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Abstract— We study the performance of Concurrent Multipath
Transfer using SCTP multihoming (CMT) in the presence of a
bounded receive buffer (rbuf). We demonstrate using simulation
that if two paths are used for CMT, the lower quality (i.e.,
higher loss rate) path degrades overall throughput of an rbuf-
constrained CMT association by blocking the rbuf. We argue that
rbuf blocking is not specific to the transport layer, but applies
to multipath transfers at other layers as well. We present and
discuss CMT performance using several retransmission policies
and various constrained rbuf values. We also study the impact
of rbuf blocking with different combinations of end-to-end loss
rate and delay on the two paths and show that when large
differences exist in path delays and loss rates, using only the
better path outperforms using two paths concurrently. While
rbuf blocking cannot be eliminated, it can be reduced by choice
of retransmission policy — a mechanism available to only the
transport layer.

I. INTRODUCTION

A host is multihomed if it can be addressed by multiple IP
addresses, as is the case when the host has multiple network
interfaces. Multihoming is increasingly economically feasible
and can be expected to be the rule rather than the exception
in the near future, particularly when fault tolerance is crucial.
Multihomed nodes may be simultaneously connected through
multiple access technologies, and even multiple end-to-end
paths to increase resilience to path failure. For instance, a
mobile user could have simultaneous Internet connectivity via
a wireless local area network using 802.11b and a wireless
wide area network using GPRS.

Previous work proposed using Concurrent Multipath Trans-
fer (CMT) between multihomed source and destination hosts
to increase an application’s throughput [1]–[3]. CMT is the
concurrent transfer of new data from a source to a destination
host via two or more end-to-end paths. While concurrency
can be arranged at other layers, the transport layer has the
best knowledge to estimate end-to-end paths’ characteristics.
Implementing multipath transfer at the application layer in-
creases redundancy and room for error by requiring a separate
implementation by each application programmer.
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The current transport protocol workhorses, TCP and UDP,
do not support multihoming; TCP allows binding to only one
network address at each end of a connection. When TCP was
designed, network interfaces were expensive components, and
multihoming was beyond the ken of research. Changing eco-
nomics and increasing emphasis on end-to-end fault tolerance
have brought multihoming within the purview of the transport
layer. We research CMT at the transport layer using the
Stream Control Transmission Protocol (SCTP) [4], [5]. SCTP
is an IETF standards-track protocol that natively supports
multihoming at the transport layer. SCTP multihoming allows
binding of one transport layer association (SCTP’s term for
a connection) to multiple IP addresses at each association
endpoint. This binding allows a sender to transmit data to a
multihomed receiver through different destination addresses.
Concurrent transfer of new data to multiple destination ad-
dresses is currently not allowed in SCTP due primarily to
insufficient research. Our research attempts to fill that need.

Previously, we developed three algorithms for SCTP result-
ing in CMTscd - a protocol that uses SCTP’s multihoming
feature for correctly transferring data between multihomed
end hosts using multiple separate end-to-end paths [1]. Since
CMTscd

1 allows concurrent transmission of data to multiple
destinations, a sender can send retransmissions to one of
several destinations that are receiving new transmissions. Pre-
viously, we proposed five retransmission policies, and protocol
modifications to SCTP to allow for correct functioning of these
retransmission policies [2]. But in [2], we operated under the
strong and limiting assumptions that (1) the receive buffer
(rbuf) was infinite, and (2) the bottleneck queues on the end-
to-end paths used in CMT were independent of each other.

In this paper, we drop assumption (1) and investigate how
a bounded rbuf affects CMT performance. While assumption
(2) remains limiting, several environments (eg., telephony
signalling over IP, battlefield networks) exist with independent
paths. Future work will relax this constraint. While we discuss
performance considerations in the context of CMT, we note
that these considerations apply to multipath transfer at other
layers as well.

Section II describes the simulation topology for our in-
vestigation, and reviews relevant concepts and terminology.
Section III describes, by example, the rbuf blocking problem.

1Henceforth, we refer to “CMTscd” as simply “CMT”
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Section IV presents a detailed performance analysis of the
different retransmission policies with different rbuf sizes.
Section V then considers the impact of rbuf blocking with
different loss rate and end-to-end delay combinations on the
paths used for CMT. Section VII summarizes and concludes
the paper.

II. PRELIMINARIES

For our simulations, we use the University of Delaware’s
SCTP module, which is now part of the latest ns simulator
distribution [6], modified to incorporate CMT and the different
retransmission policies. The topology is shown in Figure 1.
Edge links represent the last hop, and the core links represent
end-to-end conditions on the Internet. The end-to-end delays
are 45ms on both paths, representing typical US coast-to-coast
delays experienced by a significant fraction of the flows on the
Internet [7]. The loss rate on Path 1 is maintained at 1%, and
on Path 2 is varied from 1 to 10%. A loss rate of x% means
a forward path loss rate of x%, and a reverse path loss rate
of x%.
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Fig. 1. Simulation topology

This simulation topology does not account for effects seen
in the Internet such as network-induced reordering, delay
spikes, etc.; these effects are beyond the scope of this study.
Our simulation evaluation provides insight into the impact that
a constrained rbuf poses to CMT, the fundamental differences
between the retransmission policies, and their performance in
a constrained rbuf environment. We chose a simple topology to
avoid influence of other effects, and to focus on performance
differences which we believe should hold true in a real
environment as well2.

We now review relevant concepts and terminology. A trans-
port layer receiver maintains rbuf space for incoming data
for two reasons: (i) to handle out-of-order data, and (ii) to
receive data at a rate higher than that of the receiving applica-
tion’s consumption. In SCTP (and TCP), a receiver advertizes
currently available rbuf space through window advertisements
(normally accompanying acks) to a data sender. This value is
the advertized receive window (adv-rwnd). A sender computes
a peer-rwnd to deduce how much more data can be buffered

2The simulation topology is clearly simplistic. We verified a subset of the
results using a more complex topology with congestion losses based on cross-
traffic, and the resulting trends were similar, supporting our conclusions in
this paper.

at the receiver. Beside the latest adv-rwnd received, the peer-
rwnd takes into account data that has been sent but not yet
acked by the receiver.

An SCTP receiver maintains a single rbuf per association.
An SCTP sender, consequently, maintains a single peer-rwnd
per association. Note that sender-side estimates such as con-
gestion window (cwnd), slow start threshold (ssthresh) and
roundtrip time (RTT) are maintained per destination - they
represent the state of different network paths from a sender to
each destination address. A sender has no reason to maintain
separate rbufs or peer-rwnds per path since a receiver can
consume data only in sequence, irrespective of the destination
address they are sent to3. An SCTP sender’s sending rate is
bound by both the peer-rwnd and the pertinent destination’s
cwnd, i.e., min(peer-rwnd, cwnd).

We define a sub-association flow as the set of transport
protocol data units (PDUs) within an SCTP association that
have the same destination address. In Figure 1, an SCTP
association from the sender to the receiver spanning the two
paths will have two sub-association flows - one consisting of
PDUs with destination B1, and the other with destination B2.

A reference to “cwnd for destination X” means the cwnd
maintained at the sender for destination X, and “timeout on
destination X” refers to the expiration of a retransmission timer
maintained for destination X at the sender. Since bottleneck
queues on the end-to-end paths are assumed independent, each
destination uniquely maps to a bottleneck-independent path.
For instance in Figure 1, “cwnd for destination B 1” may be
used interchangeably with “cwnd for path 1” (where path 1
ends at destination B1).

CMT schedules new data to different destinations as band-
width becomes available on corresponding paths, i.e., as
corresponding cwnds allow. When cwnd space is available
simultaneously for two or more destinations, data is sent to
these different destinations in arbitrary order - a reasonable
transmission policy when the CMT sender has no apriori
knowledge of the paths’ characteristics.

III. RECEIVE BUFFER BLOCKING: PROBLEM DESCRIPTION

A CMT receiver maintains a single rbuf which is shared
across the sub-association flows. Irrespective of the layer
at which multipath transfer is performed, a similar shared
buffer would exist at a receiver (likely at the transport or
application layer). This buffer sharing has been shown to
degrade throughput [8]. To elaborate, Figure 2 shows an
excerpt from a simulation of a CMT association using the
topology shown in Figure 1. In this example, the rbuf is 16KB,
Path 1 (A1 to B1) has a loss rate of 1%, and Path 2 (A2 to B2)
has a loss rate of 10%. Retransmissions are sent to the same
destination as the original transmission, a policy called RTX-
SAME (we revisit this retransmission policy in Section IV).

Figures 2(a) and (c) show Transmission Sequence Number
(TSN) progression4 over Path 1 and Path 2, respectively,
and Figure 2(b) shows peer-rwnd evolution at the sender

3While SCTP supports unordered data delivery and multistreaming in an
association [5], here we focus on ordered data delivery over a single stream.

4TSNs in SCTP are analogous to sequence numbers in TCP.
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Fig. 2. Instantiation of rbuf blocking: (a) Progression of data sent to destination B1 over Path 1 (loss rate 1%) over a select interval; (b) peer-rwnd value
maintained at sender (endpoint A) over same interval; (c) Progression of data sent to destination B2 over Path 2 (loss rate 10%) over same interval

(endpoint A) during the time interval from 110 to 130 seconds.
Figure 2(a) shows that data transmission over the better (i.e.,
lower loss rate) path stops abruptly around 114.5 seconds and
resumes around 128 seconds. This 13.5 second pause can be
explained with the help of Figure 2(b). At 114.5 seconds, the
peer-rwnd at the sender abruptly reduces from 16384 bytes to
236 bytes, constraining the sender from transmitting any new
data. The cause for this abrupt rbuf reduction is explained as
follows.

During the same time interval from 114.5 seconds to
128 seconds, Figure 2(c) shows that the lower quality (i.e.,
higher loss rate) path undergoes congestion, and recovers from
losses through repeated retransmission timeouts - the longest
recovery time being 8 seconds for TSN 2304. During this
entire period of 13.5 seconds while loss recovery repeatedly
occurs on Path 2, the receiver waits for retransmissions to
come through, and is unable to deliver subsequent TSNs to
the application (some of which were sent over Path 1). These
subsequent TSNs are held in the transport layer rbuf until the
retransmissions are received, thus blocking the rbuf and the
peer-rwnd. Path 2 thus causes blocking of the rbuf, preventing
data from being sent on either path and reducing overall
throughput.

This example demonstrates how a shared rbuf results in
a sub-association flow on a higher quality path getting lower
throughput than expected. We note that the exact numbers used
in this example do not hold special relevance. This example
presents a phenomenon which occurs, in lesser or greater
degree, throughout a CMT association.

Figure 3 shows the time taken to transfer an 8MB file
using (i) CMT (with RTX-SAME retransmission policy) with a
16KB rbuf, and (ii) a single SCTP association which uses only
the better path (Path 1 with loss rate 1%). Intuitively, using
two paths should provide higher overall throughput than using
one path. However, Figure 3 demonstrates that using two paths
performs worse than using only the better path if a finite rbuf
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Fig. 3. rbuf blocking in CMT causes throughput degradation

is shared across the paths5. This performance difference is due
to rbuf blocking that occurs in CMT - an rbuf of 16KB does
not constrain a single SCTP association (which uses one lower
loss rate path) as much as it constrains CMT (which uses two
paths with different loss rates).

We emphasize that rbuf blocking is not unique to the
transport layer; it applies to multipath transfer at other layers
as well. Rbuf blocking cannot be eliminated or avoided by
moving CMT’s parallelism to a different layer. Specifically, if
the application layer distributes a single logical flow across
multiple end-to-end paths, and the application layer receiver
(the final destination) has finite buffer space, then rbuf block-
ing will occur.

After analyzing several traffic flows, we observe that
chances of rbuf blocking are higher during periods of timeout
recovery. Further, a larger timeout recovery period due to back-
to-back timeouts with exponential backoff results in an even

5Presumably an SCTP sender does not have apriori knowledge about the
better path and hence cannot always achieve best performance. We discuss
expected SCTP performance later in Section V.
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higher probability that a finite rbuf blocks a sender.
We therefore hypothesize that reducing (i) the number

of timeouts, and/or (ii) the number of back-to-back timeout
retransmissions will reduce the rbuf blocking problem. Con-
sequently, we hypothesize that making an intelligent choice
of destination for retransmissions, a choice available to only
the transport layer, will help reduce rbuf blocking. As we
mentioned earlier, retransmissions in the above example are
sent to the same destination as the original transmission. We
used this retransmission policy initially due to its simplicity. In
the following section, we present several alternative “smarter”
policies.

IV. CHOOSING A RETRANSMISSION POLICY FOR CMT

Multiple paths present a sender with a choice where to
send a retransmission of a lost transmission. Unlike SCTP
where a sender “knows” a lot about one primary path and
just a little (via probes) about all of the other paths, a CMT
sender maintains accurate information about all paths, since
new data is being sent to all destinations concurrently. This
information allows a CMT sender to intelligently decide where
to retransmit.

A. CMT Retransmission Policies

We review five retransmission policies for CMT [2]. In the
latter four policies, a retransmission may be sent to any of the
receiver’s destinations, including the one used for the original
transmission.

• RTX-SAME - Once a new data chunk is scheduled and
sent to a destination, all retransmissions of the chunk
are sent to the same destination (until the destination is
deemed inactive due to failure [5]).

• RTX-ASAP - A retransmission of a data chunk is
sent to any destination for which the sender has cwnd
space available at the time of retransmission. If multiple
destinations have available cwnd space, one is chosen
randomly.

• RTX-CWND - A retransmission is sent to the destination
for which the sender has the largest cwnd. A tie is broken
by random selection.

• RTX-SSTHRESH - A retransmission is sent to the
destination for which the sender has the largest ssthresh.
A tie is broken by random selection.

• RTX-LOSSRATE - A retransmission is sent to the
destination with the lowest loss rate path. If multiple
destinations have the same loss rate, one is selected
randomly.

Of the policies, RTX-SAME is simplest. Since an applica-
tion that stripes data across multiple transport layer (SCTP
or TCP) associations will not be able to move outstanding
data from one association to another, such an application
will effectively use the RTX-SAME policy at the transport
layer. RTX-SAME thus represents the performance of an data
striping application.

RTX-ASAP is a “hot-potato” policy - retransmit as soon as
possible without regard to loss rate. RTX-CWND and RTX-
SSTHRESH practically track, and attempt to move retrans-
missions onto the path with the estimated lowest loss rate.

RTX-LOSSRATE uses information about loss rate provided
by an “oracle” - information that RTX-CWND and RTX-
SSTHRESH estimate. This policy represents a hypothetically
ideal case; hypothetical since in practice, a sender typically
does not know apriori path loss rates; ideal since the path
with the lowest loss rate has highest chance of having a packet
delivered. We hypothesized that policies that take loss rate
into account would best reduce rbuf blocking by reducing the
number of timeouts.

We do not propose different policies for new transmissions
- we assume that a sender does not know path properties
apriori and can therefore only react to network events such as
congestion losses (see Section II for our transmission policy).
This assumption holds true particularly in the Internet where
the path properties are changing.

We now evaluate the five retransmission policies for CMT
operating under a constrained rbuf. Default rbuf values in
commonly used operating systems today vary from 16KB to
64KB and beyond. We believe that today, when a desktop
computer can have gigabytes of memory, having an rbuf
of at least 64KB is reasonable. We first study and analyze
performance of the different policies with an rbuf of 64KB in
Section IV-B. This section provides insight into the causes
of the performance differences between the retransmission
policies. We then summarize performance of the different
policies under more and less constraining rbufs varying from
16KB to 256KB in Section IV-C. This analysis provides us
with an understanding of how much impact a constraining rbuf
(or the rbuf blocking problem) has on the different policies.

B. Evaluation with rbuf = 64KB

Figure 4(a) shows the time taken for a CMT sender to
transfer an 8MB file when the rbuf is set to 64KB, using the
five retransmission policies. Each plotted value is the mean
of at least 100 simulation runs. RTX-SAME, the simplest to
implement, performs worst. Its performance gap with the other
policies increases as the loss rate on Path 2 increases. RTX-
ASAP performs better than RTX-SAME, but still considerably
worse than the three loss-rate-based policies. We present two
causes for these differences.

Cause 1: Figure 4(b) shows the number of retransmission
timeouts experienced when using the different policies. One
may conclude that improvement in using the loss-rate-based
policies is due partly to fewer timeouts (and hence, timeout
recovery periods). RTX-SAME does not consider loss rate
and experiences the largest number of timeouts. RTX-ASAP
does not consider loss rate and does better than RTX-SAME,
but still experiences more timeouts than the loss-rate-based
policies. This analysis supports our intuitive hypothesis -
taking path loss rate into consideration while deciding the
retransmission destination improves the chances of a retrans-
mission getting through, and improves overall performance
due to reduction of rbuf blocking.

Cause 2: Figure 4(c) shows the average time taken to
successfully communicate a TSN. This time is measured as
the time taken from the first transmission of a TSN to the
time when that TSN or one of its retransmissions finally
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Fig. 4. With rbuf = 64K, and Path 1 loss rate = 1%,: (a) Time taken by CMT to transfer an 8MB file, (b) Number of retransmission timeouts for CMT
with different retransmission policies, (c) Average time taken to successfully communicate a TSN with different retransmission policies, (d) Average number
of consecutive timeouts with different retransmission policies (Path 1 loss rate = 1%; Path 2 loss rate = 10%)

reaches the receiver. RTX-SAME shows the highest average,
suggesting that more retransmissions may be needed for a
successfully communicating a TSN. Since recovery via fast
retransmission can happen only once for a given TSN, the
number of consecutive timeouts may be higher with RTX-
SAME than with the other policies. Each consecutive timeout
causes a sender’s retransmission timeout value to double, thus
doubling the timeout recovery period. Recall that the longer
the timeout recovery period, the higher the probability and
longer the duration for rbuf blocking to occur. Thus, more
consecutive timeouts will degrade performance.

Figure 4(d) shows average number of timeouts that take r

seconds (for r = 1, 2, 4 and 8) using the different retransmis-
sion policies with Path 1 loss rate = 1%, and Path 2 loss rate
= 10%. Using SCTP’s (and TCP’s) default parameter values,
these values of r are caused by consecutive timeouts — r =
2 seconds corresponds to 2 consecutive timeouts, and r = 4
seconds corresponds to 3 consecutive timeouts. Though the
occurrences of 2 and 4 second timeouts are few, we note that
their impact is significant due to rbuf blocking during these
periods. Overall, loss-rate-based policies experience about
half the consecutive timeouts that RTX-SAME does. Thus,
performance degradation due to consecutive timeouts can be

significantly reduced by taking loss rate into account for
making retransmission decisions.

C. Evaluation with different rbufs

We also investigated the performance of the five retrans-
mission policies using rbuf sizes of 16KB, 32KB, 128KB,
and 256KB. The performance ranking of the different policies
with these rbufs remains the same as with an rbuf of 64KB
(Figure 4(a)); hence performance curves for these rbuf values
are not shown. We discuss a few salient points.

• With a large (i.e., minimally constraining) rbuf of 256KB,
RTX-SAME still performs poorly due to a high number
of timeouts, and the consequent throughput degradation.
Each timeout causes cwnd reduction at a sender, and
entails idle time (i.e., the sender not transmitting data)
— causing throughput reduction.

• As the rbuf size decreases and becomes more of a
constraint, degradation in CMT throughput occurs due to
increased rbuf blocking as explained in Section III. All re-
transmission policies suffer in the face of an increasingly
constraining rbuf. Even with a reasonably large rbuf of
128KB, some performance degradation occurs; i.e., even
with large rbufs, rbuf blocking is not eliminated.
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• As the rbuf becomes more constraining, degradation in
throughput of RTX-SAME policy is markedly more than
with the other retransmission policies. The reasons for
this degradation are the same as described in Section IV-
B. Degradation is least in the loss-rate-based policies with
an increasingly constraining rbuf.

In summary, retransmission policies that take loss rate into
account perform better under the different rbuf values consid-
ered. Of the loss rate based policies, the practical ones (RTX-
CWND and RTX-SSTHRESH) perform similarly under all
conditions considered. We arbitrarily select RTX-SSTHRESH
as CMT’s retransmission policy in further evaluations.

V. CMT PERFORMANCE EVALUATION

In this section we explore the effect of different end-to-end
delays (Section V-A), and different combinations of delays and
loss rates (Sections V-B and V-C), on CMT throughput. This
evaluation studies the impact of rbuf blocking on CMT under
different network conditions. A discussion on the insights
gained through this evaluation follows (Section V-D).

A. Evaluation under different end-to-end delays

Figure 5 shows relative throughput degradation of CMT
under different end-to-end delays - 10ms, 25ms, 45ms, 90ms,
180ms, and 360ms, yielding RTTs of 20ms, 50ms, 90ms,
180ms, 360ms, and 720ms, respectively. The delays on both
paths to the receiver are symmetric (We are currently studying
rbuf blocking with asymmetric paths). These values cover
a range of RTTs experienced by majority of flows on the
Internet [7]. Relative throughput degradation is computed as
the ratio

CMT throughput with infinite (INF ) rbuf

CMT throughput with rbuf = X

as X varies from 16KB to 256KB along the X-axis (Note
that along the Y-axis, smaller values are better). The degra-
dation curves for all end-to-end delays in Figure 5 show a
knee at 64KB. The largest degradation (i.e., worst throughput)
occurs with the shortest delay of 10ms. At 10ms, throughput
with infinite rbuf space is roughly 10 times what it would be
with a 16KB rbuf. As the end-to-end delay increases, CMT’s
relative throughput degradation decreases. We now explain
why associations with smaller delays are more sensitive to
a constrained rbuf.

Overall SCTP throughput, similar to TCP throughput, varies
inversely with delay. This relationship holds true for large
rbuf conditions. Thus, in the relative throughput degradation
measure, the numerator (CMT throughput with infinite rbuf)
increases as delay decreases.

As the rbuf size increasingly becomes a bottleneck, a
different dynamic dominates. According to the SCTP specifi-
cation [5] and the specification for computing TCP’s retrans-
mission timer [9], retransmission timeouts (RTOs) should have
a (conservative) minimum value of 1 second to avoid spurious
timeouts. These timeout recovery periods are thus independent
of the end-to-end delays considered, since the delays are far
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Fig. 5. Relative throughput degradation of CMT with different end-to-end
delays

less than 1 second. As rbuf increasingly constrains, the number
of timeouts increases. Consequently, total time spent in time-
out recovery (which is roughly the same irrespective of the
end-to-end delay) increasingly dominates association lifetime.
Thus, the denominator in the relative throughput degradation
measure (CMT throughput with rbuf=X, as X varies) does
not increase as fast as the numerator with decreasing end-
to-end delay, since the denominator is largely dictated by
(constant) timeout recovery periods. Therefore, the influence
of a constrained rbuf increases as end-to-end delay decreases.
In summary, CMT is more sensitive to rbuf constraints in
environments (such as data centers [10]) with shorter end-
to-end delay. Or, from a network engineering point of view,
the shorter the end-to-end delay, the more important it is to
have a larger rbuf to fully exploit CMT.

We can thus see that rbuf blocking has a larger impact on
associations with shorter end-to-end delay due to a minimum
RTO value which is recommended [5], [9] and largely in use.
We note that shorter minimum RTOs together with better RTT
estimation algorithms [11], [12] would lessen the bias against
shorter delay associations (such a study is beyond the scope
of this work.)

B. CMT vs UnawareApp

The potential parallelism gains of CMT decrease as the rbuf
size decreases. In this section we attempt to quantify the gains,
if any, in using CMT with a limited rbuf. We introduce a
reference for comparison called UnawareApp and compare it
to CMT. UnawareApp represents the expected throughput seen
by an application using a single SCTP association to transfer
data. UnawareApp sends data to one destination selected from
the set of receiver destinations with equal probability. Without
prior knowledge of path conditions, and without CMT, an
application would arbitrarily pick one destination to send data.
UnawareApp captures the expected throughput when such a
decision is made.

It might seem unintuitive to compare CMT against Un-
awareApp, since UnawareApp uses just one path for the



7

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009  0.01C
M

T
 g

ai
ns

 o
ve

r 
U

na
w

ar
eA

pp
 (

T
hr

ou
gh

pu
t_

C
M

T
 / 

T
hr

ou
gh

pu
t_

U
na

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1C
M

T
 g

ai
ns

 o
ve

r 
U

na
w

ar
eA

pp
 (

T
hr

ou
gh

pu
t_

C
M

T
 / 

T
hr

ou
gh

pu
t_

U
na

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

(a) (b)

 1

 2

 3

 4

 5

 6

 7

 8

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1C
M

T
 g

ai
ns

 o
ve

r 
U

na
w

ar
eA

pp
 (

T
hr

ou
gh

pu
t_

C
M

T
 / 

T
hr

ou
gh

pu
t_

U
na

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

 2

 4

 6

 8

 10

 12

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1C
M

T
 g

ai
ns

 o
ve

r 
U

na
w

ar
eA

pp
 (

T
hr

ou
gh

pu
t_

C
M

T
 / 

T
hr

ou
gh

pu
t_

U
na

w
ar

eA
pp

)

Path 2 Loss Probability

rbuf = INF
rbuf = 256K
rbuf = 128K
rbuf = 64K
rbuf = 32K

(c) (d)

Fig. 6. CMT throughput gains over UnawareApp with a constraining rbuf:
(a) Path 1 loss probability = 0.001, Path 1 end-to-end delay = 45ms, Path 2 end-to-end delay = 45ms
(b) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2 end-to-end delay = 45ms
(c) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2 end-to-end delay = 90ms
(d) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2 end-to-end delay = 180ms

transfer (unlike CMT which sends data to all destinations).
This evaluation explores the impact of the rbuf blocking
problem on CMT. The rbuf blocking problem does not exist
for data transfers that use only one path, and therefore, does
not affect UnawareApp.

Further, rbuf blocking is caused by a shared finite receive
buffer, and equally affects any data striping application such as
AppStripe [2], which distributes load at the application layer
across multiple transport paths. An application that stripes data
across multiple paths requires a finite rbuf at the application
layer for reassembly and ordering of incoming data. This rbuf
will cause analogous degradation at the application layer as
a bounded transport layer rbuf would for CMT. Therefore,
we do not use a data striping application as reference in this
evaluation since the rbuf blocking problem exists for such an
application as well.

Figure 6 shows throughput gains in using CMT vs. Un-
awareApp, measured as a ratio of CMT throughput to Un-
awareApp throughput, for different rbuf values, different loss

rates on the two paths, and different delay combinations on
the two paths. We explored loss rate combinations in the range
[0.1%, 10%], and end-to-end delay combinations in the range
[25ms, 360ms]. These loss rate and delay combinations reflect
network conditions experienced by flows on the Internet [7].
UnawareApp uses the same rbuf size as CMT in these evalu-
ations.

The ratio plotted in Figure 6 is Throughput CMT
Throughput UnawareApp

.
Values greater than 1 imply that CMT performs better than
UnawareApp; a value less than 1 means that UnawareApp
performs better than CMT. All results show similar trends in
throughput with CMT performing better; representative results
are shown in Figure 6. The throughput gains with CMT are
chiefly attributed to two reasons:

• UnawareApp chooses the worse path for transferring data
half the time. Transfer times over the worse path increase
significantly as loss rate on that path increases, thereby
increasing the average transfer time for UnawareApp
significantly. CMT uses both paths concurrently, and
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using RTX-SSTHRESH ensures that most of the data is
sent over the better path, thus reducing overall transfer
time for CMT.

• CMT is more resilient to reverse path loss than Un-
awareApp. CMT uses a single sequence space (TSN
space, used for congestion control and loss detection
and recovery) across the one association’s multiple paths.
Since CMT’s acks are cumulative, sharing of sequence
spaces across paths helps a CMT sender receive ack
info on either of the return paths. Thus, CMT effectively
uses both return paths for communicating ack info to the
sender. For instance, if an ack is lost on one return path,
traffic on the other path will cause the CMT receiver
to respond with acks on the other return path. These
cumulative acks carry the information that was lost in the
previous ack(s). This resilience is a significant benefit of
CMT, and occurs because CMT shares sequence space
across the paths [2].

As compared to UnawareApp, using CMT is beneficial,
even with the most constrained rbuf of 32KB; this benefit
increases as the rbuf size increases.

C. CMT vs AwareApp

By using UnawareApp as a reference, we assumed that
a sender has no prior knowledge of path conditions. This
assumption causes UnawareApp to suffer throughput degra-
dation, since UnawareApp picks and uses the higher loss rate
path half the time. We now drop this assumption, and introduce
AwareApp, an application which has apriori path information,
and uses only the lower loss rate path for data transfer.
AwareApp represents an application’s throughput when using
a single SCTP association over the best path to the destination.
AwareApp avoids the rbuf blocking problem (as UnawareApp
avoids), and also avoids throughput degradation due to using
the higher loss rate path.

As in Section V-B, we explored different combinations of
loss rate in the range from 0.1% to 10%, and end-to-end
delays in the range from 25ms to 360ms with rbuf values
ranging from 32KB to 256KB. Representative results from our
exhaustive set of simulations are shown in Figure 7. The ratio
plotted in Figure 7 is Throughput CMT

Throughput AwareApp
. Values greater

than 1 imply that CMT performs better than AwareApp; a
value less than 1 means that AwareApp performs better than
CMT. Salient points are as follows:

• In some cases, AwareApp performs better than CMT.
These cases can be seen in Figure 7 whenever the curves
drop below 1. This result is significant — rbuf blocking
can degrade throughput to the point that when large
differences exist in path delays and loss rates, using only
the better path outperforms using two paths concurrently.

• CMT’s throughput benefit over AwareApp decreases as
the loss rate difference between the two paths increases
for two — increased losses, and increased rbuf blocking.
On the other hand, AwareApp, which uses only the lower
loss rate path (i.e., Path 1), does not experience either of
these throughput degradations.

• CMT’s throughput benefit over AwareApp decreases as
the delay difference between the two paths increases.
See Figures 7(b), (c), and (d), where Path 2 delay is
45ms, 90ms, and 180ms, respectively. Path 1 delay is
maintained at 45ms. This degradation is explained as
follows: as the delay of Path 2 increases, more data can
be sent on Path 1 within one roundtrip time on Path 2. An
increase in Path 2’s end-to-end delay therefore increases
occurrences and periods of rbuf blocking due to increased
loss recovery time on Path 2, especially for fast retransmit
based recovery. This increased rbuf blocking degrades
CMT’s throughput.

From our simulations, we note that an rbuf of at least 128KB
is required for CMT to perform better than AwareApp with a
loss rate difference of upto 10 times and a delay difference of
upto twice between the two paths used for CMT. This result
holds within the range of loss rates and end-to-end delays that
we explored in our simulations.

D. Discussion

As just discussed, a constrained rbuf can cause significant
throughput degradation when multiple paths are used concur-
rently. One might expect that blocking can be avoided by
multiplexing over paths at a different layer, but we note that the
rbuf blocking problem cannot be eliminated at any layer; it can
only be reduced. This problem equally affects an application
layer (or network layer) data striping mechanism. Reservation
of rbuf space per path will also not reduce blocking due to
the need for in-order delivery to the application. As we have
shown, use of an intelligent retransmission policy, which is
possible in only the transport layer, and/or using a larger rbuf
reduces rbuf blocking. Though the conditions studied represent
Internet conditions [7], we acknowledge that we are using
simplistic simulations to extract an exact value for use in real
complex networks; we therefore suggest with caution that a
minimum rbuf of 128KB is required to best exploit CMT’s
parallelism.

In addition to a receive buffer (rbuf) at the receiver, a
transport sender maintains a send buffer (sbuf) for two reasons:
(i) to buffer data received from a sending application that
sends faster than can be transmitted into the network, and
(ii) to maintain data that has been sent, but not cumulatively
acked, for possible retransmission. While we discuss only rbuf
throughout this paper, we note that these evaluations, analyses
and recommendations apply to both sender and receiver socket
buffers. If the sbuf is blocked by a higher loss rate path in a
CMT association (as the rbuf can be), i.e., no data can be sent
from the sending application to the sending transport, then
the CMT association will suffer from the same degradation as
described in this chapter. Our suggestion of using a minimum
rbuf size of 128KB, therefore, holds for the sbuf as well.
Using multistreaming or unordered data delivery will allow
a transport receiver to deliver to the application data that may
not be globally in-order within an association. Such “out-of-
order” delivery will reduce rbuf blocking, but will not affect
blocking of the sbuf, since loss recovery mechanisms use
global ordering within an association. In using a single ordered
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Fig. 7. CMT throughput gains over AwareApp with a constraining rbuf:
(a) Path 1 loss probability = 0.001, Path 1 end-to-end delay = 45ms, Path 2 end-to-end delay = 45ms
(b) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2 end-to-end delay = 45ms
(c) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2 end-to-end delay = 90ms
(d) Path 1 loss probability = 0.01, Path 1 end-to-end delay = 45ms, Path 2 end-to-end delay = 180ms

stream in our evaluations, we capture the effective blocking
(rbuf or sbuf) that will degrade any CMT association.

With CMT, further gains can be had over UnawareApp and
AwareApp (which use a single SCTP association) in fault
tolerance as well. Fault tolerance is a major motivation for,
and benefit of, the multihoming feature in SCTP. In case
of a network or path failure, an SCTP sender can failover
to a different destination for sending data to a multihomed
receiver. An SCTP sender normally sends data to only one
receiver destination (called primary destination), and gathers
information about paths to all other receiver destinations
(called alternate destinations) through infrequent probes called
heartbeats. Since these probes are infrequent, an SCTP sender
may have stale or inadequate information about the alternate
paths to a receiver. Throughput degradation occurs when a
sender uses such information about alternate paths [13].

Due to inadequate information, an SCTP sender is unable
to make informed decisions about a new destination to use in
case of a network failure. A CMT sender avoids this problem

because data sent concurrently on all paths act as frequent
probes, reflecting current conditions of all paths to a receiver.
A CMT sender has more accurate information about all paths
to a receiver, which better assists a sender in detecting and
responding to network failure events.

VI. RELATED WORK

A. Socket Buffer Sizing

Research in socket buffer sizing [14]–[17] has focussed on
the relationship between socket buffer size and transport layer
(typically, TCP) throughput. Reference [15] is an early piece of
work, which proposes buffer size auto-tuning mechanisms to
maximize the sender’s throughput on all active connections.
[14], [16], [17] propose automatic buffer size tuning at the
application layer based on inline (using the data stream)
or offline (using probes) measurements. In general, research
efforts in socket buffer sizing focus on sizing the send and/or
receive socket buffers depending on application and network
congestion dynamics, and assume single path transmission.
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Our work does not focus on the resizing of socket buffers. We
explore rbuf blocking due to differing path characteristics in
multipath transmission and the alleviation of such blocking,
given a buffer size. We note that socket buffer sizing for
multipath transmission is an open research area.

B. Load Balancing

Research in load balancing at the application layer [18]–
[20], transport layer [21]–[24], and at the network layer [25]
have all attempted to devise mechanisms to distribute traffic
over multiple paths through the network (See [3], [26] for a
detailed comparison of CMT with other techniques). Where
rbuf constraints are discussed [21]–[23], little is done to
understand or alleviate blocking due to multipath transfer. Our
work attempts to fill this gap by exploring rbuf blocking, and
providing means for a transport layer sender to alleviate the
consequent degradation.

VII. SUMMARY

We presented an rbuf blocking problem which causes
throughput degradation during multipath transfer. We evalu-
ated five retransmission policies for CMT under different rbuf
constraints. Simulation results show that RTX-SAME, shown
to work well in non-CMT environments [13], and whose
performance represents that of a data striping application,
performs poorest. Better performance will result from any
retransmission policy that takes loss rate into account. We se-
lect RTX-CWND and RTX-SSTHRESH as the recommended
retransmission policies for CMT.

Investigation under different end-to-end delays revealed that
CMT is more sensitive to rbuf constraints in environments
with shorter end-to-end delay. CMT performs better than
UnawareApp under all conditions studied; performance com-
parisons with AwareApp revealed that rbuf blocking can be
a significant cause for throughput degradation in CMT. We
suggest that a minimum rbuf of 128KB be used in practice to
fully exploit CMT’s parallelism.

We reemphasize that rbuf blocking is not specific to the
transport layer; it applies to multipath transfer at other layers
as well. Rbuf blocking cannot be eliminated or reduced by
moving the functionality of CMT to a different layer or by
reserving rbuf space per path. A significant benefit of CMT
is that retransmission decisions can be made at the transport
layer, thus considerably reducing rbuf blocking—a benefit that
multipath transfer at any other layer does not have.
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