ε}}×{S
∪ {ε}}×{E ∪ {ε}}.

Each element in the tuple representing a UTL QoS specification indicates a value for a
specific QoS parameter from Table 3.2, or the null value ε signifying a “don’t care”
condition. ❑

3.4.3 Definition: Well-formed UTL stack

A UTL stack specification is a tuple s = 〈L, pv〉 , where

•  L = (L0, L1, L2 … L(n-1)) is a list of n UTL layers, and

•  pv is a UTL protocol parameters vector. ❑

A well-formed UTL stack is defined recursively as follows:

•  Base case:  A UTL stack s = 〈 (b),pv〉  is well-formed, where (b) is a
singleton list containing only b, one of the UTL bottom layers
listed in Table 3.4, and pv is any UTL parameter list.

•  Recursive step: Any UTL upper layer u placed on top of a well-
formed UTL stack s = 〈 (L0, L1, … L(n-1)), pv〉  forms a new well-
formed UTL stack
s′ = 〈 (L0, L1,… L(n-1), u), pv〉 ,  provided that the QoS specification
Q=stackQoS(s) meets the minimum QoS service requirements of
u, as specified in Table 3.5. (see definition of the stackQoS
function below.) . ❑
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3.4.4 Definition and algorithm for function stackQoS

The function stackQoS maps a well-formed UTL stack s = 〈L, pv〉  to a

UTL QoS specification Q = 〈o, r ,d, c, a, s, e〉 .  The following algorithm can be used

both to determine whether a stack s = 〈L, pv〉  is well-formed, and if so, the value of

stackQoS(s):

(1) Compute the QoS specification Q0 of the stack s0=〈 ( L0, ),v〉
from the values and functions in Table 3.4.

(2) For each layer Li, 1 ≤ i < n:
Lookup the minimum QoS requirements of Li, in Table 3.5.  If
Qi-1  does not meets or exceeds these requirements, report that s
is not well-formed and halt.  Otherwise, compute the QoS
specification Qi of the stack si=〈 ( L0,,…,L(i),, pv)〉  through the
values and functions in Table 3.5.

(3) return Qn-1 as the value of stackQos(s). ❑

3.5 Design issues

As with any complex software project, the development of UTL involved

many design decisions. This section is not intended as an exhaustive list; rather it is an

overview of the more important and/or interesting decisions.   These design issues

include:

•  User-level vs. Kernel-level development: Should UTL be
developed exclusively in the kernel (as TCP and UDP traditionally
are), exclusively at user level, or in some hybrid form following
the model of previous work on user-level protocol
implementations? (Section 3.5.1)

•  Service model: To provide a variety of transport services through a
single API, there needs to be some commonality among these
services. What should the common features be? (Section 3.5.2)
In particular, we discuss two aspects of the common UTL service:

– Connection-oriented vs. connectionless service (Section 3.5.3)
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– Message-oriented vs. byte-oriented service (Section 3.5.4)

•  Minimizing data copies for efficiency: How can an extra data copy
between the UTL implementation and the application be avoided?
(Section 3.5.5)

•  QoS negotiation: Should UTL include QoS negotiation?
Our answer to this question may be somewhat controversial.
(Section 3.5.6)

•  CPU scheduling: Is transport layer background processing (e.g.,
retransmissions, processing of control packets) handled by a
daemon process, a separate thread, or via cooperative multi-
tasking? (Section 3.5.7)

•  I/O multiplexing: How does a process multiplex I/O from UTL file
descriptors with I/O from non-UTL file descriptors? (This section
motivates the RAW mechanism in UTL.) (Section 3.5.8)

•  Application-Transport flow control: Should UTL read and write
functions be blocking or non-blocking, and how is buffering of
data in the transport layer handled? This issue is related to, yet
distinct from the issue of flow control between transport layer
entities. (Section 3.5.9)

3.5.1 User-level vs. kernel-level development

In most operating systems, transport layer protocols are implemented

inside the kernel, as is the case in many popular implementations of Unix.  So one

might assume that the best place to develop alternative transport layers would be in the

kernel.  The other alternative is to develop this functionality at user level.  A user-level

implementation can be a separate daemon process running at user level, a separate

thread (or set of threads) within the application, or simply a set of functions called by

the application to simulate cooperative multitasking. Once the decision is made to

pursue a user-level implementation, the choice from among these three alternatives
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(daemon process, threads, or function) is a separate design issue that we consider in

Section 3.5.7.

The notion of implementing transport layer functions at user level

sometimes causes confusion.  The transport layer API often represents both:

•  the boundary between the transport and application layers, and

•  the boundary between kernel functions and user program
functions.

While the first of these is always true by definition, the latter need not be

the case: as we note in Sections 3.5.7 and 3.8, many researchers have investigated

user-space implementations of transport layer protocols.

There are three main advantages to pursuing a user-level implementation

rather than a kernel-based implementation.  The first advantage is portability.  User

level code is far more portable than kernel level code.  While there are platform and

operating system specific differences among machines, these are far better hidden from

the application programmer at user level than from the system programmer who is

extending the operating system.

The second advantage is stability.   Extensions to the kernel are far more

likely to have to be changed when the operating system is upgraded.  While user-level

code is not immune to problems introduced by OS upgrades, providers of operating

systems generally try to shield user-level code from changes to the extent possible, and

provide backwards compatibility.  Kernel code, by contrast, is considered fair game for

overhaul, since it is supposed to be a black box to operating system users and

developers.

Third, kernel level development poses a unique set of difficulties.  A

segmentation fault in a user-level program ends that program, while a segmentation
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fault in the kernel may well crash the operating system.  Rebooting for each

testing/debugging cycle can make kernel development far more time-consuming.

On the other hand, the main disadvantage of implementing a protocol at

user level is the potential performance penalty. When a transport entity in

implemented in the kernel, it can be interrupt driven, and the CPU scheduling

algorithm can give consideration to the real-time nature of packet arrivals and time-out

events. By contrast, when the entity implementing the protocol is subject to the context

switches at any time, it is more difficult to ensure that protocol events are handled in a

timely fashion.  Context switches may contribute to burstiness in the transport protocol

processing.  During a context switch, while one of the cooperating transport entities

does not have the CPU (let us call this side A), the other side (side B) may send a large

number of TPDUs.  When A gets the CPU again, it may end up sending B a large burst

of acks, all at once.  This burst of acks may cause the flow-control window to open,

resulting in another large burst of data from B to A. Thus, a cycle of bursty behavior

may result. Such burstiness can cause throughput to drop since the sending side may

become blocked waiting for acknowledgments to open the window.

Even with the disadvantages of a user-space implementation, in the end,

we felt that the benefits of portability outweighed the performance considerations for

our purposes.  As part of UTL, we have implemented ordered/reliable services,

partially-ordered/partially-reliable services, and unordered/unreliable services, all

operating at user level as part of the same framework.   We postulate that by using this

approach, we can make fair comparisons among various kinds of transport service.

That is, we believe that our results that can give us a good indication of how those

services might perform relative to one another if all were implemented in the kernel.
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Performing this comparison first with a user-level implementation can provide an

indication of whether the (considerable) effort of developing a kernel-level

implementation is worthwhile.

If the answer to this last question turns out to be yes, we note that some

parts of UTL are particularly appropriate for migration into the kernel, while others

might be better left as a user-level library. One reasonable alternative might be to put

the functionality corresponding to the lowest layers of UTL (i.e., TXL, KXP, KX2 and

KX3)  in the kernel, while retaining the ordering functions represented by layers POL

and TOL as a user-level library.

3.5.2 Service model

The primary purpose for which UTL was developed was the comparison

of partially-ordered/partially-reliable transport service with ordered/reliable and

unordered/unreliable transport service.  One approach to this comparison might be to

compare POCv2 to TCP and UDP.   However, as Table 3.6 illustrates, many

differences exist between TCP and UDP other than order and reliability.  TCP is

connection-oriented and based on the model of a reliable byte-stream (similar to the

Unix concept of a file being a stream of bytes).  UDP is connectionless and message-

oriented—UDP messages are atomic units that are delivered either completely, or not

at all.32  Setting aside POCv2, for the moment—even just to write an application that

can run over both TCP and UDP, some common service model is necessary if the

special-case code is to be avoided.
                                                
32 The assertion that UDP provides atomic delivery of messages ignores pathological
cases where the application provides insufficient buffer space for an incoming
datagram; the result in those cases is system dependent, as noted in (Stevens, 1994, p.
160).
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Since the focus of our work is order and reliability, we have chosen to

bridge the gap between TCP and UDP by basing UTL on a common service model.

Thus, all UTL services are connection-oriented and message-oriented. The

next two sections provide the rationale for this design choice.

3.5.3 Why all UTL services are connection-oriented

Connection-orientated service is necessary for any protocol providing

reliability, since to provide reliability, an initial sequence number must be established.

While connection establishment is not necessary for an unreliable service, we are more

interested in the comparison between partially-reliable and reliable services, both of

which require connection-orientation.  Moreover, even when comparing against

unreliable services, we do not consider the overhead of establishing a connection to be

a significant factor in computing statistics such as delay and throughput.  Connection

establishment overhead is primarily a performance issue for applications that are

seeking to carry out a request-response transaction in 2 or 3 TPDUs—for example,

DNS queries. By contrast, our experiments will involve a data transfer of tens or

hundreds of TPDUs, so making all services connection-oriented does not seem an

unfair burden for comparing unreliable services to reliable services. For true request-

response applications, order is irrelevant since there is only one TPDU in either

direction.  Thus a protocol such as VMTP (RFC1045) or T/TCP (RFC 1379,

RFC1644) is a more appropriate choice.  Even these protocols do not really avoid the

establishment of a connection; rather in essence, they avoid repeating a three-way

handshake for connection establishment by saving state from previous

communications.  If one takes the view that a protocol is connectionless if and only if
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it is stateless, in some sense even these protocols are not connectionless, but rather a

third type of protocol, as argued in (Iren et al., 1999).

3.5.4 Why all UTL services are message-oriented

The choice to make all UTL services message orientated has roots in both

theoretical and practical concerns.  From a theoretical point of view, the Application

Layer Framing principle suggests that the proper unit of transfer for upper layer

protocols (Transport and above) should be an Application Data Unit (ADU)—which is

to say, a message.  From a practical point of view, one can argue that the message

orientation is providing a service that the application would frequently have to provide

anyway, and at minimal overhead.

To see why message-oriented service would have to be provided by the

application anyway if it were not done in UTL, first note that since TCP does not mark

message boundaries, any application written directly on top of TCP's service has the

burden of marking the message boundaries itself.  Record boundaries can be identified

through

•  character counts (a header on each message containing the message
length), or

•  by including explicit records boundaries, e.g., a special character
such as the newline character (this is what most ASCII-based
protocols such as FTP and SMTP do in practice.)

Marking these boundaries is not such a problem for the sender.  The larger

burden falls to the receiving application.  If the receiving application issues a read

request to TCP for up to n bytes, it must be prepared to accept any number of bytes

between 1 and n.  There is no way for an application to say to TCP, “Give me the next

message in its entirely, and only the next message”.  Rather, if the receiving
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application wants to process an entire message as a unit, the application must do its

own buffering of the bytes of the message until all are delivered.  If on any given read

request, less than n bytes are delivered, the application must repeatedly loop,

requesting additional bytes until the entire message arrives.

The message orientation of UTL becomes a fairness issue only when

making claims of comparison vs. TCP.  The TX service of UTL provides a message-

oriented service on top of TCP's byte-stream service.  The TX service accomplishes

this by having the sender prepend a four-byte length field to each message.  The loop

to build up the complete message at the receiver is then placed inside UTL, and the

message is given to the application only when complete.  Putting the message

boundary marking function inside UTL relieves the developer from having to write the

code to perform this function. However, it may also introduce an extra delay, an extra

price paid for message-oriented service.

The issue of fairness hinges on whether the application can make use of

individual bytes of a message as they arrive, or whether an entire message must be

received before processing can begin.  For example, suppose a GIF or JPEG decoder is

written in such a way that it can accept as little as one byte at a time, and keep all of its

state between calls.  In this case, it is conceivable that an application for displaying

images might perform better over a byte-stream service than a message-oriented

service.  An experiment to investigate the penalty of message service vs. byte stream

service is suggested in the future work section of this dissertation; in the meantime,

one should keep this limitation in mind when interpreting results based on UTL's TX

service.
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For other comparisons however—that is, comparisons among UDP-based

services, which includes all the performance experiments presented in this

dissertation,—we claim that making all UTL services message-oriented is a reasonable

choice, supported by the Application Layer Framing principle.

3.5.5 Minimizing data copies for faster throughput

A major theme in work on improving the throughput of protocols

(especially in the related work on user-level protocol implementations) is the issue of

minimizing data copies (Clark and Tennenhouse, 1990; Edwards and Muir, 1995,

Thekkath et al., 1993).  Assuming a single processor architecture, if that architecture

can copy data at s bits/second, then s represents an upper-bound on the throughput of

any transport protocol.  This upper bound is a consequence of the fact that, at the very

least, data must be copied from the network into memory.  If there are k data copies,

then the maximum throughput drops to s/k.  Thus, it is advantageous to have has few

data copies as possible.

In a typical Unix architecture, a minimum of two data copies takes place

for each incoming TPDU. The first is from the network interface card into kernel

memory.  In the case of Berkeley-derived TCP/IP implementations, arriving data link

PDUs are placed into in-kernel memory buffers called mbufs.  Mbufs are designed

with pointers so that they can be easily manipulated for adding and stripping off

headers and trailers for encapsulation/de-encapsulation of PDUs.  Mbufs are also used

for other aspects of the operating system as well, and as such, are a protected resource.

Therefore, when the application reads data from a TCP or UDP socket, the data must

be copied a second time, from the in-kernel memory into user space.



Table 3.6 Services provided by various transport layers

API Berkeley
Sockets

Example UTL Services

Transport Service TCP UDP
POCv2

UTL
Commo
n
Service PO3 TX UC XP XP3 SP3

Connection Orientation CO CL CO CO CO
Service Orientation Byte Mesg Mesg Mesg Mesg
Order O U PO — PO O U U U O
Reliability R U PR — R R U PR PR R

Transport-Transport Y N Y — Y Y N Y Y Y
App-transport at
sender

Y N Y — Y Y N Y Y Y

Fl
ow

C
on

tro
l

App-transport at
receiver

Y N Y — Y Y N N Y Y

Se
rv

ic
e 

Pa
ra

m
et

er
s

TCP-friendly congestion
control

Y N Y — Y Y N N Y Y

Legend:

CO: connection-oriented CL: connectionless
Byte: byte-stream Mesg: message-oriented
O: Ordered PO: Partially Ordered U: Unordered
R: Reliable PR: Partially Reliable U: Unreliable
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Since UTL is built on top of UDP and/or TCP, these two data copies

are present.  To preserve the sockets API exactly, it would have been necessary to add

a third data copy.   Instead, the UTL API was designed in such a way as to avoid any

extra data copies.

In the sockets API, the read call takes three parameters:
int read( int fd,  /* file descriptor /

char buf /* pointer to buffer */
int len /* length of buffer */);

The pointer buf points to some static or dynamically allocated storage in the

application’s memory where the data should be placed, and len points to the

maximum amount of data to be read.  The return value is the amount of data actually

read, which may be less than the value len.

By contrast, the utl_Read() call takes two parameters:
int utl_Read( int fd,  /* file descriptor /

char **msg_H /* handle of packet /);

Here, the parameter msg_H is a handle; that is, a pointer to a pointer.  The application

supplies the address of a (char *) variable where a pointer to the incoming TSDU

should be stored.   The return value of utl_Read() is the length of the TSDU that is

now pointed to by *msg_H.  After a successful utl_Read() call, the application now

has custody of the memory at this pointer—that is, it may use that memory for

whatever purpose it wishes, but when it is done, it has the responsibility to free that

memory via a call to the function utl_FreeFrame().  The fact that the

utl_Read()call returns a pointer to memory already allocated by UTL avoids an

extra data copy at the expense of a deviation from the standard Berkeley Sockets API/

If utl_Read() followed the Berkeley Sockets API strictly, an extra data copy would
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be required to move data that UTL had already read from UDP or TCP into the

application’s data space.

A similar procedure is used for output; when an application wants to build

a message to transmit over the network, it must first call a UTL function to allocate a

special place in memory.   UTL automatically prepends sufficient memory for packet

headers based on the transport service that has been selected.  When the

utl_Write() function is performed, no data copy is done; only a pointer value is

passed.  UTL then takes custody of the frame.  When the data is actually written to the

network, because the space for the headers was already allocated contiguous with the

data, the entire TPDU can be written to TCP or UDP in one operation.

3.5.6 QoS negotiation

QoS negotiation is a feature by which the application can specify specific

quality of service parameters, and make the establishment of a connection contingent

on a minimum service guarantee from the transport layer, for example, ordered,

reliable service.  In Section 3.3.4, we pointed out that UTL does not currently have

negotiation.  If applications built over UTL were to be used in a production

environment, a QoS negotiation feature would be essential, thus future work on UTL

might include the addition of such a feature. For our current research purposes of

experimenting with flexible transport QoS tradeoffs, we claim that a negotiation

facility would only get in the way.

To understand this point, imagine how the interaction between the

application and UTL might proceed if such a facility were in place. If UTL provided

QoS negotiation, at connection establishment time the connection request would

include a specification of the requirements in terms of order, reliability,
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synchronization, etc., either in lieu or, possibly in addition to a request for a specific

mechanism.  Then, if the mechanism could not meet the service requirements of the

application, the connection would be rejected. While rejecting a connection request

when the service cannot meet the applications needs is clearly useful for a production

application, this rejection would have no additional benefit in the context of evaluating

application performance over various transport services.  The results of an experiment

that rejects a connection request are not interesting from the standpoint of delay,

throughput or jitter.  On the other hand, the results of an experiment where the

mechanism does not precisely match the QoS needs of the application can be

interesting.

For example, suppose a particular application requires partial order, but

not total order, and consider what will happen in two cases:

(1) The mechanism used provides total order service (e.g., SP2)

(2) The mechanism used provides unordered service (e.g., X2)

In the first case, provided that the sender uses a linear extension of the

partial order as the original sending order, the application will perform correctly, albeit

possibly with worse performance. We claim the application will perform correctly,

because the sending order will be preserved, and is a legal linear extension of the PO.

On the other hand, there will be performance degradation, at least at some level of

network loss, if our central hypothesis holds true: that partially-ordered transport

service provides performance improvements over lossy networks.

In the second case, the application may fail to perform correctly if a packet

reordering occurs, since the transport layer will not detect this.  However, for purposes
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of transport protocol experimentation, it is still useful to allow the connection to

proceed in spite of potential failures. It allows one:

(1) to demonstrate the failure mode that occurs when an

inappropriate transport service is used; (for example, to show

what a ReMDoR document looks like when explicit release

synchronization is not provided)

(2) to demonstrate that at low loss rates, failure does not occur

(because there is no reordering), and

(3) to experimentally estimate the failure probability as a function

of the loss rate.

ReMDoR provides another example.  While complex multimedia

documents such as the paris.pmsl and military.pmsl (see appendix) require

partial order and explicit release synchronization, the simple single image documents

used in the NETCICATS experiments (Iren, 1999b) require neither of these.  On the

other hand, they do require total order in the case of experiments with GIF files. UTL

provides the experimenter with flexibility by allowing the selection of any protocol

with any parameter for any application.

Thus a QoS architecture that prevents mismatches between application

needs and the QoS the transport layer provides, while certainly necessary in a

production environment, might just interfere with the performance experiments for

which UTL was initially designed.

If programs based on UTL reach a point where they may be useful as

production applications, a QoS negotiation facility should be added to UTL.  This

facility would allow an application to be agnostic concerning UTL mechanisms, and
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instead, to specify quality of service by indicating a list of minimum service

requirements for each QoS parameter that would ensure correct operation.   UTL

would then search its list of mechanisms, make an appropriate choice if possible, and

establish the connection.  If UTL determined that more than one mechanism could

meet the requested quality of service, it could either

(1) make the best choice, according to some heuristic,

(2) make an arbitrary choice if no useful distinction can be made, or

(3) provide a list of appropriate mechanisms to the application

The third choice would allow the application to present the list of

acceptable mechanisms to the user.  The user could then make a selection from among

only the mechanisms guaranteed to perform correctly according to the minimum QoS

needs of the application.   Of course, to retain the capability for experimenting with

failure modes resulting from an inappropriate selection of transport service, there

should be some way of disabling any such QoS negotiation mechanism.

3.5.7 CPU scheduling in UTL via cooperative multitasking

UTL is an example of a user-level (sometimes called user-space) protocol

implementation.   This section discusses a key challenge facing the developer of a

user-level protocol implementation, that of CPU scheduling. We first review the

handling of CPU scheduling for transport processing in the BSD Unix kernel, since

this serves as the reference implementation of TCP/IP, and the yardstick against which

previous researchers in this area measure their designs.  We then highlight two

problems that arise in CPU scheduling for user-level transport protocol

implementations: the top-half/bottom-half problem, and the lingering connection
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problem. We first define these problems, then survey the solutions to these problems

described in previous work, and finally explain how the solutions in UTL differ from

these.

The BSD Unix kernel (McKusick et al., 1996) serves as the reference

implementation for the Internet protocol suite, which is arguably the most widely used

protocol suite in the history of computing.  In BSD Unix, transport protocol processing

takes place in the kernel.  Requests from the user trap to system calls processed

synchronously in the so-called top-half of the kernel.  Timeouts and incoming packets

are processed via interrupts in the so-called bottom-half of the kernel.   Thus, the

normal CPU scheduling mechanisms of Unix handle the scheduling of all transport

layer processing.  Since all of this processing takes place inside the kernel, sharing

data between the top-half and bottom-half routines is not difficult.

Research on user-level implementations of TCP (Thekkath et al., 1993;

Edwards and Muir, 1995) highlights two key design problems, which we have given

the following names:

•  The top-half/bottom-half division problem: How are the top-half
and bottom-half processing to be scheduled in a way that they do
not interfere with one another, or the application? Avoidance of
context switching and sharing of data are two concerns.

•  The lingering connection problem: The semantics of the Berkeley
Sockets API allow TCP connections to live longer than one side of
the application process.  Specifically, an application sending data
such as a server, may write the last window’s worth of data to the
transport layer, and then close the connection.  The Berkeley
Sockets close() operation is by default non-blocking33, so it
returns immediately and allows the application process to
terminate.  However, the kernel is still delivering data on behalf of

                                                
33 The SO_LINGER option can be used to make it blocking.
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the terminated process.  If retransmission is handled by the
application, either the close() operation must block until all data
has been transmitted, or the application must hand-off this
responsibility to some other process.

If the transport layer processing is to linked in with the application, how is

this processing to be scheduled?  Here are three possible solutions

Multiple processes

In the first solution, the application process performs the top-half

processing when the API functions are called. The bottom-half processing is

performed by a separate daemon process; either (a) a single process shared among all

processes on the host, (b) a single process per running application, or (c) a single

process per connection.  Since there are two separate processes, the top and bottom-

half are scheduled  independently by the operating system.   Processing for lingering

connections can be handed off to the separate daemon process.

Examples of this approach include (Thekkath et al., 1993) which describes

an implementation of option (a), and (Edwards and Muir, 1995) which describes an

implementation of option (b).  This approach has the advantage that it allows the

implementation to closely model the BSD reference implementation.

It also has two main disadvantages: context switching between the top-half

and bottom-half code, and the complexity of sharing data between the top and bottom-

half processes by message passing or shared memory with mutual exclusion.  In the

conclusions section, (Edwards and Muir, 1995) notes that

A consequence of [the multi-process architecture was that] our TCP
was constantly context-switching, which lowered performance.  Also,
the multi-process nature of the implementation meant that we seemed
to spend as much time worrying about concurrency as about our real
goals.
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Multiple threads

An alternative to the heavyweight context switching of the multiple

process solution is use lightweight threads, for example, POSIX threads

(Nichols et al., 1996). In this solution, the top and bottom-half processing are

implemented by different threads.  However, while one no longer has to deal with the

difficulties of message passing or shared memory, the complexity of enforcing

concurrency and mutual exclusion remain an issue. Furthermore, as (Edwards and

Muir, 1995) note, multiple threads do not address the lingering connection problem,

since all threads die with the application.

However the paramount concern for our project was whether POSIX

threads and X-Windows could co-exist in the same application; at the time we were

undertaking our initial design in Fall of 1995, it was unclear whether Xlib was thread-

safe. Since our ReMDoR browser was an X11 application, this concern led us to avoid

the multiple thread model.  At this point, we are more confident the X11 and POSIX

threads can be used together, and we are therefore considering this approach for a

future redesign of UTL.

Signal Handlers

Another option is to have a single process perform all processing, and use

the SIGALRM signal with signal handlers to implement the bottom-half processing.

(Edwards and Muir, 1995) points out that since the application may already be making

use of the signals, it would be necessary to “silently take control of alarm handling”

through wrapper functions.  While this approach is feasible, we again avoided it due to

concerns about compatibility with X11; the X Consortium’s official recommendation
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is that X11 applications should avoid signal handling, advice that is reinforced by

(Heller and Ferguson, 1994).

Cooperative multitasking

This leads us to the solution used in UTL: cooperative multitasking.  Our

approach builds on an observation in (Edwards and Muir, 1995) in their suggestions

for future work section:

One possible approach is to exploit the fact that most application
programs use sockets in ‘blocking mode’, sleeping on the socket till
there is more data to receive or space available for sending.  If a packet
arrives during this ‘sleep’, we could perform receive processing in the
context of the application process, which would eliminate context
switches in the common case.  With these improvements, even better
performance should be achievable.

While Edwards and Muir observation is correct for many applications, it overlooks

two important (at least to us!) classes of applications:

(1) Applications that block on the select() call.  Applications
such as the ReMDoR server, may need to process more than one
I/O stream simultaneously:  for example, a socket listening for
new connection requests, and several output sockets for
connections being actively served.  These applications block not
on a read() or write() operation, as suggested by Edwards
and Muir, but rather on a select() system call.34

(2) Applications that use callbacks for network I/O (e.g., X11)
X-Windows applications such as the ReMDoR browser must
use callback functions to process I/O streams with waiting data.
This is because the X11 library has its own event loop, which
implements a wrapper around the select() system call.

                                                
34   The select() system call allows an application to register interest in a set of file
descriptors, and be notified when any of them become readable or writeable, or when a
timeout is reached.  The timeout is passed by reference; a timeout of zero indicates a
poll, while a timeout pointer of NULL indicates a blocking call. (Stevens, 1998)
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Therefore, in an application using the X11 protocol, to read (or
write) data from the network, the programmer must provide a
callback function that gets called automatically by X whenever
the socket becomes readable (or writeable).

Therefore, our approach follows Edwards and Muir’s suggestion, but in a way that

considers not only applications that block on read() or write(), but also provides

for applications that block on select(), applications that use callbacks, and

applications that may wish to avoid blocking on network conditions altogether.

In UTL, all protocol processing is done in the application, and all data

structures for transport layer code are in user space.  Because we build most transport

functionality over UDP, we rely on UDP to provide assignment of port numbers for

incoming packet demultiplexing, a function that both (Thekkath et al., 1993) and

(Edwards and Muir, 1995) implemented with a single trusted connection server

process per host.

Top-half processing is done synchronously when the application calls the

UTL API functions utl_Listen(), utl_Connect(), utl_Accept(),

utl_Write(), utl_Read(), and so-forth.  The bottom-half processing, including

timer management and processing of incoming packets, is done in a function called

utl_IO().  This utl_IO() function is the heart of the UTL implementation, for it is

responsible for timer management, moving data up and down through the layers of the

UTL protocols stacks for each mechanism.

Following Edwards and Muir’s suggestion, each time one of the API

functions is called, it in turn calls the utl_IO() function to handle any pending

bottom-half processing.   If the API function is blocking, for example, a read() call

when no data is available, the application will remain in the utl_IO function until data

becomes available.  To avoid busy-waiting, utl_IO first handles any processing for
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timers that have expired, then blocks on the select() system call waiting for either

input from the network, or the expiration of the next timer.

In addition, there is a utl_Service() call, that emulates the semantics

of a select() system call, and provides a direct means to invoke the utl_IO()

bottom-half processing.  An application that is designed to block on the select()

system call can simply block on utl_Service().

Finally, in the case of the XWindows application, the callback function for

the socket file descriptor can include a call to utl_Service(). In addition,

XWindows allows a callback for background processing (a function that is called

when all other processing is idle).  The utl_Service() function can be provided to

this callback as well.

Applications that do not wish to block on read() or write() operations

can simply make a non-blocking select() call (by passing a delay value of zero) to

check whether a given read() or write() operations would block before attempting

it.

The advantage of our approach is its simplicity; there are no mutual

exclusion problems since the application has only one thread of control. A

disadvantage is that the application programmer has a particular burden: specifically,

to structure the code in such a way that utl_IO() is called frequently enough to

guarantee that background processing of acks and timeouts takes place as needed.  We

refer to our approach as “cooperative-multitasking” because the application and the

transport layer must cooperate to share the CPU; specifically, the application must

periodically yield its share of the CPU time to the bottom-half transport layer

processing.  If utl_IO() is not called often enough, performance will suffer, and if
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utl_IO() is not called at all, the protocol will deadlock. By embedding bottom-half

processing in the calls to top-half functions, we have made it likely that even without

any particular planning on the part of the application programmer, utl_IO() will get

called often enough for the typical network applications paradigm—a read and process

loop that blocks on read(), write() or select(), and then performs a modest

amount of processing35 on the next piece incoming or outgoing data.  However, there

may be some applications where this arrangement is unsuitable—for example,

applications where there is occasionally a requirement to do a long computation in

between network operations.  In such cases, the application programmer must schedule

occasional calls to utl_Service() to ensure that the appropriate transport layer

processing takes place.

To free the application programmer from the burden of having to consider

CPU scheduling at all, we plan to investigate a multiple thread approach as an

alternative for future implementations of UTL. Although the use of multiple threads

introduces the difficulties of mutual exclusion for the UTL implementer, we argue that

making the bottom-half CPU scheduling transparent to the application programmer

would make UTL a more useful and robust tool, and would therefore be worth the

effort.

Another disadvantage of UTL is that we offer no solution to the lingering

connection problem except the following: when an application is terminating, it must

call the function utl_Finish().  This function blocks until all pending connections

are complete.  This approach to the lingering connection problem allows the close()

call to be non-blocking, but it does not allow the server process to complete until all

                                                
35 Anywhere up to around 200ms or so.
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processing is finished.  As Edwards and Muir point out, this problem would afflict a

future thread-based implementation as well.  However, while the lingering connection

problem has been highlighted as a crucial issued by both Edwards and Muir as well as

Thekkath et al., and both projects invested considerable effort in addressing it, by

contrast, we do not consider this to be a serious problem in practice. We argue that it is

probably good for most applications to linger until they receive positive notification

that all connections have completed safely and reliably (unless they choose to abort

rather than request a graceful close.)

3.5.8 I/O multiplexing, and the need for a RAW mechanism

The utl_Service() call described in Section 3.5.7 normally assumes

that all file descriptors passed to it represent sockets on which there is an active UTL

connection.  To provide the semantics of the select() system call for a mixture of

UTL and non-UTL file descriptors, UTL provides a special mechanism called “RAW”.

For example, a chat application that must read from both the keyboard and the network

can register the keyboard as a UTL connection using the RAW mechanism. UTL will

then pass that file descriptor through untouched to the underlying select() call in

utl_IO(), and report the results along with those of the UTL connections.

The existence of the RAW mechanism is the one reason we use the term

mechanism rather than protocol or service.   Another reason is that the original design

for UTL also called for a mechanism (never implemented) for testing, by which

information could be read from a local disk file using the UTL API, rather than from a

remote host; in this mechanism write() operations would be discarded.
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3.5.9 Application-Transport flow control

Traditional presentations of flow control in networking textbooks focus on

sliding window flow control between two data-link-layer entities or two transport layer

entities (Tanenbaum, 1996; Stallings, 1998).  However, there is another important

aspect to end-to-end flow control frequently overlooked in these discussions.  The

presentations of the classic algorithms (stop-and-wait, go-back-N, selective repeat)

often make the simplifying assumption either that (a) there is an infinite queue

between the service provider (e.g., the data link layer, or the transport layer) and the

service user (e.g., the network layer, or the application layer,) or (b) that the service

user is always immediately available to the service provider to provide a new SDU to

send, or to consume an SDU that has been received.

In practice, particularly at the transport layer, such assumptions are

unrealistic.  Therefore, in addition to the usual window flow control between the

transport entities, it is also necessary to provide flow control at the TSAP, which we

call application-transport flow control.  With application-transport flow control in

place, if the receiving application stops reading data and deliverable data queues up,

filling the transport receiver’s buffers, the flow control algorithm will halt the

submission of new data at the sending application.  TCP provides application-transport

flow control through window advertisements in each TPDU, and by blocking the

submission of new data at the TSAP if there is no remaining space in the window.

In the remainder of this section, we describe two different forms of

application-transport flow control:

•  Sender and receiver application-transport flow control, and

•  Sender-only application-transport flow control,
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and then distinguish between mandatory application-transport flow control (as in TCP)

and advisory application-transport flow control (as in UTL).

Sender and receiver application-transport flow control

The use of sender and receiver application-transport flow control (as in

TCP) implies that fixed size buffers are used at both:

•  the transport sender (for unsent data and unacked TPDUs), and

•  the transport receiver (for data that is undeliverable, or deliverable
but still unread by the receiving application)

If the receiver’s buffers are full, the window flow control scheme throttles

the sender.  If the sender’s buffers are full, the sender prevents the sending application

from submitting additional TPDUs until window space opens up.  The net effect is that

if the receiving application stops reading data and deliverable data queues up filling

the transport receiver’s buffers, the flow control algorithm will halt the submission of

new data at the sending application.

Both TCP and the KX3 layer of UTL provide sender and receiver

application-transport flow control by blocking the submission of new data at the TSAP

if there is no remaining space in the window. In TCP, the receiver informs the sender

as the remaining window space through two fields in the acknowledgment TPDU: the

cumulative ack, and the window advertisement.  Because TCP is reliable and ordered,

these two values precisely determine the starting and ending byte of the current legal

sending window.

In KX3, the fact that the service is unordered and partially reliable makes a

scheme based on a cumulative acks and windows advertisements of available buffer
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space unfeasible.  Instead a novel approach is used which uses the cumulative ack field

along with two additional sequence numbers.

(1) A receiver-least-undelivered field is sent from receiver to
sender to indicate the lowest numbered packet that has not yet
been delivered or declared lost.  This value represents the lowest
numbered packet for which buffer space needs to be reserved.

(2) A sender-left-edge field is sent from sender to receiver,
indicating the left edge of the sending window; the receiver uses
this value to detect when unreliable or partially-reliable
messages have been declared lost at the sender.

Sender-only application-transport flow control.

Sender-only application-transport flow control implies that the service

provider has a fixed size sending buffer for unsent or unacknowledged TPDUs, but the

receiver has an infinite (or more, precisely, an arbitrarily large) queue between the

transport receiver and the user application.  KXP and KX2 provide sender only

application-transport flow control.

Application-transport flow control is mandatory in TCP, advisory in UTL

One additional detail is that in UTL, application-transport flow control at

the sender is advisory, not mandatory.  In fact, early versions of UTL provided no

application-transport flow control at all.   An arbitrarily large queue between the UTL

user and the UTL transport service is still provided for applications for which this is a

desirable feature.  Our experience is that to make accurate measurements of delay,

application-transport flow control is necessary.  A UTL user desiring application-

transport flow control can inquire before every Write() operation as to whether the

Write() would result in queuing of data.  If it would, the application can choose to
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perform other processing, or ask to be blocked in the transport layer service routine36,

until buffer space becomes available.

3.6 Selected service and protocol details for the KXP, KX2 and KX3 layers

In this section, we summarize a few details of the services and protocols

implemented by the KXP, KX2 and KX3 layers described in Section 3.3.7.  This

section is not intended as a complete service/protocol specification, but rather a

reference to help the reader better understand the UTL framework and interpret the

results of performance experiments involving these protocols.

KXP and KX2 have been extensively tested, while KX3 has received

comparatively less testing.  For that reason, most of the empirical results reported in

this dissertation are based on KX2.

3.6.1 Unordered, k-xmit reliable service

All three KXx protocols provide unordered, k-xmit reliable service, which

is defined in (Marasli, 1999b) as follows:

A packet with k-xmit reliability can be transmitted (original plus
retransmissions at most k times.  If [the] transport sender is still waiting
for the ack of a packet after the kth transmission timeout, the packet will
be released from [the] transport sender’s buffers.  Releasing a packet
from the sender’s buffers without receiving an ack for it is called
“declaring that packet lost at [the] transport sender”.

                                                
36 utl_Service(), discussed in Section 3.5.7.
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3.6.2 Flow control

All three KXx protocols provide sliding window flow control between

transport entities, and application-transport flow control at the sender.  Only KX3

provides application-transport flow control at the receiver.

3.6.3 Packet types

Each of the KXx protocols provides four packet types: SYN, FIN,

RDATA and ACK.   The SYN (synchronize) and FIN (finish) packet types are used

for connection establishment via three-way handshake, and connection teardown via

dual half-close exactly as in TCP (RFC793).  The RDATA (reliable data) packet type

is used to send data, while the ACK (acknowledgment) packet type provides selective

positive acknowledgments (acks) of SYN, FIN and RDATA packets.  All RDATA

packets also carry a piggybacked ack field; although the use of this field varies

between KXP, KX2 and KX3 (as explained in Section 3.6.4).

3.6.4 Acknowledgments

All three KXx protocols use positive selective acknowledgments (acks).

Each TPDU is acknowledged by an explicit ack sent as a separate control packet.  In

addition, KXP and KX2 have a lastAck field in every TPDU, which repeats the

sequence number of the most recently acknowledged packet.  This extra redundancy in

acks helps ameliorate the effect of ack losses, which Marasli’s analytic model showed

have an important influence on the performance of partially-reliable transport

protocols (Marasli, 1999b).  KX3, by contrast, supplements the lastAck field with a

cumulative ack based on the linear order of sequence numbers.  While delivery is still

unordered, using this cumulative ack allows KX3 to implement the fast-retransmit and
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recovery algorithms of TCP (RFC2581), which preliminary results show can improve

delay and throughput.

3.6.5 Sequence numbers

KXP uses a complicated two part sequence number scheme explained in

(Golden, 1998) that is tied to the internal management of buffers in the transport

sender.  This scheme makes analysis and debugging of the protocol more difficult.

KXP also lacks congestion control features.   In KX2 and KX3, the sequence number

scheme is simplified: each successive TSDU submitted by successive Write()

operations is assigned a consecutive sequence number. This simplification was

motivated by a desire to simplify the protocol and was also necessary to implement

cumulative acks for fast-retransmit and recovery.

3.6.6 Congestion control

KXP provides no congestion control features whatsoever.  Protocols

lacking congestion control are considered harmful for use on the wide-area Internet

because they unfairly compete for bandwidth (Floyd and Fall, 1999).  KX2 and KX3

represent incremental steps towards the goal of a fully TCP-friendly implementation of

KXP.   A TCP-friendly application is defined by Floyd and Fall as one whose “arrival

rate does not exceed the arrival rate of a conformant TCP under the same

circumstances.”  Research modeling the behavior of the TCP congestion control

algorithms has characterized TCP-friendliness as an arrival rate that is at most some

constant over the square root of the packet loss rate. (Floyd, 1991; Lakshman and

Madhow, 1997; Mathis et al., 1997.)
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Our approach to TCP-friendliness is to emulate TCP’s exponential backoff

of retransmissions, and the four congestion control algorithms documented in

RFC2581: slow start, congestion avoidance, fast-retransmit and fast-recovery.

KX2 always performs exponential backoff of retransmissions, and, if the

enableCongestionControl parameter of UTL is set to true, KX2 also enables slow start

and congestion avoidance.  However, KX2 lacks the ability to implement fast-

retransmit and recovery due to its lack of cumulative acks.

KX3 adds fast-retransmit and recovery to KX2, providing what should be

a complete emulation of TCP-friendliness. Establishing KX3’s TCP-friendliness by

measuring its throughput against the ( pk / ) formula is part of the ongoing work on

KX3.

3.6.7 RTO calculation

To calculate the retransmission timeout (RTO), all three KXx protocols

use a set of common UTL functions37 that implement TCP’s algorithms for RTO

calculation—Karn’s algorithm (Karn and Partridge, 1987) and Jacobson’s algorithm

(Jacobson, 1988).  In the process of implementing these algorithms, we made a

counter-intuitive discovery.  The reference implementation of TCP uses a coarse

granularity for the RTO timer (500ms).  We assumed that more accuracy would be

better.    On the contrary: it turns out that improving the accuracy of this  timer can

have negative effects! The validity of Jacobson’s formulas is predicated on a coarse

measurement of the RTT.  In this section, we explain the performance problem that

can result if these formulas are applied naively to overly accurate measurements of

RTT.   To highlight this counter-intuitive result, we briefly review the main ideas of
                                                
37 Programmer’s note: These common functions are in the utlTool module.
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the Jacobson algorithm, explain why it fails if accurate timers are used, and explain

how we addressed this in UTL.

If RTT were a fixed value, the ideal value for RTO would be RTT+tsafe,

where tsafe is the time necessary to process an incoming acknowledgment and thus

prevent an unnecessary retransmission. The value RTT+tsafe allows for a

retransmission at the earliest possible instant the sender can detect with certainty that a

failure occurred in either the transmission or the acknowledgment.  Unfortunately, at

the transport layer, considerable variation in RTT is caused by queuing delays, routing

changes, and context switching in the end hosts.  Therefore, the mean and variance

RTT must be estimated, and the tsafe value must include both the minimum

processing time as well as allowing for any variance.

Jacobson’s algorithm (Jacobson, 1988; Stevens, 1994) computes RTO by

sampling the RTT values, and using the samples to estimate the average, A, and mean

deviation, D, of the RTT via exponentially decay.  If M is the measured RTT sample:

g = 0.125 Anew = (1-g)Aold + gM

h=0.25 Dnew = (1-h)Dold + h(|M-Aold| - Dold)

RTO is then calculated via RTO=(A + 4D).  The intuition behind this formula is that

four times the deviation in RTT samples provides enough tsafe time to prevent

premature retransmissions.

However, in his explanation of this calculation, Jacobson assumes that the

values are measured in so-called “ticks”, as in the reference BSD Unix implementation

of TCP.  Table 3.7 shows the tick size used for the estimation of A and D in BSD Unix

TCP vs. UTL.
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Table 3.7 Tick sizes for RTT/RTO calculation in TCP and UTL

UTL BSD Unix TCP
RTO 1ms 500ms (1/2 sec)
Mean RTT (A) 1ms 62.5ms (1/16 sec)
Mean Deviation (D) 1ms 125ms (1/2  sec)

The end result is that TCP's RTO ends up with what (Jacobson and Karels,

1998) calls a bias of 1.5 to 1.75 ticks38  That is, the RTO ends up being, on average,

somewhere between 750 to 825 milliseconds higher than the true value of A + 4D. In

practice, this bias is usually sufficient to ensure that if D goes to zero, TCP still does

not timeout prematurely.

In early versions of UTL by contrast, the tick value was 1ms. This

accuracy led to a pathology in which certain connections would experience

catastrophic drops in throughput after a few hundred packets. Investigation of this

phenomenon showed that it was due to premature retransmissions due to an inadequate

RTO value.  Where the bias in RTO for TCP is between 750 to 825ms, the equivalent

bias in early UTL versions was on the order of 1 to 2ms.  As a result, if during some

interval, the RTT remained stable long enough, the D factor could drop to a small

value, e.g., between 10-15 ms.  If the RTT then suddenly increased by a value greater

than 4D, a premature retransmission resulted.  This sequence of events led to a

syndrome where every packet was transmitted twice: because of Karn’s algorithm39,

                                                

38 1.5 ticks was in the printed SIGCOMM '88 proceedings; a
"revised 1992 version of the paper" on their web site says 1.75.

39 RTT measurements are not used for any packet that is retransmitted, because the
value is ambiguous; there is no way to know whether an acknowledgment comes from
the initial transmission or the retransmission. (Karn and Partridge, 1987)
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UTL could not update the RTT again unless and until the true RTT dropped below the

RTO, enabling UTL to update the RTT estimates.

Our solution to this problem was to explicitly introduce an extra 750ms

safety margin into the RTO calculation: that is, we use A + 4D + 750ms as the RTO in

UTL.   This value is, on the one hand, arbitrary: one can describe specific scenarios

where it would not be sufficient to prevent the syndrome from occurring.  On the other

hand, this value is based on emulating the behavior of a successful protocol (TCP) and

seems to have eliminated the problem in practice.

3.7 UTL development, testing and debugging

This section describes the development, testing and debugging tools and

processes used for development, testing, debugging and enhancement of UTL.  We

make no claim that these techniques are particularly novel.  Nevertheless we include

them because (1) a brief explanation of these tools and processes may help the reader

appreciate the scope and usefulness of UTL, and (2) other developers of user-space

protocol libraries may find this discussion of practical issues helpful.

3.7.1 UTL development

As with most large pieces of software, UTL is not the work of a single

person.  However, the author of this dissertation has been the chief designer and

architect of UTL, has supervised its construction, and has written at least half of the

UTL code.  Significant additional contributions have been made by Edward Golden

(Golden, 1997), and Mason Taube.
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While the need has been recognized to move to a formal version control

system such as CVS40, that has not been done with UTL to date.  Instead, an informal

system for managing versions has evolved into a set of standard procedures that have

been followed since release 0.74 (Nov. 1997).   A master directory is maintained for

the UTL source code, which is updated only when a new production release is made.

New production releases are made only after extensive testing, and only when there is

a significant change (either a bug fix, or an enhancement) that is useful for our

protocol research.  To provide a general idea of the process of development, Table 3.7

shows the numbers and dates of production releases done since version 0.74, and

descriptions of some of the key changes in the recent releases.

3.7.2 UTL testing

To test the functionality of UTL, at first a series of ad-hoc test programs

was used.  Later it became clear that a more comprehensive approach was needed to

provide assurance that new releases did not introduce new bugs; in the software

development community, this is called regression testing.  For this purpose, a pair of

programs called diag (for diagnostic) and rd (for read) were developed originally by

Mason Taube, and later extensively modified by the author.  These programs have

been used for regression testing in every version of UTL since version 0.80.   The

purpose of these two programs is to give UTL an extensive workout.  No claim is

made that these two programs provide any formal test coverage (for example,

executing every transition of the Finite State Automata of each layer.)  However, they

                                                
40 Concurrent Versions System (ftp://prep.ai.mit.edu/pub/gnu/cvs-1.3.tar.gz).
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have been helpful in finding bugs and in providing some level of confidence in a each

new release.

The diag and rd programs operate in three phases as follows:

Phase 1:In this phase, rd operates as a server, and diag operates as a
client.  For each UTL service to be tested listens for a
connection.  diag makes the connection for each UTL service in
turn, sending exactly one packet before tearing down the
connection.

Phase 2: The programs now switch roles, with diag operating as a
server, and rd as the client.   For each service, the diag
program does a listen call, and accepts a single connection from
rd.  rd then sends (by default) 20000 messages of 1024 byte
each, using the selected protocol, and then closes the
connection.

Phase 3: The programs switch roles for a third time.  This time, rd
listens for each selected service simultaneously, and diag
establishes n simultaneous connections, where n is the number
of UTL services being tested.  The connections are established
in random order.   Then diag sends 20,000 messages of 1024
bytes each, each time making a random selection from among
the n open connections.  (This tests for any unexpected
interactions among mechanisms, or stray pointers that might
corrupt the memory of another layer.)   Finally, diag closes each
of the n connections, and terminates.

By default, diag and rd check all defined mechanisms within UTL, and send 20,000

messages of size 1024 bytes for each test.   Every production release since v0.80 has

passed this test before being added to the master directory.

The diag and rd programs can also accept command line options to test

only particular subsets of services, and to change the number and size of test messages.
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3.7.3 Debugging macros

Two specific techniques were used in debugging UTL that may be of

general interest. These include a set of debugging macros for controlling diagnostic

output (described in this section) and a set of wrapper functions for malloc and

free that help to find pointer related bugs (described in the next section).

While general purpose debuggers such as dbx41 or gdb42 have their

place, it is sometimes more helpful to put trace output into a program.  However, trace

output can create certain problems. Network protocols can be considered real-time

systems, in the sense that the progress of the computation is governed by events that

happen in real time, such as packet arrivals and timeouts.   The time it takes to produce

diagnostic output may introduce artifacts into the timing of events such that a

particular bug does not occur.

What can help is to allow fine control over the level of diagnostic output.

If the content and amount of diagnostic output can be controlled, by repeated

experimentation, the developer can find the level of output at which the error still

occurs, but the amount of useful information provided to the developer is maximized.

Therefore, to provide this fine level of control, each module in UTL has a 32-bit debug

variable, where each bit controls a particular subset of diagnostic output.  A set of pre-

processor macros (#defines) are provided so that the programmer can easily identify

the subset of debugging output to which any given print statement belongs.   At run

time, if a particular piece of debugging output is not selected, the overhead for each

                                                
41 dbx is part of Sun’s Workshop development environment (www.sun.com)

42 gdb is the GNU debugger provided by the Free Software Foundation
(www.gnu.org)



153

debugging output block is only the time it takes to do a bitwise-and, a compare, and a

branch operation.  Furthermore, one can produce an optimized binary by simply

substituting a “no-op” macro for each of the regular debugging macros.  Having a

means to remove the debugging output without deleting it from the source means that

it will still be in the code in case it is needed again later—which, it invariably is.

3.7.4 Memory debugging macros

A frequent cause of problems in developing software in C or C++ is the

manipulation of pointers.   Network software in particular has this problem, because of

the pointer arithmetic involved in efficient encapsulation and de-encapsulation of

protocol data units (PDUs).    Therefore, as part of UTL we developed routines to help

us find two particularly nasty classes of bugs:

(1) memory leaks

(2) heap corruptions due freeing of dangling pointers

The basic approach is described in (Young, 1995.)  We put a wrapper

around the heap allocation and deallocation routines malloc() and free().    Our

wrapper routines, mem_coBlock() and mem_ciBlock(), (memory check out block,

and memory check in block) call the regular system malloc() and free() routines,

but add a header to each piece of memory that is allocated.  In the header of each

chunk, we store a serial number, and the source code line number and filename of the

statement that allocated the block of memory, and a “magic number”(a sentinel value
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used for data validation.)43  We also keep track globally of how many pieces of

memory have been allocated, and the total amount of memory allocated; these values

are printed in diagnostic output controlled by the debug bits mentioned in the previous

section.  We then keep a binary search tree where the key is the pointer value itself; the

tree contains a node for each chunk of memory that is outstanding.

Within UTL, any call to malloc() or free() is redirected via

#defines to mem_coBlock() and mem_ciBlock(), respectively.  The

mem_coBlock() routine does a malloc() call for the requested amount of memory,

plus the extra header, then adds the memory chunk to the search tree, and to the total

of memory outstanding, and finally returns a pointer to the allocated chunk (past the

extra header.)  The mem_ciBlock() routine verifies that the pointer to be freed is in

the tree; if not, it aborts the program with an error message, This message indicates

that a free() was done on a dangling pointer (the standard run time library does not

check for this, probably for reasons of efficiency.)   On the other hand, if the block is

found in the tree, then it is removed, the counters are decremented appropriately, and

the real system free() routine is called.

Memory leaks are detected by turning on diagnostic output that is printed

by mem_ciBlock() and mem_coBlock().  This output allows the developer to

match up the malloc() and free() calls, and ensure that at the end of the program, the

amount of outstanding memory is zero.

                                                
43 The source code and line number come from the C pre-processor symbols
__LINE__ and __FILE__.
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3.8 Related work

In this section, we survey related work in two areas: user-level (a.k.a. user-

space) protocol implementation, and flexible protocol architectures.

3.8.1 User-level (user-space) protocol implementations

Previous work on user-level implementations of protocols frequently cites

(Mogul et al., 1987) as a basis, which describes the Packet Filter, a facility in the

kernel to provide efficient demultiplexing of incoming packets.  The key idea of the

Packet Filter is that demultiplexing is best done by a trusted process in the kernel, but

that once the destination of the packet is determined, it should be delivered to a user-

level process for the remainder of the processing.  While this work is important for

establishing the advantages of user-level implementation of upper layer protocol

functions, because we rely on UDP for packet demultiplexing, the mechanisms in this

work are not needed in our case.

(Thekkath et al., 1993) provides a summary of the arguments for building

protocols at user level. It then describes a three component architecture for a

user-space protocol implementation, and present performance results for a user-level

TCP implementation built with their architecture.  One component of their architecture

is a protocol library linked in with the application, similar to our own UTL.  The other

two components are a registry server, which is single trusted user-level process per

host, and a network I/O module that is located in the kernel.

This last component highlights a key difference between their work and

ours: their architecture provides for user-level implementations of lower layer

protocols such as IP and ARP in addition to TCP.  As such, a more complex

architecture involving some new elements in the kernel is required. Because we focus
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only on transport layer processing, we are able to use the facilities of UDP and avoid

having to extend the kernel in any way.

Other work in this area includes the following:

•  (Edwards and Muir, 1995) which was already extensively
discussed in Section 3.5.7.

•  (Maeda and Bershad, 1993), which use essentially the same
architecture as (Thekkath et al., 1993), but puts a greater emphasis
on absolutely preserving the semantics of the original Berkeley
Sockets API.

•  The x-Kernel, which we discuss in the Section 3.8.3 on flexible
protocol architectures.

3.8.3 Flexible protocol architectures

Several other researchers have studied environments for implementation

of protocols.  The most prominent is the x-Kernel developed at the Univ. of Arizona.

(Hutchison and Peterson, 1988; Hutchinson and Peterson, 1991; O’Malley and

Peterson, 1992.)  The x-Kernel provides a framework for constructing protocols or

protocol stacks from smaller microprotocols (similar to UTL layers). As in UTL, there

is a standard layer-to-layer interface, and a meta-protocol defining the legal ways in

which protocol can be composed.  In these ways, UTL and the x-Kernel are similar.

However, the x-Kernel is a larger project in scope, and has different goals.

UTL focuses exclusively on interactions between the application and transport layers,

and provides a means to develop protocols at user level.  The x-Kernel provides a

means to build new in-kernel protocol stacks, along with an x-Kernel simulator

allowing these stacks to be developed and tested at user level.  It also provides an

environment for building protocol stacks all the way from the data link layer, up

through the network layer, to transport and application.
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At the time we chose to develop our own library, the x-Kernel was less

mature and less widely documented than it is today. Support for using the x-Kernel has

increased dramatically, due to documentation and code available over the Web, and an

introductory networks textbook based on the programming in the x-Kernel framework

(Peterson and Davie, 1996).  Therefore, as future work, we propose reexamining the

architecture of UTL in light of the availability of the x-Kernel, and perhaps developing

an x-Kernel based implementation of the functionality present in UTL.  This would

open up many new areas for investigation, since x-Kernel implementations of standard

protocols (TCP, UDP) already exist.

Other work on flexible protocol schemes includes

•  PascalCom  which outlines an architecture based on a Pascal-like
language (Tschudin, 1991)

•  The ADAPTIVE project, a framework for experimenting with
high-performance transport protocols, with an emphasis on
multimedia applications and exploiting opportunities for
parallelism in the protocol processing. (Schmidt and Suda, 1993;
Schmidt et al., 1992)

3.9 Chapter summary, and future work related to UTL

This chapter described how the author designed and supervised the

development of the Universal Transport Library (UTL), a tool for investigating

flexible Transport QoS. UTL provides a framework for rapid prototyping of transport

layer implementations, experimenting with application performance over a wide range

of transport protocols.

We described the core principles that guided the UTL design and

implementation: (1) avoidance of protocol-specific special-case code in the
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application, (2) application level framing, (3) reasonable fallbacks, and (4) minimizing

data copies.

We also described the means by which UTL provides a wide range of

transport QoS to the application. The QoS provided is determined by the selection of a

mechanism at connection establishment time, and by the setting of a set of parameter

values.  UTL mechanisms are composed of layers, and default parameter values.

Layers provide the implementations of protocols and services.  A set of formal rules is

specified for composing mechanisms and determining the resulting QoS.

We also surveyed some of the challenges involved in the design and

implementation of transport layer protocols in general, and user-level implementations

in particular, including application-transport flow control, RTO calculation, and CPU

scheduling.

Suggestions for future work on UTL already mentioned in this chapter

include:

•  Fully implementing the features of POCv2 not already in UTL,
including the PR reliability class (Section 3.3.8)

•  Finishing KX3 and evaluating it against other TCP-friendly
protocols

•   Completing the SRL layer (Section 3.3.8)

•  Evaluating whether to migrate some UTL functions to the kernel,
either directly, or through the x-Kernel (Section 3.5.1)

•  Evaluating the penalty of message-oriented vs. byte-stream service
(Section 3.5.4)

•  Provision of a facility for QoS negotiation (Section 3.5.6)

•  Redesigning the CPU scheduling to use POSIX threads (Section
3.5.7)
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In addition, the following projects would be useful additions:

•  Adding window size negotiation and mechanism negotiation to the
KXx family of protocols.  These features would aid considerably
in automation of experiments, since currently, to test multiple
window sizes and mechanism, it is necessary to have a separate
server listening for each window size and mechanism under test.

•  Adding the data preview feature described in Chapter 2 to the POL
and TOL layers.

In the next chapter, we discuss the ReMDoR system, which has been the

key application with which UTL has been tested.


